gem.c revision 1.32 1 /* $NetBSD: gem.c,v 1.32 2004/10/30 18:08:36 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.32 2004/10/30 18:08:36 thorpej Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/syslog.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52
53 #include <machine/endian.h>
54
55 #include <uvm/uvm_extern.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <machine/bus.h>
67 #include <machine/intr.h>
68
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <dev/mii/mii_bitbang.h>
72
73 #include <dev/ic/gemreg.h>
74 #include <dev/ic/gemvar.h>
75
76 #define TRIES 10000
77
78 void gem_start __P((struct ifnet *));
79 void gem_stop __P((struct ifnet *, int));
80 int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 void gem_tick __P((void *));
82 void gem_watchdog __P((struct ifnet *));
83 void gem_shutdown __P((void *));
84 int gem_init __P((struct ifnet *));
85 void gem_init_regs(struct gem_softc *sc);
86 static int gem_ringsize(int sz);
87 int gem_meminit __P((struct gem_softc *));
88 void gem_mifinit __P((struct gem_softc *));
89 void gem_reset __P((struct gem_softc *));
90 int gem_reset_rx(struct gem_softc *sc);
91 int gem_reset_tx(struct gem_softc *sc);
92 int gem_disable_rx(struct gem_softc *sc);
93 int gem_disable_tx(struct gem_softc *sc);
94 void gem_rxdrain(struct gem_softc *sc);
95 int gem_add_rxbuf(struct gem_softc *sc, int idx);
96 void gem_setladrf __P((struct gem_softc *));
97
98 /* MII methods & callbacks */
99 static int gem_mii_readreg __P((struct device *, int, int));
100 static void gem_mii_writereg __P((struct device *, int, int, int));
101 static void gem_mii_statchg __P((struct device *));
102
103 int gem_mediachange __P((struct ifnet *));
104 void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105
106 struct mbuf *gem_get __P((struct gem_softc *, int, int));
107 int gem_put __P((struct gem_softc *, int, struct mbuf *));
108 void gem_read __P((struct gem_softc *, int, int));
109 int gem_eint __P((struct gem_softc *, u_int));
110 int gem_rint __P((struct gem_softc *));
111 int gem_tint __P((struct gem_softc *));
112 void gem_power __P((int, void *));
113
114 #ifdef GEM_DEBUG
115 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
116 printf x
117 #else
118 #define DPRINTF(sc, x) /* nothing */
119 #endif
120
121
122 /*
123 * gem_attach:
124 *
125 * Attach a Gem interface to the system.
126 */
127 void
128 gem_attach(sc, enaddr)
129 struct gem_softc *sc;
130 const uint8_t *enaddr;
131 {
132 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
133 struct mii_data *mii = &sc->sc_mii;
134 struct mii_softc *child;
135 struct ifmedia_entry *ifm;
136 int i, error;
137 u_int32_t v;
138
139 /* Make sure the chip is stopped. */
140 ifp->if_softc = sc;
141 gem_reset(sc);
142
143 /*
144 * Allocate the control data structures, and create and load the
145 * DMA map for it.
146 */
147 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
148 sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
149 1, &sc->sc_cdnseg, 0)) != 0) {
150 aprint_error(
151 "%s: unable to allocate control data, error = %d\n",
152 sc->sc_dev.dv_xname, error);
153 goto fail_0;
154 }
155
156 /* XXX should map this in with correct endianness */
157 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
158 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
159 BUS_DMA_COHERENT)) != 0) {
160 aprint_error("%s: unable to map control data, error = %d\n",
161 sc->sc_dev.dv_xname, error);
162 goto fail_1;
163 }
164
165 if ((error = bus_dmamap_create(sc->sc_dmatag,
166 sizeof(struct gem_control_data), 1,
167 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
168 aprint_error("%s: unable to create control data DMA map, "
169 "error = %d\n", sc->sc_dev.dv_xname, error);
170 goto fail_2;
171 }
172
173 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
174 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
175 0)) != 0) {
176 aprint_error(
177 "%s: unable to load control data DMA map, error = %d\n",
178 sc->sc_dev.dv_xname, error);
179 goto fail_3;
180 }
181
182 /*
183 * Initialize the transmit job descriptors.
184 */
185 SIMPLEQ_INIT(&sc->sc_txfreeq);
186 SIMPLEQ_INIT(&sc->sc_txdirtyq);
187
188 /*
189 * Create the transmit buffer DMA maps.
190 */
191 for (i = 0; i < GEM_TXQUEUELEN; i++) {
192 struct gem_txsoft *txs;
193
194 txs = &sc->sc_txsoft[i];
195 txs->txs_mbuf = NULL;
196 if ((error = bus_dmamap_create(sc->sc_dmatag,
197 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
198 ETHER_MAX_LEN_JUMBO, 0, 0,
199 &txs->txs_dmamap)) != 0) {
200 aprint_error("%s: unable to create tx DMA map %d, "
201 "error = %d\n", sc->sc_dev.dv_xname, i, error);
202 goto fail_4;
203 }
204 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
205 }
206
207 /*
208 * Create the receive buffer DMA maps.
209 */
210 for (i = 0; i < GEM_NRXDESC; i++) {
211 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
212 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
213 aprint_error("%s: unable to create rx DMA map %d, "
214 "error = %d\n", sc->sc_dev.dv_xname, i, error);
215 goto fail_5;
216 }
217 sc->sc_rxsoft[i].rxs_mbuf = NULL;
218 }
219
220 /*
221 * From this point forward, the attachment cannot fail. A failure
222 * before this point releases all resources that may have been
223 * allocated.
224 */
225
226 /* Announce ourselves. */
227 aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
228 ether_sprintf(enaddr));
229
230 /* Get RX FIFO size */
231 sc->sc_rxfifosize = 64 *
232 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
233 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
234
235 /* Get TX FIFO size */
236 v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
237 aprint_normal(", %uKB TX fifo\n", v / 16);
238
239 /* Initialize ifnet structure. */
240 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
241 ifp->if_softc = sc;
242 ifp->if_flags =
243 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
244 ifp->if_start = gem_start;
245 ifp->if_ioctl = gem_ioctl;
246 ifp->if_watchdog = gem_watchdog;
247 ifp->if_stop = gem_stop;
248 ifp->if_init = gem_init;
249 IFQ_SET_READY(&ifp->if_snd);
250
251 /* Initialize ifmedia structures and MII info */
252 mii->mii_ifp = ifp;
253 mii->mii_readreg = gem_mii_readreg;
254 mii->mii_writereg = gem_mii_writereg;
255 mii->mii_statchg = gem_mii_statchg;
256
257 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
258
259 gem_mifinit(sc);
260
261 mii_attach(&sc->sc_dev, mii, 0xffffffff,
262 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
263
264 child = LIST_FIRST(&mii->mii_phys);
265 if (child == NULL) {
266 /* No PHY attached */
267 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
268 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
269 } else {
270 /*
271 * Walk along the list of attached MII devices and
272 * establish an `MII instance' to `phy number'
273 * mapping. We'll use this mapping in media change
274 * requests to determine which phy to use to program
275 * the MIF configuration register.
276 */
277 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
278 /*
279 * Note: we support just two PHYs: the built-in
280 * internal device and an external on the MII
281 * connector.
282 */
283 if (child->mii_phy > 1 || child->mii_inst > 1) {
284 aprint_error(
285 "%s: cannot accomodate MII device %s"
286 " at phy %d, instance %d\n",
287 sc->sc_dev.dv_xname,
288 child->mii_dev.dv_xname,
289 child->mii_phy, child->mii_inst);
290 continue;
291 }
292
293 sc->sc_phys[child->mii_inst] = child->mii_phy;
294 }
295
296 /*
297 * Now select and activate the PHY we will use.
298 *
299 * The order of preference is External (MDI1),
300 * Internal (MDI0), Serial Link (no MII).
301 */
302 if (sc->sc_phys[1]) {
303 #ifdef DEBUG
304 aprint_debug("using external phy\n");
305 #endif
306 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
307 } else {
308 #ifdef DEBUG
309 aprint_debug("using internal phy\n");
310 #endif
311 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
312 }
313 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
314 sc->sc_mif_config);
315
316 /*
317 * XXX - we can really do the following ONLY if the
318 * phy indeed has the auto negotiation capability!!
319 */
320 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
321 }
322
323 /*
324 * If we support GigE media, we support jumbo frames too.
325 * Unless we are Apple.
326 */
327 TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
328 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
329 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
330 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
331 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
332 if (sc->sc_variant != GEM_APPLE_GMAC)
333 sc->sc_ethercom.ec_capabilities
334 |= ETHERCAP_JUMBO_MTU;
335
336 sc->sc_flags |= GEM_GIGABIT;
337 break;
338 }
339 }
340
341 /* claim 802.1q capability */
342 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
343
344 /* Attach the interface. */
345 if_attach(ifp);
346 ether_ifattach(ifp, enaddr);
347
348 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
349 if (sc->sc_sh == NULL)
350 panic("gem_config: can't establish shutdownhook");
351
352 #if NRND > 0
353 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
354 RND_TYPE_NET, 0);
355 #endif
356
357 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
358 NULL, sc->sc_dev.dv_xname, "interrupts");
359 #ifdef GEM_COUNTERS
360 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
361 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
362 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
363 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
364 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
365 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
366 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
367 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
368 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
369 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
370 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
371 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
372 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
373 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
374 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
375 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
376 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
377 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
378 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
379 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
380 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
381 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
382 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
383 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
384 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
385 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
386 #endif
387
388 #if notyet
389 /*
390 * Add a suspend hook to make sure we come back up after a
391 * resume.
392 */
393 sc->sc_powerhook = powerhook_establish(gem_power, sc);
394 if (sc->sc_powerhook == NULL)
395 aprint_error("%s: WARNING: unable to establish power hook\n",
396 sc->sc_dev.dv_xname);
397 #endif
398
399 callout_init(&sc->sc_tick_ch);
400 return;
401
402 /*
403 * Free any resources we've allocated during the failed attach
404 * attempt. Do this in reverse order and fall through.
405 */
406 fail_5:
407 for (i = 0; i < GEM_NRXDESC; i++) {
408 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
409 bus_dmamap_destroy(sc->sc_dmatag,
410 sc->sc_rxsoft[i].rxs_dmamap);
411 }
412 fail_4:
413 for (i = 0; i < GEM_TXQUEUELEN; i++) {
414 if (sc->sc_txsoft[i].txs_dmamap != NULL)
415 bus_dmamap_destroy(sc->sc_dmatag,
416 sc->sc_txsoft[i].txs_dmamap);
417 }
418 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
419 fail_3:
420 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
421 fail_2:
422 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
423 sizeof(struct gem_control_data));
424 fail_1:
425 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
426 fail_0:
427 return;
428 }
429
430
431 void
432 gem_tick(arg)
433 void *arg;
434 {
435 struct gem_softc *sc = arg;
436 int s;
437
438 s = splnet();
439 mii_tick(&sc->sc_mii);
440 splx(s);
441
442 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
443
444 }
445
446 void
447 gem_reset(sc)
448 struct gem_softc *sc;
449 {
450 bus_space_tag_t t = sc->sc_bustag;
451 bus_space_handle_t h = sc->sc_h;
452 int i;
453 int s;
454
455 s = splnet();
456 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
457 gem_reset_rx(sc);
458 gem_reset_tx(sc);
459
460 /* Do a full reset */
461 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
462 for (i=TRIES; i--; delay(100))
463 if ((bus_space_read_4(t, h, GEM_RESET) &
464 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
465 break;
466 if ((bus_space_read_4(t, h, GEM_RESET) &
467 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
468 printf("%s: cannot reset device\n",
469 sc->sc_dev.dv_xname);
470 }
471 splx(s);
472 }
473
474
475 /*
476 * gem_rxdrain:
477 *
478 * Drain the receive queue.
479 */
480 void
481 gem_rxdrain(struct gem_softc *sc)
482 {
483 struct gem_rxsoft *rxs;
484 int i;
485
486 for (i = 0; i < GEM_NRXDESC; i++) {
487 rxs = &sc->sc_rxsoft[i];
488 if (rxs->rxs_mbuf != NULL) {
489 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
490 m_freem(rxs->rxs_mbuf);
491 rxs->rxs_mbuf = NULL;
492 }
493 }
494 }
495
496 /*
497 * Reset the whole thing.
498 */
499 void
500 gem_stop(struct ifnet *ifp, int disable)
501 {
502 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
503 struct gem_txsoft *txs;
504
505 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
506
507 callout_stop(&sc->sc_tick_ch);
508 mii_down(&sc->sc_mii);
509
510 /* XXX - Should we reset these instead? */
511 gem_disable_rx(sc);
512 gem_disable_tx(sc);
513
514 /*
515 * Release any queued transmit buffers.
516 */
517 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
518 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
519 if (txs->txs_mbuf != NULL) {
520 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
521 m_freem(txs->txs_mbuf);
522 txs->txs_mbuf = NULL;
523 }
524 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
525 }
526
527 if (disable) {
528 gem_rxdrain(sc);
529 }
530
531 /*
532 * Mark the interface down and cancel the watchdog timer.
533 */
534 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
535 ifp->if_timer = 0;
536 }
537
538
539 /*
540 * Reset the receiver
541 */
542 int
543 gem_reset_rx(struct gem_softc *sc)
544 {
545 bus_space_tag_t t = sc->sc_bustag;
546 bus_space_handle_t h = sc->sc_h;
547 int i;
548
549
550 /*
551 * Resetting while DMA is in progress can cause a bus hang, so we
552 * disable DMA first.
553 */
554 gem_disable_rx(sc);
555 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
556 /* Wait till it finishes */
557 for (i=TRIES; i--; delay(100))
558 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
559 break;
560 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
561 printf("%s: cannot disable read DMA\n",
562 sc->sc_dev.dv_xname);
563
564 /* Wait 5ms extra. */
565 delay(5000);
566
567 /* Finally, reset the ERX */
568 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
569 /* Wait till it finishes */
570 for (i=TRIES; i--; delay(100))
571 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
572 break;
573 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
574 printf("%s: cannot reset receiver\n",
575 sc->sc_dev.dv_xname);
576 return (1);
577 }
578 return (0);
579 }
580
581
582 /*
583 * Reset the transmitter
584 */
585 int
586 gem_reset_tx(struct gem_softc *sc)
587 {
588 bus_space_tag_t t = sc->sc_bustag;
589 bus_space_handle_t h = sc->sc_h;
590 int i;
591
592 /*
593 * Resetting while DMA is in progress can cause a bus hang, so we
594 * disable DMA first.
595 */
596 gem_disable_tx(sc);
597 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
598 /* Wait till it finishes */
599 for (i=TRIES; i--; delay(100))
600 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
601 break;
602 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
603 printf("%s: cannot disable read DMA\n",
604 sc->sc_dev.dv_xname);
605
606 /* Wait 5ms extra. */
607 delay(5000);
608
609 /* Finally, reset the ETX */
610 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
611 /* Wait till it finishes */
612 for (i=TRIES; i--; delay(100))
613 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
614 break;
615 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
616 printf("%s: cannot reset receiver\n",
617 sc->sc_dev.dv_xname);
618 return (1);
619 }
620 return (0);
621 }
622
623 /*
624 * disable receiver.
625 */
626 int
627 gem_disable_rx(struct gem_softc *sc)
628 {
629 bus_space_tag_t t = sc->sc_bustag;
630 bus_space_handle_t h = sc->sc_h;
631 int i;
632 u_int32_t cfg;
633
634 /* Flip the enable bit */
635 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
636 cfg &= ~GEM_MAC_RX_ENABLE;
637 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
638
639 /* Wait for it to finish */
640 for (i=TRIES; i--; delay(100))
641 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
642 GEM_MAC_RX_ENABLE) == 0)
643 return (0);
644 return (1);
645 }
646
647 /*
648 * disable transmitter.
649 */
650 int
651 gem_disable_tx(struct gem_softc *sc)
652 {
653 bus_space_tag_t t = sc->sc_bustag;
654 bus_space_handle_t h = sc->sc_h;
655 int i;
656 u_int32_t cfg;
657
658 /* Flip the enable bit */
659 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
660 cfg &= ~GEM_MAC_TX_ENABLE;
661 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
662
663 /* Wait for it to finish */
664 for (i=TRIES; i--; delay(100))
665 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
666 GEM_MAC_TX_ENABLE) == 0)
667 return (0);
668 return (1);
669 }
670
671 /*
672 * Initialize interface.
673 */
674 int
675 gem_meminit(struct gem_softc *sc)
676 {
677 struct gem_rxsoft *rxs;
678 int i, error;
679
680 /*
681 * Initialize the transmit descriptor ring.
682 */
683 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
684 for (i = 0; i < GEM_NTXDESC; i++) {
685 sc->sc_txdescs[i].gd_flags = 0;
686 sc->sc_txdescs[i].gd_addr = 0;
687 }
688 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
689 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
690 sc->sc_txfree = GEM_NTXDESC-1;
691 sc->sc_txnext = 0;
692 sc->sc_txwin = 0;
693
694 /*
695 * Initialize the receive descriptor and receive job
696 * descriptor rings.
697 */
698 for (i = 0; i < GEM_NRXDESC; i++) {
699 rxs = &sc->sc_rxsoft[i];
700 if (rxs->rxs_mbuf == NULL) {
701 if ((error = gem_add_rxbuf(sc, i)) != 0) {
702 printf("%s: unable to allocate or map rx "
703 "buffer %d, error = %d\n",
704 sc->sc_dev.dv_xname, i, error);
705 /*
706 * XXX Should attempt to run with fewer receive
707 * XXX buffers instead of just failing.
708 */
709 gem_rxdrain(sc);
710 return (1);
711 }
712 } else
713 GEM_INIT_RXDESC(sc, i);
714 }
715 sc->sc_rxptr = 0;
716
717 return (0);
718 }
719
720 static int
721 gem_ringsize(int sz)
722 {
723 switch (sz) {
724 case 32:
725 return GEM_RING_SZ_32;
726 case 64:
727 return GEM_RING_SZ_64;
728 case 128:
729 return GEM_RING_SZ_128;
730 case 256:
731 return GEM_RING_SZ_256;
732 case 512:
733 return GEM_RING_SZ_512;
734 case 1024:
735 return GEM_RING_SZ_1024;
736 case 2048:
737 return GEM_RING_SZ_2048;
738 case 4096:
739 return GEM_RING_SZ_4096;
740 case 8192:
741 return GEM_RING_SZ_8192;
742 default:
743 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
744 return GEM_RING_SZ_32;
745 }
746 }
747
748 /*
749 * Initialization of interface; set up initialization block
750 * and transmit/receive descriptor rings.
751 */
752 int
753 gem_init(struct ifnet *ifp)
754 {
755 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
756 bus_space_tag_t t = sc->sc_bustag;
757 bus_space_handle_t h = sc->sc_h;
758 int s;
759 u_int max_frame_size;
760 u_int32_t v;
761
762 s = splnet();
763
764 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
765 /*
766 * Initialization sequence. The numbered steps below correspond
767 * to the sequence outlined in section 6.3.5.1 in the Ethernet
768 * Channel Engine manual (part of the PCIO manual).
769 * See also the STP2002-STQ document from Sun Microsystems.
770 */
771
772 /* step 1 & 2. Reset the Ethernet Channel */
773 gem_stop(ifp, 0);
774 gem_reset(sc);
775 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
776
777 /* Re-initialize the MIF */
778 gem_mifinit(sc);
779
780 /* Call MI reset function if any */
781 if (sc->sc_hwreset)
782 (*sc->sc_hwreset)(sc);
783
784 /* step 3. Setup data structures in host memory */
785 gem_meminit(sc);
786
787 /* step 4. TX MAC registers & counters */
788 gem_init_regs(sc);
789 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
790 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
791 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
792 max_frame_size += ETHER_VLAN_ENCAP_LEN;
793 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
794 max_frame_size|/* burst size */(0x2000<<16));
795
796 /* step 5. RX MAC registers & counters */
797 gem_setladrf(sc);
798
799 /* step 6 & 7. Program Descriptor Ring Base Addresses */
800 /* NOTE: we use only 32-bit DMA addresses here. */
801 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
802 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
803
804 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
805 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
806
807 /* step 8. Global Configuration & Interrupt Mask */
808 bus_space_write_4(t, h, GEM_INTMASK,
809 ~(GEM_INTR_TX_INTME|
810 GEM_INTR_TX_EMPTY|
811 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
812 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
813 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
814 GEM_INTR_BERR));
815 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
816 GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
817 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
818 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
819
820 /* step 9. ETX Configuration: use mostly default values */
821
822 /* Enable DMA */
823 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
824 bus_space_write_4(t, h, GEM_TX_CONFIG,
825 v|GEM_TX_CONFIG_TXDMA_EN|
826 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
827 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
828
829 /* step 10. ERX Configuration */
830
831 /* Encode Receive Descriptor ring size: four possible values */
832 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
833
834 /* Enable DMA */
835 bus_space_write_4(t, h, GEM_RX_CONFIG,
836 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
837 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
838 (0<<GEM_RX_CONFIG_CXM_START_SHFT));
839 /*
840 * The following value is for an OFF Threshold of about 3/4 full
841 * and an ON Threshold of 1/4 full.
842 */
843 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
844 (3 * sc->sc_rxfifosize / 256) |
845 ( (sc->sc_rxfifosize / 256) << 12));
846 bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
847
848 /* step 11. Configure Media */
849 mii_mediachg(&sc->sc_mii);
850
851 /* XXXX Serial link needs a whole different setup. */
852
853
854 /* step 12. RX_MAC Configuration Register */
855 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
856 v |= GEM_MAC_RX_ENABLE;
857 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
858
859 /* step 14. Issue Transmit Pending command */
860
861 /* Call MI initialization function if any */
862 if (sc->sc_hwinit)
863 (*sc->sc_hwinit)(sc);
864
865
866 /* step 15. Give the reciever a swift kick */
867 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
868
869 /* Start the one second timer. */
870 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
871
872 ifp->if_flags |= IFF_RUNNING;
873 ifp->if_flags &= ~IFF_OACTIVE;
874 ifp->if_timer = 0;
875 splx(s);
876
877 return (0);
878 }
879
880 void
881 gem_init_regs(struct gem_softc *sc)
882 {
883 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
884 bus_space_tag_t t = sc->sc_bustag;
885 bus_space_handle_t h = sc->sc_h;
886 const u_char *laddr = LLADDR(ifp->if_sadl);
887 u_int32_t v;
888
889 /* These regs are not cleared on reset */
890 if (!sc->sc_inited) {
891
892 /* Wooo. Magic values. */
893 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
894 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
895 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
896
897 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
898 /* Max frame and max burst size */
899 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
900 ETHER_MAX_LEN | (0x2000<<16));
901
902 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
903 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
904 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
905 /* Dunno.... */
906 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
907 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
908 ((laddr[5]<<8)|laddr[4])&0x3ff);
909
910 /* Secondary MAC addr set to 0:0:0:0:0:0 */
911 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
912 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
913 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
914
915 /* MAC control addr set to 01:80:c2:00:00:01 */
916 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
917 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
918 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
919
920 /* MAC filter addr set to 0:0:0:0:0:0 */
921 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
922 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
923 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
924
925 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
926 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
927
928 sc->sc_inited = 1;
929 }
930
931 /* Counters need to be zeroed */
932 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
933 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
934 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
935 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
936 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
937 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
938 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
939 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
940 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
941 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
942 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
943
944 /* Un-pause stuff */
945 #if 0
946 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
947 #else
948 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
949 #endif
950
951 /*
952 * Set the station address.
953 */
954 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
955 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
956 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
957
958 #if 0
959 if (sc->sc_variant != APPLE_GMAC)
960 return;
961 #endif
962
963 /*
964 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
965 */
966 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
967 v = GEM_MAC_XIF_TX_MII_ENA;
968 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
969 v |= GEM_MAC_XIF_FDPLX_LED;
970 if (sc->sc_flags & GEM_GIGABIT)
971 v |= GEM_MAC_XIF_GMII_MODE;
972 }
973 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
974 }
975
976 void
977 gem_start(ifp)
978 struct ifnet *ifp;
979 {
980 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
981 struct mbuf *m0, *m;
982 struct gem_txsoft *txs, *last_txs;
983 bus_dmamap_t dmamap;
984 int error, firsttx, nexttx, lasttx = -1, ofree, seg;
985
986 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
987 return;
988
989 /*
990 * Remember the previous number of free descriptors and
991 * the first descriptor we'll use.
992 */
993 ofree = sc->sc_txfree;
994 firsttx = sc->sc_txnext;
995
996 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
997 sc->sc_dev.dv_xname, ofree, firsttx));
998
999 /*
1000 * Loop through the send queue, setting up transmit descriptors
1001 * until we drain the queue, or use up all available transmit
1002 * descriptors.
1003 */
1004 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1005 sc->sc_txfree != 0) {
1006 /*
1007 * Grab a packet off the queue.
1008 */
1009 IFQ_POLL(&ifp->if_snd, m0);
1010 if (m0 == NULL)
1011 break;
1012 m = NULL;
1013
1014 dmamap = txs->txs_dmamap;
1015
1016 /*
1017 * Load the DMA map. If this fails, the packet either
1018 * didn't fit in the alloted number of segments, or we were
1019 * short on resources. In this case, we'll copy and try
1020 * again.
1021 */
1022 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1023 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1024 if (m0->m_pkthdr.len > MCLBYTES) {
1025 printf("%s: unable to allocate jumbo Tx "
1026 "cluster\n", sc->sc_dev.dv_xname);
1027 IFQ_DEQUEUE(&ifp->if_snd, m0);
1028 m_freem(m0);
1029 continue;
1030 }
1031 MGETHDR(m, M_DONTWAIT, MT_DATA);
1032 if (m == NULL) {
1033 printf("%s: unable to allocate Tx mbuf\n",
1034 sc->sc_dev.dv_xname);
1035 break;
1036 }
1037 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1038 if (m0->m_pkthdr.len > MHLEN) {
1039 MCLGET(m, M_DONTWAIT);
1040 if ((m->m_flags & M_EXT) == 0) {
1041 printf("%s: unable to allocate Tx "
1042 "cluster\n", sc->sc_dev.dv_xname);
1043 m_freem(m);
1044 break;
1045 }
1046 }
1047 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1048 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1049 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1050 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1051 if (error) {
1052 printf("%s: unable to load Tx buffer, "
1053 "error = %d\n", sc->sc_dev.dv_xname, error);
1054 break;
1055 }
1056 }
1057
1058 /*
1059 * Ensure we have enough descriptors free to describe
1060 * the packet.
1061 */
1062 if (dmamap->dm_nsegs > sc->sc_txfree) {
1063 /*
1064 * Not enough free descriptors to transmit this
1065 * packet. We haven't committed to anything yet,
1066 * so just unload the DMA map, put the packet
1067 * back on the queue, and punt. Notify the upper
1068 * layer that there are no more slots left.
1069 *
1070 * XXX We could allocate an mbuf and copy, but
1071 * XXX it is worth it?
1072 */
1073 ifp->if_flags |= IFF_OACTIVE;
1074 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1075 if (m != NULL)
1076 m_freem(m);
1077 break;
1078 }
1079
1080 IFQ_DEQUEUE(&ifp->if_snd, m0);
1081 if (m != NULL) {
1082 m_freem(m0);
1083 m0 = m;
1084 }
1085
1086 /*
1087 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1088 */
1089
1090 /* Sync the DMA map. */
1091 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1092 BUS_DMASYNC_PREWRITE);
1093
1094 /*
1095 * Initialize the transmit descriptors.
1096 */
1097 for (nexttx = sc->sc_txnext, seg = 0;
1098 seg < dmamap->dm_nsegs;
1099 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1100 uint64_t flags;
1101
1102 /*
1103 * If this is the first descriptor we're
1104 * enqueueing, set the start of packet flag,
1105 * and the checksum stuff if we want the hardware
1106 * to do it.
1107 */
1108 sc->sc_txdescs[nexttx].gd_addr =
1109 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1110 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1111 if (nexttx == firsttx) {
1112 flags |= GEM_TD_START_OF_PACKET;
1113 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1114 sc->sc_txwin = 0;
1115 flags |= GEM_TD_INTERRUPT_ME;
1116 }
1117 }
1118 if (seg == dmamap->dm_nsegs - 1) {
1119 flags |= GEM_TD_END_OF_PACKET;
1120 }
1121 sc->sc_txdescs[nexttx].gd_flags =
1122 GEM_DMA_WRITE(sc, flags);
1123 lasttx = nexttx;
1124 }
1125
1126 KASSERT(lasttx != -1);
1127
1128 #ifdef GEM_DEBUG
1129 if (ifp->if_flags & IFF_DEBUG) {
1130 printf(" gem_start %p transmit chain:\n", txs);
1131 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1132 printf("descriptor %d:\t", seg);
1133 printf("gd_flags: 0x%016llx\t", (long long)
1134 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1135 printf("gd_addr: 0x%016llx\n", (long long)
1136 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1137 if (seg == lasttx)
1138 break;
1139 }
1140 }
1141 #endif
1142
1143 /* Sync the descriptors we're using. */
1144 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1145 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1146
1147 /*
1148 * Store a pointer to the packet so we can free it later,
1149 * and remember what txdirty will be once the packet is
1150 * done.
1151 */
1152 txs->txs_mbuf = m0;
1153 txs->txs_firstdesc = sc->sc_txnext;
1154 txs->txs_lastdesc = lasttx;
1155 txs->txs_ndescs = dmamap->dm_nsegs;
1156
1157 /* Advance the tx pointer. */
1158 sc->sc_txfree -= dmamap->dm_nsegs;
1159 sc->sc_txnext = nexttx;
1160
1161 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1162 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1163
1164 last_txs = txs;
1165
1166 #if NBPFILTER > 0
1167 /*
1168 * Pass the packet to any BPF listeners.
1169 */
1170 if (ifp->if_bpf)
1171 bpf_mtap(ifp->if_bpf, m0);
1172 #endif /* NBPFILTER > 0 */
1173 }
1174
1175 if (txs == NULL || sc->sc_txfree == 0) {
1176 /* No more slots left; notify upper layer. */
1177 ifp->if_flags |= IFF_OACTIVE;
1178 }
1179
1180 if (sc->sc_txfree != ofree) {
1181 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1182 sc->sc_dev.dv_xname, lasttx, firsttx));
1183 /*
1184 * The entire packet chain is set up.
1185 * Kick the transmitter.
1186 */
1187 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1188 sc->sc_dev.dv_xname, nexttx));
1189 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1190 sc->sc_txnext);
1191
1192 /* Set a watchdog timer in case the chip flakes out. */
1193 ifp->if_timer = 5;
1194 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1195 sc->sc_dev.dv_xname, ifp->if_timer));
1196 }
1197 }
1198
1199 /*
1200 * Transmit interrupt.
1201 */
1202 int
1203 gem_tint(sc)
1204 struct gem_softc *sc;
1205 {
1206 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1207 bus_space_tag_t t = sc->sc_bustag;
1208 bus_space_handle_t mac = sc->sc_h;
1209 struct gem_txsoft *txs;
1210 int txlast;
1211 int progress = 0;
1212
1213
1214 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1215
1216 /*
1217 * Unload collision counters
1218 */
1219 ifp->if_collisions +=
1220 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1221 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1222 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1223 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1224
1225 /*
1226 * then clear the hardware counters.
1227 */
1228 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1229 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1230 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1231 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1232
1233 /*
1234 * Go through our Tx list and free mbufs for those
1235 * frames that have been transmitted.
1236 */
1237 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1238 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1239 txs->txs_ndescs,
1240 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1241
1242 #ifdef GEM_DEBUG
1243 if (ifp->if_flags & IFF_DEBUG) {
1244 int i;
1245 printf(" txsoft %p transmit chain:\n", txs);
1246 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1247 printf("descriptor %d: ", i);
1248 printf("gd_flags: 0x%016llx\t", (long long)
1249 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1250 printf("gd_addr: 0x%016llx\n", (long long)
1251 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1252 if (i == txs->txs_lastdesc)
1253 break;
1254 }
1255 }
1256 #endif
1257
1258 /*
1259 * In theory, we could harveast some descriptors before
1260 * the ring is empty, but that's a bit complicated.
1261 *
1262 * GEM_TX_COMPLETION points to the last descriptor
1263 * processed +1.
1264 */
1265 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1266 DPRINTF(sc,
1267 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1268 txs->txs_lastdesc, txlast));
1269 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1270 if ((txlast >= txs->txs_firstdesc) &&
1271 (txlast <= txs->txs_lastdesc))
1272 break;
1273 } else {
1274 /* Ick -- this command wraps */
1275 if ((txlast >= txs->txs_firstdesc) ||
1276 (txlast <= txs->txs_lastdesc))
1277 break;
1278 }
1279
1280 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1281 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1282
1283 sc->sc_txfree += txs->txs_ndescs;
1284
1285 if (txs->txs_mbuf == NULL) {
1286 #ifdef DIAGNOSTIC
1287 panic("gem_txintr: null mbuf");
1288 #endif
1289 }
1290
1291 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1292 0, txs->txs_dmamap->dm_mapsize,
1293 BUS_DMASYNC_POSTWRITE);
1294 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1295 m_freem(txs->txs_mbuf);
1296 txs->txs_mbuf = NULL;
1297
1298 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1299
1300 ifp->if_opackets++;
1301 progress = 1;
1302 }
1303
1304 #if 0
1305 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1306 "GEM_TX_DATA_PTR %llx "
1307 "GEM_TX_COMPLETION %x\n",
1308 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1309 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1310 GEM_TX_DATA_PTR_HI) << 32) |
1311 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1312 GEM_TX_DATA_PTR_LO),
1313 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1314 #endif
1315
1316 if (progress) {
1317 if (sc->sc_txfree == GEM_NTXDESC - 1)
1318 sc->sc_txwin = 0;
1319
1320 ifp->if_flags &= ~IFF_OACTIVE;
1321 gem_start(ifp);
1322
1323 if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1324 ifp->if_timer = 0;
1325 }
1326 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1327 sc->sc_dev.dv_xname, ifp->if_timer));
1328
1329 return (1);
1330 }
1331
1332 /*
1333 * Receive interrupt.
1334 */
1335 int
1336 gem_rint(sc)
1337 struct gem_softc *sc;
1338 {
1339 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1340 bus_space_tag_t t = sc->sc_bustag;
1341 bus_space_handle_t h = sc->sc_h;
1342 struct ether_header *eh;
1343 struct gem_rxsoft *rxs;
1344 struct mbuf *m;
1345 u_int64_t rxstat;
1346 u_int32_t rxcomp;
1347 int i, len, progress = 0;
1348
1349 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1350
1351 /*
1352 * Read the completion register once. This limits
1353 * how long the following loop can execute.
1354 */
1355 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1356
1357 /*
1358 * XXXX Read the lastrx only once at the top for speed.
1359 */
1360 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1361 sc->sc_rxptr, rxcomp));
1362
1363 /*
1364 * Go into the loop at least once.
1365 */
1366 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1367 i = GEM_NEXTRX(i)) {
1368 rxs = &sc->sc_rxsoft[i];
1369
1370 GEM_CDRXSYNC(sc, i,
1371 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1372
1373 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1374
1375 if (rxstat & GEM_RD_OWN) {
1376 /*
1377 * We have processed all of the receive buffers.
1378 */
1379 break;
1380 }
1381
1382 progress++;
1383 ifp->if_ipackets++;
1384
1385 if (rxstat & GEM_RD_BAD_CRC) {
1386 ifp->if_ierrors++;
1387 printf("%s: receive error: CRC error\n",
1388 sc->sc_dev.dv_xname);
1389 GEM_INIT_RXDESC(sc, i);
1390 continue;
1391 }
1392
1393 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1394 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1395 #ifdef GEM_DEBUG
1396 if (ifp->if_flags & IFF_DEBUG) {
1397 printf(" rxsoft %p descriptor %d: ", rxs, i);
1398 printf("gd_flags: 0x%016llx\t", (long long)
1399 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1400 printf("gd_addr: 0x%016llx\n", (long long)
1401 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1402 }
1403 #endif
1404
1405 /*
1406 * No errors; receive the packet. Note the Gem
1407 * includes the CRC with every packet.
1408 */
1409 len = GEM_RD_BUFLEN(rxstat);
1410
1411 /*
1412 * Allocate a new mbuf cluster. If that fails, we are
1413 * out of memory, and must drop the packet and recycle
1414 * the buffer that's already attached to this descriptor.
1415 */
1416 m = rxs->rxs_mbuf;
1417 if (gem_add_rxbuf(sc, i) != 0) {
1418 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1419 ifp->if_ierrors++;
1420 GEM_INIT_RXDESC(sc, i);
1421 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1422 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1423 continue;
1424 }
1425 m->m_data += 2; /* We're already off by two */
1426
1427 eh = mtod(m, struct ether_header *);
1428 m->m_flags |= M_HASFCS;
1429 m->m_pkthdr.rcvif = ifp;
1430 m->m_pkthdr.len = m->m_len = len;
1431
1432 #if NBPFILTER > 0
1433 /*
1434 * Pass this up to any BPF listeners, but only
1435 * pass it up the stack if its for us.
1436 */
1437 if (ifp->if_bpf)
1438 bpf_mtap(ifp->if_bpf, m);
1439 #endif /* NPBFILTER > 0 */
1440
1441 /* Pass it on. */
1442 (*ifp->if_input)(ifp, m);
1443 }
1444
1445 if (progress) {
1446 /* Update the receive pointer. */
1447 if (i == sc->sc_rxptr) {
1448 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1449 #ifdef GEM_DEBUG
1450 if (ifp->if_flags & IFF_DEBUG)
1451 printf("%s: rint: ring wrap\n",
1452 sc->sc_dev.dv_xname);
1453 #endif
1454 }
1455 sc->sc_rxptr = i;
1456 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1457 }
1458 #ifdef GEM_COUNTERS
1459 if (progress <= 4) {
1460 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1461 } else if (progress < 32) {
1462 if (progress < 16)
1463 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1464 else
1465 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1466
1467 } else {
1468 if (progress < 64)
1469 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1470 else
1471 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1472 }
1473 #endif
1474
1475 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1476 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1477
1478 return (1);
1479 }
1480
1481
1482 /*
1483 * gem_add_rxbuf:
1484 *
1485 * Add a receive buffer to the indicated descriptor.
1486 */
1487 int
1488 gem_add_rxbuf(struct gem_softc *sc, int idx)
1489 {
1490 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1491 struct mbuf *m;
1492 int error;
1493
1494 MGETHDR(m, M_DONTWAIT, MT_DATA);
1495 if (m == NULL)
1496 return (ENOBUFS);
1497
1498 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1499 MCLGET(m, M_DONTWAIT);
1500 if ((m->m_flags & M_EXT) == 0) {
1501 m_freem(m);
1502 return (ENOBUFS);
1503 }
1504
1505 #ifdef GEM_DEBUG
1506 /* bzero the packet to check DMA */
1507 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1508 #endif
1509
1510 if (rxs->rxs_mbuf != NULL)
1511 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1512
1513 rxs->rxs_mbuf = m;
1514
1515 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1516 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1517 BUS_DMA_READ|BUS_DMA_NOWAIT);
1518 if (error) {
1519 printf("%s: can't load rx DMA map %d, error = %d\n",
1520 sc->sc_dev.dv_xname, idx, error);
1521 panic("gem_add_rxbuf"); /* XXX */
1522 }
1523
1524 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1525 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1526
1527 GEM_INIT_RXDESC(sc, idx);
1528
1529 return (0);
1530 }
1531
1532
1533 int
1534 gem_eint(sc, status)
1535 struct gem_softc *sc;
1536 u_int status;
1537 {
1538 char bits[128];
1539
1540 if ((status & GEM_INTR_MIF) != 0) {
1541 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1542 return (1);
1543 }
1544
1545 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1546 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1547 return (1);
1548 }
1549
1550
1551 int
1552 gem_intr(v)
1553 void *v;
1554 {
1555 struct gem_softc *sc = (struct gem_softc *)v;
1556 bus_space_tag_t t = sc->sc_bustag;
1557 bus_space_handle_t seb = sc->sc_h;
1558 u_int32_t status;
1559 int r = 0;
1560 #ifdef GEM_DEBUG
1561 char bits[128];
1562 #endif
1563
1564 sc->sc_ev_intr.ev_count++;
1565
1566 status = bus_space_read_4(t, seb, GEM_STATUS);
1567 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
1568 sc->sc_dev.dv_xname, (status >> 19),
1569 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1570
1571 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1572 r |= gem_eint(sc, status);
1573
1574 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1575 GEM_COUNTER_INCR(sc, sc_ev_txint);
1576 r |= gem_tint(sc);
1577 }
1578
1579 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1580 GEM_COUNTER_INCR(sc, sc_ev_rxint);
1581 r |= gem_rint(sc);
1582 }
1583
1584 /* We should eventually do more than just print out error stats. */
1585 if (status & GEM_INTR_TX_MAC) {
1586 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1587 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1588 printf("%s: MAC tx fault, status %x\n",
1589 sc->sc_dev.dv_xname, txstat);
1590 }
1591 if (status & GEM_INTR_RX_MAC) {
1592 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1593 if (rxstat & ~GEM_MAC_RX_DONE)
1594 printf("%s: MAC rx fault, status %x\n",
1595 sc->sc_dev.dv_xname, rxstat);
1596 }
1597 return (r);
1598 }
1599
1600
1601 void
1602 gem_watchdog(ifp)
1603 struct ifnet *ifp;
1604 {
1605 struct gem_softc *sc = ifp->if_softc;
1606
1607 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1608 "GEM_MAC_RX_CONFIG %x\n",
1609 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1610 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1611 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1612
1613 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1614 ++ifp->if_oerrors;
1615
1616 /* Try to get more packets going. */
1617 gem_start(ifp);
1618 }
1619
1620 /*
1621 * Initialize the MII Management Interface
1622 */
1623 void
1624 gem_mifinit(sc)
1625 struct gem_softc *sc;
1626 {
1627 bus_space_tag_t t = sc->sc_bustag;
1628 bus_space_handle_t mif = sc->sc_h;
1629
1630 /* Configure the MIF in frame mode */
1631 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1632 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1633 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1634 }
1635
1636 /*
1637 * MII interface
1638 *
1639 * The GEM MII interface supports at least three different operating modes:
1640 *
1641 * Bitbang mode is implemented using data, clock and output enable registers.
1642 *
1643 * Frame mode is implemented by loading a complete frame into the frame
1644 * register and polling the valid bit for completion.
1645 *
1646 * Polling mode uses the frame register but completion is indicated by
1647 * an interrupt.
1648 *
1649 */
1650 static int
1651 gem_mii_readreg(self, phy, reg)
1652 struct device *self;
1653 int phy, reg;
1654 {
1655 struct gem_softc *sc = (void *)self;
1656 bus_space_tag_t t = sc->sc_bustag;
1657 bus_space_handle_t mif = sc->sc_h;
1658 int n;
1659 u_int32_t v;
1660
1661 #ifdef GEM_DEBUG1
1662 if (sc->sc_debug)
1663 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1664 #endif
1665
1666 #if 0
1667 /* Select the desired PHY in the MIF configuration register */
1668 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1669 /* Clear PHY select bit */
1670 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1671 if (phy == GEM_PHYAD_EXTERNAL)
1672 /* Set PHY select bit to get at external device */
1673 v |= GEM_MIF_CONFIG_PHY_SEL;
1674 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1675 #endif
1676
1677 /* Construct the frame command */
1678 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1679 GEM_MIF_FRAME_READ;
1680
1681 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1682 for (n = 0; n < 100; n++) {
1683 DELAY(1);
1684 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1685 if (v & GEM_MIF_FRAME_TA0)
1686 return (v & GEM_MIF_FRAME_DATA);
1687 }
1688
1689 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1690 return (0);
1691 }
1692
1693 static void
1694 gem_mii_writereg(self, phy, reg, val)
1695 struct device *self;
1696 int phy, reg, val;
1697 {
1698 struct gem_softc *sc = (void *)self;
1699 bus_space_tag_t t = sc->sc_bustag;
1700 bus_space_handle_t mif = sc->sc_h;
1701 int n;
1702 u_int32_t v;
1703
1704 #ifdef GEM_DEBUG1
1705 if (sc->sc_debug)
1706 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1707 phy, reg, val);
1708 #endif
1709
1710 #if 0
1711 /* Select the desired PHY in the MIF configuration register */
1712 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1713 /* Clear PHY select bit */
1714 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1715 if (phy == GEM_PHYAD_EXTERNAL)
1716 /* Set PHY select bit to get at external device */
1717 v |= GEM_MIF_CONFIG_PHY_SEL;
1718 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1719 #endif
1720 /* Construct the frame command */
1721 v = GEM_MIF_FRAME_WRITE |
1722 (phy << GEM_MIF_PHY_SHIFT) |
1723 (reg << GEM_MIF_REG_SHIFT) |
1724 (val & GEM_MIF_FRAME_DATA);
1725
1726 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1727 for (n = 0; n < 100; n++) {
1728 DELAY(1);
1729 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1730 if (v & GEM_MIF_FRAME_TA0)
1731 return;
1732 }
1733
1734 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1735 }
1736
1737 static void
1738 gem_mii_statchg(dev)
1739 struct device *dev;
1740 {
1741 struct gem_softc *sc = (void *)dev;
1742 #ifdef GEM_DEBUG
1743 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1744 #endif
1745 bus_space_tag_t t = sc->sc_bustag;
1746 bus_space_handle_t mac = sc->sc_h;
1747 u_int32_t v;
1748
1749 #ifdef GEM_DEBUG
1750 if (sc->sc_debug)
1751 printf("gem_mii_statchg: status change: phy = %d\n",
1752 sc->sc_phys[instance]);
1753 #endif
1754
1755
1756 /* Set tx full duplex options */
1757 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1758 delay(10000); /* reg must be cleared and delay before changing. */
1759 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1760 GEM_MAC_TX_ENABLE;
1761 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1762 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1763 }
1764 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1765
1766 /* XIF Configuration */
1767 /* We should really calculate all this rather than rely on defaults */
1768 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1769 v = GEM_MAC_XIF_LINK_LED;
1770 v |= GEM_MAC_XIF_TX_MII_ENA;
1771
1772 /* If an external transceiver is connected, enable its MII drivers */
1773 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1774 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1775 /* External MII needs echo disable if half duplex. */
1776 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1777 /* turn on full duplex LED */
1778 v |= GEM_MAC_XIF_FDPLX_LED;
1779 else
1780 /* half duplex -- disable echo */
1781 v |= GEM_MAC_XIF_ECHO_DISABL;
1782
1783 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1784 v |= GEM_MAC_XIF_GMII_MODE;
1785 else
1786 v &= ~GEM_MAC_XIF_GMII_MODE;
1787 } else
1788 /* Internal MII needs buf enable */
1789 v |= GEM_MAC_XIF_MII_BUF_ENA;
1790 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1791 }
1792
1793 int
1794 gem_mediachange(ifp)
1795 struct ifnet *ifp;
1796 {
1797 struct gem_softc *sc = ifp->if_softc;
1798
1799 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1800 return (EINVAL);
1801
1802 return (mii_mediachg(&sc->sc_mii));
1803 }
1804
1805 void
1806 gem_mediastatus(ifp, ifmr)
1807 struct ifnet *ifp;
1808 struct ifmediareq *ifmr;
1809 {
1810 struct gem_softc *sc = ifp->if_softc;
1811
1812 if ((ifp->if_flags & IFF_UP) == 0)
1813 return;
1814
1815 mii_pollstat(&sc->sc_mii);
1816 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1817 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1818 }
1819
1820 int gem_ioctldebug = 0;
1821 /*
1822 * Process an ioctl request.
1823 */
1824 int
1825 gem_ioctl(ifp, cmd, data)
1826 struct ifnet *ifp;
1827 u_long cmd;
1828 caddr_t data;
1829 {
1830 struct gem_softc *sc = ifp->if_softc;
1831 struct ifreq *ifr = (struct ifreq *)data;
1832 int s, error = 0;
1833
1834 s = splnet();
1835
1836 switch (cmd) {
1837 case SIOCGIFMEDIA:
1838 case SIOCSIFMEDIA:
1839 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1840 break;
1841
1842 default:
1843 error = ether_ioctl(ifp, cmd, data);
1844 if (error == ENETRESET) {
1845 /*
1846 * Multicast list has changed; set the hardware filter
1847 * accordingly.
1848 */
1849 if (ifp->if_flags & IFF_RUNNING) {
1850 if (gem_ioctldebug) printf("reset1\n");
1851 gem_init(ifp);
1852 delay(50000);
1853 }
1854 error = 0;
1855 }
1856 break;
1857 }
1858
1859 /* Try to get things going again */
1860 if (ifp->if_flags & IFF_UP) {
1861 if (gem_ioctldebug) printf("start\n");
1862 gem_start(ifp);
1863 }
1864 splx(s);
1865 return (error);
1866 }
1867
1868
1869 void
1870 gem_shutdown(arg)
1871 void *arg;
1872 {
1873 struct gem_softc *sc = (struct gem_softc *)arg;
1874 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1875
1876 gem_stop(ifp, 1);
1877 }
1878
1879 /*
1880 * Set up the logical address filter.
1881 */
1882 void
1883 gem_setladrf(sc)
1884 struct gem_softc *sc;
1885 {
1886 struct ethercom *ec = &sc->sc_ethercom;
1887 struct ifnet *ifp = &ec->ec_if;
1888 struct ether_multi *enm;
1889 struct ether_multistep step;
1890 bus_space_tag_t t = sc->sc_bustag;
1891 bus_space_handle_t h = sc->sc_h;
1892 u_int32_t crc;
1893 u_int32_t hash[16];
1894 u_int32_t v;
1895 int i;
1896
1897 /* Get current RX configuration */
1898 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1899
1900 /*
1901 * Turn off promiscuous mode, promiscuous group mode (all multicast),
1902 * and hash filter. Depending on the case, the right bit will be
1903 * enabled.
1904 */
1905 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1906 GEM_MAC_RX_PROMISC_GRP);
1907
1908 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1909 /* Turn on promiscuous mode */
1910 v |= GEM_MAC_RX_PROMISCUOUS;
1911 ifp->if_flags |= IFF_ALLMULTI;
1912 goto chipit;
1913 }
1914
1915 /*
1916 * Set up multicast address filter by passing all multicast addresses
1917 * through a crc generator, and then using the high order 8 bits as an
1918 * index into the 256 bit logical address filter. The high order 4
1919 * bits select the word, while the other 4 bits select the bit within
1920 * the word (where bit 0 is the MSB).
1921 */
1922
1923 /* Clear hash table */
1924 memset(hash, 0, sizeof(hash));
1925
1926 ETHER_FIRST_MULTI(step, ec, enm);
1927 while (enm != NULL) {
1928 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1929 /*
1930 * We must listen to a range of multicast addresses.
1931 * For now, just accept all multicasts, rather than
1932 * trying to set only those filter bits needed to match
1933 * the range. (At this time, the only use of address
1934 * ranges is for IP multicast routing, for which the
1935 * range is big enough to require all bits set.)
1936 * XXX use the addr filter for this
1937 */
1938 ifp->if_flags |= IFF_ALLMULTI;
1939 v |= GEM_MAC_RX_PROMISC_GRP;
1940 goto chipit;
1941 }
1942
1943 /* Get the LE CRC32 of the address */
1944 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
1945
1946 /* Just want the 8 most significant bits. */
1947 crc >>= 24;
1948
1949 /* Set the corresponding bit in the filter. */
1950 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1951
1952 ETHER_NEXT_MULTI(step, enm);
1953 }
1954
1955 v |= GEM_MAC_RX_HASH_FILTER;
1956 ifp->if_flags &= ~IFF_ALLMULTI;
1957
1958 /* Now load the hash table into the chip (if we are using it) */
1959 for (i = 0; i < 16; i++) {
1960 bus_space_write_4(t, h,
1961 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
1962 hash[i]);
1963 }
1964
1965 chipit:
1966 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1967 }
1968
1969 #if notyet
1970
1971 /*
1972 * gem_power:
1973 *
1974 * Power management (suspend/resume) hook.
1975 */
1976 void
1977 gem_power(why, arg)
1978 int why;
1979 void *arg;
1980 {
1981 struct gem_softc *sc = arg;
1982 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1983 int s;
1984
1985 s = splnet();
1986 switch (why) {
1987 case PWR_SUSPEND:
1988 case PWR_STANDBY:
1989 gem_stop(ifp, 1);
1990 if (sc->sc_power != NULL)
1991 (*sc->sc_power)(sc, why);
1992 break;
1993 case PWR_RESUME:
1994 if (ifp->if_flags & IFF_UP) {
1995 if (sc->sc_power != NULL)
1996 (*sc->sc_power)(sc, why);
1997 gem_init(ifp);
1998 }
1999 break;
2000 case PWR_SOFTSUSPEND:
2001 case PWR_SOFTSTANDBY:
2002 case PWR_SOFTRESUME:
2003 break;
2004 }
2005 splx(s);
2006 }
2007 #endif
2008