gem.c revision 1.35 1 /* $NetBSD: gem.c,v 1.35 2005/02/20 18:29:00 heas Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.35 2005/02/20 18:29:00 heas Exp $");
38
39 #include "opt_inet.h"
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/syslog.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53
54 #include <machine/endian.h>
55
56 #include <uvm/uvm_extern.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 #include <dev/mii/mii_bitbang.h>
82
83 #include <dev/ic/gemreg.h>
84 #include <dev/ic/gemvar.h>
85
86 #define TRIES 10000
87
88 void gem_start(struct ifnet *);
89 void gem_stop(struct ifnet *, int);
90 int gem_ioctl(struct ifnet *, u_long, caddr_t);
91 void gem_tick(void *);
92 void gem_watchdog(struct ifnet *);
93 void gem_shutdown(void *);
94 int gem_init(struct ifnet *);
95 void gem_init_regs(struct gem_softc *sc);
96 static int gem_ringsize(int sz);
97 int gem_meminit(struct gem_softc *);
98 void gem_mifinit(struct gem_softc *);
99 void gem_reset(struct gem_softc *);
100 int gem_reset_rx(struct gem_softc *sc);
101 int gem_reset_tx(struct gem_softc *sc);
102 int gem_disable_rx(struct gem_softc *sc);
103 int gem_disable_tx(struct gem_softc *sc);
104 void gem_rxdrain(struct gem_softc *sc);
105 int gem_add_rxbuf(struct gem_softc *sc, int idx);
106 void gem_setladrf(struct gem_softc *);
107
108 /* MII methods & callbacks */
109 static int gem_mii_readreg(struct device *, int, int);
110 static void gem_mii_writereg(struct device *, int, int, int);
111 static void gem_mii_statchg(struct device *);
112
113 int gem_mediachange(struct ifnet *);
114 void gem_mediastatus(struct ifnet *, struct ifmediareq *);
115
116 struct mbuf *gem_get(struct gem_softc *, int, int);
117 int gem_put(struct gem_softc *, int, struct mbuf *);
118 void gem_read(struct gem_softc *, int, int);
119 int gem_eint(struct gem_softc *, u_int);
120 int gem_rint(struct gem_softc *);
121 int gem_tint(struct gem_softc *);
122 void gem_power(int, void *);
123
124 #ifdef GEM_DEBUG
125 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
126 printf x
127 #else
128 #define DPRINTF(sc, x) /* nothing */
129 #endif
130
131
132 /*
133 * gem_attach:
134 *
135 * Attach a Gem interface to the system.
136 */
137 void
138 gem_attach(sc, enaddr)
139 struct gem_softc *sc;
140 const uint8_t *enaddr;
141 {
142 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
143 struct mii_data *mii = &sc->sc_mii;
144 struct mii_softc *child;
145 struct ifmedia_entry *ifm;
146 int i, error;
147 u_int32_t v;
148
149 /* Make sure the chip is stopped. */
150 ifp->if_softc = sc;
151 gem_reset(sc);
152
153 /*
154 * Allocate the control data structures, and create and load the
155 * DMA map for it.
156 */
157 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
158 sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
159 1, &sc->sc_cdnseg, 0)) != 0) {
160 aprint_error(
161 "%s: unable to allocate control data, error = %d\n",
162 sc->sc_dev.dv_xname, error);
163 goto fail_0;
164 }
165
166 /* XXX should map this in with correct endianness */
167 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
168 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
169 BUS_DMA_COHERENT)) != 0) {
170 aprint_error("%s: unable to map control data, error = %d\n",
171 sc->sc_dev.dv_xname, error);
172 goto fail_1;
173 }
174
175 if ((error = bus_dmamap_create(sc->sc_dmatag,
176 sizeof(struct gem_control_data), 1,
177 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
178 aprint_error("%s: unable to create control data DMA map, "
179 "error = %d\n", sc->sc_dev.dv_xname, error);
180 goto fail_2;
181 }
182
183 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
184 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
185 0)) != 0) {
186 aprint_error(
187 "%s: unable to load control data DMA map, error = %d\n",
188 sc->sc_dev.dv_xname, error);
189 goto fail_3;
190 }
191
192 /*
193 * Initialize the transmit job descriptors.
194 */
195 SIMPLEQ_INIT(&sc->sc_txfreeq);
196 SIMPLEQ_INIT(&sc->sc_txdirtyq);
197
198 /*
199 * Create the transmit buffer DMA maps.
200 */
201 for (i = 0; i < GEM_TXQUEUELEN; i++) {
202 struct gem_txsoft *txs;
203
204 txs = &sc->sc_txsoft[i];
205 txs->txs_mbuf = NULL;
206 if ((error = bus_dmamap_create(sc->sc_dmatag,
207 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
208 ETHER_MAX_LEN_JUMBO, 0, 0,
209 &txs->txs_dmamap)) != 0) {
210 aprint_error("%s: unable to create tx DMA map %d, "
211 "error = %d\n", sc->sc_dev.dv_xname, i, error);
212 goto fail_4;
213 }
214 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
215 }
216
217 /*
218 * Create the receive buffer DMA maps.
219 */
220 for (i = 0; i < GEM_NRXDESC; i++) {
221 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
222 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
223 aprint_error("%s: unable to create rx DMA map %d, "
224 "error = %d\n", sc->sc_dev.dv_xname, i, error);
225 goto fail_5;
226 }
227 sc->sc_rxsoft[i].rxs_mbuf = NULL;
228 }
229
230 /*
231 * From this point forward, the attachment cannot fail. A failure
232 * before this point releases all resources that may have been
233 * allocated.
234 */
235
236 /* Announce ourselves. */
237 aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
238 ether_sprintf(enaddr));
239
240 /* Get RX FIFO size */
241 sc->sc_rxfifosize = 64 *
242 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
243 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
244
245 /* Get TX FIFO size */
246 v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
247 aprint_normal(", %uKB TX fifo\n", v / 16);
248
249 /* Initialize ifnet structure. */
250 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
251 ifp->if_softc = sc;
252 ifp->if_flags =
253 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
254 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx
255 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
256 ifp->if_start = gem_start;
257 ifp->if_ioctl = gem_ioctl;
258 ifp->if_watchdog = gem_watchdog;
259 ifp->if_stop = gem_stop;
260 ifp->if_init = gem_init;
261 IFQ_SET_READY(&ifp->if_snd);
262
263 /* Initialize ifmedia structures and MII info */
264 mii->mii_ifp = ifp;
265 mii->mii_readreg = gem_mii_readreg;
266 mii->mii_writereg = gem_mii_writereg;
267 mii->mii_statchg = gem_mii_statchg;
268
269 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
270
271 gem_mifinit(sc);
272
273 mii_attach(&sc->sc_dev, mii, 0xffffffff,
274 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
275
276 child = LIST_FIRST(&mii->mii_phys);
277 if (child == NULL) {
278 /* No PHY attached */
279 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
280 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
281 } else {
282 /*
283 * Walk along the list of attached MII devices and
284 * establish an `MII instance' to `phy number'
285 * mapping. We'll use this mapping in media change
286 * requests to determine which phy to use to program
287 * the MIF configuration register.
288 */
289 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
290 /*
291 * Note: we support just two PHYs: the built-in
292 * internal device and an external on the MII
293 * connector.
294 */
295 if (child->mii_phy > 1 || child->mii_inst > 1) {
296 aprint_error(
297 "%s: cannot accomodate MII device %s"
298 " at phy %d, instance %d\n",
299 sc->sc_dev.dv_xname,
300 child->mii_dev.dv_xname,
301 child->mii_phy, child->mii_inst);
302 continue;
303 }
304
305 sc->sc_phys[child->mii_inst] = child->mii_phy;
306 }
307
308 /*
309 * Now select and activate the PHY we will use.
310 *
311 * The order of preference is External (MDI1),
312 * Internal (MDI0), Serial Link (no MII).
313 */
314 if (sc->sc_phys[1]) {
315 #ifdef DEBUG
316 aprint_debug("using external phy\n");
317 #endif
318 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
319 } else {
320 #ifdef DEBUG
321 aprint_debug("using internal phy\n");
322 #endif
323 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
324 }
325 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
326 sc->sc_mif_config);
327
328 /*
329 * XXX - we can really do the following ONLY if the
330 * phy indeed has the auto negotiation capability!!
331 */
332 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
333 }
334
335 /*
336 * If we support GigE media, we support jumbo frames too.
337 * Unless we are Apple.
338 */
339 TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
340 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
341 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
342 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
343 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
344 if (sc->sc_variant != GEM_APPLE_GMAC)
345 sc->sc_ethercom.ec_capabilities
346 |= ETHERCAP_JUMBO_MTU;
347
348 sc->sc_flags |= GEM_GIGABIT;
349 break;
350 }
351 }
352
353 /* claim 802.1q capability */
354 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
355
356 /* Attach the interface. */
357 if_attach(ifp);
358 ether_ifattach(ifp, enaddr);
359
360 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
361 if (sc->sc_sh == NULL)
362 panic("gem_config: can't establish shutdownhook");
363
364 #if NRND > 0
365 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
366 RND_TYPE_NET, 0);
367 #endif
368
369 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
370 NULL, sc->sc_dev.dv_xname, "interrupts");
371 #ifdef GEM_COUNTERS
372 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
373 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
374 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
375 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
376 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
377 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
378 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
379 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
380 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
381 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
382 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
383 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
384 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
385 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
386 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
387 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
388 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
389 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
390 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
391 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
392 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
393 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
394 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
395 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
396 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
397 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
398 #endif
399
400 #if notyet
401 /*
402 * Add a suspend hook to make sure we come back up after a
403 * resume.
404 */
405 sc->sc_powerhook = powerhook_establish(gem_power, sc);
406 if (sc->sc_powerhook == NULL)
407 aprint_error("%s: WARNING: unable to establish power hook\n",
408 sc->sc_dev.dv_xname);
409 #endif
410
411 callout_init(&sc->sc_tick_ch);
412 return;
413
414 /*
415 * Free any resources we've allocated during the failed attach
416 * attempt. Do this in reverse order and fall through.
417 */
418 fail_5:
419 for (i = 0; i < GEM_NRXDESC; i++) {
420 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
421 bus_dmamap_destroy(sc->sc_dmatag,
422 sc->sc_rxsoft[i].rxs_dmamap);
423 }
424 fail_4:
425 for (i = 0; i < GEM_TXQUEUELEN; i++) {
426 if (sc->sc_txsoft[i].txs_dmamap != NULL)
427 bus_dmamap_destroy(sc->sc_dmatag,
428 sc->sc_txsoft[i].txs_dmamap);
429 }
430 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
431 fail_3:
432 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
433 fail_2:
434 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
435 sizeof(struct gem_control_data));
436 fail_1:
437 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
438 fail_0:
439 return;
440 }
441
442
443 void
444 gem_tick(arg)
445 void *arg;
446 {
447 struct gem_softc *sc = arg;
448 int s;
449
450 s = splnet();
451 mii_tick(&sc->sc_mii);
452 splx(s);
453
454 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
455
456 }
457
458 void
459 gem_reset(sc)
460 struct gem_softc *sc;
461 {
462 bus_space_tag_t t = sc->sc_bustag;
463 bus_space_handle_t h = sc->sc_h;
464 int i;
465 int s;
466
467 s = splnet();
468 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
469 gem_reset_rx(sc);
470 gem_reset_tx(sc);
471
472 /* Do a full reset */
473 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
474 for (i=TRIES; i--; delay(100))
475 if ((bus_space_read_4(t, h, GEM_RESET) &
476 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
477 break;
478 if ((bus_space_read_4(t, h, GEM_RESET) &
479 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
480 printf("%s: cannot reset device\n",
481 sc->sc_dev.dv_xname);
482 }
483 splx(s);
484 }
485
486
487 /*
488 * gem_rxdrain:
489 *
490 * Drain the receive queue.
491 */
492 void
493 gem_rxdrain(struct gem_softc *sc)
494 {
495 struct gem_rxsoft *rxs;
496 int i;
497
498 for (i = 0; i < GEM_NRXDESC; i++) {
499 rxs = &sc->sc_rxsoft[i];
500 if (rxs->rxs_mbuf != NULL) {
501 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
502 m_freem(rxs->rxs_mbuf);
503 rxs->rxs_mbuf = NULL;
504 }
505 }
506 }
507
508 /*
509 * Reset the whole thing.
510 */
511 void
512 gem_stop(struct ifnet *ifp, int disable)
513 {
514 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
515 struct gem_txsoft *txs;
516
517 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
518
519 callout_stop(&sc->sc_tick_ch);
520 mii_down(&sc->sc_mii);
521
522 /* XXX - Should we reset these instead? */
523 gem_disable_rx(sc);
524 gem_disable_tx(sc);
525
526 /*
527 * Release any queued transmit buffers.
528 */
529 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
530 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
531 if (txs->txs_mbuf != NULL) {
532 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
533 m_freem(txs->txs_mbuf);
534 txs->txs_mbuf = NULL;
535 }
536 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
537 }
538
539 if (disable) {
540 gem_rxdrain(sc);
541 }
542
543 /*
544 * Mark the interface down and cancel the watchdog timer.
545 */
546 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
547 ifp->if_timer = 0;
548 }
549
550
551 /*
552 * Reset the receiver
553 */
554 int
555 gem_reset_rx(struct gem_softc *sc)
556 {
557 bus_space_tag_t t = sc->sc_bustag;
558 bus_space_handle_t h = sc->sc_h;
559 int i;
560
561
562 /*
563 * Resetting while DMA is in progress can cause a bus hang, so we
564 * disable DMA first.
565 */
566 gem_disable_rx(sc);
567 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
568 /* Wait till it finishes */
569 for (i=TRIES; i--; delay(100))
570 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
571 break;
572 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
573 printf("%s: cannot disable read DMA\n",
574 sc->sc_dev.dv_xname);
575
576 /* Wait 5ms extra. */
577 delay(5000);
578
579 /* Finally, reset the ERX */
580 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
581 /* Wait till it finishes */
582 for (i=TRIES; i--; delay(100))
583 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
584 break;
585 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
586 printf("%s: cannot reset receiver\n",
587 sc->sc_dev.dv_xname);
588 return (1);
589 }
590 return (0);
591 }
592
593
594 /*
595 * Reset the transmitter
596 */
597 int
598 gem_reset_tx(struct gem_softc *sc)
599 {
600 bus_space_tag_t t = sc->sc_bustag;
601 bus_space_handle_t h = sc->sc_h;
602 int i;
603
604 /*
605 * Resetting while DMA is in progress can cause a bus hang, so we
606 * disable DMA first.
607 */
608 gem_disable_tx(sc);
609 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
610 /* Wait till it finishes */
611 for (i=TRIES; i--; delay(100))
612 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
613 break;
614 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
615 printf("%s: cannot disable read DMA\n",
616 sc->sc_dev.dv_xname);
617
618 /* Wait 5ms extra. */
619 delay(5000);
620
621 /* Finally, reset the ETX */
622 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
623 /* Wait till it finishes */
624 for (i=TRIES; i--; delay(100))
625 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
626 break;
627 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
628 printf("%s: cannot reset receiver\n",
629 sc->sc_dev.dv_xname);
630 return (1);
631 }
632 return (0);
633 }
634
635 /*
636 * disable receiver.
637 */
638 int
639 gem_disable_rx(struct gem_softc *sc)
640 {
641 bus_space_tag_t t = sc->sc_bustag;
642 bus_space_handle_t h = sc->sc_h;
643 int i;
644 u_int32_t cfg;
645
646 /* Flip the enable bit */
647 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
648 cfg &= ~GEM_MAC_RX_ENABLE;
649 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
650
651 /* Wait for it to finish */
652 for (i=TRIES; i--; delay(100))
653 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
654 GEM_MAC_RX_ENABLE) == 0)
655 return (0);
656 return (1);
657 }
658
659 /*
660 * disable transmitter.
661 */
662 int
663 gem_disable_tx(struct gem_softc *sc)
664 {
665 bus_space_tag_t t = sc->sc_bustag;
666 bus_space_handle_t h = sc->sc_h;
667 int i;
668 u_int32_t cfg;
669
670 /* Flip the enable bit */
671 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
672 cfg &= ~GEM_MAC_TX_ENABLE;
673 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
674
675 /* Wait for it to finish */
676 for (i=TRIES; i--; delay(100))
677 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
678 GEM_MAC_TX_ENABLE) == 0)
679 return (0);
680 return (1);
681 }
682
683 /*
684 * Initialize interface.
685 */
686 int
687 gem_meminit(struct gem_softc *sc)
688 {
689 struct gem_rxsoft *rxs;
690 int i, error;
691
692 /*
693 * Initialize the transmit descriptor ring.
694 */
695 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
696 for (i = 0; i < GEM_NTXDESC; i++) {
697 sc->sc_txdescs[i].gd_flags = 0;
698 sc->sc_txdescs[i].gd_addr = 0;
699 }
700 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
701 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
702 sc->sc_txfree = GEM_NTXDESC-1;
703 sc->sc_txnext = 0;
704 sc->sc_txwin = 0;
705
706 /*
707 * Initialize the receive descriptor and receive job
708 * descriptor rings.
709 */
710 for (i = 0; i < GEM_NRXDESC; i++) {
711 rxs = &sc->sc_rxsoft[i];
712 if (rxs->rxs_mbuf == NULL) {
713 if ((error = gem_add_rxbuf(sc, i)) != 0) {
714 printf("%s: unable to allocate or map rx "
715 "buffer %d, error = %d\n",
716 sc->sc_dev.dv_xname, i, error);
717 /*
718 * XXX Should attempt to run with fewer receive
719 * XXX buffers instead of just failing.
720 */
721 gem_rxdrain(sc);
722 return (1);
723 }
724 } else
725 GEM_INIT_RXDESC(sc, i);
726 }
727 sc->sc_rxptr = 0;
728
729 return (0);
730 }
731
732 static int
733 gem_ringsize(int sz)
734 {
735 switch (sz) {
736 case 32:
737 return GEM_RING_SZ_32;
738 case 64:
739 return GEM_RING_SZ_64;
740 case 128:
741 return GEM_RING_SZ_128;
742 case 256:
743 return GEM_RING_SZ_256;
744 case 512:
745 return GEM_RING_SZ_512;
746 case 1024:
747 return GEM_RING_SZ_1024;
748 case 2048:
749 return GEM_RING_SZ_2048;
750 case 4096:
751 return GEM_RING_SZ_4096;
752 case 8192:
753 return GEM_RING_SZ_8192;
754 default:
755 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
756 return GEM_RING_SZ_32;
757 }
758 }
759
760 /*
761 * Initialization of interface; set up initialization block
762 * and transmit/receive descriptor rings.
763 */
764 int
765 gem_init(struct ifnet *ifp)
766 {
767 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
768 bus_space_tag_t t = sc->sc_bustag;
769 bus_space_handle_t h = sc->sc_h;
770 int s;
771 u_int max_frame_size;
772 u_int32_t v;
773
774 s = splnet();
775
776 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
777 /*
778 * Initialization sequence. The numbered steps below correspond
779 * to the sequence outlined in section 6.3.5.1 in the Ethernet
780 * Channel Engine manual (part of the PCIO manual).
781 * See also the STP2002-STQ document from Sun Microsystems.
782 */
783
784 /* step 1 & 2. Reset the Ethernet Channel */
785 gem_stop(ifp, 0);
786 gem_reset(sc);
787 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
788
789 /* Re-initialize the MIF */
790 gem_mifinit(sc);
791
792 /* Call MI reset function if any */
793 if (sc->sc_hwreset)
794 (*sc->sc_hwreset)(sc);
795
796 /* step 3. Setup data structures in host memory */
797 gem_meminit(sc);
798
799 /* step 4. TX MAC registers & counters */
800 gem_init_regs(sc);
801 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
802 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
803 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
804 max_frame_size += ETHER_VLAN_ENCAP_LEN;
805 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
806 max_frame_size|/* burst size */(0x2000<<16));
807
808 /* step 5. RX MAC registers & counters */
809 gem_setladrf(sc);
810
811 /* step 6 & 7. Program Descriptor Ring Base Addresses */
812 /* NOTE: we use only 32-bit DMA addresses here. */
813 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
814 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
815
816 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
817 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
818
819 /* step 8. Global Configuration & Interrupt Mask */
820 bus_space_write_4(t, h, GEM_INTMASK,
821 ~(GEM_INTR_TX_INTME|
822 GEM_INTR_TX_EMPTY|
823 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
824 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
825 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
826 GEM_INTR_BERR));
827 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
828 GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
829 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
830 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
831
832 /* step 9. ETX Configuration: use mostly default values */
833
834 /* Enable DMA */
835 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
836 bus_space_write_4(t, h, GEM_TX_CONFIG,
837 v|GEM_TX_CONFIG_TXDMA_EN|
838 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
839 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
840
841 /* step 10. ERX Configuration */
842
843 /* Encode Receive Descriptor ring size: four possible values */
844 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
845
846 /* Set receive h/w checksum offset */
847 #ifdef INET
848 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
849 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
850 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
851 #endif
852
853 /* Enable DMA */
854 bus_space_write_4(t, h, GEM_RX_CONFIG,
855 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
856 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
857
858 /*
859 * The following value is for an OFF Threshold of about 3/4 full
860 * and an ON Threshold of 1/4 full.
861 */
862 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
863 (3 * sc->sc_rxfifosize / 256) |
864 ( (sc->sc_rxfifosize / 256) << 12));
865 bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
866
867 /* step 11. Configure Media */
868 mii_mediachg(&sc->sc_mii);
869
870 /* XXXX Serial link needs a whole different setup. */
871
872
873 /* step 12. RX_MAC Configuration Register */
874 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
875 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
876 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
877
878 /* step 14. Issue Transmit Pending command */
879
880 /* Call MI initialization function if any */
881 if (sc->sc_hwinit)
882 (*sc->sc_hwinit)(sc);
883
884
885 /* step 15. Give the reciever a swift kick */
886 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
887
888 /* Start the one second timer. */
889 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
890
891 ifp->if_flags |= IFF_RUNNING;
892 ifp->if_flags &= ~IFF_OACTIVE;
893 ifp->if_timer = 0;
894 splx(s);
895
896 return (0);
897 }
898
899 void
900 gem_init_regs(struct gem_softc *sc)
901 {
902 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
903 bus_space_tag_t t = sc->sc_bustag;
904 bus_space_handle_t h = sc->sc_h;
905 const u_char *laddr = LLADDR(ifp->if_sadl);
906 u_int32_t v;
907
908 /* These regs are not cleared on reset */
909 if (!sc->sc_inited) {
910
911 /* Wooo. Magic values. */
912 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
913 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
914 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
915
916 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
917 /* Max frame and max burst size */
918 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
919 ETHER_MAX_LEN | (0x2000<<16));
920
921 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
922 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
923 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
924 /* Dunno.... */
925 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
926 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
927 ((laddr[5]<<8)|laddr[4])&0x3ff);
928
929 /* Secondary MAC addr set to 0:0:0:0:0:0 */
930 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
931 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
932 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
933
934 /* MAC control addr set to 01:80:c2:00:00:01 */
935 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
936 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
937 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
938
939 /* MAC filter addr set to 0:0:0:0:0:0 */
940 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
941 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
942 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
943
944 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
945 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
946
947 sc->sc_inited = 1;
948 }
949
950 /* Counters need to be zeroed */
951 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
952 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
953 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
954 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
955 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
956 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
957 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
958 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
959 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
960 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
961 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
962
963 /* Un-pause stuff */
964 #if 0
965 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
966 #else
967 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
968 #endif
969
970 /*
971 * Set the station address.
972 */
973 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
974 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
975 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
976
977 #if 0
978 if (sc->sc_variant != APPLE_GMAC)
979 return;
980 #endif
981
982 /*
983 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
984 */
985 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
986 v = GEM_MAC_XIF_TX_MII_ENA;
987 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
988 v |= GEM_MAC_XIF_FDPLX_LED;
989 if (sc->sc_flags & GEM_GIGABIT)
990 v |= GEM_MAC_XIF_GMII_MODE;
991 }
992 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
993 }
994
995 void
996 gem_start(ifp)
997 struct ifnet *ifp;
998 {
999 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1000 struct mbuf *m0, *m;
1001 struct gem_txsoft *txs, *last_txs;
1002 bus_dmamap_t dmamap;
1003 int error, firsttx, nexttx, lasttx = -1, ofree, seg;
1004
1005 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1006 return;
1007
1008 /*
1009 * Remember the previous number of free descriptors and
1010 * the first descriptor we'll use.
1011 */
1012 ofree = sc->sc_txfree;
1013 firsttx = sc->sc_txnext;
1014
1015 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1016 sc->sc_dev.dv_xname, ofree, firsttx));
1017
1018 /*
1019 * Loop through the send queue, setting up transmit descriptors
1020 * until we drain the queue, or use up all available transmit
1021 * descriptors.
1022 */
1023 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1024 sc->sc_txfree != 0) {
1025 /*
1026 * Grab a packet off the queue.
1027 */
1028 IFQ_POLL(&ifp->if_snd, m0);
1029 if (m0 == NULL)
1030 break;
1031 m = NULL;
1032
1033 dmamap = txs->txs_dmamap;
1034
1035 /*
1036 * Load the DMA map. If this fails, the packet either
1037 * didn't fit in the alloted number of segments, or we were
1038 * short on resources. In this case, we'll copy and try
1039 * again.
1040 */
1041 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1042 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1043 if (m0->m_pkthdr.len > MCLBYTES) {
1044 printf("%s: unable to allocate jumbo Tx "
1045 "cluster\n", sc->sc_dev.dv_xname);
1046 IFQ_DEQUEUE(&ifp->if_snd, m0);
1047 m_freem(m0);
1048 continue;
1049 }
1050 MGETHDR(m, M_DONTWAIT, MT_DATA);
1051 if (m == NULL) {
1052 printf("%s: unable to allocate Tx mbuf\n",
1053 sc->sc_dev.dv_xname);
1054 break;
1055 }
1056 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1057 if (m0->m_pkthdr.len > MHLEN) {
1058 MCLGET(m, M_DONTWAIT);
1059 if ((m->m_flags & M_EXT) == 0) {
1060 printf("%s: unable to allocate Tx "
1061 "cluster\n", sc->sc_dev.dv_xname);
1062 m_freem(m);
1063 break;
1064 }
1065 }
1066 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1067 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1068 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1069 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1070 if (error) {
1071 printf("%s: unable to load Tx buffer, "
1072 "error = %d\n", sc->sc_dev.dv_xname, error);
1073 break;
1074 }
1075 }
1076
1077 /*
1078 * Ensure we have enough descriptors free to describe
1079 * the packet.
1080 */
1081 if (dmamap->dm_nsegs > sc->sc_txfree) {
1082 /*
1083 * Not enough free descriptors to transmit this
1084 * packet. We haven't committed to anything yet,
1085 * so just unload the DMA map, put the packet
1086 * back on the queue, and punt. Notify the upper
1087 * layer that there are no more slots left.
1088 *
1089 * XXX We could allocate an mbuf and copy, but
1090 * XXX it is worth it?
1091 */
1092 ifp->if_flags |= IFF_OACTIVE;
1093 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1094 if (m != NULL)
1095 m_freem(m);
1096 break;
1097 }
1098
1099 IFQ_DEQUEUE(&ifp->if_snd, m0);
1100 if (m != NULL) {
1101 m_freem(m0);
1102 m0 = m;
1103 }
1104
1105 /*
1106 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1107 */
1108
1109 /* Sync the DMA map. */
1110 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1111 BUS_DMASYNC_PREWRITE);
1112
1113 /*
1114 * Initialize the transmit descriptors.
1115 */
1116 for (nexttx = sc->sc_txnext, seg = 0;
1117 seg < dmamap->dm_nsegs;
1118 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1119 uint64_t flags;
1120
1121 /*
1122 * If this is the first descriptor we're
1123 * enqueueing, set the start of packet flag,
1124 * and the checksum stuff if we want the hardware
1125 * to do it.
1126 */
1127 sc->sc_txdescs[nexttx].gd_addr =
1128 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1129 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1130 if (nexttx == firsttx) {
1131 flags |= GEM_TD_START_OF_PACKET;
1132 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1133 sc->sc_txwin = 0;
1134 flags |= GEM_TD_INTERRUPT_ME;
1135 }
1136
1137 #ifdef INET
1138 /* h/w checksum */
1139 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
1140 M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
1141 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1142 struct ether_header *eh;
1143 uint16_t offset, start;
1144
1145 eh = mtod(m0, struct ether_header *);
1146 switch (ntohs(eh->ether_type)) {
1147 case ETHERTYPE_IP:
1148 start = ETHER_HDR_LEN;
1149 break;
1150 case ETHERTYPE_VLAN:
1151 start = ETHER_HDR_LEN +
1152 ETHER_VLAN_ENCAP_LEN;
1153 break;
1154 default:
1155 /* unsupported, drop it */
1156 m_free(m0);
1157 continue;
1158 }
1159 start += m0->m_pkthdr.csum_data >> 16;
1160 offset = (m0->m_pkthdr.csum_data &
1161 0xffff) + start;
1162 flags |= (start <<
1163 GEM_TD_CXSUM_STARTSHFT) |
1164 (offset <<
1165 GEM_TD_CXSUM_STUFFSHFT) |
1166 GEM_TD_CXSUM_ENABLE;
1167 }
1168 #endif
1169 }
1170 if (seg == dmamap->dm_nsegs - 1) {
1171 flags |= GEM_TD_END_OF_PACKET;
1172 }
1173 sc->sc_txdescs[nexttx].gd_flags =
1174 GEM_DMA_WRITE(sc, flags);
1175 lasttx = nexttx;
1176 }
1177
1178 KASSERT(lasttx != -1);
1179
1180 #ifdef GEM_DEBUG
1181 if (ifp->if_flags & IFF_DEBUG) {
1182 printf(" gem_start %p transmit chain:\n", txs);
1183 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1184 printf("descriptor %d:\t", seg);
1185 printf("gd_flags: 0x%016llx\t", (long long)
1186 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1187 printf("gd_addr: 0x%016llx\n", (long long)
1188 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1189 if (seg == lasttx)
1190 break;
1191 }
1192 }
1193 #endif
1194
1195 /* Sync the descriptors we're using. */
1196 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1197 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1198
1199 /*
1200 * Store a pointer to the packet so we can free it later,
1201 * and remember what txdirty will be once the packet is
1202 * done.
1203 */
1204 txs->txs_mbuf = m0;
1205 txs->txs_firstdesc = sc->sc_txnext;
1206 txs->txs_lastdesc = lasttx;
1207 txs->txs_ndescs = dmamap->dm_nsegs;
1208
1209 /* Advance the tx pointer. */
1210 sc->sc_txfree -= dmamap->dm_nsegs;
1211 sc->sc_txnext = nexttx;
1212
1213 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1214 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1215
1216 last_txs = txs;
1217
1218 #if NBPFILTER > 0
1219 /*
1220 * Pass the packet to any BPF listeners.
1221 */
1222 if (ifp->if_bpf)
1223 bpf_mtap(ifp->if_bpf, m0);
1224 #endif /* NBPFILTER > 0 */
1225 }
1226
1227 if (txs == NULL || sc->sc_txfree == 0) {
1228 /* No more slots left; notify upper layer. */
1229 ifp->if_flags |= IFF_OACTIVE;
1230 }
1231
1232 if (sc->sc_txfree != ofree) {
1233 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1234 sc->sc_dev.dv_xname, lasttx, firsttx));
1235 /*
1236 * The entire packet chain is set up.
1237 * Kick the transmitter.
1238 */
1239 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1240 sc->sc_dev.dv_xname, nexttx));
1241 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1242 sc->sc_txnext);
1243
1244 /* Set a watchdog timer in case the chip flakes out. */
1245 ifp->if_timer = 5;
1246 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1247 sc->sc_dev.dv_xname, ifp->if_timer));
1248 }
1249 }
1250
1251 /*
1252 * Transmit interrupt.
1253 */
1254 int
1255 gem_tint(sc)
1256 struct gem_softc *sc;
1257 {
1258 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1259 bus_space_tag_t t = sc->sc_bustag;
1260 bus_space_handle_t mac = sc->sc_h;
1261 struct gem_txsoft *txs;
1262 int txlast;
1263 int progress = 0;
1264
1265
1266 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1267
1268 /*
1269 * Unload collision counters
1270 */
1271 ifp->if_collisions +=
1272 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1273 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1274 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1275 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1276
1277 /*
1278 * then clear the hardware counters.
1279 */
1280 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1281 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1282 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1283 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1284
1285 /*
1286 * Go through our Tx list and free mbufs for those
1287 * frames that have been transmitted.
1288 */
1289 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1290 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1291 txs->txs_ndescs,
1292 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1293
1294 #ifdef GEM_DEBUG
1295 if (ifp->if_flags & IFF_DEBUG) {
1296 int i;
1297 printf(" txsoft %p transmit chain:\n", txs);
1298 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1299 printf("descriptor %d: ", i);
1300 printf("gd_flags: 0x%016llx\t", (long long)
1301 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1302 printf("gd_addr: 0x%016llx\n", (long long)
1303 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1304 if (i == txs->txs_lastdesc)
1305 break;
1306 }
1307 }
1308 #endif
1309
1310 /*
1311 * In theory, we could harveast some descriptors before
1312 * the ring is empty, but that's a bit complicated.
1313 *
1314 * GEM_TX_COMPLETION points to the last descriptor
1315 * processed +1.
1316 */
1317 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1318 DPRINTF(sc,
1319 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1320 txs->txs_lastdesc, txlast));
1321 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1322 if ((txlast >= txs->txs_firstdesc) &&
1323 (txlast <= txs->txs_lastdesc))
1324 break;
1325 } else {
1326 /* Ick -- this command wraps */
1327 if ((txlast >= txs->txs_firstdesc) ||
1328 (txlast <= txs->txs_lastdesc))
1329 break;
1330 }
1331
1332 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1333 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1334
1335 sc->sc_txfree += txs->txs_ndescs;
1336
1337 if (txs->txs_mbuf == NULL) {
1338 #ifdef DIAGNOSTIC
1339 panic("gem_txintr: null mbuf");
1340 #endif
1341 }
1342
1343 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1344 0, txs->txs_dmamap->dm_mapsize,
1345 BUS_DMASYNC_POSTWRITE);
1346 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1347 m_freem(txs->txs_mbuf);
1348 txs->txs_mbuf = NULL;
1349
1350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1351
1352 ifp->if_opackets++;
1353 progress = 1;
1354 }
1355
1356 #if 0
1357 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1358 "GEM_TX_DATA_PTR %llx "
1359 "GEM_TX_COMPLETION %x\n",
1360 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1361 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1362 GEM_TX_DATA_PTR_HI) << 32) |
1363 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1364 GEM_TX_DATA_PTR_LO),
1365 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1366 #endif
1367
1368 if (progress) {
1369 if (sc->sc_txfree == GEM_NTXDESC - 1)
1370 sc->sc_txwin = 0;
1371
1372 ifp->if_flags &= ~IFF_OACTIVE;
1373 gem_start(ifp);
1374
1375 if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1376 ifp->if_timer = 0;
1377 }
1378 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1379 sc->sc_dev.dv_xname, ifp->if_timer));
1380
1381 return (1);
1382 }
1383
1384 /*
1385 * Receive interrupt.
1386 */
1387 int
1388 gem_rint(sc)
1389 struct gem_softc *sc;
1390 {
1391 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1392 bus_space_tag_t t = sc->sc_bustag;
1393 bus_space_handle_t h = sc->sc_h;
1394 struct gem_rxsoft *rxs;
1395 struct mbuf *m;
1396 u_int64_t rxstat;
1397 u_int32_t rxcomp;
1398 int i, len, progress = 0;
1399
1400 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1401
1402 /*
1403 * Read the completion register once. This limits
1404 * how long the following loop can execute.
1405 */
1406 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1407
1408 /*
1409 * XXXX Read the lastrx only once at the top for speed.
1410 */
1411 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1412 sc->sc_rxptr, rxcomp));
1413
1414 /*
1415 * Go into the loop at least once.
1416 */
1417 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1418 i = GEM_NEXTRX(i)) {
1419 rxs = &sc->sc_rxsoft[i];
1420
1421 GEM_CDRXSYNC(sc, i,
1422 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1423
1424 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1425
1426 if (rxstat & GEM_RD_OWN) {
1427 /*
1428 * We have processed all of the receive buffers.
1429 */
1430 break;
1431 }
1432
1433 progress++;
1434 ifp->if_ipackets++;
1435
1436 if (rxstat & GEM_RD_BAD_CRC) {
1437 ifp->if_ierrors++;
1438 printf("%s: receive error: CRC error\n",
1439 sc->sc_dev.dv_xname);
1440 GEM_INIT_RXDESC(sc, i);
1441 continue;
1442 }
1443
1444 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1445 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1446 #ifdef GEM_DEBUG
1447 if (ifp->if_flags & IFF_DEBUG) {
1448 printf(" rxsoft %p descriptor %d: ", rxs, i);
1449 printf("gd_flags: 0x%016llx\t", (long long)
1450 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1451 printf("gd_addr: 0x%016llx\n", (long long)
1452 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1453 }
1454 #endif
1455
1456 /* No errors; receive the packet. */
1457 len = GEM_RD_BUFLEN(rxstat);
1458
1459 /*
1460 * Allocate a new mbuf cluster. If that fails, we are
1461 * out of memory, and must drop the packet and recycle
1462 * the buffer that's already attached to this descriptor.
1463 */
1464 m = rxs->rxs_mbuf;
1465 if (gem_add_rxbuf(sc, i) != 0) {
1466 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1467 ifp->if_ierrors++;
1468 GEM_INIT_RXDESC(sc, i);
1469 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1470 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1471 continue;
1472 }
1473 m->m_data += 2; /* We're already off by two */
1474
1475 m->m_pkthdr.rcvif = ifp;
1476 m->m_pkthdr.len = m->m_len = len;
1477
1478 #if NBPFILTER > 0
1479 /*
1480 * Pass this up to any BPF listeners, but only
1481 * pass it up the stack if its for us.
1482 */
1483 if (ifp->if_bpf)
1484 bpf_mtap(ifp->if_bpf, m);
1485 #endif /* NPBFILTER > 0 */
1486
1487 #ifdef INET
1488 /* hardware checksum */
1489 if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
1490 struct ether_header *eh;
1491 struct ip *ip;
1492 struct udphdr *uh;
1493 int32_t hlen, pktlen;
1494
1495 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1496 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1497 ETHER_VLAN_ENCAP_LEN;
1498 eh = (struct ether_header *) mtod(m, caddr_t) +
1499 ETHER_VLAN_ENCAP_LEN;
1500 } else {
1501 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1502 eh = mtod(m, struct ether_header *);
1503 }
1504 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1505 goto swcsum;
1506 ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
1507
1508 /* IPv4 only */
1509 if (ip->ip_v != IPVERSION)
1510 goto swcsum;
1511
1512 hlen = ip->ip_hl << 2;
1513 if (hlen < sizeof(struct ip))
1514 goto swcsum;
1515
1516 /* too short, truncated, fragment */
1517 if ((ntohs(ip->ip_len) < hlen) ||
1518 (ntohs(ip->ip_len) > pktlen) ||
1519 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1520 goto swcsum;
1521
1522 switch (ip->ip_p) {
1523 case IPPROTO_TCP:
1524 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1525 goto swcsum;
1526 if (pktlen < (hlen + sizeof(struct tcphdr)))
1527 goto swcsum;
1528 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1529 break;
1530 case IPPROTO_UDP:
1531 if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
1532 goto swcsum;
1533 if (pktlen < (hlen + sizeof(struct udphdr)))
1534 goto swcsum;
1535 uh = (struct udphdr *)((caddr_t)ip + hlen);
1536 /* no checksum */
1537 if (uh->uh_sum == 0)
1538 goto swcsum;
1539 m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
1540 break;
1541 default:
1542 goto swcsum;
1543 }
1544
1545 /* the uncomplemented sum is expected */
1546 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1547
1548 /* if the pkt had ip options, we have to deduct them */
1549 if (hlen > sizeof(struct ip)) {
1550 uint16_t *opts;
1551 uint32_t optsum, temp;
1552
1553 optsum = 0;
1554 temp = hlen - sizeof(struct ip);
1555 opts = (uint16_t *) ((caddr_t) ip +
1556 sizeof(struct ip));
1557
1558 while (temp > 1) {
1559 optsum += ntohs(*opts++);
1560 temp -= 2;
1561 }
1562 while (optsum >> 16)
1563 optsum = (optsum >> 16) +
1564 (optsum & 0xffff);
1565
1566 /* Deduct ip opts sum from hwsum (rfc 1624). */
1567 m->m_pkthdr.csum_data =
1568 ~((~m->m_pkthdr.csum_data) - ~optsum);
1569
1570 while (m->m_pkthdr.csum_data >> 16)
1571 m->m_pkthdr.csum_data =
1572 (m->m_pkthdr.csum_data >> 16) +
1573 (m->m_pkthdr.csum_data &
1574 0xffff);
1575 }
1576
1577 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1578 M_CSUM_NO_PSEUDOHDR;
1579 } else
1580 swcsum:
1581 m->m_pkthdr.csum_flags = 0;
1582 #endif
1583 /* Pass it on. */
1584 (*ifp->if_input)(ifp, m);
1585 }
1586
1587 if (progress) {
1588 /* Update the receive pointer. */
1589 if (i == sc->sc_rxptr) {
1590 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1591 #ifdef GEM_DEBUG
1592 if (ifp->if_flags & IFF_DEBUG)
1593 printf("%s: rint: ring wrap\n",
1594 sc->sc_dev.dv_xname);
1595 #endif
1596 }
1597 sc->sc_rxptr = i;
1598 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1599 }
1600 #ifdef GEM_COUNTERS
1601 if (progress <= 4) {
1602 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1603 } else if (progress < 32) {
1604 if (progress < 16)
1605 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1606 else
1607 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1608
1609 } else {
1610 if (progress < 64)
1611 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1612 else
1613 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1614 }
1615 #endif
1616
1617 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1618 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1619
1620 return (1);
1621 }
1622
1623
1624 /*
1625 * gem_add_rxbuf:
1626 *
1627 * Add a receive buffer to the indicated descriptor.
1628 */
1629 int
1630 gem_add_rxbuf(struct gem_softc *sc, int idx)
1631 {
1632 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1633 struct mbuf *m;
1634 int error;
1635
1636 MGETHDR(m, M_DONTWAIT, MT_DATA);
1637 if (m == NULL)
1638 return (ENOBUFS);
1639
1640 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1641 MCLGET(m, M_DONTWAIT);
1642 if ((m->m_flags & M_EXT) == 0) {
1643 m_freem(m);
1644 return (ENOBUFS);
1645 }
1646
1647 #ifdef GEM_DEBUG
1648 /* bzero the packet to check DMA */
1649 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1650 #endif
1651
1652 if (rxs->rxs_mbuf != NULL)
1653 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1654
1655 rxs->rxs_mbuf = m;
1656
1657 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1658 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1659 BUS_DMA_READ|BUS_DMA_NOWAIT);
1660 if (error) {
1661 printf("%s: can't load rx DMA map %d, error = %d\n",
1662 sc->sc_dev.dv_xname, idx, error);
1663 panic("gem_add_rxbuf"); /* XXX */
1664 }
1665
1666 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1667 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1668
1669 GEM_INIT_RXDESC(sc, idx);
1670
1671 return (0);
1672 }
1673
1674
1675 int
1676 gem_eint(sc, status)
1677 struct gem_softc *sc;
1678 u_int status;
1679 {
1680 char bits[128];
1681
1682 if ((status & GEM_INTR_MIF) != 0) {
1683 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1684 return (1);
1685 }
1686
1687 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1688 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1689 return (1);
1690 }
1691
1692
1693 int
1694 gem_intr(v)
1695 void *v;
1696 {
1697 struct gem_softc *sc = (struct gem_softc *)v;
1698 bus_space_tag_t t = sc->sc_bustag;
1699 bus_space_handle_t seb = sc->sc_h;
1700 u_int32_t status;
1701 int r = 0;
1702 #ifdef GEM_DEBUG
1703 char bits[128];
1704 #endif
1705
1706 sc->sc_ev_intr.ev_count++;
1707
1708 status = bus_space_read_4(t, seb, GEM_STATUS);
1709 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
1710 sc->sc_dev.dv_xname, (status >> 19),
1711 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1712
1713 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1714 r |= gem_eint(sc, status);
1715
1716 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1717 GEM_COUNTER_INCR(sc, sc_ev_txint);
1718 r |= gem_tint(sc);
1719 }
1720
1721 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1722 GEM_COUNTER_INCR(sc, sc_ev_rxint);
1723 r |= gem_rint(sc);
1724 }
1725
1726 /* We should eventually do more than just print out error stats. */
1727 if (status & GEM_INTR_TX_MAC) {
1728 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1729 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1730 printf("%s: MAC tx fault, status %x\n",
1731 sc->sc_dev.dv_xname, txstat);
1732 }
1733 if (status & GEM_INTR_RX_MAC) {
1734 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1735 if (rxstat & ~GEM_MAC_RX_DONE)
1736 printf("%s: MAC rx fault, status %x\n",
1737 sc->sc_dev.dv_xname, rxstat);
1738 }
1739 return (r);
1740 }
1741
1742
1743 void
1744 gem_watchdog(ifp)
1745 struct ifnet *ifp;
1746 {
1747 struct gem_softc *sc = ifp->if_softc;
1748
1749 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1750 "GEM_MAC_RX_CONFIG %x\n",
1751 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1752 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1753 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1754
1755 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1756 ++ifp->if_oerrors;
1757
1758 /* Try to get more packets going. */
1759 gem_start(ifp);
1760 }
1761
1762 /*
1763 * Initialize the MII Management Interface
1764 */
1765 void
1766 gem_mifinit(sc)
1767 struct gem_softc *sc;
1768 {
1769 bus_space_tag_t t = sc->sc_bustag;
1770 bus_space_handle_t mif = sc->sc_h;
1771
1772 /* Configure the MIF in frame mode */
1773 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1774 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1775 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1776 }
1777
1778 /*
1779 * MII interface
1780 *
1781 * The GEM MII interface supports at least three different operating modes:
1782 *
1783 * Bitbang mode is implemented using data, clock and output enable registers.
1784 *
1785 * Frame mode is implemented by loading a complete frame into the frame
1786 * register and polling the valid bit for completion.
1787 *
1788 * Polling mode uses the frame register but completion is indicated by
1789 * an interrupt.
1790 *
1791 */
1792 static int
1793 gem_mii_readreg(self, phy, reg)
1794 struct device *self;
1795 int phy, reg;
1796 {
1797 struct gem_softc *sc = (void *)self;
1798 bus_space_tag_t t = sc->sc_bustag;
1799 bus_space_handle_t mif = sc->sc_h;
1800 int n;
1801 u_int32_t v;
1802
1803 #ifdef GEM_DEBUG1
1804 if (sc->sc_debug)
1805 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1806 #endif
1807
1808 #if 0
1809 /* Select the desired PHY in the MIF configuration register */
1810 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1811 /* Clear PHY select bit */
1812 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1813 if (phy == GEM_PHYAD_EXTERNAL)
1814 /* Set PHY select bit to get at external device */
1815 v |= GEM_MIF_CONFIG_PHY_SEL;
1816 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1817 #endif
1818
1819 /* Construct the frame command */
1820 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1821 GEM_MIF_FRAME_READ;
1822
1823 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1824 for (n = 0; n < 100; n++) {
1825 DELAY(1);
1826 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1827 if (v & GEM_MIF_FRAME_TA0)
1828 return (v & GEM_MIF_FRAME_DATA);
1829 }
1830
1831 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1832 return (0);
1833 }
1834
1835 static void
1836 gem_mii_writereg(self, phy, reg, val)
1837 struct device *self;
1838 int phy, reg, val;
1839 {
1840 struct gem_softc *sc = (void *)self;
1841 bus_space_tag_t t = sc->sc_bustag;
1842 bus_space_handle_t mif = sc->sc_h;
1843 int n;
1844 u_int32_t v;
1845
1846 #ifdef GEM_DEBUG1
1847 if (sc->sc_debug)
1848 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1849 phy, reg, val);
1850 #endif
1851
1852 #if 0
1853 /* Select the desired PHY in the MIF configuration register */
1854 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1855 /* Clear PHY select bit */
1856 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1857 if (phy == GEM_PHYAD_EXTERNAL)
1858 /* Set PHY select bit to get at external device */
1859 v |= GEM_MIF_CONFIG_PHY_SEL;
1860 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1861 #endif
1862 /* Construct the frame command */
1863 v = GEM_MIF_FRAME_WRITE |
1864 (phy << GEM_MIF_PHY_SHIFT) |
1865 (reg << GEM_MIF_REG_SHIFT) |
1866 (val & GEM_MIF_FRAME_DATA);
1867
1868 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1869 for (n = 0; n < 100; n++) {
1870 DELAY(1);
1871 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1872 if (v & GEM_MIF_FRAME_TA0)
1873 return;
1874 }
1875
1876 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1877 }
1878
1879 static void
1880 gem_mii_statchg(dev)
1881 struct device *dev;
1882 {
1883 struct gem_softc *sc = (void *)dev;
1884 #ifdef GEM_DEBUG
1885 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1886 #endif
1887 bus_space_tag_t t = sc->sc_bustag;
1888 bus_space_handle_t mac = sc->sc_h;
1889 u_int32_t v;
1890
1891 #ifdef GEM_DEBUG
1892 if (sc->sc_debug)
1893 printf("gem_mii_statchg: status change: phy = %d\n",
1894 sc->sc_phys[instance]);
1895 #endif
1896
1897
1898 /* Set tx full duplex options */
1899 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1900 delay(10000); /* reg must be cleared and delay before changing. */
1901 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1902 GEM_MAC_TX_ENABLE;
1903 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1904 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1905 }
1906 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1907
1908 /* XIF Configuration */
1909 /* We should really calculate all this rather than rely on defaults */
1910 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1911 v = GEM_MAC_XIF_LINK_LED;
1912 v |= GEM_MAC_XIF_TX_MII_ENA;
1913
1914 /* If an external transceiver is connected, enable its MII drivers */
1915 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1916 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1917 /* External MII needs echo disable if half duplex. */
1918 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1919 /* turn on full duplex LED */
1920 v |= GEM_MAC_XIF_FDPLX_LED;
1921 else
1922 /* half duplex -- disable echo */
1923 v |= GEM_MAC_XIF_ECHO_DISABL;
1924
1925 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1926 v |= GEM_MAC_XIF_GMII_MODE;
1927 else
1928 v &= ~GEM_MAC_XIF_GMII_MODE;
1929 } else
1930 /* Internal MII needs buf enable */
1931 v |= GEM_MAC_XIF_MII_BUF_ENA;
1932 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1933 }
1934
1935 int
1936 gem_mediachange(ifp)
1937 struct ifnet *ifp;
1938 {
1939 struct gem_softc *sc = ifp->if_softc;
1940
1941 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1942 return (EINVAL);
1943
1944 return (mii_mediachg(&sc->sc_mii));
1945 }
1946
1947 void
1948 gem_mediastatus(ifp, ifmr)
1949 struct ifnet *ifp;
1950 struct ifmediareq *ifmr;
1951 {
1952 struct gem_softc *sc = ifp->if_softc;
1953
1954 if ((ifp->if_flags & IFF_UP) == 0)
1955 return;
1956
1957 mii_pollstat(&sc->sc_mii);
1958 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1959 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1960 }
1961
1962 int gem_ioctldebug = 0;
1963 /*
1964 * Process an ioctl request.
1965 */
1966 int
1967 gem_ioctl(ifp, cmd, data)
1968 struct ifnet *ifp;
1969 u_long cmd;
1970 caddr_t data;
1971 {
1972 struct gem_softc *sc = ifp->if_softc;
1973 struct ifreq *ifr = (struct ifreq *)data;
1974 int s, error = 0;
1975
1976 s = splnet();
1977
1978 switch (cmd) {
1979 case SIOCGIFMEDIA:
1980 case SIOCSIFMEDIA:
1981 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1982 break;
1983
1984 default:
1985 error = ether_ioctl(ifp, cmd, data);
1986 if (error == ENETRESET) {
1987 /*
1988 * Multicast list has changed; set the hardware filter
1989 * accordingly.
1990 */
1991 if (ifp->if_flags & IFF_RUNNING) {
1992 if (gem_ioctldebug) printf("reset1\n");
1993 gem_init(ifp);
1994 delay(50000);
1995 }
1996 error = 0;
1997 }
1998 break;
1999 }
2000
2001 /* Try to get things going again */
2002 if (ifp->if_flags & IFF_UP) {
2003 if (gem_ioctldebug) printf("start\n");
2004 gem_start(ifp);
2005 }
2006 splx(s);
2007 return (error);
2008 }
2009
2010
2011 void
2012 gem_shutdown(arg)
2013 void *arg;
2014 {
2015 struct gem_softc *sc = (struct gem_softc *)arg;
2016 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2017
2018 gem_stop(ifp, 1);
2019 }
2020
2021 /*
2022 * Set up the logical address filter.
2023 */
2024 void
2025 gem_setladrf(sc)
2026 struct gem_softc *sc;
2027 {
2028 struct ethercom *ec = &sc->sc_ethercom;
2029 struct ifnet *ifp = &ec->ec_if;
2030 struct ether_multi *enm;
2031 struct ether_multistep step;
2032 bus_space_tag_t t = sc->sc_bustag;
2033 bus_space_handle_t h = sc->sc_h;
2034 u_int32_t crc;
2035 u_int32_t hash[16];
2036 u_int32_t v;
2037 int i;
2038
2039 /* Get current RX configuration */
2040 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2041
2042 /*
2043 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2044 * and hash filter. Depending on the case, the right bit will be
2045 * enabled.
2046 */
2047 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2048 GEM_MAC_RX_PROMISC_GRP);
2049
2050 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2051 /* Turn on promiscuous mode */
2052 v |= GEM_MAC_RX_PROMISCUOUS;
2053 ifp->if_flags |= IFF_ALLMULTI;
2054 goto chipit;
2055 }
2056
2057 /*
2058 * Set up multicast address filter by passing all multicast addresses
2059 * through a crc generator, and then using the high order 8 bits as an
2060 * index into the 256 bit logical address filter. The high order 4
2061 * bits select the word, while the other 4 bits select the bit within
2062 * the word (where bit 0 is the MSB).
2063 */
2064
2065 /* Clear hash table */
2066 memset(hash, 0, sizeof(hash));
2067
2068 ETHER_FIRST_MULTI(step, ec, enm);
2069 while (enm != NULL) {
2070 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2071 /*
2072 * We must listen to a range of multicast addresses.
2073 * For now, just accept all multicasts, rather than
2074 * trying to set only those filter bits needed to match
2075 * the range. (At this time, the only use of address
2076 * ranges is for IP multicast routing, for which the
2077 * range is big enough to require all bits set.)
2078 * XXX use the addr filter for this
2079 */
2080 ifp->if_flags |= IFF_ALLMULTI;
2081 v |= GEM_MAC_RX_PROMISC_GRP;
2082 goto chipit;
2083 }
2084
2085 /* Get the LE CRC32 of the address */
2086 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2087
2088 /* Just want the 8 most significant bits. */
2089 crc >>= 24;
2090
2091 /* Set the corresponding bit in the filter. */
2092 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2093
2094 ETHER_NEXT_MULTI(step, enm);
2095 }
2096
2097 v |= GEM_MAC_RX_HASH_FILTER;
2098 ifp->if_flags &= ~IFF_ALLMULTI;
2099
2100 /* Now load the hash table into the chip (if we are using it) */
2101 for (i = 0; i < 16; i++) {
2102 bus_space_write_4(t, h,
2103 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2104 hash[i]);
2105 }
2106
2107 chipit:
2108 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2109 }
2110
2111 #if notyet
2112
2113 /*
2114 * gem_power:
2115 *
2116 * Power management (suspend/resume) hook.
2117 */
2118 void
2119 gem_power(why, arg)
2120 int why;
2121 void *arg;
2122 {
2123 struct gem_softc *sc = arg;
2124 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2125 int s;
2126
2127 s = splnet();
2128 switch (why) {
2129 case PWR_SUSPEND:
2130 case PWR_STANDBY:
2131 gem_stop(ifp, 1);
2132 if (sc->sc_power != NULL)
2133 (*sc->sc_power)(sc, why);
2134 break;
2135 case PWR_RESUME:
2136 if (ifp->if_flags & IFF_UP) {
2137 if (sc->sc_power != NULL)
2138 (*sc->sc_power)(sc, why);
2139 gem_init(ifp);
2140 }
2141 break;
2142 case PWR_SOFTSUSPEND:
2143 case PWR_SOFTSTANDBY:
2144 case PWR_SOFTRESUME:
2145 break;
2146 }
2147 splx(s);
2148 }
2149 #endif
2150