Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.36
      1 /*	$NetBSD: gem.c,v 1.36 2005/02/21 02:12:48 thorpej Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * All rights reserved.
      7  *
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  */
     31 
     32 /*
     33  * Driver for Sun GEM ethernet controllers.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.36 2005/02/21 02:12:48 thorpej Exp $");
     38 
     39 #include "opt_inet.h"
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/syslog.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 
     54 #include <machine/endian.h>
     55 
     56 #include <uvm/uvm_extern.h>
     57 
     58 #include <net/if.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_ether.h>
     62 
     63 #ifdef INET
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 #include <netinet/tcp.h>
     69 #include <netinet/udp.h>
     70 #endif
     71 
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 
     79 #include <dev/mii/mii.h>
     80 #include <dev/mii/miivar.h>
     81 #include <dev/mii/mii_bitbang.h>
     82 
     83 #include <dev/ic/gemreg.h>
     84 #include <dev/ic/gemvar.h>
     85 
     86 #define TRIES	10000
     87 
     88 void		gem_start(struct ifnet *);
     89 void		gem_stop(struct ifnet *, int);
     90 int		gem_ioctl(struct ifnet *, u_long, caddr_t);
     91 void		gem_tick(void *);
     92 void		gem_watchdog(struct ifnet *);
     93 void		gem_shutdown(void *);
     94 int		gem_init(struct ifnet *);
     95 void		gem_init_regs(struct gem_softc *sc);
     96 static int	gem_ringsize(int sz);
     97 int		gem_meminit(struct gem_softc *);
     98 void		gem_mifinit(struct gem_softc *);
     99 void		gem_reset(struct gem_softc *);
    100 int		gem_reset_rx(struct gem_softc *sc);
    101 int		gem_reset_tx(struct gem_softc *sc);
    102 int		gem_disable_rx(struct gem_softc *sc);
    103 int		gem_disable_tx(struct gem_softc *sc);
    104 void		gem_rxdrain(struct gem_softc *sc);
    105 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    106 void		gem_setladrf(struct gem_softc *);
    107 
    108 /* MII methods & callbacks */
    109 static int	gem_mii_readreg(struct device *, int, int);
    110 static void	gem_mii_writereg(struct device *, int, int, int);
    111 static void	gem_mii_statchg(struct device *);
    112 
    113 int		gem_mediachange(struct ifnet *);
    114 void		gem_mediastatus(struct ifnet *, struct ifmediareq *);
    115 
    116 struct mbuf	*gem_get(struct gem_softc *, int, int);
    117 int		gem_put(struct gem_softc *, int, struct mbuf *);
    118 void		gem_read(struct gem_softc *, int, int);
    119 int		gem_eint(struct gem_softc *, u_int);
    120 int		gem_rint(struct gem_softc *);
    121 int		gem_tint(struct gem_softc *);
    122 void		gem_power(int, void *);
    123 
    124 #ifdef GEM_DEBUG
    125 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    126 				printf x
    127 #else
    128 #define	DPRINTF(sc, x)	/* nothing */
    129 #endif
    130 
    131 
    132 /*
    133  * gem_attach:
    134  *
    135  *	Attach a Gem interface to the system.
    136  */
    137 void
    138 gem_attach(sc, enaddr)
    139 	struct gem_softc *sc;
    140 	const uint8_t *enaddr;
    141 {
    142 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    143 	struct mii_data *mii = &sc->sc_mii;
    144 	struct mii_softc *child;
    145 	struct ifmedia_entry *ifm;
    146 	int i, error;
    147 	u_int32_t v;
    148 
    149 	/* Make sure the chip is stopped. */
    150 	ifp->if_softc = sc;
    151 	gem_reset(sc);
    152 
    153 	/*
    154 	 * Allocate the control data structures, and create and load the
    155 	 * DMA map for it.
    156 	 */
    157 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    158 	    sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    159 	    1, &sc->sc_cdnseg, 0)) != 0) {
    160 		aprint_error(
    161 		   "%s: unable to allocate control data, error = %d\n",
    162 		    sc->sc_dev.dv_xname, error);
    163 		goto fail_0;
    164 	}
    165 
    166 /* XXX should map this in with correct endianness */
    167 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    168 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
    169 	    BUS_DMA_COHERENT)) != 0) {
    170 		aprint_error("%s: unable to map control data, error = %d\n",
    171 		    sc->sc_dev.dv_xname, error);
    172 		goto fail_1;
    173 	}
    174 
    175 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    176 	    sizeof(struct gem_control_data), 1,
    177 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    178 		aprint_error("%s: unable to create control data DMA map, "
    179 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    180 		goto fail_2;
    181 	}
    182 
    183 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    184 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    185 	    0)) != 0) {
    186 		aprint_error(
    187 		    "%s: unable to load control data DMA map, error = %d\n",
    188 		    sc->sc_dev.dv_xname, error);
    189 		goto fail_3;
    190 	}
    191 
    192 	/*
    193 	 * Initialize the transmit job descriptors.
    194 	 */
    195 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    196 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    197 
    198 	/*
    199 	 * Create the transmit buffer DMA maps.
    200 	 */
    201 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    202 		struct gem_txsoft *txs;
    203 
    204 		txs = &sc->sc_txsoft[i];
    205 		txs->txs_mbuf = NULL;
    206 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    207 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    208 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    209 		    &txs->txs_dmamap)) != 0) {
    210 			aprint_error("%s: unable to create tx DMA map %d, "
    211 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    212 			goto fail_4;
    213 		}
    214 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    215 	}
    216 
    217 	/*
    218 	 * Create the receive buffer DMA maps.
    219 	 */
    220 	for (i = 0; i < GEM_NRXDESC; i++) {
    221 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    222 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    223 			aprint_error("%s: unable to create rx DMA map %d, "
    224 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    225 			goto fail_5;
    226 		}
    227 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    228 	}
    229 
    230 	/*
    231 	 * From this point forward, the attachment cannot fail.  A failure
    232 	 * before this point releases all resources that may have been
    233 	 * allocated.
    234 	 */
    235 
    236 	/* Announce ourselves. */
    237 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
    238 	    ether_sprintf(enaddr));
    239 
    240 	/* Get RX FIFO size */
    241 	sc->sc_rxfifosize = 64 *
    242 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
    243 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    244 
    245 	/* Get TX FIFO size */
    246 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
    247 	aprint_normal(", %uKB TX fifo\n", v / 16);
    248 
    249 	/* Initialize ifnet structure. */
    250 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    251 	ifp->if_softc = sc;
    252 	ifp->if_flags =
    253 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    254 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx
    255 				| IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    256 	ifp->if_start = gem_start;
    257 	ifp->if_ioctl = gem_ioctl;
    258 	ifp->if_watchdog = gem_watchdog;
    259 	ifp->if_stop = gem_stop;
    260 	ifp->if_init = gem_init;
    261 	IFQ_SET_READY(&ifp->if_snd);
    262 
    263 	/* Initialize ifmedia structures and MII info */
    264 	mii->mii_ifp = ifp;
    265 	mii->mii_readreg = gem_mii_readreg;
    266 	mii->mii_writereg = gem_mii_writereg;
    267 	mii->mii_statchg = gem_mii_statchg;
    268 
    269 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
    270 
    271 	gem_mifinit(sc);
    272 
    273 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    274 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    275 
    276 	child = LIST_FIRST(&mii->mii_phys);
    277 	if (child == NULL) {
    278 		/* No PHY attached */
    279 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    280 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    281 	} else {
    282 		/*
    283 		 * Walk along the list of attached MII devices and
    284 		 * establish an `MII instance' to `phy number'
    285 		 * mapping. We'll use this mapping in media change
    286 		 * requests to determine which phy to use to program
    287 		 * the MIF configuration register.
    288 		 */
    289 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    290 			/*
    291 			 * Note: we support just two PHYs: the built-in
    292 			 * internal device and an external on the MII
    293 			 * connector.
    294 			 */
    295 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    296 				aprint_error(
    297 				    "%s: cannot accomodate MII device %s"
    298 				       " at phy %d, instance %d\n",
    299 				       sc->sc_dev.dv_xname,
    300 				       child->mii_dev.dv_xname,
    301 				       child->mii_phy, child->mii_inst);
    302 				continue;
    303 			}
    304 
    305 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    306 		}
    307 
    308 		/*
    309 		 * Now select and activate the PHY we will use.
    310 		 *
    311 		 * The order of preference is External (MDI1),
    312 		 * Internal (MDI0), Serial Link (no MII).
    313 		 */
    314 		if (sc->sc_phys[1]) {
    315 #ifdef DEBUG
    316 			aprint_debug("using external phy\n");
    317 #endif
    318 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    319 		} else {
    320 #ifdef DEBUG
    321 			aprint_debug("using internal phy\n");
    322 #endif
    323 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    324 		}
    325 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
    326 			sc->sc_mif_config);
    327 
    328 		/*
    329 		 * XXX - we can really do the following ONLY if the
    330 		 * phy indeed has the auto negotiation capability!!
    331 		 */
    332 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    333 	}
    334 
    335 	/*
    336 	 * If we support GigE media, we support jumbo frames too.
    337 	 * Unless we are Apple.
    338 	 */
    339 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
    340 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    341 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    342 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    343 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    344 			if (sc->sc_variant != GEM_APPLE_GMAC)
    345 				sc->sc_ethercom.ec_capabilities
    346 				    |= ETHERCAP_JUMBO_MTU;
    347 
    348 			sc->sc_flags |= GEM_GIGABIT;
    349 			break;
    350 		}
    351 	}
    352 
    353 	/* claim 802.1q capability */
    354 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    355 
    356 	/* Attach the interface. */
    357 	if_attach(ifp);
    358 	ether_ifattach(ifp, enaddr);
    359 
    360 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    361 	if (sc->sc_sh == NULL)
    362 		panic("gem_config: can't establish shutdownhook");
    363 
    364 #if NRND > 0
    365 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    366 			  RND_TYPE_NET, 0);
    367 #endif
    368 
    369 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    370 	    NULL, sc->sc_dev.dv_xname, "interrupts");
    371 #ifdef GEM_COUNTERS
    372 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    373 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
    374 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    375 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
    376 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    377 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
    378 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    379 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
    380 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    381 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
    382 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    383 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
    384 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    385 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
    386 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    387 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
    388 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    389 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
    390 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    391 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
    392 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    393 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
    394 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    395 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
    396 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    397 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
    398 #endif
    399 
    400 #if notyet
    401 	/*
    402 	 * Add a suspend hook to make sure we come back up after a
    403 	 * resume.
    404 	 */
    405 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
    406 	if (sc->sc_powerhook == NULL)
    407 		aprint_error("%s: WARNING: unable to establish power hook\n",
    408 		    sc->sc_dev.dv_xname);
    409 #endif
    410 
    411 	callout_init(&sc->sc_tick_ch);
    412 	return;
    413 
    414 	/*
    415 	 * Free any resources we've allocated during the failed attach
    416 	 * attempt.  Do this in reverse order and fall through.
    417 	 */
    418  fail_5:
    419 	for (i = 0; i < GEM_NRXDESC; i++) {
    420 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    421 			bus_dmamap_destroy(sc->sc_dmatag,
    422 			    sc->sc_rxsoft[i].rxs_dmamap);
    423 	}
    424  fail_4:
    425 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    426 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    427 			bus_dmamap_destroy(sc->sc_dmatag,
    428 			    sc->sc_txsoft[i].txs_dmamap);
    429 	}
    430 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    431  fail_3:
    432 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    433  fail_2:
    434 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
    435 	    sizeof(struct gem_control_data));
    436  fail_1:
    437 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    438  fail_0:
    439 	return;
    440 }
    441 
    442 
    443 void
    444 gem_tick(arg)
    445 	void *arg;
    446 {
    447 	struct gem_softc *sc = arg;
    448 	int s;
    449 
    450 	s = splnet();
    451 	mii_tick(&sc->sc_mii);
    452 	splx(s);
    453 
    454 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    455 
    456 }
    457 
    458 void
    459 gem_reset(sc)
    460 	struct gem_softc *sc;
    461 {
    462 	bus_space_tag_t t = sc->sc_bustag;
    463 	bus_space_handle_t h = sc->sc_h;
    464 	int i;
    465 	int s;
    466 
    467 	s = splnet();
    468 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    469 	gem_reset_rx(sc);
    470 	gem_reset_tx(sc);
    471 
    472 	/* Do a full reset */
    473 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    474 	for (i=TRIES; i--; delay(100))
    475 		if ((bus_space_read_4(t, h, GEM_RESET) &
    476 			(GEM_RESET_RX|GEM_RESET_TX)) == 0)
    477 			break;
    478 	if ((bus_space_read_4(t, h, GEM_RESET) &
    479 		(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
    480 		printf("%s: cannot reset device\n",
    481 			sc->sc_dev.dv_xname);
    482 	}
    483 	splx(s);
    484 }
    485 
    486 
    487 /*
    488  * gem_rxdrain:
    489  *
    490  *	Drain the receive queue.
    491  */
    492 void
    493 gem_rxdrain(struct gem_softc *sc)
    494 {
    495 	struct gem_rxsoft *rxs;
    496 	int i;
    497 
    498 	for (i = 0; i < GEM_NRXDESC; i++) {
    499 		rxs = &sc->sc_rxsoft[i];
    500 		if (rxs->rxs_mbuf != NULL) {
    501 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    502 			m_freem(rxs->rxs_mbuf);
    503 			rxs->rxs_mbuf = NULL;
    504 		}
    505 	}
    506 }
    507 
    508 /*
    509  * Reset the whole thing.
    510  */
    511 void
    512 gem_stop(struct ifnet *ifp, int disable)
    513 {
    514 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    515 	struct gem_txsoft *txs;
    516 
    517 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    518 
    519 	callout_stop(&sc->sc_tick_ch);
    520 	mii_down(&sc->sc_mii);
    521 
    522 	/* XXX - Should we reset these instead? */
    523 	gem_disable_rx(sc);
    524 	gem_disable_tx(sc);
    525 
    526 	/*
    527 	 * Release any queued transmit buffers.
    528 	 */
    529 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    530 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    531 		if (txs->txs_mbuf != NULL) {
    532 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    533 			m_freem(txs->txs_mbuf);
    534 			txs->txs_mbuf = NULL;
    535 		}
    536 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    537 	}
    538 
    539 	if (disable) {
    540 		gem_rxdrain(sc);
    541 	}
    542 
    543 	/*
    544 	 * Mark the interface down and cancel the watchdog timer.
    545 	 */
    546 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    547 	ifp->if_timer = 0;
    548 }
    549 
    550 
    551 /*
    552  * Reset the receiver
    553  */
    554 int
    555 gem_reset_rx(struct gem_softc *sc)
    556 {
    557 	bus_space_tag_t t = sc->sc_bustag;
    558 	bus_space_handle_t h = sc->sc_h;
    559 	int i;
    560 
    561 
    562 	/*
    563 	 * Resetting while DMA is in progress can cause a bus hang, so we
    564 	 * disable DMA first.
    565 	 */
    566 	gem_disable_rx(sc);
    567 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    568 	/* Wait till it finishes */
    569 	for (i=TRIES; i--; delay(100))
    570 		if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
    571 			break;
    572 	if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
    573 		printf("%s: cannot disable read DMA\n",
    574 			sc->sc_dev.dv_xname);
    575 
    576 	/* Wait 5ms extra. */
    577 	delay(5000);
    578 
    579 	/* Finally, reset the ERX */
    580 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
    581 	/* Wait till it finishes */
    582 	for (i=TRIES; i--; delay(100))
    583 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
    584 			break;
    585 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
    586 		printf("%s: cannot reset receiver\n",
    587 			sc->sc_dev.dv_xname);
    588 		return (1);
    589 	}
    590 	return (0);
    591 }
    592 
    593 
    594 /*
    595  * Reset the transmitter
    596  */
    597 int
    598 gem_reset_tx(struct gem_softc *sc)
    599 {
    600 	bus_space_tag_t t = sc->sc_bustag;
    601 	bus_space_handle_t h = sc->sc_h;
    602 	int i;
    603 
    604 	/*
    605 	 * Resetting while DMA is in progress can cause a bus hang, so we
    606 	 * disable DMA first.
    607 	 */
    608 	gem_disable_tx(sc);
    609 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    610 	/* Wait till it finishes */
    611 	for (i=TRIES; i--; delay(100))
    612 		if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
    613 			break;
    614 	if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
    615 		printf("%s: cannot disable read DMA\n",
    616 			sc->sc_dev.dv_xname);
    617 
    618 	/* Wait 5ms extra. */
    619 	delay(5000);
    620 
    621 	/* Finally, reset the ETX */
    622 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
    623 	/* Wait till it finishes */
    624 	for (i=TRIES; i--; delay(100))
    625 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
    626 			break;
    627 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
    628 		printf("%s: cannot reset receiver\n",
    629 			sc->sc_dev.dv_xname);
    630 		return (1);
    631 	}
    632 	return (0);
    633 }
    634 
    635 /*
    636  * disable receiver.
    637  */
    638 int
    639 gem_disable_rx(struct gem_softc *sc)
    640 {
    641 	bus_space_tag_t t = sc->sc_bustag;
    642 	bus_space_handle_t h = sc->sc_h;
    643 	int i;
    644 	u_int32_t cfg;
    645 
    646 	/* Flip the enable bit */
    647 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    648 	cfg &= ~GEM_MAC_RX_ENABLE;
    649 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    650 
    651 	/* Wait for it to finish */
    652 	for (i=TRIES; i--; delay(100))
    653 		if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
    654 			GEM_MAC_RX_ENABLE) == 0)
    655 			return (0);
    656 	return (1);
    657 }
    658 
    659 /*
    660  * disable transmitter.
    661  */
    662 int
    663 gem_disable_tx(struct gem_softc *sc)
    664 {
    665 	bus_space_tag_t t = sc->sc_bustag;
    666 	bus_space_handle_t h = sc->sc_h;
    667 	int i;
    668 	u_int32_t cfg;
    669 
    670 	/* Flip the enable bit */
    671 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    672 	cfg &= ~GEM_MAC_TX_ENABLE;
    673 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    674 
    675 	/* Wait for it to finish */
    676 	for (i=TRIES; i--; delay(100))
    677 		if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
    678 			GEM_MAC_TX_ENABLE) == 0)
    679 			return (0);
    680 	return (1);
    681 }
    682 
    683 /*
    684  * Initialize interface.
    685  */
    686 int
    687 gem_meminit(struct gem_softc *sc)
    688 {
    689 	struct gem_rxsoft *rxs;
    690 	int i, error;
    691 
    692 	/*
    693 	 * Initialize the transmit descriptor ring.
    694 	 */
    695 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    696 	for (i = 0; i < GEM_NTXDESC; i++) {
    697 		sc->sc_txdescs[i].gd_flags = 0;
    698 		sc->sc_txdescs[i].gd_addr = 0;
    699 	}
    700 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    701 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    702 	sc->sc_txfree = GEM_NTXDESC-1;
    703 	sc->sc_txnext = 0;
    704 	sc->sc_txwin = 0;
    705 
    706 	/*
    707 	 * Initialize the receive descriptor and receive job
    708 	 * descriptor rings.
    709 	 */
    710 	for (i = 0; i < GEM_NRXDESC; i++) {
    711 		rxs = &sc->sc_rxsoft[i];
    712 		if (rxs->rxs_mbuf == NULL) {
    713 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    714 				printf("%s: unable to allocate or map rx "
    715 				    "buffer %d, error = %d\n",
    716 				    sc->sc_dev.dv_xname, i, error);
    717 				/*
    718 				 * XXX Should attempt to run with fewer receive
    719 				 * XXX buffers instead of just failing.
    720 				 */
    721 				gem_rxdrain(sc);
    722 				return (1);
    723 			}
    724 		} else
    725 			GEM_INIT_RXDESC(sc, i);
    726 	}
    727 	sc->sc_rxptr = 0;
    728 
    729 	return (0);
    730 }
    731 
    732 static int
    733 gem_ringsize(int sz)
    734 {
    735 	switch (sz) {
    736 	case 32:
    737 		return GEM_RING_SZ_32;
    738 	case 64:
    739 		return GEM_RING_SZ_64;
    740 	case 128:
    741 		return GEM_RING_SZ_128;
    742 	case 256:
    743 		return GEM_RING_SZ_256;
    744 	case 512:
    745 		return GEM_RING_SZ_512;
    746 	case 1024:
    747 		return GEM_RING_SZ_1024;
    748 	case 2048:
    749 		return GEM_RING_SZ_2048;
    750 	case 4096:
    751 		return GEM_RING_SZ_4096;
    752 	case 8192:
    753 		return GEM_RING_SZ_8192;
    754 	default:
    755 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    756 		return GEM_RING_SZ_32;
    757 	}
    758 }
    759 
    760 /*
    761  * Initialization of interface; set up initialization block
    762  * and transmit/receive descriptor rings.
    763  */
    764 int
    765 gem_init(struct ifnet *ifp)
    766 {
    767 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    768 	bus_space_tag_t t = sc->sc_bustag;
    769 	bus_space_handle_t h = sc->sc_h;
    770 	int s;
    771 	u_int max_frame_size;
    772 	u_int32_t v;
    773 
    774 	s = splnet();
    775 
    776 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
    777 	/*
    778 	 * Initialization sequence. The numbered steps below correspond
    779 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    780 	 * Channel Engine manual (part of the PCIO manual).
    781 	 * See also the STP2002-STQ document from Sun Microsystems.
    782 	 */
    783 
    784 	/* step 1 & 2. Reset the Ethernet Channel */
    785 	gem_stop(ifp, 0);
    786 	gem_reset(sc);
    787 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
    788 
    789 	/* Re-initialize the MIF */
    790 	gem_mifinit(sc);
    791 
    792 	/* Call MI reset function if any */
    793 	if (sc->sc_hwreset)
    794 		(*sc->sc_hwreset)(sc);
    795 
    796 	/* step 3. Setup data structures in host memory */
    797 	gem_meminit(sc);
    798 
    799 	/* step 4. TX MAC registers & counters */
    800 	gem_init_regs(sc);
    801 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
    802 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
    803 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
    804 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
    805 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    806 	    max_frame_size|/* burst size */(0x2000<<16));
    807 
    808 	/* step 5. RX MAC registers & counters */
    809 	gem_setladrf(sc);
    810 
    811 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    812 	/* NOTE: we use only 32-bit DMA addresses here. */
    813 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
    814 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
    815 
    816 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    817 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    818 
    819 	/* step 8. Global Configuration & Interrupt Mask */
    820 	bus_space_write_4(t, h, GEM_INTMASK,
    821 		      ~(GEM_INTR_TX_INTME|
    822 			GEM_INTR_TX_EMPTY|
    823 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
    824 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
    825 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
    826 			GEM_INTR_BERR));
    827 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
    828 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
    829 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
    830 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
    831 
    832 	/* step 9. ETX Configuration: use mostly default values */
    833 
    834 	/* Enable DMA */
    835 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
    836 	bus_space_write_4(t, h, GEM_TX_CONFIG,
    837 		v|GEM_TX_CONFIG_TXDMA_EN|
    838 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
    839 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
    840 
    841 	/* step 10. ERX Configuration */
    842 
    843 	/* Encode Receive Descriptor ring size: four possible values */
    844 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    845 
    846 	/* Set receive h/w checksum offset */
    847 #ifdef INET
    848 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    849 	      ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    850 	        ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    851 #endif
    852 
    853 	/* Enable DMA */
    854 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    855 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
    856 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
    857 
    858 	/*
    859 	 * The following value is for an OFF Threshold of about 3/4 full
    860 	 * and an ON Threshold of 1/4 full.
    861 	 */
    862 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    863 	     (3 * sc->sc_rxfifosize / 256) |
    864 	     (   (sc->sc_rxfifosize / 256) << 12));
    865 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
    866 
    867 	/* step 11. Configure Media */
    868 	mii_mediachg(&sc->sc_mii);
    869 
    870 /* XXXX Serial link needs a whole different setup. */
    871 
    872 
    873 	/* step 12. RX_MAC Configuration Register */
    874 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    875 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
    876 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
    877 
    878 	/* step 14. Issue Transmit Pending command */
    879 
    880 	/* Call MI initialization function if any */
    881 	if (sc->sc_hwinit)
    882 		(*sc->sc_hwinit)(sc);
    883 
    884 
    885 	/* step 15.  Give the reciever a swift kick */
    886 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
    887 
    888 	/* Start the one second timer. */
    889 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    890 
    891 	ifp->if_flags |= IFF_RUNNING;
    892 	ifp->if_flags &= ~IFF_OACTIVE;
    893 	ifp->if_timer = 0;
    894 	splx(s);
    895 
    896 	return (0);
    897 }
    898 
    899 void
    900 gem_init_regs(struct gem_softc *sc)
    901 {
    902 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    903 	bus_space_tag_t t = sc->sc_bustag;
    904 	bus_space_handle_t h = sc->sc_h;
    905 	const u_char *laddr = LLADDR(ifp->if_sadl);
    906 	u_int32_t v;
    907 
    908 	/* These regs are not cleared on reset */
    909 	if (!sc->sc_inited) {
    910 
    911 		/* Wooo.  Magic values. */
    912 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
    913 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
    914 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
    915 
    916 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
    917 		/* Max frame and max burst size */
    918 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    919 		     ETHER_MAX_LEN | (0x2000<<16));
    920 
    921 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
    922 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
    923 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
    924 		/* Dunno.... */
    925 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
    926 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
    927 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
    928 
    929 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
    930 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
    931 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
    932 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
    933 
    934 		/* MAC control addr set to 01:80:c2:00:00:01 */
    935 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
    936 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
    937 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
    938 
    939 		/* MAC filter addr set to 0:0:0:0:0:0 */
    940 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
    941 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
    942 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
    943 
    944 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
    945 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
    946 
    947 		sc->sc_inited = 1;
    948 	}
    949 
    950 	/* Counters need to be zeroed */
    951 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
    952 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
    953 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
    954 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
    955 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
    956 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
    957 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
    958 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
    959 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
    960 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
    961 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
    962 
    963 	/* Un-pause stuff */
    964 #if 0
    965 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
    966 #else
    967 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
    968 #endif
    969 
    970 	/*
    971 	 * Set the station address.
    972 	 */
    973 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
    974 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
    975 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
    976 
    977 #if 0
    978 	if (sc->sc_variant != APPLE_GMAC)
    979 		return;
    980 #endif
    981 
    982 	/*
    983 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
    984 	 */
    985 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
    986 	v = GEM_MAC_XIF_TX_MII_ENA;
    987 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
    988 		v |= GEM_MAC_XIF_FDPLX_LED;
    989 		if (sc->sc_flags & GEM_GIGABIT)
    990 			v |= GEM_MAC_XIF_GMII_MODE;
    991 	}
    992 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
    993 }
    994 
    995 void
    996 gem_start(ifp)
    997 	struct ifnet *ifp;
    998 {
    999 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1000 	struct mbuf *m0, *m;
   1001 	struct gem_txsoft *txs, *last_txs;
   1002 	bus_dmamap_t dmamap;
   1003 	int error, firsttx, nexttx, lasttx = -1, ofree, seg;
   1004 
   1005 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1006 		return;
   1007 
   1008 	/*
   1009 	 * Remember the previous number of free descriptors and
   1010 	 * the first descriptor we'll use.
   1011 	 */
   1012 	ofree = sc->sc_txfree;
   1013 	firsttx = sc->sc_txnext;
   1014 
   1015 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1016 	    sc->sc_dev.dv_xname, ofree, firsttx));
   1017 
   1018 	/*
   1019 	 * Loop through the send queue, setting up transmit descriptors
   1020 	 * until we drain the queue, or use up all available transmit
   1021 	 * descriptors.
   1022 	 */
   1023 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1024 	       sc->sc_txfree != 0) {
   1025 		/*
   1026 		 * Grab a packet off the queue.
   1027 		 */
   1028 		IFQ_POLL(&ifp->if_snd, m0);
   1029 		if (m0 == NULL)
   1030 			break;
   1031 		m = NULL;
   1032 
   1033 		dmamap = txs->txs_dmamap;
   1034 
   1035 		/*
   1036 		 * Load the DMA map.  If this fails, the packet either
   1037 		 * didn't fit in the alloted number of segments, or we were
   1038 		 * short on resources.  In this case, we'll copy and try
   1039 		 * again.
   1040 		 */
   1041 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1042 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1043 			if (m0->m_pkthdr.len > MCLBYTES) {
   1044 				printf("%s: unable to allocate jumbo Tx "
   1045 				    "cluster\n", sc->sc_dev.dv_xname);
   1046 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1047 				m_freem(m0);
   1048 				continue;
   1049 			}
   1050 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1051 			if (m == NULL) {
   1052 				printf("%s: unable to allocate Tx mbuf\n",
   1053 				    sc->sc_dev.dv_xname);
   1054 				break;
   1055 			}
   1056 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1057 			if (m0->m_pkthdr.len > MHLEN) {
   1058 				MCLGET(m, M_DONTWAIT);
   1059 				if ((m->m_flags & M_EXT) == 0) {
   1060 					printf("%s: unable to allocate Tx "
   1061 					    "cluster\n", sc->sc_dev.dv_xname);
   1062 					m_freem(m);
   1063 					break;
   1064 				}
   1065 			}
   1066 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1067 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1068 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1069 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1070 			if (error) {
   1071 				printf("%s: unable to load Tx buffer, "
   1072 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1073 				break;
   1074 			}
   1075 		}
   1076 
   1077 		/*
   1078 		 * Ensure we have enough descriptors free to describe
   1079 		 * the packet.
   1080 		 */
   1081 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   1082 			/*
   1083 			 * Not enough free descriptors to transmit this
   1084 			 * packet.  We haven't committed to anything yet,
   1085 			 * so just unload the DMA map, put the packet
   1086 			 * back on the queue, and punt.  Notify the upper
   1087 			 * layer that there are no more slots left.
   1088 			 *
   1089 			 * XXX We could allocate an mbuf and copy, but
   1090 			 * XXX it is worth it?
   1091 			 */
   1092 			ifp->if_flags |= IFF_OACTIVE;
   1093 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1094 			if (m != NULL)
   1095 				m_freem(m);
   1096 			break;
   1097 		}
   1098 
   1099 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1100 		if (m != NULL) {
   1101 			m_freem(m0);
   1102 			m0 = m;
   1103 		}
   1104 
   1105 		/*
   1106 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1107 		 */
   1108 
   1109 		/* Sync the DMA map. */
   1110 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1111 		    BUS_DMASYNC_PREWRITE);
   1112 
   1113 		/*
   1114 		 * Initialize the transmit descriptors.
   1115 		 */
   1116 		for (nexttx = sc->sc_txnext, seg = 0;
   1117 		     seg < dmamap->dm_nsegs;
   1118 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1119 			uint64_t flags;
   1120 
   1121 			/*
   1122 			 * If this is the first descriptor we're
   1123 			 * enqueueing, set the start of packet flag,
   1124 			 * and the checksum stuff if we want the hardware
   1125 			 * to do it.
   1126 			 */
   1127 			sc->sc_txdescs[nexttx].gd_addr =
   1128 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1129 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1130 			if (nexttx == firsttx) {
   1131 				flags |= GEM_TD_START_OF_PACKET;
   1132 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1133 					sc->sc_txwin = 0;
   1134 					flags |= GEM_TD_INTERRUPT_ME;
   1135 				}
   1136 
   1137 #ifdef INET
   1138 				/* h/w checksum */
   1139 				if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
   1140 				    M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
   1141 				    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1142 					struct ether_header *eh;
   1143 					uint16_t offset, start;
   1144 
   1145 					eh = mtod(m0, struct ether_header *);
   1146 					switch (ntohs(eh->ether_type)) {
   1147 					case ETHERTYPE_IP:
   1148 						start = ETHER_HDR_LEN;
   1149 						break;
   1150 					case ETHERTYPE_VLAN:
   1151 						start = ETHER_HDR_LEN +
   1152 							ETHER_VLAN_ENCAP_LEN;
   1153 						break;
   1154 					default:
   1155 						/* unsupported, drop it */
   1156 						m_free(m0);
   1157 						continue;
   1158 					}
   1159 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1160 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1161 					flags |= (start <<
   1162 						  GEM_TD_CXSUM_STARTSHFT) |
   1163 						 (offset <<
   1164 						  GEM_TD_CXSUM_STUFFSHFT) |
   1165 						 GEM_TD_CXSUM_ENABLE;
   1166 				}
   1167 #endif
   1168 			}
   1169 			if (seg == dmamap->dm_nsegs - 1) {
   1170 				flags |= GEM_TD_END_OF_PACKET;
   1171 			}
   1172 			sc->sc_txdescs[nexttx].gd_flags =
   1173 				GEM_DMA_WRITE(sc, flags);
   1174 			lasttx = nexttx;
   1175 		}
   1176 
   1177 		KASSERT(lasttx != -1);
   1178 
   1179 #ifdef GEM_DEBUG
   1180 		if (ifp->if_flags & IFF_DEBUG) {
   1181 			printf("     gem_start %p transmit chain:\n", txs);
   1182 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
   1183 				printf("descriptor %d:\t", seg);
   1184 				printf("gd_flags:   0x%016llx\t", (long long)
   1185 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
   1186 				printf("gd_addr: 0x%016llx\n", (long long)
   1187 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
   1188 				if (seg == lasttx)
   1189 					break;
   1190 			}
   1191 		}
   1192 #endif
   1193 
   1194 		/* Sync the descriptors we're using. */
   1195 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1196 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1197 
   1198 		/*
   1199 		 * Store a pointer to the packet so we can free it later,
   1200 		 * and remember what txdirty will be once the packet is
   1201 		 * done.
   1202 		 */
   1203 		txs->txs_mbuf = m0;
   1204 		txs->txs_firstdesc = sc->sc_txnext;
   1205 		txs->txs_lastdesc = lasttx;
   1206 		txs->txs_ndescs = dmamap->dm_nsegs;
   1207 
   1208 		/* Advance the tx pointer. */
   1209 		sc->sc_txfree -= dmamap->dm_nsegs;
   1210 		sc->sc_txnext = nexttx;
   1211 
   1212 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1213 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1214 
   1215 		last_txs = txs;
   1216 
   1217 #if NBPFILTER > 0
   1218 		/*
   1219 		 * Pass the packet to any BPF listeners.
   1220 		 */
   1221 		if (ifp->if_bpf)
   1222 			bpf_mtap(ifp->if_bpf, m0);
   1223 #endif /* NBPFILTER > 0 */
   1224 	}
   1225 
   1226 	if (txs == NULL || sc->sc_txfree == 0) {
   1227 		/* No more slots left; notify upper layer. */
   1228 		ifp->if_flags |= IFF_OACTIVE;
   1229 	}
   1230 
   1231 	if (sc->sc_txfree != ofree) {
   1232 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1233 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1234 		/*
   1235 		 * The entire packet chain is set up.
   1236 		 * Kick the transmitter.
   1237 		 */
   1238 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1239 			sc->sc_dev.dv_xname, nexttx));
   1240 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
   1241 			sc->sc_txnext);
   1242 
   1243 		/* Set a watchdog timer in case the chip flakes out. */
   1244 		ifp->if_timer = 5;
   1245 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1246 			sc->sc_dev.dv_xname, ifp->if_timer));
   1247 	}
   1248 }
   1249 
   1250 /*
   1251  * Transmit interrupt.
   1252  */
   1253 int
   1254 gem_tint(sc)
   1255 	struct gem_softc *sc;
   1256 {
   1257 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1258 	bus_space_tag_t t = sc->sc_bustag;
   1259 	bus_space_handle_t mac = sc->sc_h;
   1260 	struct gem_txsoft *txs;
   1261 	int txlast;
   1262 	int progress = 0;
   1263 
   1264 
   1265 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1266 
   1267 	/*
   1268 	 * Unload collision counters
   1269 	 */
   1270 	ifp->if_collisions +=
   1271 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1272 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
   1273 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1274 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1275 
   1276 	/*
   1277 	 * then clear the hardware counters.
   1278 	 */
   1279 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1280 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1281 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1282 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1283 
   1284 	/*
   1285 	 * Go through our Tx list and free mbufs for those
   1286 	 * frames that have been transmitted.
   1287 	 */
   1288 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1289 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
   1290 		    txs->txs_ndescs,
   1291 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1292 
   1293 #ifdef GEM_DEBUG
   1294 		if (ifp->if_flags & IFF_DEBUG) {
   1295 			int i;
   1296 			printf("    txsoft %p transmit chain:\n", txs);
   1297 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
   1298 				printf("descriptor %d: ", i);
   1299 				printf("gd_flags: 0x%016llx\t", (long long)
   1300 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1301 				printf("gd_addr: 0x%016llx\n", (long long)
   1302 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1303 				if (i == txs->txs_lastdesc)
   1304 					break;
   1305 			}
   1306 		}
   1307 #endif
   1308 
   1309 		/*
   1310 		 * In theory, we could harveast some descriptors before
   1311 		 * the ring is empty, but that's a bit complicated.
   1312 		 *
   1313 		 * GEM_TX_COMPLETION points to the last descriptor
   1314 		 * processed +1.
   1315 		 */
   1316 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1317 		DPRINTF(sc,
   1318 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1319 				txs->txs_lastdesc, txlast));
   1320 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1321 			if ((txlast >= txs->txs_firstdesc) &&
   1322 				(txlast <= txs->txs_lastdesc))
   1323 				break;
   1324 		} else {
   1325 			/* Ick -- this command wraps */
   1326 			if ((txlast >= txs->txs_firstdesc) ||
   1327 				(txlast <= txs->txs_lastdesc))
   1328 				break;
   1329 		}
   1330 
   1331 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1332 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1333 
   1334 		sc->sc_txfree += txs->txs_ndescs;
   1335 
   1336 		if (txs->txs_mbuf == NULL) {
   1337 #ifdef DIAGNOSTIC
   1338 				panic("gem_txintr: null mbuf");
   1339 #endif
   1340 		}
   1341 
   1342 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1343 		    0, txs->txs_dmamap->dm_mapsize,
   1344 		    BUS_DMASYNC_POSTWRITE);
   1345 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1346 		m_freem(txs->txs_mbuf);
   1347 		txs->txs_mbuf = NULL;
   1348 
   1349 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1350 
   1351 		ifp->if_opackets++;
   1352 		progress = 1;
   1353 	}
   1354 
   1355 #if 0
   1356 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1357 		"GEM_TX_DATA_PTR %llx "
   1358 		"GEM_TX_COMPLETION %x\n",
   1359 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
   1360 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1361 			GEM_TX_DATA_PTR_HI) << 32) |
   1362 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1363 			GEM_TX_DATA_PTR_LO),
   1364 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
   1365 #endif
   1366 
   1367 	if (progress) {
   1368 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1369 			sc->sc_txwin = 0;
   1370 
   1371 		ifp->if_flags &= ~IFF_OACTIVE;
   1372 		gem_start(ifp);
   1373 
   1374 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
   1375 			ifp->if_timer = 0;
   1376 	}
   1377 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1378 		sc->sc_dev.dv_xname, ifp->if_timer));
   1379 
   1380 	return (1);
   1381 }
   1382 
   1383 /*
   1384  * Receive interrupt.
   1385  */
   1386 int
   1387 gem_rint(sc)
   1388 	struct gem_softc *sc;
   1389 {
   1390 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1391 	bus_space_tag_t t = sc->sc_bustag;
   1392 	bus_space_handle_t h = sc->sc_h;
   1393 	struct gem_rxsoft *rxs;
   1394 	struct mbuf *m;
   1395 	u_int64_t rxstat;
   1396 	u_int32_t rxcomp;
   1397 	int i, len, progress = 0;
   1398 
   1399 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1400 
   1401 	/*
   1402 	 * Read the completion register once.  This limits
   1403 	 * how long the following loop can execute.
   1404 	 */
   1405 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1406 
   1407 	/*
   1408 	 * XXXX Read the lastrx only once at the top for speed.
   1409 	 */
   1410 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1411 		sc->sc_rxptr, rxcomp));
   1412 
   1413 	/*
   1414 	 * Go into the loop at least once.
   1415 	 */
   1416 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1417 	     i = GEM_NEXTRX(i)) {
   1418 		rxs = &sc->sc_rxsoft[i];
   1419 
   1420 		GEM_CDRXSYNC(sc, i,
   1421 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1422 
   1423 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1424 
   1425 		if (rxstat & GEM_RD_OWN) {
   1426 			/*
   1427 			 * We have processed all of the receive buffers.
   1428 			 */
   1429 			break;
   1430 		}
   1431 
   1432 		progress++;
   1433 		ifp->if_ipackets++;
   1434 
   1435 		if (rxstat & GEM_RD_BAD_CRC) {
   1436 			ifp->if_ierrors++;
   1437 			printf("%s: receive error: CRC error\n",
   1438 				sc->sc_dev.dv_xname);
   1439 			GEM_INIT_RXDESC(sc, i);
   1440 			continue;
   1441 		}
   1442 
   1443 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1444 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1445 #ifdef GEM_DEBUG
   1446 		if (ifp->if_flags & IFF_DEBUG) {
   1447 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1448 			printf("gd_flags: 0x%016llx\t", (long long)
   1449 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1450 			printf("gd_addr: 0x%016llx\n", (long long)
   1451 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1452 		}
   1453 #endif
   1454 
   1455 		/* No errors; receive the packet. */
   1456 		len = GEM_RD_BUFLEN(rxstat);
   1457 
   1458 		/*
   1459 		 * Allocate a new mbuf cluster.  If that fails, we are
   1460 		 * out of memory, and must drop the packet and recycle
   1461 		 * the buffer that's already attached to this descriptor.
   1462 		 */
   1463 		m = rxs->rxs_mbuf;
   1464 		if (gem_add_rxbuf(sc, i) != 0) {
   1465 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1466 			ifp->if_ierrors++;
   1467 			GEM_INIT_RXDESC(sc, i);
   1468 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1469 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1470 			continue;
   1471 		}
   1472 		m->m_data += 2; /* We're already off by two */
   1473 
   1474 		m->m_pkthdr.rcvif = ifp;
   1475 		m->m_pkthdr.len = m->m_len = len;
   1476 
   1477 #if NBPFILTER > 0
   1478 		/*
   1479 		 * Pass this up to any BPF listeners, but only
   1480 		 * pass it up the stack if its for us.
   1481 		 */
   1482 		if (ifp->if_bpf)
   1483 			bpf_mtap(ifp->if_bpf, m);
   1484 #endif /* NPBFILTER > 0 */
   1485 
   1486 #ifdef INET
   1487 		/* hardware checksum */
   1488 		if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
   1489 			struct ether_header *eh;
   1490 			struct ip *ip;
   1491 			struct udphdr *uh;
   1492 			int32_t hlen, pktlen;
   1493 
   1494 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1495 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1496 					 ETHER_VLAN_ENCAP_LEN;
   1497 				eh = (struct ether_header *) mtod(m, caddr_t) +
   1498 					ETHER_VLAN_ENCAP_LEN;
   1499 			} else {
   1500 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1501 				eh = mtod(m, struct ether_header *);
   1502 			}
   1503 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1504 				goto swcsum;
   1505 			ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
   1506 
   1507 			/* IPv4 only */
   1508 			if (ip->ip_v != IPVERSION)
   1509 				goto swcsum;
   1510 
   1511 			hlen = ip->ip_hl << 2;
   1512 			if (hlen < sizeof(struct ip))
   1513 				goto swcsum;
   1514 
   1515 			/* too short, truncated, fragment */
   1516 			if ((ntohs(ip->ip_len) < hlen) ||
   1517 			    (ntohs(ip->ip_len) > pktlen) ||
   1518 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1519 				goto swcsum;
   1520 
   1521 			switch (ip->ip_p) {
   1522 			case IPPROTO_TCP:
   1523 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1524 					goto swcsum;
   1525 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1526 					goto swcsum;
   1527 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1528 				break;
   1529 			case IPPROTO_UDP:
   1530 				if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
   1531 					goto swcsum;
   1532 				if (pktlen < (hlen + sizeof(struct udphdr)))
   1533 					goto swcsum;
   1534 				uh = (struct udphdr *)((caddr_t)ip + hlen);
   1535 				/* no checksum */
   1536 				if (uh->uh_sum == 0)
   1537 					goto swcsum;
   1538 				m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
   1539 				break;
   1540 			default:
   1541 				goto swcsum;
   1542 			}
   1543 
   1544 			/* the uncomplemented sum is expected */
   1545 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1546 
   1547 			/* if the pkt had ip options, we have to deduct them */
   1548 			if (hlen > sizeof(struct ip)) {
   1549 				uint16_t *opts;
   1550 				uint32_t optsum, temp;
   1551 
   1552 				optsum = 0;
   1553 				temp = hlen - sizeof(struct ip);
   1554 				opts = (uint16_t *) ((caddr_t) ip +
   1555 					sizeof(struct ip));
   1556 
   1557 				while (temp > 1) {
   1558 					optsum += ntohs(*opts++);
   1559 					temp -= 2;
   1560 				}
   1561 				while (optsum >> 16)
   1562 					optsum = (optsum >> 16) +
   1563 						 (optsum & 0xffff);
   1564 
   1565 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1566 				m->m_pkthdr.csum_data =
   1567 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1568 
   1569 				while (m->m_pkthdr.csum_data >> 16)
   1570 					m->m_pkthdr.csum_data =
   1571 						(m->m_pkthdr.csum_data >> 16) +
   1572 						(m->m_pkthdr.csum_data &
   1573 						 0xffff);
   1574 			}
   1575 
   1576 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1577 						  M_CSUM_NO_PSEUDOHDR;
   1578 		} else
   1579 swcsum:
   1580 			m->m_pkthdr.csum_flags = 0;
   1581 #endif
   1582 		/* Pass it on. */
   1583 		(*ifp->if_input)(ifp, m);
   1584 	}
   1585 
   1586 	if (progress) {
   1587 		/* Update the receive pointer. */
   1588 		if (i == sc->sc_rxptr) {
   1589 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1590 #ifdef GEM_DEBUG
   1591 			if (ifp->if_flags & IFF_DEBUG)
   1592 				printf("%s: rint: ring wrap\n",
   1593 				    sc->sc_dev.dv_xname);
   1594 #endif
   1595 		}
   1596 		sc->sc_rxptr = i;
   1597 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1598 	}
   1599 #ifdef GEM_COUNTERS
   1600 	if (progress <= 4) {
   1601 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1602 	} else if (progress < 32) {
   1603 		if (progress < 16)
   1604 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1605 		else
   1606 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1607 
   1608 	} else {
   1609 		if (progress < 64)
   1610 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1611 		else
   1612 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1613 	}
   1614 #endif
   1615 
   1616 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1617 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1618 
   1619 	return (1);
   1620 }
   1621 
   1622 
   1623 /*
   1624  * gem_add_rxbuf:
   1625  *
   1626  *	Add a receive buffer to the indicated descriptor.
   1627  */
   1628 int
   1629 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1630 {
   1631 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1632 	struct mbuf *m;
   1633 	int error;
   1634 
   1635 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1636 	if (m == NULL)
   1637 		return (ENOBUFS);
   1638 
   1639 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1640 	MCLGET(m, M_DONTWAIT);
   1641 	if ((m->m_flags & M_EXT) == 0) {
   1642 		m_freem(m);
   1643 		return (ENOBUFS);
   1644 	}
   1645 
   1646 #ifdef GEM_DEBUG
   1647 /* bzero the packet to check DMA */
   1648 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1649 #endif
   1650 
   1651 	if (rxs->rxs_mbuf != NULL)
   1652 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1653 
   1654 	rxs->rxs_mbuf = m;
   1655 
   1656 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1657 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1658 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1659 	if (error) {
   1660 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1661 		    sc->sc_dev.dv_xname, idx, error);
   1662 		panic("gem_add_rxbuf");	/* XXX */
   1663 	}
   1664 
   1665 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1666 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1667 
   1668 	GEM_INIT_RXDESC(sc, idx);
   1669 
   1670 	return (0);
   1671 }
   1672 
   1673 
   1674 int
   1675 gem_eint(sc, status)
   1676 	struct gem_softc *sc;
   1677 	u_int status;
   1678 {
   1679 	char bits[128];
   1680 
   1681 	if ((status & GEM_INTR_MIF) != 0) {
   1682 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1683 		return (1);
   1684 	}
   1685 
   1686 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1687 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   1688 	return (1);
   1689 }
   1690 
   1691 
   1692 int
   1693 gem_intr(v)
   1694 	void *v;
   1695 {
   1696 	struct gem_softc *sc = (struct gem_softc *)v;
   1697 	bus_space_tag_t t = sc->sc_bustag;
   1698 	bus_space_handle_t seb = sc->sc_h;
   1699 	u_int32_t status;
   1700 	int r = 0;
   1701 #ifdef GEM_DEBUG
   1702 	char bits[128];
   1703 #endif
   1704 
   1705 	sc->sc_ev_intr.ev_count++;
   1706 
   1707 	status = bus_space_read_4(t, seb, GEM_STATUS);
   1708 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   1709 		sc->sc_dev.dv_xname, (status >> 19),
   1710 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   1711 
   1712 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   1713 		r |= gem_eint(sc, status);
   1714 
   1715 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   1716 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   1717 		r |= gem_tint(sc);
   1718 	}
   1719 
   1720 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   1721 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   1722 		r |= gem_rint(sc);
   1723 	}
   1724 
   1725 	/* We should eventually do more than just print out error stats. */
   1726 	if (status & GEM_INTR_TX_MAC) {
   1727 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
   1728 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   1729 			printf("%s: MAC tx fault, status %x\n",
   1730 			    sc->sc_dev.dv_xname, txstat);
   1731 	}
   1732 	if (status & GEM_INTR_RX_MAC) {
   1733 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
   1734 		if (rxstat & ~GEM_MAC_RX_DONE)
   1735 			printf("%s: MAC rx fault, status %x\n",
   1736 			    sc->sc_dev.dv_xname, rxstat);
   1737 	}
   1738 	return (r);
   1739 }
   1740 
   1741 
   1742 void
   1743 gem_watchdog(ifp)
   1744 	struct ifnet *ifp;
   1745 {
   1746 	struct gem_softc *sc = ifp->if_softc;
   1747 
   1748 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   1749 		"GEM_MAC_RX_CONFIG %x\n",
   1750 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
   1751 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
   1752 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
   1753 
   1754 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1755 	++ifp->if_oerrors;
   1756 
   1757 	/* Try to get more packets going. */
   1758 	gem_start(ifp);
   1759 }
   1760 
   1761 /*
   1762  * Initialize the MII Management Interface
   1763  */
   1764 void
   1765 gem_mifinit(sc)
   1766 	struct gem_softc *sc;
   1767 {
   1768 	bus_space_tag_t t = sc->sc_bustag;
   1769 	bus_space_handle_t mif = sc->sc_h;
   1770 
   1771 	/* Configure the MIF in frame mode */
   1772 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1773 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   1774 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   1775 }
   1776 
   1777 /*
   1778  * MII interface
   1779  *
   1780  * The GEM MII interface supports at least three different operating modes:
   1781  *
   1782  * Bitbang mode is implemented using data, clock and output enable registers.
   1783  *
   1784  * Frame mode is implemented by loading a complete frame into the frame
   1785  * register and polling the valid bit for completion.
   1786  *
   1787  * Polling mode uses the frame register but completion is indicated by
   1788  * an interrupt.
   1789  *
   1790  */
   1791 static int
   1792 gem_mii_readreg(self, phy, reg)
   1793 	struct device *self;
   1794 	int phy, reg;
   1795 {
   1796 	struct gem_softc *sc = (void *)self;
   1797 	bus_space_tag_t t = sc->sc_bustag;
   1798 	bus_space_handle_t mif = sc->sc_h;
   1799 	int n;
   1800 	u_int32_t v;
   1801 
   1802 #ifdef GEM_DEBUG1
   1803 	if (sc->sc_debug)
   1804 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
   1805 #endif
   1806 
   1807 #if 0
   1808 	/* Select the desired PHY in the MIF configuration register */
   1809 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1810 	/* Clear PHY select bit */
   1811 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1812 	if (phy == GEM_PHYAD_EXTERNAL)
   1813 		/* Set PHY select bit to get at external device */
   1814 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1815 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1816 #endif
   1817 
   1818 	/* Construct the frame command */
   1819 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   1820 		GEM_MIF_FRAME_READ;
   1821 
   1822 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1823 	for (n = 0; n < 100; n++) {
   1824 		DELAY(1);
   1825 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1826 		if (v & GEM_MIF_FRAME_TA0)
   1827 			return (v & GEM_MIF_FRAME_DATA);
   1828 	}
   1829 
   1830 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1831 	return (0);
   1832 }
   1833 
   1834 static void
   1835 gem_mii_writereg(self, phy, reg, val)
   1836 	struct device *self;
   1837 	int phy, reg, val;
   1838 {
   1839 	struct gem_softc *sc = (void *)self;
   1840 	bus_space_tag_t t = sc->sc_bustag;
   1841 	bus_space_handle_t mif = sc->sc_h;
   1842 	int n;
   1843 	u_int32_t v;
   1844 
   1845 #ifdef GEM_DEBUG1
   1846 	if (sc->sc_debug)
   1847 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
   1848 			phy, reg, val);
   1849 #endif
   1850 
   1851 #if 0
   1852 	/* Select the desired PHY in the MIF configuration register */
   1853 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1854 	/* Clear PHY select bit */
   1855 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1856 	if (phy == GEM_PHYAD_EXTERNAL)
   1857 		/* Set PHY select bit to get at external device */
   1858 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1859 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1860 #endif
   1861 	/* Construct the frame command */
   1862 	v = GEM_MIF_FRAME_WRITE			|
   1863 	    (phy << GEM_MIF_PHY_SHIFT)		|
   1864 	    (reg << GEM_MIF_REG_SHIFT)		|
   1865 	    (val & GEM_MIF_FRAME_DATA);
   1866 
   1867 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1868 	for (n = 0; n < 100; n++) {
   1869 		DELAY(1);
   1870 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1871 		if (v & GEM_MIF_FRAME_TA0)
   1872 			return;
   1873 	}
   1874 
   1875 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1876 }
   1877 
   1878 static void
   1879 gem_mii_statchg(dev)
   1880 	struct device *dev;
   1881 {
   1882 	struct gem_softc *sc = (void *)dev;
   1883 #ifdef GEM_DEBUG
   1884 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1885 #endif
   1886 	bus_space_tag_t t = sc->sc_bustag;
   1887 	bus_space_handle_t mac = sc->sc_h;
   1888 	u_int32_t v;
   1889 
   1890 #ifdef GEM_DEBUG
   1891 	if (sc->sc_debug)
   1892 		printf("gem_mii_statchg: status change: phy = %d\n",
   1893 			sc->sc_phys[instance]);
   1894 #endif
   1895 
   1896 
   1897 	/* Set tx full duplex options */
   1898 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   1899 	delay(10000); /* reg must be cleared and delay before changing. */
   1900 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
   1901 		GEM_MAC_TX_ENABLE;
   1902 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1903 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
   1904 	}
   1905 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
   1906 
   1907 	/* XIF Configuration */
   1908  /* We should really calculate all this rather than rely on defaults */
   1909 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
   1910 	v = GEM_MAC_XIF_LINK_LED;
   1911 	v |= GEM_MAC_XIF_TX_MII_ENA;
   1912 
   1913 	/* If an external transceiver is connected, enable its MII drivers */
   1914 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   1915 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   1916 		/* External MII needs echo disable if half duplex. */
   1917 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1918 			/* turn on full duplex LED */
   1919 			v |= GEM_MAC_XIF_FDPLX_LED;
   1920 		else
   1921 	 		/* half duplex -- disable echo */
   1922 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
   1923 
   1924 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   1925 			v |= GEM_MAC_XIF_GMII_MODE;
   1926 		else
   1927 			v &= ~GEM_MAC_XIF_GMII_MODE;
   1928 	} else
   1929 		/* Internal MII needs buf enable */
   1930 		v |= GEM_MAC_XIF_MII_BUF_ENA;
   1931 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   1932 }
   1933 
   1934 int
   1935 gem_mediachange(ifp)
   1936 	struct ifnet *ifp;
   1937 {
   1938 	struct gem_softc *sc = ifp->if_softc;
   1939 
   1940 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1941 		return (EINVAL);
   1942 
   1943 	return (mii_mediachg(&sc->sc_mii));
   1944 }
   1945 
   1946 void
   1947 gem_mediastatus(ifp, ifmr)
   1948 	struct ifnet *ifp;
   1949 	struct ifmediareq *ifmr;
   1950 {
   1951 	struct gem_softc *sc = ifp->if_softc;
   1952 
   1953 	if ((ifp->if_flags & IFF_UP) == 0)
   1954 		return;
   1955 
   1956 	mii_pollstat(&sc->sc_mii);
   1957 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1958 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1959 }
   1960 
   1961 int gem_ioctldebug = 0;
   1962 /*
   1963  * Process an ioctl request.
   1964  */
   1965 int
   1966 gem_ioctl(ifp, cmd, data)
   1967 	struct ifnet *ifp;
   1968 	u_long cmd;
   1969 	caddr_t data;
   1970 {
   1971 	struct gem_softc *sc = ifp->if_softc;
   1972 	struct ifreq *ifr = (struct ifreq *)data;
   1973 	int s, error = 0;
   1974 
   1975 	s = splnet();
   1976 
   1977 	switch (cmd) {
   1978 	case SIOCGIFMEDIA:
   1979 	case SIOCSIFMEDIA:
   1980 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1981 		break;
   1982 
   1983 	default:
   1984 		error = ether_ioctl(ifp, cmd, data);
   1985 		if (error == ENETRESET) {
   1986 			/*
   1987 			 * Multicast list has changed; set the hardware filter
   1988 			 * accordingly.
   1989 			 */
   1990 			if (ifp->if_flags & IFF_RUNNING) {
   1991 if (gem_ioctldebug) printf("reset1\n");
   1992 				gem_init(ifp);
   1993 				delay(50000);
   1994 			}
   1995 			error = 0;
   1996 		}
   1997 		break;
   1998 	}
   1999 
   2000 	/* Try to get things going again */
   2001 	if (ifp->if_flags & IFF_UP) {
   2002 if (gem_ioctldebug) printf("start\n");
   2003 		gem_start(ifp);
   2004 	}
   2005 	splx(s);
   2006 	return (error);
   2007 }
   2008 
   2009 
   2010 void
   2011 gem_shutdown(arg)
   2012 	void *arg;
   2013 {
   2014 	struct gem_softc *sc = (struct gem_softc *)arg;
   2015 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2016 
   2017 	gem_stop(ifp, 1);
   2018 }
   2019 
   2020 /*
   2021  * Set up the logical address filter.
   2022  */
   2023 void
   2024 gem_setladrf(sc)
   2025 	struct gem_softc *sc;
   2026 {
   2027 	struct ethercom *ec = &sc->sc_ethercom;
   2028 	struct ifnet *ifp = &ec->ec_if;
   2029 	struct ether_multi *enm;
   2030 	struct ether_multistep step;
   2031 	bus_space_tag_t t = sc->sc_bustag;
   2032 	bus_space_handle_t h = sc->sc_h;
   2033 	u_int32_t crc;
   2034 	u_int32_t hash[16];
   2035 	u_int32_t v;
   2036 	int i;
   2037 
   2038 	/* Get current RX configuration */
   2039 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2040 
   2041 	/*
   2042 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2043 	 * and hash filter.  Depending on the case, the right bit will be
   2044 	 * enabled.
   2045 	 */
   2046 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2047 	    GEM_MAC_RX_PROMISC_GRP);
   2048 
   2049 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2050 		/* Turn on promiscuous mode */
   2051 		v |= GEM_MAC_RX_PROMISCUOUS;
   2052 		ifp->if_flags |= IFF_ALLMULTI;
   2053 		goto chipit;
   2054 	}
   2055 
   2056 	/*
   2057 	 * Set up multicast address filter by passing all multicast addresses
   2058 	 * through a crc generator, and then using the high order 8 bits as an
   2059 	 * index into the 256 bit logical address filter.  The high order 4
   2060 	 * bits select the word, while the other 4 bits select the bit within
   2061 	 * the word (where bit 0 is the MSB).
   2062 	 */
   2063 
   2064 	/* Clear hash table */
   2065 	memset(hash, 0, sizeof(hash));
   2066 
   2067 	ETHER_FIRST_MULTI(step, ec, enm);
   2068 	while (enm != NULL) {
   2069 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2070 			/*
   2071 			 * We must listen to a range of multicast addresses.
   2072 			 * For now, just accept all multicasts, rather than
   2073 			 * trying to set only those filter bits needed to match
   2074 			 * the range.  (At this time, the only use of address
   2075 			 * ranges is for IP multicast routing, for which the
   2076 			 * range is big enough to require all bits set.)
   2077 			 * XXX use the addr filter for this
   2078 			 */
   2079 			ifp->if_flags |= IFF_ALLMULTI;
   2080 			v |= GEM_MAC_RX_PROMISC_GRP;
   2081 			goto chipit;
   2082 		}
   2083 
   2084 		/* Get the LE CRC32 of the address */
   2085 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2086 
   2087 		/* Just want the 8 most significant bits. */
   2088 		crc >>= 24;
   2089 
   2090 		/* Set the corresponding bit in the filter. */
   2091 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2092 
   2093 		ETHER_NEXT_MULTI(step, enm);
   2094 	}
   2095 
   2096 	v |= GEM_MAC_RX_HASH_FILTER;
   2097 	ifp->if_flags &= ~IFF_ALLMULTI;
   2098 
   2099 	/* Now load the hash table into the chip (if we are using it) */
   2100 	for (i = 0; i < 16; i++) {
   2101 		bus_space_write_4(t, h,
   2102 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2103 		    hash[i]);
   2104 	}
   2105 
   2106 chipit:
   2107 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2108 }
   2109 
   2110 #if notyet
   2111 
   2112 /*
   2113  * gem_power:
   2114  *
   2115  *	Power management (suspend/resume) hook.
   2116  */
   2117 void
   2118 gem_power(why, arg)
   2119 	int why;
   2120 	void *arg;
   2121 {
   2122 	struct gem_softc *sc = arg;
   2123 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2124 	int s;
   2125 
   2126 	s = splnet();
   2127 	switch (why) {
   2128 	case PWR_SUSPEND:
   2129 	case PWR_STANDBY:
   2130 		gem_stop(ifp, 1);
   2131 		if (sc->sc_power != NULL)
   2132 			(*sc->sc_power)(sc, why);
   2133 		break;
   2134 	case PWR_RESUME:
   2135 		if (ifp->if_flags & IFF_UP) {
   2136 			if (sc->sc_power != NULL)
   2137 				(*sc->sc_power)(sc, why);
   2138 			gem_init(ifp);
   2139 		}
   2140 		break;
   2141 	case PWR_SOFTSUSPEND:
   2142 	case PWR_SOFTSTANDBY:
   2143 	case PWR_SOFTRESUME:
   2144 		break;
   2145 	}
   2146 	splx(s);
   2147 }
   2148 #endif
   2149