gem.c revision 1.40 1 /* $NetBSD: gem.c,v 1.40 2005/05/16 15:56:38 bouyer Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.40 2005/05/16 15:56:38 bouyer Exp $");
38
39 #include "opt_inet.h"
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/syslog.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53
54 #include <machine/endian.h>
55
56 #include <uvm/uvm_extern.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 #include <dev/mii/mii_bitbang.h>
82
83 #include <dev/ic/gemreg.h>
84 #include <dev/ic/gemvar.h>
85
86 #define TRIES 10000
87
88 void gem_start(struct ifnet *);
89 void gem_stop(struct ifnet *, int);
90 int gem_ioctl(struct ifnet *, u_long, caddr_t);
91 void gem_tick(void *);
92 void gem_watchdog(struct ifnet *);
93 void gem_shutdown(void *);
94 int gem_init(struct ifnet *);
95 void gem_init_regs(struct gem_softc *sc);
96 static int gem_ringsize(int sz);
97 int gem_meminit(struct gem_softc *);
98 void gem_mifinit(struct gem_softc *);
99 void gem_reset(struct gem_softc *);
100 int gem_reset_rx(struct gem_softc *sc);
101 int gem_reset_tx(struct gem_softc *sc);
102 int gem_disable_rx(struct gem_softc *sc);
103 int gem_disable_tx(struct gem_softc *sc);
104 void gem_rxdrain(struct gem_softc *sc);
105 int gem_add_rxbuf(struct gem_softc *sc, int idx);
106 void gem_setladrf(struct gem_softc *);
107
108 /* MII methods & callbacks */
109 static int gem_mii_readreg(struct device *, int, int);
110 static void gem_mii_writereg(struct device *, int, int, int);
111 static void gem_mii_statchg(struct device *);
112
113 int gem_mediachange(struct ifnet *);
114 void gem_mediastatus(struct ifnet *, struct ifmediareq *);
115
116 struct mbuf *gem_get(struct gem_softc *, int, int);
117 int gem_put(struct gem_softc *, int, struct mbuf *);
118 void gem_read(struct gem_softc *, int, int);
119 int gem_eint(struct gem_softc *, u_int);
120 int gem_rint(struct gem_softc *);
121 int gem_tint(struct gem_softc *);
122 void gem_power(int, void *);
123
124 #ifdef GEM_DEBUG
125 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
126 printf x
127 #else
128 #define DPRINTF(sc, x) /* nothing */
129 #endif
130
131 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
132
133
134 /*
135 * gem_attach:
136 *
137 * Attach a Gem interface to the system.
138 */
139 void
140 gem_attach(sc, enaddr)
141 struct gem_softc *sc;
142 const uint8_t *enaddr;
143 {
144 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
145 struct mii_data *mii = &sc->sc_mii;
146 struct mii_softc *child;
147 struct ifmedia_entry *ifm;
148 int i, error;
149 u_int32_t v;
150 char *nullbuf;
151
152 /* Make sure the chip is stopped. */
153 ifp->if_softc = sc;
154 gem_reset(sc);
155
156 /*
157 * Allocate the control data structures, and create and load the
158 * DMA map for it. gem_control_data is 9216 bytes, we have space for
159 * the padding buffer in the bus_dmamem_alloc()'d memory.
160 */
161 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
162 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
163 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
164 aprint_error(
165 "%s: unable to allocate control data, error = %d\n",
166 sc->sc_dev.dv_xname, error);
167 goto fail_0;
168 }
169
170 /* XXX should map this in with correct endianness */
171 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
172 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
173 BUS_DMA_COHERENT)) != 0) {
174 aprint_error("%s: unable to map control data, error = %d\n",
175 sc->sc_dev.dv_xname, error);
176 goto fail_1;
177 }
178
179 nullbuf =
180 (caddr_t)sc->sc_control_data + sizeof(struct gem_control_data);
181
182 if ((error = bus_dmamap_create(sc->sc_dmatag,
183 sizeof(struct gem_control_data), 1,
184 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
185 aprint_error("%s: unable to create control data DMA map, "
186 "error = %d\n", sc->sc_dev.dv_xname, error);
187 goto fail_2;
188 }
189
190 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
191 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
192 0)) != 0) {
193 aprint_error(
194 "%s: unable to load control data DMA map, error = %d\n",
195 sc->sc_dev.dv_xname, error);
196 goto fail_3;
197 }
198
199 memset(nullbuf, 0, ETHER_MIN_TX);
200 if ((error = bus_dmamap_create(sc->sc_dmatag,
201 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
202 aprint_error("%s: unable to create padding DMA map, "
203 "error = %d\n", sc->sc_dev.dv_xname, error);
204 goto fail_4;
205 }
206
207 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
208 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
209 aprint_error(
210 "%s: unable to load padding DMA map, error = %d\n",
211 sc->sc_dev.dv_xname, error);
212 goto fail_5;
213 }
214
215 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
216 BUS_DMASYNC_PREWRITE);
217
218 /*
219 * Initialize the transmit job descriptors.
220 */
221 SIMPLEQ_INIT(&sc->sc_txfreeq);
222 SIMPLEQ_INIT(&sc->sc_txdirtyq);
223
224 /*
225 * Create the transmit buffer DMA maps.
226 */
227 for (i = 0; i < GEM_TXQUEUELEN; i++) {
228 struct gem_txsoft *txs;
229
230 txs = &sc->sc_txsoft[i];
231 txs->txs_mbuf = NULL;
232 if ((error = bus_dmamap_create(sc->sc_dmatag,
233 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
234 ETHER_MAX_LEN_JUMBO, 0, 0,
235 &txs->txs_dmamap)) != 0) {
236 aprint_error("%s: unable to create tx DMA map %d, "
237 "error = %d\n", sc->sc_dev.dv_xname, i, error);
238 goto fail_6;
239 }
240 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
241 }
242
243 /*
244 * Create the receive buffer DMA maps.
245 */
246 for (i = 0; i < GEM_NRXDESC; i++) {
247 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
248 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
249 aprint_error("%s: unable to create rx DMA map %d, "
250 "error = %d\n", sc->sc_dev.dv_xname, i, error);
251 goto fail_7;
252 }
253 sc->sc_rxsoft[i].rxs_mbuf = NULL;
254 }
255
256 /*
257 * From this point forward, the attachment cannot fail. A failure
258 * before this point releases all resources that may have been
259 * allocated.
260 */
261
262 /* Announce ourselves. */
263 aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
264 ether_sprintf(enaddr));
265
266 /* Get RX FIFO size */
267 sc->sc_rxfifosize = 64 *
268 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
269 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
270
271 /* Get TX FIFO size */
272 v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
273 aprint_normal(", %uKB TX fifo\n", v / 16);
274
275 /* Initialize ifnet structure. */
276 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
277 ifp->if_softc = sc;
278 ifp->if_flags =
279 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
280 ifp->if_capabilities |=
281 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
282 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
283 ifp->if_start = gem_start;
284 ifp->if_ioctl = gem_ioctl;
285 ifp->if_watchdog = gem_watchdog;
286 ifp->if_stop = gem_stop;
287 ifp->if_init = gem_init;
288 IFQ_SET_READY(&ifp->if_snd);
289
290 /* Initialize ifmedia structures and MII info */
291 mii->mii_ifp = ifp;
292 mii->mii_readreg = gem_mii_readreg;
293 mii->mii_writereg = gem_mii_writereg;
294 mii->mii_statchg = gem_mii_statchg;
295
296 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
297
298 gem_mifinit(sc);
299
300 mii_attach(&sc->sc_dev, mii, 0xffffffff,
301 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
302
303 child = LIST_FIRST(&mii->mii_phys);
304 if (child == NULL) {
305 /* No PHY attached */
306 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
307 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
308 } else {
309 /*
310 * Walk along the list of attached MII devices and
311 * establish an `MII instance' to `phy number'
312 * mapping. We'll use this mapping in media change
313 * requests to determine which phy to use to program
314 * the MIF configuration register.
315 */
316 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
317 /*
318 * Note: we support just two PHYs: the built-in
319 * internal device and an external on the MII
320 * connector.
321 */
322 if (child->mii_phy > 1 || child->mii_inst > 1) {
323 aprint_error(
324 "%s: cannot accomodate MII device %s"
325 " at phy %d, instance %d\n",
326 sc->sc_dev.dv_xname,
327 child->mii_dev.dv_xname,
328 child->mii_phy, child->mii_inst);
329 continue;
330 }
331
332 sc->sc_phys[child->mii_inst] = child->mii_phy;
333 }
334
335 /*
336 * Now select and activate the PHY we will use.
337 *
338 * The order of preference is External (MDI1),
339 * Internal (MDI0), Serial Link (no MII).
340 */
341 if (sc->sc_phys[1]) {
342 #ifdef DEBUG
343 aprint_debug("using external phy\n");
344 #endif
345 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
346 } else {
347 #ifdef DEBUG
348 aprint_debug("using internal phy\n");
349 #endif
350 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
351 }
352 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
353 sc->sc_mif_config);
354
355 /*
356 * XXX - we can really do the following ONLY if the
357 * phy indeed has the auto negotiation capability!!
358 */
359 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
360 }
361
362 /*
363 * If we support GigE media, we support jumbo frames too.
364 * Unless we are Apple.
365 */
366 TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
367 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
368 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
369 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
370 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
371 if (sc->sc_variant != GEM_APPLE_GMAC)
372 sc->sc_ethercom.ec_capabilities
373 |= ETHERCAP_JUMBO_MTU;
374
375 sc->sc_flags |= GEM_GIGABIT;
376 break;
377 }
378 }
379
380 /* claim 802.1q capability */
381 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
382
383 /* Attach the interface. */
384 if_attach(ifp);
385 ether_ifattach(ifp, enaddr);
386
387 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
388 if (sc->sc_sh == NULL)
389 panic("gem_config: can't establish shutdownhook");
390
391 #if NRND > 0
392 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
393 RND_TYPE_NET, 0);
394 #endif
395
396 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
397 NULL, sc->sc_dev.dv_xname, "interrupts");
398 #ifdef GEM_COUNTERS
399 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
400 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
401 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
402 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
403 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
404 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
405 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
406 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
407 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
408 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
409 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
410 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
411 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
412 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
413 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
414 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
415 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
416 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
417 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
418 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
419 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
420 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
421 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
422 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
423 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
424 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
425 #endif
426
427 #if notyet
428 /*
429 * Add a suspend hook to make sure we come back up after a
430 * resume.
431 */
432 sc->sc_powerhook = powerhook_establish(gem_power, sc);
433 if (sc->sc_powerhook == NULL)
434 aprint_error("%s: WARNING: unable to establish power hook\n",
435 sc->sc_dev.dv_xname);
436 #endif
437
438 callout_init(&sc->sc_tick_ch);
439 return;
440
441 /*
442 * Free any resources we've allocated during the failed attach
443 * attempt. Do this in reverse order and fall through.
444 */
445 fail_7:
446 for (i = 0; i < GEM_NRXDESC; i++) {
447 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
448 bus_dmamap_destroy(sc->sc_dmatag,
449 sc->sc_rxsoft[i].rxs_dmamap);
450 }
451 fail_6:
452 for (i = 0; i < GEM_TXQUEUELEN; i++) {
453 if (sc->sc_txsoft[i].txs_dmamap != NULL)
454 bus_dmamap_destroy(sc->sc_dmatag,
455 sc->sc_txsoft[i].txs_dmamap);
456 }
457 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
458 fail_5:
459 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
460 fail_4:
461 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)nullbuf, ETHER_MIN_TX);
462 fail_3:
463 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
464 fail_2:
465 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
466 sizeof(struct gem_control_data));
467 fail_1:
468 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
469 fail_0:
470 return;
471 }
472
473
474 void
475 gem_tick(arg)
476 void *arg;
477 {
478 struct gem_softc *sc = arg;
479 int s;
480
481 s = splnet();
482 mii_tick(&sc->sc_mii);
483 splx(s);
484
485 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
486
487 }
488
489 void
490 gem_reset(sc)
491 struct gem_softc *sc;
492 {
493 bus_space_tag_t t = sc->sc_bustag;
494 bus_space_handle_t h = sc->sc_h;
495 int i;
496 int s;
497
498 s = splnet();
499 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
500 gem_reset_rx(sc);
501 gem_reset_tx(sc);
502
503 /* Do a full reset */
504 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
505 for (i=TRIES; i--; delay(100))
506 if ((bus_space_read_4(t, h, GEM_RESET) &
507 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
508 break;
509 if ((bus_space_read_4(t, h, GEM_RESET) &
510 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
511 printf("%s: cannot reset device\n",
512 sc->sc_dev.dv_xname);
513 }
514 splx(s);
515 }
516
517
518 /*
519 * gem_rxdrain:
520 *
521 * Drain the receive queue.
522 */
523 void
524 gem_rxdrain(struct gem_softc *sc)
525 {
526 struct gem_rxsoft *rxs;
527 int i;
528
529 for (i = 0; i < GEM_NRXDESC; i++) {
530 rxs = &sc->sc_rxsoft[i];
531 if (rxs->rxs_mbuf != NULL) {
532 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
533 m_freem(rxs->rxs_mbuf);
534 rxs->rxs_mbuf = NULL;
535 }
536 }
537 }
538
539 /*
540 * Reset the whole thing.
541 */
542 void
543 gem_stop(struct ifnet *ifp, int disable)
544 {
545 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
546 struct gem_txsoft *txs;
547
548 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
549
550 callout_stop(&sc->sc_tick_ch);
551 mii_down(&sc->sc_mii);
552
553 /* XXX - Should we reset these instead? */
554 gem_disable_rx(sc);
555 gem_disable_tx(sc);
556
557 /*
558 * Release any queued transmit buffers.
559 */
560 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
561 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
562 if (txs->txs_mbuf != NULL) {
563 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
564 m_freem(txs->txs_mbuf);
565 txs->txs_mbuf = NULL;
566 }
567 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
568 }
569
570 if (disable) {
571 gem_rxdrain(sc);
572 }
573
574 /*
575 * Mark the interface down and cancel the watchdog timer.
576 */
577 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
578 ifp->if_timer = 0;
579 }
580
581
582 /*
583 * Reset the receiver
584 */
585 int
586 gem_reset_rx(struct gem_softc *sc)
587 {
588 bus_space_tag_t t = sc->sc_bustag;
589 bus_space_handle_t h = sc->sc_h;
590 int i;
591
592
593 /*
594 * Resetting while DMA is in progress can cause a bus hang, so we
595 * disable DMA first.
596 */
597 gem_disable_rx(sc);
598 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
599 /* Wait till it finishes */
600 for (i=TRIES; i--; delay(100))
601 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
602 break;
603 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
604 printf("%s: cannot disable read DMA\n",
605 sc->sc_dev.dv_xname);
606
607 /* Wait 5ms extra. */
608 delay(5000);
609
610 /* Finally, reset the ERX */
611 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
612 /* Wait till it finishes */
613 for (i=TRIES; i--; delay(100))
614 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
615 break;
616 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
617 printf("%s: cannot reset receiver\n",
618 sc->sc_dev.dv_xname);
619 return (1);
620 }
621 return (0);
622 }
623
624
625 /*
626 * Reset the transmitter
627 */
628 int
629 gem_reset_tx(struct gem_softc *sc)
630 {
631 bus_space_tag_t t = sc->sc_bustag;
632 bus_space_handle_t h = sc->sc_h;
633 int i;
634
635 /*
636 * Resetting while DMA is in progress can cause a bus hang, so we
637 * disable DMA first.
638 */
639 gem_disable_tx(sc);
640 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
641 /* Wait till it finishes */
642 for (i=TRIES; i--; delay(100))
643 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
644 break;
645 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
646 printf("%s: cannot disable read DMA\n",
647 sc->sc_dev.dv_xname);
648
649 /* Wait 5ms extra. */
650 delay(5000);
651
652 /* Finally, reset the ETX */
653 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
654 /* Wait till it finishes */
655 for (i=TRIES; i--; delay(100))
656 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
657 break;
658 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
659 printf("%s: cannot reset receiver\n",
660 sc->sc_dev.dv_xname);
661 return (1);
662 }
663 return (0);
664 }
665
666 /*
667 * disable receiver.
668 */
669 int
670 gem_disable_rx(struct gem_softc *sc)
671 {
672 bus_space_tag_t t = sc->sc_bustag;
673 bus_space_handle_t h = sc->sc_h;
674 int i;
675 u_int32_t cfg;
676
677 /* Flip the enable bit */
678 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
679 cfg &= ~GEM_MAC_RX_ENABLE;
680 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
681
682 /* Wait for it to finish */
683 for (i=TRIES; i--; delay(100))
684 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
685 GEM_MAC_RX_ENABLE) == 0)
686 return (0);
687 return (1);
688 }
689
690 /*
691 * disable transmitter.
692 */
693 int
694 gem_disable_tx(struct gem_softc *sc)
695 {
696 bus_space_tag_t t = sc->sc_bustag;
697 bus_space_handle_t h = sc->sc_h;
698 int i;
699 u_int32_t cfg;
700
701 /* Flip the enable bit */
702 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
703 cfg &= ~GEM_MAC_TX_ENABLE;
704 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
705
706 /* Wait for it to finish */
707 for (i=TRIES; i--; delay(100))
708 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
709 GEM_MAC_TX_ENABLE) == 0)
710 return (0);
711 return (1);
712 }
713
714 /*
715 * Initialize interface.
716 */
717 int
718 gem_meminit(struct gem_softc *sc)
719 {
720 struct gem_rxsoft *rxs;
721 int i, error;
722
723 /*
724 * Initialize the transmit descriptor ring.
725 */
726 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
727 for (i = 0; i < GEM_NTXDESC; i++) {
728 sc->sc_txdescs[i].gd_flags = 0;
729 sc->sc_txdescs[i].gd_addr = 0;
730 }
731 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
732 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
733 sc->sc_txfree = GEM_NTXDESC-1;
734 sc->sc_txnext = 0;
735 sc->sc_txwin = 0;
736
737 /*
738 * Initialize the receive descriptor and receive job
739 * descriptor rings.
740 */
741 for (i = 0; i < GEM_NRXDESC; i++) {
742 rxs = &sc->sc_rxsoft[i];
743 if (rxs->rxs_mbuf == NULL) {
744 if ((error = gem_add_rxbuf(sc, i)) != 0) {
745 printf("%s: unable to allocate or map rx "
746 "buffer %d, error = %d\n",
747 sc->sc_dev.dv_xname, i, error);
748 /*
749 * XXX Should attempt to run with fewer receive
750 * XXX buffers instead of just failing.
751 */
752 gem_rxdrain(sc);
753 return (1);
754 }
755 } else
756 GEM_INIT_RXDESC(sc, i);
757 }
758 sc->sc_rxptr = 0;
759
760 return (0);
761 }
762
763 static int
764 gem_ringsize(int sz)
765 {
766 switch (sz) {
767 case 32:
768 return GEM_RING_SZ_32;
769 case 64:
770 return GEM_RING_SZ_64;
771 case 128:
772 return GEM_RING_SZ_128;
773 case 256:
774 return GEM_RING_SZ_256;
775 case 512:
776 return GEM_RING_SZ_512;
777 case 1024:
778 return GEM_RING_SZ_1024;
779 case 2048:
780 return GEM_RING_SZ_2048;
781 case 4096:
782 return GEM_RING_SZ_4096;
783 case 8192:
784 return GEM_RING_SZ_8192;
785 default:
786 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
787 return GEM_RING_SZ_32;
788 }
789 }
790
791 /*
792 * Initialization of interface; set up initialization block
793 * and transmit/receive descriptor rings.
794 */
795 int
796 gem_init(struct ifnet *ifp)
797 {
798 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
799 bus_space_tag_t t = sc->sc_bustag;
800 bus_space_handle_t h = sc->sc_h;
801 int s;
802 u_int max_frame_size;
803 u_int32_t v;
804
805 s = splnet();
806
807 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
808 /*
809 * Initialization sequence. The numbered steps below correspond
810 * to the sequence outlined in section 6.3.5.1 in the Ethernet
811 * Channel Engine manual (part of the PCIO manual).
812 * See also the STP2002-STQ document from Sun Microsystems.
813 */
814
815 /* step 1 & 2. Reset the Ethernet Channel */
816 gem_stop(ifp, 0);
817 gem_reset(sc);
818 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
819
820 /* Re-initialize the MIF */
821 gem_mifinit(sc);
822
823 /* Call MI reset function if any */
824 if (sc->sc_hwreset)
825 (*sc->sc_hwreset)(sc);
826
827 /* step 3. Setup data structures in host memory */
828 gem_meminit(sc);
829
830 /* step 4. TX MAC registers & counters */
831 gem_init_regs(sc);
832 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
833 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
834 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
835 max_frame_size += ETHER_VLAN_ENCAP_LEN;
836 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
837 max_frame_size|/* burst size */(0x2000<<16));
838
839 /* step 5. RX MAC registers & counters */
840 gem_setladrf(sc);
841
842 /* step 6 & 7. Program Descriptor Ring Base Addresses */
843 /* NOTE: we use only 32-bit DMA addresses here. */
844 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
845 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
846
847 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
848 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
849
850 /* step 8. Global Configuration & Interrupt Mask */
851 bus_space_write_4(t, h, GEM_INTMASK,
852 ~(GEM_INTR_TX_INTME|
853 GEM_INTR_TX_EMPTY|
854 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
855 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
856 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
857 GEM_INTR_BERR));
858 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
859 GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
860 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
861 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
862
863 /* step 9. ETX Configuration: use mostly default values */
864
865 /* Enable DMA */
866 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
867 bus_space_write_4(t, h, GEM_TX_CONFIG,
868 v|GEM_TX_CONFIG_TXDMA_EN|
869 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
870 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
871
872 /* step 10. ERX Configuration */
873
874 /* Encode Receive Descriptor ring size: four possible values */
875 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
876
877 /* Set receive h/w checksum offset */
878 #ifdef INET
879 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
880 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
881 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
882 #endif
883
884 /* Enable DMA */
885 bus_space_write_4(t, h, GEM_RX_CONFIG,
886 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
887 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
888
889 /*
890 * The following value is for an OFF Threshold of about 3/4 full
891 * and an ON Threshold of 1/4 full.
892 */
893 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
894 (3 * sc->sc_rxfifosize / 256) |
895 ( (sc->sc_rxfifosize / 256) << 12));
896 bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
897
898 /* step 11. Configure Media */
899 mii_mediachg(&sc->sc_mii);
900
901 /* XXXX Serial link needs a whole different setup. */
902
903
904 /* step 12. RX_MAC Configuration Register */
905 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
906 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
907 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
908
909 /* step 14. Issue Transmit Pending command */
910
911 /* Call MI initialization function if any */
912 if (sc->sc_hwinit)
913 (*sc->sc_hwinit)(sc);
914
915
916 /* step 15. Give the reciever a swift kick */
917 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
918
919 /* Start the one second timer. */
920 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
921
922 ifp->if_flags |= IFF_RUNNING;
923 ifp->if_flags &= ~IFF_OACTIVE;
924 ifp->if_timer = 0;
925 splx(s);
926
927 return (0);
928 }
929
930 void
931 gem_init_regs(struct gem_softc *sc)
932 {
933 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
934 bus_space_tag_t t = sc->sc_bustag;
935 bus_space_handle_t h = sc->sc_h;
936 const u_char *laddr = LLADDR(ifp->if_sadl);
937 u_int32_t v;
938
939 /* These regs are not cleared on reset */
940 if (!sc->sc_inited) {
941
942 /* Wooo. Magic values. */
943 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
944 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
945 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
946
947 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
948 /* Max frame and max burst size */
949 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
950 ETHER_MAX_LEN | (0x2000<<16));
951
952 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
953 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
954 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
955 /* Dunno.... */
956 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
957 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
958 ((laddr[5]<<8)|laddr[4])&0x3ff);
959
960 /* Secondary MAC addr set to 0:0:0:0:0:0 */
961 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
962 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
963 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
964
965 /* MAC control addr set to 01:80:c2:00:00:01 */
966 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
967 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
968 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
969
970 /* MAC filter addr set to 0:0:0:0:0:0 */
971 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
972 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
973 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
974
975 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
976 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
977
978 sc->sc_inited = 1;
979 }
980
981 /* Counters need to be zeroed */
982 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
983 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
984 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
985 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
986 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
987 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
988 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
989 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
990 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
991 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
992 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
993
994 /* Un-pause stuff */
995 #if 0
996 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
997 #else
998 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
999 #endif
1000
1001 /*
1002 * Set the station address.
1003 */
1004 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1005 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1006 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1007
1008 #if 0
1009 if (sc->sc_variant != APPLE_GMAC)
1010 return;
1011 #endif
1012
1013 /*
1014 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1015 */
1016 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1017 v = GEM_MAC_XIF_TX_MII_ENA;
1018 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1019 v |= GEM_MAC_XIF_FDPLX_LED;
1020 if (sc->sc_flags & GEM_GIGABIT)
1021 v |= GEM_MAC_XIF_GMII_MODE;
1022 }
1023 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1024 }
1025
1026 void
1027 gem_start(ifp)
1028 struct ifnet *ifp;
1029 {
1030 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1031 struct mbuf *m0, *m;
1032 struct gem_txsoft *txs, *last_txs;
1033 bus_dmamap_t dmamap;
1034 int error, firsttx, nexttx, lasttx = -1, ofree, seg;
1035 uint64_t flags = 0;
1036
1037 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1038 return;
1039
1040 /*
1041 * Remember the previous number of free descriptors and
1042 * the first descriptor we'll use.
1043 */
1044 ofree = sc->sc_txfree;
1045 firsttx = sc->sc_txnext;
1046
1047 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1048 sc->sc_dev.dv_xname, ofree, firsttx));
1049
1050 /*
1051 * Loop through the send queue, setting up transmit descriptors
1052 * until we drain the queue, or use up all available transmit
1053 * descriptors.
1054 */
1055 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1056 sc->sc_txfree != 0) {
1057 /*
1058 * Grab a packet off the queue.
1059 */
1060 IFQ_POLL(&ifp->if_snd, m0);
1061 if (m0 == NULL)
1062 break;
1063 m = NULL;
1064
1065 dmamap = txs->txs_dmamap;
1066
1067 /*
1068 * Load the DMA map. If this fails, the packet either
1069 * didn't fit in the alloted number of segments, or we were
1070 * short on resources. In this case, we'll copy and try
1071 * again.
1072 */
1073 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1074 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1075 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1076 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1077 if (m0->m_pkthdr.len > MCLBYTES) {
1078 printf("%s: unable to allocate jumbo Tx "
1079 "cluster\n", sc->sc_dev.dv_xname);
1080 IFQ_DEQUEUE(&ifp->if_snd, m0);
1081 m_freem(m0);
1082 continue;
1083 }
1084 MGETHDR(m, M_DONTWAIT, MT_DATA);
1085 if (m == NULL) {
1086 printf("%s: unable to allocate Tx mbuf\n",
1087 sc->sc_dev.dv_xname);
1088 break;
1089 }
1090 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1091 if (m0->m_pkthdr.len > MHLEN) {
1092 MCLGET(m, M_DONTWAIT);
1093 if ((m->m_flags & M_EXT) == 0) {
1094 printf("%s: unable to allocate Tx "
1095 "cluster\n", sc->sc_dev.dv_xname);
1096 m_freem(m);
1097 break;
1098 }
1099 }
1100 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1101 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1102 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1103 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1104 if (error) {
1105 printf("%s: unable to load Tx buffer, "
1106 "error = %d\n", sc->sc_dev.dv_xname, error);
1107 break;
1108 }
1109 }
1110
1111 /*
1112 * Ensure we have enough descriptors free to describe
1113 * the packet.
1114 */
1115 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1116 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1117 /*
1118 * Not enough free descriptors to transmit this
1119 * packet. We haven't committed to anything yet,
1120 * so just unload the DMA map, put the packet
1121 * back on the queue, and punt. Notify the upper
1122 * layer that there are no more slots left.
1123 *
1124 * XXX We could allocate an mbuf and copy, but
1125 * XXX it is worth it?
1126 */
1127 ifp->if_flags |= IFF_OACTIVE;
1128 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1129 if (m != NULL)
1130 m_freem(m);
1131 break;
1132 }
1133
1134 IFQ_DEQUEUE(&ifp->if_snd, m0);
1135 if (m != NULL) {
1136 m_freem(m0);
1137 m0 = m;
1138 }
1139
1140 /*
1141 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1142 */
1143
1144 /* Sync the DMA map. */
1145 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1146 BUS_DMASYNC_PREWRITE);
1147
1148 /*
1149 * Initialize the transmit descriptors.
1150 */
1151 for (nexttx = sc->sc_txnext, seg = 0;
1152 seg < dmamap->dm_nsegs;
1153 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1154
1155 /*
1156 * If this is the first descriptor we're
1157 * enqueueing, set the start of packet flag,
1158 * and the checksum stuff if we want the hardware
1159 * to do it.
1160 */
1161 sc->sc_txdescs[nexttx].gd_addr =
1162 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1163 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1164 if (nexttx == firsttx) {
1165 flags |= GEM_TD_START_OF_PACKET;
1166 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1167 sc->sc_txwin = 0;
1168 flags |= GEM_TD_INTERRUPT_ME;
1169 }
1170
1171 #ifdef INET
1172 /* h/w checksum */
1173 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
1174 M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
1175 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1176 struct ether_header *eh;
1177 uint16_t offset, start;
1178
1179 eh = mtod(m0, struct ether_header *);
1180 switch (ntohs(eh->ether_type)) {
1181 case ETHERTYPE_IP:
1182 start = ETHER_HDR_LEN;
1183 break;
1184 case ETHERTYPE_VLAN:
1185 start = ETHER_HDR_LEN +
1186 ETHER_VLAN_ENCAP_LEN;
1187 break;
1188 default:
1189 /* unsupported, drop it */
1190 m_free(m0);
1191 continue;
1192 }
1193 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1194 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1195 flags |= (start <<
1196 GEM_TD_CXSUM_STARTSHFT) |
1197 (offset <<
1198 GEM_TD_CXSUM_STUFFSHFT) |
1199 GEM_TD_CXSUM_ENABLE;
1200 }
1201 #endif
1202 }
1203 if (seg == dmamap->dm_nsegs - 1) {
1204 flags |= GEM_TD_END_OF_PACKET;
1205 } else {
1206 /* last flag set outside of loop */
1207 sc->sc_txdescs[nexttx].gd_flags =
1208 GEM_DMA_WRITE(sc, flags);
1209 }
1210 lasttx = nexttx;
1211 }
1212 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1213 /* add padding buffer at end of chain */
1214 flags &= ~GEM_TD_END_OF_PACKET;
1215 sc->sc_txdescs[lasttx].gd_flags =
1216 GEM_DMA_WRITE(sc, flags);
1217
1218 sc->sc_txdescs[nexttx].gd_addr =
1219 GEM_DMA_WRITE(sc,
1220 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1221 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1222 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1223 lasttx = nexttx;
1224 nexttx = GEM_NEXTTX(nexttx);
1225 seg++;
1226 }
1227 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1228
1229 KASSERT(lasttx != -1);
1230
1231 /*
1232 * Store a pointer to the packet so we can free it later,
1233 * and remember what txdirty will be once the packet is
1234 * done.
1235 */
1236 txs->txs_mbuf = m0;
1237 txs->txs_firstdesc = sc->sc_txnext;
1238 txs->txs_lastdesc = lasttx;
1239 txs->txs_ndescs = seg;
1240
1241 #ifdef GEM_DEBUG
1242 if (ifp->if_flags & IFF_DEBUG) {
1243 printf(" gem_start %p transmit chain:\n", txs);
1244 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1245 printf("descriptor %d:\t", seg);
1246 printf("gd_flags: 0x%016llx\t", (long long)
1247 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1248 printf("gd_addr: 0x%016llx\n", (long long)
1249 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1250 if (seg == lasttx)
1251 break;
1252 }
1253 }
1254 #endif
1255
1256 /* Sync the descriptors we're using. */
1257 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1258 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1259
1260 /* Advance the tx pointer. */
1261 sc->sc_txfree -= txs->txs_ndescs;
1262 sc->sc_txnext = nexttx;
1263
1264 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1265 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1266
1267 last_txs = txs;
1268
1269 #if NBPFILTER > 0
1270 /*
1271 * Pass the packet to any BPF listeners.
1272 */
1273 if (ifp->if_bpf)
1274 bpf_mtap(ifp->if_bpf, m0);
1275 #endif /* NBPFILTER > 0 */
1276 }
1277
1278 if (txs == NULL || sc->sc_txfree == 0) {
1279 /* No more slots left; notify upper layer. */
1280 ifp->if_flags |= IFF_OACTIVE;
1281 }
1282
1283 if (sc->sc_txfree != ofree) {
1284 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1285 sc->sc_dev.dv_xname, lasttx, firsttx));
1286 /*
1287 * The entire packet chain is set up.
1288 * Kick the transmitter.
1289 */
1290 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1291 sc->sc_dev.dv_xname, nexttx));
1292 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1293 sc->sc_txnext);
1294
1295 /* Set a watchdog timer in case the chip flakes out. */
1296 ifp->if_timer = 5;
1297 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1298 sc->sc_dev.dv_xname, ifp->if_timer));
1299 }
1300 }
1301
1302 /*
1303 * Transmit interrupt.
1304 */
1305 int
1306 gem_tint(sc)
1307 struct gem_softc *sc;
1308 {
1309 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1310 bus_space_tag_t t = sc->sc_bustag;
1311 bus_space_handle_t mac = sc->sc_h;
1312 struct gem_txsoft *txs;
1313 int txlast;
1314 int progress = 0;
1315
1316
1317 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1318
1319 /*
1320 * Unload collision counters
1321 */
1322 ifp->if_collisions +=
1323 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1324 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1325 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1326 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1327
1328 /*
1329 * then clear the hardware counters.
1330 */
1331 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1332 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1333 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1334 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1335
1336 /*
1337 * Go through our Tx list and free mbufs for those
1338 * frames that have been transmitted.
1339 */
1340 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1341 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1342 txs->txs_ndescs,
1343 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1344
1345 #ifdef GEM_DEBUG
1346 if (ifp->if_flags & IFF_DEBUG) {
1347 int i;
1348 printf(" txsoft %p transmit chain:\n", txs);
1349 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1350 printf("descriptor %d: ", i);
1351 printf("gd_flags: 0x%016llx\t", (long long)
1352 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1353 printf("gd_addr: 0x%016llx\n", (long long)
1354 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1355 if (i == txs->txs_lastdesc)
1356 break;
1357 }
1358 }
1359 #endif
1360
1361 /*
1362 * In theory, we could harveast some descriptors before
1363 * the ring is empty, but that's a bit complicated.
1364 *
1365 * GEM_TX_COMPLETION points to the last descriptor
1366 * processed +1.
1367 */
1368 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1369 DPRINTF(sc,
1370 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1371 txs->txs_lastdesc, txlast));
1372 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1373 if ((txlast >= txs->txs_firstdesc) &&
1374 (txlast <= txs->txs_lastdesc))
1375 break;
1376 } else {
1377 /* Ick -- this command wraps */
1378 if ((txlast >= txs->txs_firstdesc) ||
1379 (txlast <= txs->txs_lastdesc))
1380 break;
1381 }
1382
1383 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1384 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1385
1386 sc->sc_txfree += txs->txs_ndescs;
1387
1388 if (txs->txs_mbuf == NULL) {
1389 #ifdef DIAGNOSTIC
1390 panic("gem_txintr: null mbuf");
1391 #endif
1392 }
1393
1394 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1395 0, txs->txs_dmamap->dm_mapsize,
1396 BUS_DMASYNC_POSTWRITE);
1397 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1398 m_freem(txs->txs_mbuf);
1399 txs->txs_mbuf = NULL;
1400
1401 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1402
1403 ifp->if_opackets++;
1404 progress = 1;
1405 }
1406
1407 #if 0
1408 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1409 "GEM_TX_DATA_PTR %llx "
1410 "GEM_TX_COMPLETION %x\n",
1411 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1412 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1413 GEM_TX_DATA_PTR_HI) << 32) |
1414 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1415 GEM_TX_DATA_PTR_LO),
1416 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1417 #endif
1418
1419 if (progress) {
1420 if (sc->sc_txfree == GEM_NTXDESC - 1)
1421 sc->sc_txwin = 0;
1422
1423 ifp->if_flags &= ~IFF_OACTIVE;
1424 gem_start(ifp);
1425
1426 if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1427 ifp->if_timer = 0;
1428 }
1429 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1430 sc->sc_dev.dv_xname, ifp->if_timer));
1431
1432 return (1);
1433 }
1434
1435 /*
1436 * Receive interrupt.
1437 */
1438 int
1439 gem_rint(sc)
1440 struct gem_softc *sc;
1441 {
1442 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1443 bus_space_tag_t t = sc->sc_bustag;
1444 bus_space_handle_t h = sc->sc_h;
1445 struct gem_rxsoft *rxs;
1446 struct mbuf *m;
1447 u_int64_t rxstat;
1448 u_int32_t rxcomp;
1449 int i, len, progress = 0;
1450
1451 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1452
1453 /*
1454 * Read the completion register once. This limits
1455 * how long the following loop can execute.
1456 */
1457 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1458
1459 /*
1460 * XXXX Read the lastrx only once at the top for speed.
1461 */
1462 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1463 sc->sc_rxptr, rxcomp));
1464
1465 /*
1466 * Go into the loop at least once.
1467 */
1468 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1469 i = GEM_NEXTRX(i)) {
1470 rxs = &sc->sc_rxsoft[i];
1471
1472 GEM_CDRXSYNC(sc, i,
1473 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1474
1475 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1476
1477 if (rxstat & GEM_RD_OWN) {
1478 /*
1479 * We have processed all of the receive buffers.
1480 */
1481 break;
1482 }
1483
1484 progress++;
1485 ifp->if_ipackets++;
1486
1487 if (rxstat & GEM_RD_BAD_CRC) {
1488 ifp->if_ierrors++;
1489 printf("%s: receive error: CRC error\n",
1490 sc->sc_dev.dv_xname);
1491 GEM_INIT_RXDESC(sc, i);
1492 continue;
1493 }
1494
1495 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1496 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1497 #ifdef GEM_DEBUG
1498 if (ifp->if_flags & IFF_DEBUG) {
1499 printf(" rxsoft %p descriptor %d: ", rxs, i);
1500 printf("gd_flags: 0x%016llx\t", (long long)
1501 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1502 printf("gd_addr: 0x%016llx\n", (long long)
1503 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1504 }
1505 #endif
1506
1507 /* No errors; receive the packet. */
1508 len = GEM_RD_BUFLEN(rxstat);
1509
1510 /*
1511 * Allocate a new mbuf cluster. If that fails, we are
1512 * out of memory, and must drop the packet and recycle
1513 * the buffer that's already attached to this descriptor.
1514 */
1515 m = rxs->rxs_mbuf;
1516 if (gem_add_rxbuf(sc, i) != 0) {
1517 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1518 ifp->if_ierrors++;
1519 GEM_INIT_RXDESC(sc, i);
1520 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1521 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1522 continue;
1523 }
1524 m->m_data += 2; /* We're already off by two */
1525
1526 m->m_pkthdr.rcvif = ifp;
1527 m->m_pkthdr.len = m->m_len = len;
1528
1529 #if NBPFILTER > 0
1530 /*
1531 * Pass this up to any BPF listeners, but only
1532 * pass it up the stack if its for us.
1533 */
1534 if (ifp->if_bpf)
1535 bpf_mtap(ifp->if_bpf, m);
1536 #endif /* NPBFILTER > 0 */
1537
1538 #ifdef INET
1539 /* hardware checksum */
1540 if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
1541 struct ether_header *eh;
1542 struct ip *ip;
1543 struct udphdr *uh;
1544 int32_t hlen, pktlen;
1545
1546 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1547 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1548 ETHER_VLAN_ENCAP_LEN;
1549 eh = (struct ether_header *) mtod(m, caddr_t) +
1550 ETHER_VLAN_ENCAP_LEN;
1551 } else {
1552 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1553 eh = mtod(m, struct ether_header *);
1554 }
1555 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1556 goto swcsum;
1557 ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
1558
1559 /* IPv4 only */
1560 if (ip->ip_v != IPVERSION)
1561 goto swcsum;
1562
1563 hlen = ip->ip_hl << 2;
1564 if (hlen < sizeof(struct ip))
1565 goto swcsum;
1566
1567 /*
1568 * bail if too short, has random trailing garbage,
1569 * truncated, fragment, or has ethernet pad.
1570 */
1571 if ((ntohs(ip->ip_len) < hlen) ||
1572 (ntohs(ip->ip_len) != pktlen) ||
1573 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1574 goto swcsum;
1575
1576 switch (ip->ip_p) {
1577 case IPPROTO_TCP:
1578 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1579 goto swcsum;
1580 if (pktlen < (hlen + sizeof(struct tcphdr)))
1581 goto swcsum;
1582 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1583 break;
1584 case IPPROTO_UDP:
1585 if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
1586 goto swcsum;
1587 if (pktlen < (hlen + sizeof(struct udphdr)))
1588 goto swcsum;
1589 uh = (struct udphdr *)((caddr_t)ip + hlen);
1590 /* no checksum */
1591 if (uh->uh_sum == 0)
1592 goto swcsum;
1593 m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
1594 break;
1595 default:
1596 goto swcsum;
1597 }
1598
1599 /* the uncomplemented sum is expected */
1600 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1601
1602 /* if the pkt had ip options, we have to deduct them */
1603 if (hlen > sizeof(struct ip)) {
1604 uint16_t *opts;
1605 uint32_t optsum, temp;
1606
1607 optsum = 0;
1608 temp = hlen - sizeof(struct ip);
1609 opts = (uint16_t *) ((caddr_t) ip +
1610 sizeof(struct ip));
1611
1612 while (temp > 1) {
1613 optsum += ntohs(*opts++);
1614 temp -= 2;
1615 }
1616 while (optsum >> 16)
1617 optsum = (optsum >> 16) +
1618 (optsum & 0xffff);
1619
1620 /* Deduct ip opts sum from hwsum (rfc 1624). */
1621 m->m_pkthdr.csum_data =
1622 ~((~m->m_pkthdr.csum_data) - ~optsum);
1623
1624 while (m->m_pkthdr.csum_data >> 16)
1625 m->m_pkthdr.csum_data =
1626 (m->m_pkthdr.csum_data >> 16) +
1627 (m->m_pkthdr.csum_data &
1628 0xffff);
1629 }
1630
1631 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1632 M_CSUM_NO_PSEUDOHDR;
1633 } else
1634 swcsum:
1635 m->m_pkthdr.csum_flags = 0;
1636 #endif
1637 /* Pass it on. */
1638 (*ifp->if_input)(ifp, m);
1639 }
1640
1641 if (progress) {
1642 /* Update the receive pointer. */
1643 if (i == sc->sc_rxptr) {
1644 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1645 #ifdef GEM_DEBUG
1646 if (ifp->if_flags & IFF_DEBUG)
1647 printf("%s: rint: ring wrap\n",
1648 sc->sc_dev.dv_xname);
1649 #endif
1650 }
1651 sc->sc_rxptr = i;
1652 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1653 }
1654 #ifdef GEM_COUNTERS
1655 if (progress <= 4) {
1656 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1657 } else if (progress < 32) {
1658 if (progress < 16)
1659 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1660 else
1661 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1662
1663 } else {
1664 if (progress < 64)
1665 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1666 else
1667 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1668 }
1669 #endif
1670
1671 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1672 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1673
1674 return (1);
1675 }
1676
1677
1678 /*
1679 * gem_add_rxbuf:
1680 *
1681 * Add a receive buffer to the indicated descriptor.
1682 */
1683 int
1684 gem_add_rxbuf(struct gem_softc *sc, int idx)
1685 {
1686 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1687 struct mbuf *m;
1688 int error;
1689
1690 MGETHDR(m, M_DONTWAIT, MT_DATA);
1691 if (m == NULL)
1692 return (ENOBUFS);
1693
1694 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1695 MCLGET(m, M_DONTWAIT);
1696 if ((m->m_flags & M_EXT) == 0) {
1697 m_freem(m);
1698 return (ENOBUFS);
1699 }
1700
1701 #ifdef GEM_DEBUG
1702 /* bzero the packet to check DMA */
1703 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1704 #endif
1705
1706 if (rxs->rxs_mbuf != NULL)
1707 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1708
1709 rxs->rxs_mbuf = m;
1710
1711 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1712 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1713 BUS_DMA_READ|BUS_DMA_NOWAIT);
1714 if (error) {
1715 printf("%s: can't load rx DMA map %d, error = %d\n",
1716 sc->sc_dev.dv_xname, idx, error);
1717 panic("gem_add_rxbuf"); /* XXX */
1718 }
1719
1720 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1721 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1722
1723 GEM_INIT_RXDESC(sc, idx);
1724
1725 return (0);
1726 }
1727
1728
1729 int
1730 gem_eint(sc, status)
1731 struct gem_softc *sc;
1732 u_int status;
1733 {
1734 char bits[128];
1735
1736 if ((status & GEM_INTR_MIF) != 0) {
1737 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1738 return (1);
1739 }
1740
1741 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1742 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1743 return (1);
1744 }
1745
1746
1747 int
1748 gem_intr(v)
1749 void *v;
1750 {
1751 struct gem_softc *sc = (struct gem_softc *)v;
1752 bus_space_tag_t t = sc->sc_bustag;
1753 bus_space_handle_t seb = sc->sc_h;
1754 u_int32_t status;
1755 int r = 0;
1756 #ifdef GEM_DEBUG
1757 char bits[128];
1758 #endif
1759
1760 sc->sc_ev_intr.ev_count++;
1761
1762 status = bus_space_read_4(t, seb, GEM_STATUS);
1763 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
1764 sc->sc_dev.dv_xname, (status >> 19),
1765 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1766
1767 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1768 r |= gem_eint(sc, status);
1769
1770 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1771 GEM_COUNTER_INCR(sc, sc_ev_txint);
1772 r |= gem_tint(sc);
1773 }
1774
1775 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1776 GEM_COUNTER_INCR(sc, sc_ev_rxint);
1777 r |= gem_rint(sc);
1778 }
1779
1780 /* We should eventually do more than just print out error stats. */
1781 if (status & GEM_INTR_TX_MAC) {
1782 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1783 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1784 printf("%s: MAC tx fault, status %x\n",
1785 sc->sc_dev.dv_xname, txstat);
1786 }
1787 if (status & GEM_INTR_RX_MAC) {
1788 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1789 if (rxstat & ~GEM_MAC_RX_DONE)
1790 printf("%s: MAC rx fault, status %x\n",
1791 sc->sc_dev.dv_xname, rxstat);
1792 }
1793 return (r);
1794 }
1795
1796
1797 void
1798 gem_watchdog(ifp)
1799 struct ifnet *ifp;
1800 {
1801 struct gem_softc *sc = ifp->if_softc;
1802
1803 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1804 "GEM_MAC_RX_CONFIG %x\n",
1805 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1806 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1807 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1808
1809 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1810 ++ifp->if_oerrors;
1811
1812 /* Try to get more packets going. */
1813 gem_start(ifp);
1814 }
1815
1816 /*
1817 * Initialize the MII Management Interface
1818 */
1819 void
1820 gem_mifinit(sc)
1821 struct gem_softc *sc;
1822 {
1823 bus_space_tag_t t = sc->sc_bustag;
1824 bus_space_handle_t mif = sc->sc_h;
1825
1826 /* Configure the MIF in frame mode */
1827 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1828 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1829 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1830 }
1831
1832 /*
1833 * MII interface
1834 *
1835 * The GEM MII interface supports at least three different operating modes:
1836 *
1837 * Bitbang mode is implemented using data, clock and output enable registers.
1838 *
1839 * Frame mode is implemented by loading a complete frame into the frame
1840 * register and polling the valid bit for completion.
1841 *
1842 * Polling mode uses the frame register but completion is indicated by
1843 * an interrupt.
1844 *
1845 */
1846 static int
1847 gem_mii_readreg(self, phy, reg)
1848 struct device *self;
1849 int phy, reg;
1850 {
1851 struct gem_softc *sc = (void *)self;
1852 bus_space_tag_t t = sc->sc_bustag;
1853 bus_space_handle_t mif = sc->sc_h;
1854 int n;
1855 u_int32_t v;
1856
1857 #ifdef GEM_DEBUG1
1858 if (sc->sc_debug)
1859 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1860 #endif
1861
1862 #if 0
1863 /* Select the desired PHY in the MIF configuration register */
1864 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1865 /* Clear PHY select bit */
1866 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1867 if (phy == GEM_PHYAD_EXTERNAL)
1868 /* Set PHY select bit to get at external device */
1869 v |= GEM_MIF_CONFIG_PHY_SEL;
1870 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1871 #endif
1872
1873 /* Construct the frame command */
1874 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1875 GEM_MIF_FRAME_READ;
1876
1877 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1878 for (n = 0; n < 100; n++) {
1879 DELAY(1);
1880 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1881 if (v & GEM_MIF_FRAME_TA0)
1882 return (v & GEM_MIF_FRAME_DATA);
1883 }
1884
1885 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1886 return (0);
1887 }
1888
1889 static void
1890 gem_mii_writereg(self, phy, reg, val)
1891 struct device *self;
1892 int phy, reg, val;
1893 {
1894 struct gem_softc *sc = (void *)self;
1895 bus_space_tag_t t = sc->sc_bustag;
1896 bus_space_handle_t mif = sc->sc_h;
1897 int n;
1898 u_int32_t v;
1899
1900 #ifdef GEM_DEBUG1
1901 if (sc->sc_debug)
1902 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1903 phy, reg, val);
1904 #endif
1905
1906 #if 0
1907 /* Select the desired PHY in the MIF configuration register */
1908 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1909 /* Clear PHY select bit */
1910 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1911 if (phy == GEM_PHYAD_EXTERNAL)
1912 /* Set PHY select bit to get at external device */
1913 v |= GEM_MIF_CONFIG_PHY_SEL;
1914 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1915 #endif
1916 /* Construct the frame command */
1917 v = GEM_MIF_FRAME_WRITE |
1918 (phy << GEM_MIF_PHY_SHIFT) |
1919 (reg << GEM_MIF_REG_SHIFT) |
1920 (val & GEM_MIF_FRAME_DATA);
1921
1922 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1923 for (n = 0; n < 100; n++) {
1924 DELAY(1);
1925 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1926 if (v & GEM_MIF_FRAME_TA0)
1927 return;
1928 }
1929
1930 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1931 }
1932
1933 static void
1934 gem_mii_statchg(dev)
1935 struct device *dev;
1936 {
1937 struct gem_softc *sc = (void *)dev;
1938 #ifdef GEM_DEBUG
1939 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1940 #endif
1941 bus_space_tag_t t = sc->sc_bustag;
1942 bus_space_handle_t mac = sc->sc_h;
1943 u_int32_t v;
1944
1945 #ifdef GEM_DEBUG
1946 if (sc->sc_debug)
1947 printf("gem_mii_statchg: status change: phy = %d\n",
1948 sc->sc_phys[instance]);
1949 #endif
1950
1951
1952 /* Set tx full duplex options */
1953 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1954 delay(10000); /* reg must be cleared and delay before changing. */
1955 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1956 GEM_MAC_TX_ENABLE;
1957 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1958 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1959 }
1960 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1961
1962 /* XIF Configuration */
1963 /* We should really calculate all this rather than rely on defaults */
1964 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1965 v = GEM_MAC_XIF_LINK_LED;
1966 v |= GEM_MAC_XIF_TX_MII_ENA;
1967
1968 /* If an external transceiver is connected, enable its MII drivers */
1969 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1970 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1971 /* External MII needs echo disable if half duplex. */
1972 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1973 /* turn on full duplex LED */
1974 v |= GEM_MAC_XIF_FDPLX_LED;
1975 else
1976 /* half duplex -- disable echo */
1977 v |= GEM_MAC_XIF_ECHO_DISABL;
1978
1979 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1980 v |= GEM_MAC_XIF_GMII_MODE;
1981 else
1982 v &= ~GEM_MAC_XIF_GMII_MODE;
1983 } else
1984 /* Internal MII needs buf enable */
1985 v |= GEM_MAC_XIF_MII_BUF_ENA;
1986 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1987 }
1988
1989 int
1990 gem_mediachange(ifp)
1991 struct ifnet *ifp;
1992 {
1993 struct gem_softc *sc = ifp->if_softc;
1994
1995 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1996 return (EINVAL);
1997
1998 return (mii_mediachg(&sc->sc_mii));
1999 }
2000
2001 void
2002 gem_mediastatus(ifp, ifmr)
2003 struct ifnet *ifp;
2004 struct ifmediareq *ifmr;
2005 {
2006 struct gem_softc *sc = ifp->if_softc;
2007
2008 if ((ifp->if_flags & IFF_UP) == 0)
2009 return;
2010
2011 mii_pollstat(&sc->sc_mii);
2012 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2013 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2014 }
2015
2016 int gem_ioctldebug = 0;
2017 /*
2018 * Process an ioctl request.
2019 */
2020 int
2021 gem_ioctl(ifp, cmd, data)
2022 struct ifnet *ifp;
2023 u_long cmd;
2024 caddr_t data;
2025 {
2026 struct gem_softc *sc = ifp->if_softc;
2027 struct ifreq *ifr = (struct ifreq *)data;
2028 int s, error = 0;
2029
2030 s = splnet();
2031
2032 switch (cmd) {
2033 case SIOCGIFMEDIA:
2034 case SIOCSIFMEDIA:
2035 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
2036 break;
2037
2038 default:
2039 error = ether_ioctl(ifp, cmd, data);
2040 if (error == ENETRESET) {
2041 /*
2042 * Multicast list has changed; set the hardware filter
2043 * accordingly.
2044 */
2045 if (ifp->if_flags & IFF_RUNNING) {
2046 if (gem_ioctldebug) printf("reset1\n");
2047 gem_init(ifp);
2048 delay(50000);
2049 }
2050 error = 0;
2051 }
2052 break;
2053 }
2054
2055 /* Try to get things going again */
2056 if (ifp->if_flags & IFF_UP) {
2057 if (gem_ioctldebug) printf("start\n");
2058 gem_start(ifp);
2059 }
2060 splx(s);
2061 return (error);
2062 }
2063
2064
2065 void
2066 gem_shutdown(arg)
2067 void *arg;
2068 {
2069 struct gem_softc *sc = (struct gem_softc *)arg;
2070 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2071
2072 gem_stop(ifp, 1);
2073 }
2074
2075 /*
2076 * Set up the logical address filter.
2077 */
2078 void
2079 gem_setladrf(sc)
2080 struct gem_softc *sc;
2081 {
2082 struct ethercom *ec = &sc->sc_ethercom;
2083 struct ifnet *ifp = &ec->ec_if;
2084 struct ether_multi *enm;
2085 struct ether_multistep step;
2086 bus_space_tag_t t = sc->sc_bustag;
2087 bus_space_handle_t h = sc->sc_h;
2088 u_int32_t crc;
2089 u_int32_t hash[16];
2090 u_int32_t v;
2091 int i;
2092
2093 /* Get current RX configuration */
2094 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2095
2096 /*
2097 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2098 * and hash filter. Depending on the case, the right bit will be
2099 * enabled.
2100 */
2101 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2102 GEM_MAC_RX_PROMISC_GRP);
2103
2104 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2105 /* Turn on promiscuous mode */
2106 v |= GEM_MAC_RX_PROMISCUOUS;
2107 ifp->if_flags |= IFF_ALLMULTI;
2108 goto chipit;
2109 }
2110
2111 /*
2112 * Set up multicast address filter by passing all multicast addresses
2113 * through a crc generator, and then using the high order 8 bits as an
2114 * index into the 256 bit logical address filter. The high order 4
2115 * bits select the word, while the other 4 bits select the bit within
2116 * the word (where bit 0 is the MSB).
2117 */
2118
2119 /* Clear hash table */
2120 memset(hash, 0, sizeof(hash));
2121
2122 ETHER_FIRST_MULTI(step, ec, enm);
2123 while (enm != NULL) {
2124 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2125 /*
2126 * We must listen to a range of multicast addresses.
2127 * For now, just accept all multicasts, rather than
2128 * trying to set only those filter bits needed to match
2129 * the range. (At this time, the only use of address
2130 * ranges is for IP multicast routing, for which the
2131 * range is big enough to require all bits set.)
2132 * XXX use the addr filter for this
2133 */
2134 ifp->if_flags |= IFF_ALLMULTI;
2135 v |= GEM_MAC_RX_PROMISC_GRP;
2136 goto chipit;
2137 }
2138
2139 /* Get the LE CRC32 of the address */
2140 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2141
2142 /* Just want the 8 most significant bits. */
2143 crc >>= 24;
2144
2145 /* Set the corresponding bit in the filter. */
2146 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2147
2148 ETHER_NEXT_MULTI(step, enm);
2149 }
2150
2151 v |= GEM_MAC_RX_HASH_FILTER;
2152 ifp->if_flags &= ~IFF_ALLMULTI;
2153
2154 /* Now load the hash table into the chip (if we are using it) */
2155 for (i = 0; i < 16; i++) {
2156 bus_space_write_4(t, h,
2157 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2158 hash[i]);
2159 }
2160
2161 chipit:
2162 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2163 }
2164
2165 #if notyet
2166
2167 /*
2168 * gem_power:
2169 *
2170 * Power management (suspend/resume) hook.
2171 */
2172 void
2173 gem_power(why, arg)
2174 int why;
2175 void *arg;
2176 {
2177 struct gem_softc *sc = arg;
2178 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2179 int s;
2180
2181 s = splnet();
2182 switch (why) {
2183 case PWR_SUSPEND:
2184 case PWR_STANDBY:
2185 gem_stop(ifp, 1);
2186 if (sc->sc_power != NULL)
2187 (*sc->sc_power)(sc, why);
2188 break;
2189 case PWR_RESUME:
2190 if (ifp->if_flags & IFF_UP) {
2191 if (sc->sc_power != NULL)
2192 (*sc->sc_power)(sc, why);
2193 gem_init(ifp);
2194 }
2195 break;
2196 case PWR_SOFTSUSPEND:
2197 case PWR_SOFTSTANDBY:
2198 case PWR_SOFTRESUME:
2199 break;
2200 }
2201 splx(s);
2202 }
2203 #endif
2204