Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.40
      1 /*	$NetBSD: gem.c,v 1.40 2005/05/16 15:56:38 bouyer Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * All rights reserved.
      7  *
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  */
     31 
     32 /*
     33  * Driver for Sun GEM ethernet controllers.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.40 2005/05/16 15:56:38 bouyer Exp $");
     38 
     39 #include "opt_inet.h"
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/syslog.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 
     54 #include <machine/endian.h>
     55 
     56 #include <uvm/uvm_extern.h>
     57 
     58 #include <net/if.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_ether.h>
     62 
     63 #ifdef INET
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 #include <netinet/tcp.h>
     69 #include <netinet/udp.h>
     70 #endif
     71 
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 
     79 #include <dev/mii/mii.h>
     80 #include <dev/mii/miivar.h>
     81 #include <dev/mii/mii_bitbang.h>
     82 
     83 #include <dev/ic/gemreg.h>
     84 #include <dev/ic/gemvar.h>
     85 
     86 #define TRIES	10000
     87 
     88 void		gem_start(struct ifnet *);
     89 void		gem_stop(struct ifnet *, int);
     90 int		gem_ioctl(struct ifnet *, u_long, caddr_t);
     91 void		gem_tick(void *);
     92 void		gem_watchdog(struct ifnet *);
     93 void		gem_shutdown(void *);
     94 int		gem_init(struct ifnet *);
     95 void		gem_init_regs(struct gem_softc *sc);
     96 static int	gem_ringsize(int sz);
     97 int		gem_meminit(struct gem_softc *);
     98 void		gem_mifinit(struct gem_softc *);
     99 void		gem_reset(struct gem_softc *);
    100 int		gem_reset_rx(struct gem_softc *sc);
    101 int		gem_reset_tx(struct gem_softc *sc);
    102 int		gem_disable_rx(struct gem_softc *sc);
    103 int		gem_disable_tx(struct gem_softc *sc);
    104 void		gem_rxdrain(struct gem_softc *sc);
    105 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    106 void		gem_setladrf(struct gem_softc *);
    107 
    108 /* MII methods & callbacks */
    109 static int	gem_mii_readreg(struct device *, int, int);
    110 static void	gem_mii_writereg(struct device *, int, int, int);
    111 static void	gem_mii_statchg(struct device *);
    112 
    113 int		gem_mediachange(struct ifnet *);
    114 void		gem_mediastatus(struct ifnet *, struct ifmediareq *);
    115 
    116 struct mbuf	*gem_get(struct gem_softc *, int, int);
    117 int		gem_put(struct gem_softc *, int, struct mbuf *);
    118 void		gem_read(struct gem_softc *, int, int);
    119 int		gem_eint(struct gem_softc *, u_int);
    120 int		gem_rint(struct gem_softc *);
    121 int		gem_tint(struct gem_softc *);
    122 void		gem_power(int, void *);
    123 
    124 #ifdef GEM_DEBUG
    125 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    126 				printf x
    127 #else
    128 #define	DPRINTF(sc, x)	/* nothing */
    129 #endif
    130 
    131 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    132 
    133 
    134 /*
    135  * gem_attach:
    136  *
    137  *	Attach a Gem interface to the system.
    138  */
    139 void
    140 gem_attach(sc, enaddr)
    141 	struct gem_softc *sc;
    142 	const uint8_t *enaddr;
    143 {
    144 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    145 	struct mii_data *mii = &sc->sc_mii;
    146 	struct mii_softc *child;
    147 	struct ifmedia_entry *ifm;
    148 	int i, error;
    149 	u_int32_t v;
    150 	char *nullbuf;
    151 
    152 	/* Make sure the chip is stopped. */
    153 	ifp->if_softc = sc;
    154 	gem_reset(sc);
    155 
    156 	/*
    157 	 * Allocate the control data structures, and create and load the
    158 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    159 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    160 	 */
    161 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    162 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    163 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    164 		aprint_error(
    165 		   "%s: unable to allocate control data, error = %d\n",
    166 		    sc->sc_dev.dv_xname, error);
    167 		goto fail_0;
    168 	}
    169 
    170 /* XXX should map this in with correct endianness */
    171 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    172 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
    173 	    BUS_DMA_COHERENT)) != 0) {
    174 		aprint_error("%s: unable to map control data, error = %d\n",
    175 		    sc->sc_dev.dv_xname, error);
    176 		goto fail_1;
    177 	}
    178 
    179 	nullbuf =
    180 	    (caddr_t)sc->sc_control_data + sizeof(struct gem_control_data);
    181 
    182 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    183 	    sizeof(struct gem_control_data), 1,
    184 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    185 		aprint_error("%s: unable to create control data DMA map, "
    186 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    187 		goto fail_2;
    188 	}
    189 
    190 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    191 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    192 	    0)) != 0) {
    193 		aprint_error(
    194 		    "%s: unable to load control data DMA map, error = %d\n",
    195 		    sc->sc_dev.dv_xname, error);
    196 		goto fail_3;
    197 	}
    198 
    199 	memset(nullbuf, 0, ETHER_MIN_TX);
    200 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    201 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    202 		aprint_error("%s: unable to create padding DMA map, "
    203 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    204 		goto fail_4;
    205 	}
    206 
    207 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    208 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    209 		aprint_error(
    210 		    "%s: unable to load padding DMA map, error = %d\n",
    211 		    sc->sc_dev.dv_xname, error);
    212 		goto fail_5;
    213 	}
    214 
    215 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    216 	    BUS_DMASYNC_PREWRITE);
    217 
    218 	/*
    219 	 * Initialize the transmit job descriptors.
    220 	 */
    221 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    222 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    223 
    224 	/*
    225 	 * Create the transmit buffer DMA maps.
    226 	 */
    227 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    228 		struct gem_txsoft *txs;
    229 
    230 		txs = &sc->sc_txsoft[i];
    231 		txs->txs_mbuf = NULL;
    232 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    233 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    234 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    235 		    &txs->txs_dmamap)) != 0) {
    236 			aprint_error("%s: unable to create tx DMA map %d, "
    237 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    238 			goto fail_6;
    239 		}
    240 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    241 	}
    242 
    243 	/*
    244 	 * Create the receive buffer DMA maps.
    245 	 */
    246 	for (i = 0; i < GEM_NRXDESC; i++) {
    247 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    248 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    249 			aprint_error("%s: unable to create rx DMA map %d, "
    250 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    251 			goto fail_7;
    252 		}
    253 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    254 	}
    255 
    256 	/*
    257 	 * From this point forward, the attachment cannot fail.  A failure
    258 	 * before this point releases all resources that may have been
    259 	 * allocated.
    260 	 */
    261 
    262 	/* Announce ourselves. */
    263 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
    264 	    ether_sprintf(enaddr));
    265 
    266 	/* Get RX FIFO size */
    267 	sc->sc_rxfifosize = 64 *
    268 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
    269 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    270 
    271 	/* Get TX FIFO size */
    272 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
    273 	aprint_normal(", %uKB TX fifo\n", v / 16);
    274 
    275 	/* Initialize ifnet structure. */
    276 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    277 	ifp->if_softc = sc;
    278 	ifp->if_flags =
    279 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    280 	ifp->if_capabilities |=
    281 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    282 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    283 	ifp->if_start = gem_start;
    284 	ifp->if_ioctl = gem_ioctl;
    285 	ifp->if_watchdog = gem_watchdog;
    286 	ifp->if_stop = gem_stop;
    287 	ifp->if_init = gem_init;
    288 	IFQ_SET_READY(&ifp->if_snd);
    289 
    290 	/* Initialize ifmedia structures and MII info */
    291 	mii->mii_ifp = ifp;
    292 	mii->mii_readreg = gem_mii_readreg;
    293 	mii->mii_writereg = gem_mii_writereg;
    294 	mii->mii_statchg = gem_mii_statchg;
    295 
    296 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
    297 
    298 	gem_mifinit(sc);
    299 
    300 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    301 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    302 
    303 	child = LIST_FIRST(&mii->mii_phys);
    304 	if (child == NULL) {
    305 		/* No PHY attached */
    306 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    307 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    308 	} else {
    309 		/*
    310 		 * Walk along the list of attached MII devices and
    311 		 * establish an `MII instance' to `phy number'
    312 		 * mapping. We'll use this mapping in media change
    313 		 * requests to determine which phy to use to program
    314 		 * the MIF configuration register.
    315 		 */
    316 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    317 			/*
    318 			 * Note: we support just two PHYs: the built-in
    319 			 * internal device and an external on the MII
    320 			 * connector.
    321 			 */
    322 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    323 				aprint_error(
    324 				    "%s: cannot accomodate MII device %s"
    325 				       " at phy %d, instance %d\n",
    326 				       sc->sc_dev.dv_xname,
    327 				       child->mii_dev.dv_xname,
    328 				       child->mii_phy, child->mii_inst);
    329 				continue;
    330 			}
    331 
    332 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    333 		}
    334 
    335 		/*
    336 		 * Now select and activate the PHY we will use.
    337 		 *
    338 		 * The order of preference is External (MDI1),
    339 		 * Internal (MDI0), Serial Link (no MII).
    340 		 */
    341 		if (sc->sc_phys[1]) {
    342 #ifdef DEBUG
    343 			aprint_debug("using external phy\n");
    344 #endif
    345 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    346 		} else {
    347 #ifdef DEBUG
    348 			aprint_debug("using internal phy\n");
    349 #endif
    350 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    351 		}
    352 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
    353 			sc->sc_mif_config);
    354 
    355 		/*
    356 		 * XXX - we can really do the following ONLY if the
    357 		 * phy indeed has the auto negotiation capability!!
    358 		 */
    359 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    360 	}
    361 
    362 	/*
    363 	 * If we support GigE media, we support jumbo frames too.
    364 	 * Unless we are Apple.
    365 	 */
    366 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
    367 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    368 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    369 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    370 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    371 			if (sc->sc_variant != GEM_APPLE_GMAC)
    372 				sc->sc_ethercom.ec_capabilities
    373 				    |= ETHERCAP_JUMBO_MTU;
    374 
    375 			sc->sc_flags |= GEM_GIGABIT;
    376 			break;
    377 		}
    378 	}
    379 
    380 	/* claim 802.1q capability */
    381 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    382 
    383 	/* Attach the interface. */
    384 	if_attach(ifp);
    385 	ether_ifattach(ifp, enaddr);
    386 
    387 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    388 	if (sc->sc_sh == NULL)
    389 		panic("gem_config: can't establish shutdownhook");
    390 
    391 #if NRND > 0
    392 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    393 			  RND_TYPE_NET, 0);
    394 #endif
    395 
    396 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    397 	    NULL, sc->sc_dev.dv_xname, "interrupts");
    398 #ifdef GEM_COUNTERS
    399 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    400 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
    401 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    402 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
    403 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    404 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
    405 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    406 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
    407 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    408 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
    409 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    410 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
    411 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    412 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
    413 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    414 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
    415 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    416 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
    417 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    418 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
    419 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    420 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
    421 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    422 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
    423 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    424 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
    425 #endif
    426 
    427 #if notyet
    428 	/*
    429 	 * Add a suspend hook to make sure we come back up after a
    430 	 * resume.
    431 	 */
    432 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
    433 	if (sc->sc_powerhook == NULL)
    434 		aprint_error("%s: WARNING: unable to establish power hook\n",
    435 		    sc->sc_dev.dv_xname);
    436 #endif
    437 
    438 	callout_init(&sc->sc_tick_ch);
    439 	return;
    440 
    441 	/*
    442 	 * Free any resources we've allocated during the failed attach
    443 	 * attempt.  Do this in reverse order and fall through.
    444 	 */
    445  fail_7:
    446 	for (i = 0; i < GEM_NRXDESC; i++) {
    447 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    448 			bus_dmamap_destroy(sc->sc_dmatag,
    449 			    sc->sc_rxsoft[i].rxs_dmamap);
    450 	}
    451  fail_6:
    452 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    453 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    454 			bus_dmamap_destroy(sc->sc_dmatag,
    455 			    sc->sc_txsoft[i].txs_dmamap);
    456 	}
    457 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    458  fail_5:
    459 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    460  fail_4:
    461 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)nullbuf, ETHER_MIN_TX);
    462  fail_3:
    463 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    464  fail_2:
    465 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
    466 	    sizeof(struct gem_control_data));
    467  fail_1:
    468 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    469  fail_0:
    470 	return;
    471 }
    472 
    473 
    474 void
    475 gem_tick(arg)
    476 	void *arg;
    477 {
    478 	struct gem_softc *sc = arg;
    479 	int s;
    480 
    481 	s = splnet();
    482 	mii_tick(&sc->sc_mii);
    483 	splx(s);
    484 
    485 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    486 
    487 }
    488 
    489 void
    490 gem_reset(sc)
    491 	struct gem_softc *sc;
    492 {
    493 	bus_space_tag_t t = sc->sc_bustag;
    494 	bus_space_handle_t h = sc->sc_h;
    495 	int i;
    496 	int s;
    497 
    498 	s = splnet();
    499 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    500 	gem_reset_rx(sc);
    501 	gem_reset_tx(sc);
    502 
    503 	/* Do a full reset */
    504 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    505 	for (i=TRIES; i--; delay(100))
    506 		if ((bus_space_read_4(t, h, GEM_RESET) &
    507 			(GEM_RESET_RX|GEM_RESET_TX)) == 0)
    508 			break;
    509 	if ((bus_space_read_4(t, h, GEM_RESET) &
    510 		(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
    511 		printf("%s: cannot reset device\n",
    512 			sc->sc_dev.dv_xname);
    513 	}
    514 	splx(s);
    515 }
    516 
    517 
    518 /*
    519  * gem_rxdrain:
    520  *
    521  *	Drain the receive queue.
    522  */
    523 void
    524 gem_rxdrain(struct gem_softc *sc)
    525 {
    526 	struct gem_rxsoft *rxs;
    527 	int i;
    528 
    529 	for (i = 0; i < GEM_NRXDESC; i++) {
    530 		rxs = &sc->sc_rxsoft[i];
    531 		if (rxs->rxs_mbuf != NULL) {
    532 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    533 			m_freem(rxs->rxs_mbuf);
    534 			rxs->rxs_mbuf = NULL;
    535 		}
    536 	}
    537 }
    538 
    539 /*
    540  * Reset the whole thing.
    541  */
    542 void
    543 gem_stop(struct ifnet *ifp, int disable)
    544 {
    545 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    546 	struct gem_txsoft *txs;
    547 
    548 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    549 
    550 	callout_stop(&sc->sc_tick_ch);
    551 	mii_down(&sc->sc_mii);
    552 
    553 	/* XXX - Should we reset these instead? */
    554 	gem_disable_rx(sc);
    555 	gem_disable_tx(sc);
    556 
    557 	/*
    558 	 * Release any queued transmit buffers.
    559 	 */
    560 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    561 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    562 		if (txs->txs_mbuf != NULL) {
    563 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    564 			m_freem(txs->txs_mbuf);
    565 			txs->txs_mbuf = NULL;
    566 		}
    567 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    568 	}
    569 
    570 	if (disable) {
    571 		gem_rxdrain(sc);
    572 	}
    573 
    574 	/*
    575 	 * Mark the interface down and cancel the watchdog timer.
    576 	 */
    577 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    578 	ifp->if_timer = 0;
    579 }
    580 
    581 
    582 /*
    583  * Reset the receiver
    584  */
    585 int
    586 gem_reset_rx(struct gem_softc *sc)
    587 {
    588 	bus_space_tag_t t = sc->sc_bustag;
    589 	bus_space_handle_t h = sc->sc_h;
    590 	int i;
    591 
    592 
    593 	/*
    594 	 * Resetting while DMA is in progress can cause a bus hang, so we
    595 	 * disable DMA first.
    596 	 */
    597 	gem_disable_rx(sc);
    598 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    599 	/* Wait till it finishes */
    600 	for (i=TRIES; i--; delay(100))
    601 		if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
    602 			break;
    603 	if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
    604 		printf("%s: cannot disable read DMA\n",
    605 			sc->sc_dev.dv_xname);
    606 
    607 	/* Wait 5ms extra. */
    608 	delay(5000);
    609 
    610 	/* Finally, reset the ERX */
    611 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
    612 	/* Wait till it finishes */
    613 	for (i=TRIES; i--; delay(100))
    614 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
    615 			break;
    616 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
    617 		printf("%s: cannot reset receiver\n",
    618 			sc->sc_dev.dv_xname);
    619 		return (1);
    620 	}
    621 	return (0);
    622 }
    623 
    624 
    625 /*
    626  * Reset the transmitter
    627  */
    628 int
    629 gem_reset_tx(struct gem_softc *sc)
    630 {
    631 	bus_space_tag_t t = sc->sc_bustag;
    632 	bus_space_handle_t h = sc->sc_h;
    633 	int i;
    634 
    635 	/*
    636 	 * Resetting while DMA is in progress can cause a bus hang, so we
    637 	 * disable DMA first.
    638 	 */
    639 	gem_disable_tx(sc);
    640 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    641 	/* Wait till it finishes */
    642 	for (i=TRIES; i--; delay(100))
    643 		if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
    644 			break;
    645 	if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
    646 		printf("%s: cannot disable read DMA\n",
    647 			sc->sc_dev.dv_xname);
    648 
    649 	/* Wait 5ms extra. */
    650 	delay(5000);
    651 
    652 	/* Finally, reset the ETX */
    653 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
    654 	/* Wait till it finishes */
    655 	for (i=TRIES; i--; delay(100))
    656 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
    657 			break;
    658 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
    659 		printf("%s: cannot reset receiver\n",
    660 			sc->sc_dev.dv_xname);
    661 		return (1);
    662 	}
    663 	return (0);
    664 }
    665 
    666 /*
    667  * disable receiver.
    668  */
    669 int
    670 gem_disable_rx(struct gem_softc *sc)
    671 {
    672 	bus_space_tag_t t = sc->sc_bustag;
    673 	bus_space_handle_t h = sc->sc_h;
    674 	int i;
    675 	u_int32_t cfg;
    676 
    677 	/* Flip the enable bit */
    678 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    679 	cfg &= ~GEM_MAC_RX_ENABLE;
    680 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    681 
    682 	/* Wait for it to finish */
    683 	for (i=TRIES; i--; delay(100))
    684 		if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
    685 			GEM_MAC_RX_ENABLE) == 0)
    686 			return (0);
    687 	return (1);
    688 }
    689 
    690 /*
    691  * disable transmitter.
    692  */
    693 int
    694 gem_disable_tx(struct gem_softc *sc)
    695 {
    696 	bus_space_tag_t t = sc->sc_bustag;
    697 	bus_space_handle_t h = sc->sc_h;
    698 	int i;
    699 	u_int32_t cfg;
    700 
    701 	/* Flip the enable bit */
    702 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    703 	cfg &= ~GEM_MAC_TX_ENABLE;
    704 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    705 
    706 	/* Wait for it to finish */
    707 	for (i=TRIES; i--; delay(100))
    708 		if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
    709 			GEM_MAC_TX_ENABLE) == 0)
    710 			return (0);
    711 	return (1);
    712 }
    713 
    714 /*
    715  * Initialize interface.
    716  */
    717 int
    718 gem_meminit(struct gem_softc *sc)
    719 {
    720 	struct gem_rxsoft *rxs;
    721 	int i, error;
    722 
    723 	/*
    724 	 * Initialize the transmit descriptor ring.
    725 	 */
    726 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    727 	for (i = 0; i < GEM_NTXDESC; i++) {
    728 		sc->sc_txdescs[i].gd_flags = 0;
    729 		sc->sc_txdescs[i].gd_addr = 0;
    730 	}
    731 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    732 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    733 	sc->sc_txfree = GEM_NTXDESC-1;
    734 	sc->sc_txnext = 0;
    735 	sc->sc_txwin = 0;
    736 
    737 	/*
    738 	 * Initialize the receive descriptor and receive job
    739 	 * descriptor rings.
    740 	 */
    741 	for (i = 0; i < GEM_NRXDESC; i++) {
    742 		rxs = &sc->sc_rxsoft[i];
    743 		if (rxs->rxs_mbuf == NULL) {
    744 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    745 				printf("%s: unable to allocate or map rx "
    746 				    "buffer %d, error = %d\n",
    747 				    sc->sc_dev.dv_xname, i, error);
    748 				/*
    749 				 * XXX Should attempt to run with fewer receive
    750 				 * XXX buffers instead of just failing.
    751 				 */
    752 				gem_rxdrain(sc);
    753 				return (1);
    754 			}
    755 		} else
    756 			GEM_INIT_RXDESC(sc, i);
    757 	}
    758 	sc->sc_rxptr = 0;
    759 
    760 	return (0);
    761 }
    762 
    763 static int
    764 gem_ringsize(int sz)
    765 {
    766 	switch (sz) {
    767 	case 32:
    768 		return GEM_RING_SZ_32;
    769 	case 64:
    770 		return GEM_RING_SZ_64;
    771 	case 128:
    772 		return GEM_RING_SZ_128;
    773 	case 256:
    774 		return GEM_RING_SZ_256;
    775 	case 512:
    776 		return GEM_RING_SZ_512;
    777 	case 1024:
    778 		return GEM_RING_SZ_1024;
    779 	case 2048:
    780 		return GEM_RING_SZ_2048;
    781 	case 4096:
    782 		return GEM_RING_SZ_4096;
    783 	case 8192:
    784 		return GEM_RING_SZ_8192;
    785 	default:
    786 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    787 		return GEM_RING_SZ_32;
    788 	}
    789 }
    790 
    791 /*
    792  * Initialization of interface; set up initialization block
    793  * and transmit/receive descriptor rings.
    794  */
    795 int
    796 gem_init(struct ifnet *ifp)
    797 {
    798 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    799 	bus_space_tag_t t = sc->sc_bustag;
    800 	bus_space_handle_t h = sc->sc_h;
    801 	int s;
    802 	u_int max_frame_size;
    803 	u_int32_t v;
    804 
    805 	s = splnet();
    806 
    807 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
    808 	/*
    809 	 * Initialization sequence. The numbered steps below correspond
    810 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    811 	 * Channel Engine manual (part of the PCIO manual).
    812 	 * See also the STP2002-STQ document from Sun Microsystems.
    813 	 */
    814 
    815 	/* step 1 & 2. Reset the Ethernet Channel */
    816 	gem_stop(ifp, 0);
    817 	gem_reset(sc);
    818 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
    819 
    820 	/* Re-initialize the MIF */
    821 	gem_mifinit(sc);
    822 
    823 	/* Call MI reset function if any */
    824 	if (sc->sc_hwreset)
    825 		(*sc->sc_hwreset)(sc);
    826 
    827 	/* step 3. Setup data structures in host memory */
    828 	gem_meminit(sc);
    829 
    830 	/* step 4. TX MAC registers & counters */
    831 	gem_init_regs(sc);
    832 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
    833 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
    834 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
    835 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
    836 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    837 	    max_frame_size|/* burst size */(0x2000<<16));
    838 
    839 	/* step 5. RX MAC registers & counters */
    840 	gem_setladrf(sc);
    841 
    842 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    843 	/* NOTE: we use only 32-bit DMA addresses here. */
    844 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
    845 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
    846 
    847 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    848 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    849 
    850 	/* step 8. Global Configuration & Interrupt Mask */
    851 	bus_space_write_4(t, h, GEM_INTMASK,
    852 		      ~(GEM_INTR_TX_INTME|
    853 			GEM_INTR_TX_EMPTY|
    854 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
    855 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
    856 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
    857 			GEM_INTR_BERR));
    858 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
    859 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
    860 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
    861 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
    862 
    863 	/* step 9. ETX Configuration: use mostly default values */
    864 
    865 	/* Enable DMA */
    866 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
    867 	bus_space_write_4(t, h, GEM_TX_CONFIG,
    868 		v|GEM_TX_CONFIG_TXDMA_EN|
    869 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
    870 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
    871 
    872 	/* step 10. ERX Configuration */
    873 
    874 	/* Encode Receive Descriptor ring size: four possible values */
    875 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    876 
    877 	/* Set receive h/w checksum offset */
    878 #ifdef INET
    879 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    880 	      ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    881 	        ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    882 #endif
    883 
    884 	/* Enable DMA */
    885 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    886 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
    887 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
    888 
    889 	/*
    890 	 * The following value is for an OFF Threshold of about 3/4 full
    891 	 * and an ON Threshold of 1/4 full.
    892 	 */
    893 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    894 	     (3 * sc->sc_rxfifosize / 256) |
    895 	     (   (sc->sc_rxfifosize / 256) << 12));
    896 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
    897 
    898 	/* step 11. Configure Media */
    899 	mii_mediachg(&sc->sc_mii);
    900 
    901 /* XXXX Serial link needs a whole different setup. */
    902 
    903 
    904 	/* step 12. RX_MAC Configuration Register */
    905 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    906 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
    907 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
    908 
    909 	/* step 14. Issue Transmit Pending command */
    910 
    911 	/* Call MI initialization function if any */
    912 	if (sc->sc_hwinit)
    913 		(*sc->sc_hwinit)(sc);
    914 
    915 
    916 	/* step 15.  Give the reciever a swift kick */
    917 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
    918 
    919 	/* Start the one second timer. */
    920 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    921 
    922 	ifp->if_flags |= IFF_RUNNING;
    923 	ifp->if_flags &= ~IFF_OACTIVE;
    924 	ifp->if_timer = 0;
    925 	splx(s);
    926 
    927 	return (0);
    928 }
    929 
    930 void
    931 gem_init_regs(struct gem_softc *sc)
    932 {
    933 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    934 	bus_space_tag_t t = sc->sc_bustag;
    935 	bus_space_handle_t h = sc->sc_h;
    936 	const u_char *laddr = LLADDR(ifp->if_sadl);
    937 	u_int32_t v;
    938 
    939 	/* These regs are not cleared on reset */
    940 	if (!sc->sc_inited) {
    941 
    942 		/* Wooo.  Magic values. */
    943 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
    944 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
    945 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
    946 
    947 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
    948 		/* Max frame and max burst size */
    949 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    950 		     ETHER_MAX_LEN | (0x2000<<16));
    951 
    952 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
    953 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
    954 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
    955 		/* Dunno.... */
    956 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
    957 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
    958 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
    959 
    960 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
    961 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
    962 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
    963 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
    964 
    965 		/* MAC control addr set to 01:80:c2:00:00:01 */
    966 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
    967 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
    968 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
    969 
    970 		/* MAC filter addr set to 0:0:0:0:0:0 */
    971 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
    972 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
    973 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
    974 
    975 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
    976 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
    977 
    978 		sc->sc_inited = 1;
    979 	}
    980 
    981 	/* Counters need to be zeroed */
    982 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
    983 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
    984 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
    985 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
    986 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
    987 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
    988 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
    989 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
    990 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
    991 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
    992 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
    993 
    994 	/* Un-pause stuff */
    995 #if 0
    996 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
    997 #else
    998 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
    999 #endif
   1000 
   1001 	/*
   1002 	 * Set the station address.
   1003 	 */
   1004 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1005 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1006 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1007 
   1008 #if 0
   1009 	if (sc->sc_variant != APPLE_GMAC)
   1010 		return;
   1011 #endif
   1012 
   1013 	/*
   1014 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1015 	 */
   1016 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1017 	v = GEM_MAC_XIF_TX_MII_ENA;
   1018 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1019 		v |= GEM_MAC_XIF_FDPLX_LED;
   1020 		if (sc->sc_flags & GEM_GIGABIT)
   1021 			v |= GEM_MAC_XIF_GMII_MODE;
   1022 	}
   1023 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1024 }
   1025 
   1026 void
   1027 gem_start(ifp)
   1028 	struct ifnet *ifp;
   1029 {
   1030 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1031 	struct mbuf *m0, *m;
   1032 	struct gem_txsoft *txs, *last_txs;
   1033 	bus_dmamap_t dmamap;
   1034 	int error, firsttx, nexttx, lasttx = -1, ofree, seg;
   1035 	uint64_t flags = 0;
   1036 
   1037 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1038 		return;
   1039 
   1040 	/*
   1041 	 * Remember the previous number of free descriptors and
   1042 	 * the first descriptor we'll use.
   1043 	 */
   1044 	ofree = sc->sc_txfree;
   1045 	firsttx = sc->sc_txnext;
   1046 
   1047 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1048 	    sc->sc_dev.dv_xname, ofree, firsttx));
   1049 
   1050 	/*
   1051 	 * Loop through the send queue, setting up transmit descriptors
   1052 	 * until we drain the queue, or use up all available transmit
   1053 	 * descriptors.
   1054 	 */
   1055 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1056 	       sc->sc_txfree != 0) {
   1057 		/*
   1058 		 * Grab a packet off the queue.
   1059 		 */
   1060 		IFQ_POLL(&ifp->if_snd, m0);
   1061 		if (m0 == NULL)
   1062 			break;
   1063 		m = NULL;
   1064 
   1065 		dmamap = txs->txs_dmamap;
   1066 
   1067 		/*
   1068 		 * Load the DMA map.  If this fails, the packet either
   1069 		 * didn't fit in the alloted number of segments, or we were
   1070 		 * short on resources.  In this case, we'll copy and try
   1071 		 * again.
   1072 		 */
   1073 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1074 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1075 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1076 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1077 			if (m0->m_pkthdr.len > MCLBYTES) {
   1078 				printf("%s: unable to allocate jumbo Tx "
   1079 				    "cluster\n", sc->sc_dev.dv_xname);
   1080 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1081 				m_freem(m0);
   1082 				continue;
   1083 			}
   1084 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1085 			if (m == NULL) {
   1086 				printf("%s: unable to allocate Tx mbuf\n",
   1087 				    sc->sc_dev.dv_xname);
   1088 				break;
   1089 			}
   1090 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1091 			if (m0->m_pkthdr.len > MHLEN) {
   1092 				MCLGET(m, M_DONTWAIT);
   1093 				if ((m->m_flags & M_EXT) == 0) {
   1094 					printf("%s: unable to allocate Tx "
   1095 					    "cluster\n", sc->sc_dev.dv_xname);
   1096 					m_freem(m);
   1097 					break;
   1098 				}
   1099 			}
   1100 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1101 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1102 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1103 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1104 			if (error) {
   1105 				printf("%s: unable to load Tx buffer, "
   1106 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1107 				break;
   1108 			}
   1109 		}
   1110 
   1111 		/*
   1112 		 * Ensure we have enough descriptors free to describe
   1113 		 * the packet.
   1114 		 */
   1115 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1116 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1117 			/*
   1118 			 * Not enough free descriptors to transmit this
   1119 			 * packet.  We haven't committed to anything yet,
   1120 			 * so just unload the DMA map, put the packet
   1121 			 * back on the queue, and punt.  Notify the upper
   1122 			 * layer that there are no more slots left.
   1123 			 *
   1124 			 * XXX We could allocate an mbuf and copy, but
   1125 			 * XXX it is worth it?
   1126 			 */
   1127 			ifp->if_flags |= IFF_OACTIVE;
   1128 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1129 			if (m != NULL)
   1130 				m_freem(m);
   1131 			break;
   1132 		}
   1133 
   1134 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1135 		if (m != NULL) {
   1136 			m_freem(m0);
   1137 			m0 = m;
   1138 		}
   1139 
   1140 		/*
   1141 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1142 		 */
   1143 
   1144 		/* Sync the DMA map. */
   1145 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1146 		    BUS_DMASYNC_PREWRITE);
   1147 
   1148 		/*
   1149 		 * Initialize the transmit descriptors.
   1150 		 */
   1151 		for (nexttx = sc->sc_txnext, seg = 0;
   1152 		     seg < dmamap->dm_nsegs;
   1153 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1154 
   1155 			/*
   1156 			 * If this is the first descriptor we're
   1157 			 * enqueueing, set the start of packet flag,
   1158 			 * and the checksum stuff if we want the hardware
   1159 			 * to do it.
   1160 			 */
   1161 			sc->sc_txdescs[nexttx].gd_addr =
   1162 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1163 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1164 			if (nexttx == firsttx) {
   1165 				flags |= GEM_TD_START_OF_PACKET;
   1166 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1167 					sc->sc_txwin = 0;
   1168 					flags |= GEM_TD_INTERRUPT_ME;
   1169 				}
   1170 
   1171 #ifdef INET
   1172 				/* h/w checksum */
   1173 				if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
   1174 				    M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
   1175 				    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1176 					struct ether_header *eh;
   1177 					uint16_t offset, start;
   1178 
   1179 					eh = mtod(m0, struct ether_header *);
   1180 					switch (ntohs(eh->ether_type)) {
   1181 					case ETHERTYPE_IP:
   1182 						start = ETHER_HDR_LEN;
   1183 						break;
   1184 					case ETHERTYPE_VLAN:
   1185 						start = ETHER_HDR_LEN +
   1186 							ETHER_VLAN_ENCAP_LEN;
   1187 						break;
   1188 					default:
   1189 						/* unsupported, drop it */
   1190 						m_free(m0);
   1191 						continue;
   1192 					}
   1193 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1194 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1195 					flags |= (start <<
   1196 						  GEM_TD_CXSUM_STARTSHFT) |
   1197 						 (offset <<
   1198 						  GEM_TD_CXSUM_STUFFSHFT) |
   1199 						 GEM_TD_CXSUM_ENABLE;
   1200 				}
   1201 #endif
   1202 			}
   1203 			if (seg == dmamap->dm_nsegs - 1) {
   1204 				flags |= GEM_TD_END_OF_PACKET;
   1205 			} else {
   1206 				/* last flag set outside of loop */
   1207 				sc->sc_txdescs[nexttx].gd_flags =
   1208 					GEM_DMA_WRITE(sc, flags);
   1209 			}
   1210 			lasttx = nexttx;
   1211 		}
   1212 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1213 			/* add padding buffer at end of chain */
   1214 			flags &= ~GEM_TD_END_OF_PACKET;
   1215 			sc->sc_txdescs[lasttx].gd_flags =
   1216 			    GEM_DMA_WRITE(sc, flags);
   1217 
   1218 			sc->sc_txdescs[nexttx].gd_addr =
   1219 			    GEM_DMA_WRITE(sc,
   1220 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1221 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1222 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1223 			lasttx = nexttx;
   1224 			nexttx = GEM_NEXTTX(nexttx);
   1225 			seg++;
   1226 		}
   1227 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1228 
   1229 		KASSERT(lasttx != -1);
   1230 
   1231 		/*
   1232 		 * Store a pointer to the packet so we can free it later,
   1233 		 * and remember what txdirty will be once the packet is
   1234 		 * done.
   1235 		 */
   1236 		txs->txs_mbuf = m0;
   1237 		txs->txs_firstdesc = sc->sc_txnext;
   1238 		txs->txs_lastdesc = lasttx;
   1239 		txs->txs_ndescs = seg;
   1240 
   1241 #ifdef GEM_DEBUG
   1242 		if (ifp->if_flags & IFF_DEBUG) {
   1243 			printf("     gem_start %p transmit chain:\n", txs);
   1244 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
   1245 				printf("descriptor %d:\t", seg);
   1246 				printf("gd_flags:   0x%016llx\t", (long long)
   1247 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
   1248 				printf("gd_addr: 0x%016llx\n", (long long)
   1249 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
   1250 				if (seg == lasttx)
   1251 					break;
   1252 			}
   1253 		}
   1254 #endif
   1255 
   1256 		/* Sync the descriptors we're using. */
   1257 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1258 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1259 
   1260 		/* Advance the tx pointer. */
   1261 		sc->sc_txfree -= txs->txs_ndescs;
   1262 		sc->sc_txnext = nexttx;
   1263 
   1264 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1265 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1266 
   1267 		last_txs = txs;
   1268 
   1269 #if NBPFILTER > 0
   1270 		/*
   1271 		 * Pass the packet to any BPF listeners.
   1272 		 */
   1273 		if (ifp->if_bpf)
   1274 			bpf_mtap(ifp->if_bpf, m0);
   1275 #endif /* NBPFILTER > 0 */
   1276 	}
   1277 
   1278 	if (txs == NULL || sc->sc_txfree == 0) {
   1279 		/* No more slots left; notify upper layer. */
   1280 		ifp->if_flags |= IFF_OACTIVE;
   1281 	}
   1282 
   1283 	if (sc->sc_txfree != ofree) {
   1284 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1285 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1286 		/*
   1287 		 * The entire packet chain is set up.
   1288 		 * Kick the transmitter.
   1289 		 */
   1290 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1291 			sc->sc_dev.dv_xname, nexttx));
   1292 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
   1293 			sc->sc_txnext);
   1294 
   1295 		/* Set a watchdog timer in case the chip flakes out. */
   1296 		ifp->if_timer = 5;
   1297 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1298 			sc->sc_dev.dv_xname, ifp->if_timer));
   1299 	}
   1300 }
   1301 
   1302 /*
   1303  * Transmit interrupt.
   1304  */
   1305 int
   1306 gem_tint(sc)
   1307 	struct gem_softc *sc;
   1308 {
   1309 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1310 	bus_space_tag_t t = sc->sc_bustag;
   1311 	bus_space_handle_t mac = sc->sc_h;
   1312 	struct gem_txsoft *txs;
   1313 	int txlast;
   1314 	int progress = 0;
   1315 
   1316 
   1317 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1318 
   1319 	/*
   1320 	 * Unload collision counters
   1321 	 */
   1322 	ifp->if_collisions +=
   1323 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1324 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
   1325 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1326 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1327 
   1328 	/*
   1329 	 * then clear the hardware counters.
   1330 	 */
   1331 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1332 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1333 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1334 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1335 
   1336 	/*
   1337 	 * Go through our Tx list and free mbufs for those
   1338 	 * frames that have been transmitted.
   1339 	 */
   1340 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1341 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
   1342 		    txs->txs_ndescs,
   1343 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1344 
   1345 #ifdef GEM_DEBUG
   1346 		if (ifp->if_flags & IFF_DEBUG) {
   1347 			int i;
   1348 			printf("    txsoft %p transmit chain:\n", txs);
   1349 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
   1350 				printf("descriptor %d: ", i);
   1351 				printf("gd_flags: 0x%016llx\t", (long long)
   1352 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1353 				printf("gd_addr: 0x%016llx\n", (long long)
   1354 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1355 				if (i == txs->txs_lastdesc)
   1356 					break;
   1357 			}
   1358 		}
   1359 #endif
   1360 
   1361 		/*
   1362 		 * In theory, we could harveast some descriptors before
   1363 		 * the ring is empty, but that's a bit complicated.
   1364 		 *
   1365 		 * GEM_TX_COMPLETION points to the last descriptor
   1366 		 * processed +1.
   1367 		 */
   1368 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1369 		DPRINTF(sc,
   1370 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1371 				txs->txs_lastdesc, txlast));
   1372 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1373 			if ((txlast >= txs->txs_firstdesc) &&
   1374 				(txlast <= txs->txs_lastdesc))
   1375 				break;
   1376 		} else {
   1377 			/* Ick -- this command wraps */
   1378 			if ((txlast >= txs->txs_firstdesc) ||
   1379 				(txlast <= txs->txs_lastdesc))
   1380 				break;
   1381 		}
   1382 
   1383 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1384 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1385 
   1386 		sc->sc_txfree += txs->txs_ndescs;
   1387 
   1388 		if (txs->txs_mbuf == NULL) {
   1389 #ifdef DIAGNOSTIC
   1390 				panic("gem_txintr: null mbuf");
   1391 #endif
   1392 		}
   1393 
   1394 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1395 		    0, txs->txs_dmamap->dm_mapsize,
   1396 		    BUS_DMASYNC_POSTWRITE);
   1397 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1398 		m_freem(txs->txs_mbuf);
   1399 		txs->txs_mbuf = NULL;
   1400 
   1401 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1402 
   1403 		ifp->if_opackets++;
   1404 		progress = 1;
   1405 	}
   1406 
   1407 #if 0
   1408 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1409 		"GEM_TX_DATA_PTR %llx "
   1410 		"GEM_TX_COMPLETION %x\n",
   1411 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
   1412 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1413 			GEM_TX_DATA_PTR_HI) << 32) |
   1414 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1415 			GEM_TX_DATA_PTR_LO),
   1416 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
   1417 #endif
   1418 
   1419 	if (progress) {
   1420 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1421 			sc->sc_txwin = 0;
   1422 
   1423 		ifp->if_flags &= ~IFF_OACTIVE;
   1424 		gem_start(ifp);
   1425 
   1426 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
   1427 			ifp->if_timer = 0;
   1428 	}
   1429 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1430 		sc->sc_dev.dv_xname, ifp->if_timer));
   1431 
   1432 	return (1);
   1433 }
   1434 
   1435 /*
   1436  * Receive interrupt.
   1437  */
   1438 int
   1439 gem_rint(sc)
   1440 	struct gem_softc *sc;
   1441 {
   1442 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1443 	bus_space_tag_t t = sc->sc_bustag;
   1444 	bus_space_handle_t h = sc->sc_h;
   1445 	struct gem_rxsoft *rxs;
   1446 	struct mbuf *m;
   1447 	u_int64_t rxstat;
   1448 	u_int32_t rxcomp;
   1449 	int i, len, progress = 0;
   1450 
   1451 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1452 
   1453 	/*
   1454 	 * Read the completion register once.  This limits
   1455 	 * how long the following loop can execute.
   1456 	 */
   1457 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1458 
   1459 	/*
   1460 	 * XXXX Read the lastrx only once at the top for speed.
   1461 	 */
   1462 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1463 		sc->sc_rxptr, rxcomp));
   1464 
   1465 	/*
   1466 	 * Go into the loop at least once.
   1467 	 */
   1468 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1469 	     i = GEM_NEXTRX(i)) {
   1470 		rxs = &sc->sc_rxsoft[i];
   1471 
   1472 		GEM_CDRXSYNC(sc, i,
   1473 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1474 
   1475 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1476 
   1477 		if (rxstat & GEM_RD_OWN) {
   1478 			/*
   1479 			 * We have processed all of the receive buffers.
   1480 			 */
   1481 			break;
   1482 		}
   1483 
   1484 		progress++;
   1485 		ifp->if_ipackets++;
   1486 
   1487 		if (rxstat & GEM_RD_BAD_CRC) {
   1488 			ifp->if_ierrors++;
   1489 			printf("%s: receive error: CRC error\n",
   1490 				sc->sc_dev.dv_xname);
   1491 			GEM_INIT_RXDESC(sc, i);
   1492 			continue;
   1493 		}
   1494 
   1495 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1496 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1497 #ifdef GEM_DEBUG
   1498 		if (ifp->if_flags & IFF_DEBUG) {
   1499 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1500 			printf("gd_flags: 0x%016llx\t", (long long)
   1501 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1502 			printf("gd_addr: 0x%016llx\n", (long long)
   1503 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1504 		}
   1505 #endif
   1506 
   1507 		/* No errors; receive the packet. */
   1508 		len = GEM_RD_BUFLEN(rxstat);
   1509 
   1510 		/*
   1511 		 * Allocate a new mbuf cluster.  If that fails, we are
   1512 		 * out of memory, and must drop the packet and recycle
   1513 		 * the buffer that's already attached to this descriptor.
   1514 		 */
   1515 		m = rxs->rxs_mbuf;
   1516 		if (gem_add_rxbuf(sc, i) != 0) {
   1517 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1518 			ifp->if_ierrors++;
   1519 			GEM_INIT_RXDESC(sc, i);
   1520 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1521 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1522 			continue;
   1523 		}
   1524 		m->m_data += 2; /* We're already off by two */
   1525 
   1526 		m->m_pkthdr.rcvif = ifp;
   1527 		m->m_pkthdr.len = m->m_len = len;
   1528 
   1529 #if NBPFILTER > 0
   1530 		/*
   1531 		 * Pass this up to any BPF listeners, but only
   1532 		 * pass it up the stack if its for us.
   1533 		 */
   1534 		if (ifp->if_bpf)
   1535 			bpf_mtap(ifp->if_bpf, m);
   1536 #endif /* NPBFILTER > 0 */
   1537 
   1538 #ifdef INET
   1539 		/* hardware checksum */
   1540 		if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
   1541 			struct ether_header *eh;
   1542 			struct ip *ip;
   1543 			struct udphdr *uh;
   1544 			int32_t hlen, pktlen;
   1545 
   1546 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1547 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1548 					 ETHER_VLAN_ENCAP_LEN;
   1549 				eh = (struct ether_header *) mtod(m, caddr_t) +
   1550 					ETHER_VLAN_ENCAP_LEN;
   1551 			} else {
   1552 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1553 				eh = mtod(m, struct ether_header *);
   1554 			}
   1555 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1556 				goto swcsum;
   1557 			ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
   1558 
   1559 			/* IPv4 only */
   1560 			if (ip->ip_v != IPVERSION)
   1561 				goto swcsum;
   1562 
   1563 			hlen = ip->ip_hl << 2;
   1564 			if (hlen < sizeof(struct ip))
   1565 				goto swcsum;
   1566 
   1567 			/*
   1568 			 * bail if too short, has random trailing garbage,
   1569 			 * truncated, fragment, or has ethernet pad.
   1570 			 */
   1571 			if ((ntohs(ip->ip_len) < hlen) ||
   1572 			    (ntohs(ip->ip_len) != pktlen) ||
   1573 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1574 				goto swcsum;
   1575 
   1576 			switch (ip->ip_p) {
   1577 			case IPPROTO_TCP:
   1578 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1579 					goto swcsum;
   1580 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1581 					goto swcsum;
   1582 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1583 				break;
   1584 			case IPPROTO_UDP:
   1585 				if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
   1586 					goto swcsum;
   1587 				if (pktlen < (hlen + sizeof(struct udphdr)))
   1588 					goto swcsum;
   1589 				uh = (struct udphdr *)((caddr_t)ip + hlen);
   1590 				/* no checksum */
   1591 				if (uh->uh_sum == 0)
   1592 					goto swcsum;
   1593 				m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
   1594 				break;
   1595 			default:
   1596 				goto swcsum;
   1597 			}
   1598 
   1599 			/* the uncomplemented sum is expected */
   1600 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1601 
   1602 			/* if the pkt had ip options, we have to deduct them */
   1603 			if (hlen > sizeof(struct ip)) {
   1604 				uint16_t *opts;
   1605 				uint32_t optsum, temp;
   1606 
   1607 				optsum = 0;
   1608 				temp = hlen - sizeof(struct ip);
   1609 				opts = (uint16_t *) ((caddr_t) ip +
   1610 					sizeof(struct ip));
   1611 
   1612 				while (temp > 1) {
   1613 					optsum += ntohs(*opts++);
   1614 					temp -= 2;
   1615 				}
   1616 				while (optsum >> 16)
   1617 					optsum = (optsum >> 16) +
   1618 						 (optsum & 0xffff);
   1619 
   1620 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1621 				m->m_pkthdr.csum_data =
   1622 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1623 
   1624 				while (m->m_pkthdr.csum_data >> 16)
   1625 					m->m_pkthdr.csum_data =
   1626 						(m->m_pkthdr.csum_data >> 16) +
   1627 						(m->m_pkthdr.csum_data &
   1628 						 0xffff);
   1629 			}
   1630 
   1631 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1632 						  M_CSUM_NO_PSEUDOHDR;
   1633 		} else
   1634 swcsum:
   1635 			m->m_pkthdr.csum_flags = 0;
   1636 #endif
   1637 		/* Pass it on. */
   1638 		(*ifp->if_input)(ifp, m);
   1639 	}
   1640 
   1641 	if (progress) {
   1642 		/* Update the receive pointer. */
   1643 		if (i == sc->sc_rxptr) {
   1644 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1645 #ifdef GEM_DEBUG
   1646 			if (ifp->if_flags & IFF_DEBUG)
   1647 				printf("%s: rint: ring wrap\n",
   1648 				    sc->sc_dev.dv_xname);
   1649 #endif
   1650 		}
   1651 		sc->sc_rxptr = i;
   1652 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1653 	}
   1654 #ifdef GEM_COUNTERS
   1655 	if (progress <= 4) {
   1656 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1657 	} else if (progress < 32) {
   1658 		if (progress < 16)
   1659 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1660 		else
   1661 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1662 
   1663 	} else {
   1664 		if (progress < 64)
   1665 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1666 		else
   1667 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1668 	}
   1669 #endif
   1670 
   1671 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1672 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1673 
   1674 	return (1);
   1675 }
   1676 
   1677 
   1678 /*
   1679  * gem_add_rxbuf:
   1680  *
   1681  *	Add a receive buffer to the indicated descriptor.
   1682  */
   1683 int
   1684 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1685 {
   1686 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1687 	struct mbuf *m;
   1688 	int error;
   1689 
   1690 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1691 	if (m == NULL)
   1692 		return (ENOBUFS);
   1693 
   1694 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1695 	MCLGET(m, M_DONTWAIT);
   1696 	if ((m->m_flags & M_EXT) == 0) {
   1697 		m_freem(m);
   1698 		return (ENOBUFS);
   1699 	}
   1700 
   1701 #ifdef GEM_DEBUG
   1702 /* bzero the packet to check DMA */
   1703 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1704 #endif
   1705 
   1706 	if (rxs->rxs_mbuf != NULL)
   1707 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1708 
   1709 	rxs->rxs_mbuf = m;
   1710 
   1711 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1712 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1713 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1714 	if (error) {
   1715 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1716 		    sc->sc_dev.dv_xname, idx, error);
   1717 		panic("gem_add_rxbuf");	/* XXX */
   1718 	}
   1719 
   1720 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1721 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1722 
   1723 	GEM_INIT_RXDESC(sc, idx);
   1724 
   1725 	return (0);
   1726 }
   1727 
   1728 
   1729 int
   1730 gem_eint(sc, status)
   1731 	struct gem_softc *sc;
   1732 	u_int status;
   1733 {
   1734 	char bits[128];
   1735 
   1736 	if ((status & GEM_INTR_MIF) != 0) {
   1737 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1738 		return (1);
   1739 	}
   1740 
   1741 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1742 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   1743 	return (1);
   1744 }
   1745 
   1746 
   1747 int
   1748 gem_intr(v)
   1749 	void *v;
   1750 {
   1751 	struct gem_softc *sc = (struct gem_softc *)v;
   1752 	bus_space_tag_t t = sc->sc_bustag;
   1753 	bus_space_handle_t seb = sc->sc_h;
   1754 	u_int32_t status;
   1755 	int r = 0;
   1756 #ifdef GEM_DEBUG
   1757 	char bits[128];
   1758 #endif
   1759 
   1760 	sc->sc_ev_intr.ev_count++;
   1761 
   1762 	status = bus_space_read_4(t, seb, GEM_STATUS);
   1763 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   1764 		sc->sc_dev.dv_xname, (status >> 19),
   1765 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   1766 
   1767 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   1768 		r |= gem_eint(sc, status);
   1769 
   1770 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   1771 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   1772 		r |= gem_tint(sc);
   1773 	}
   1774 
   1775 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   1776 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   1777 		r |= gem_rint(sc);
   1778 	}
   1779 
   1780 	/* We should eventually do more than just print out error stats. */
   1781 	if (status & GEM_INTR_TX_MAC) {
   1782 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
   1783 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   1784 			printf("%s: MAC tx fault, status %x\n",
   1785 			    sc->sc_dev.dv_xname, txstat);
   1786 	}
   1787 	if (status & GEM_INTR_RX_MAC) {
   1788 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
   1789 		if (rxstat & ~GEM_MAC_RX_DONE)
   1790 			printf("%s: MAC rx fault, status %x\n",
   1791 			    sc->sc_dev.dv_xname, rxstat);
   1792 	}
   1793 	return (r);
   1794 }
   1795 
   1796 
   1797 void
   1798 gem_watchdog(ifp)
   1799 	struct ifnet *ifp;
   1800 {
   1801 	struct gem_softc *sc = ifp->if_softc;
   1802 
   1803 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   1804 		"GEM_MAC_RX_CONFIG %x\n",
   1805 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
   1806 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
   1807 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
   1808 
   1809 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1810 	++ifp->if_oerrors;
   1811 
   1812 	/* Try to get more packets going. */
   1813 	gem_start(ifp);
   1814 }
   1815 
   1816 /*
   1817  * Initialize the MII Management Interface
   1818  */
   1819 void
   1820 gem_mifinit(sc)
   1821 	struct gem_softc *sc;
   1822 {
   1823 	bus_space_tag_t t = sc->sc_bustag;
   1824 	bus_space_handle_t mif = sc->sc_h;
   1825 
   1826 	/* Configure the MIF in frame mode */
   1827 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1828 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   1829 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   1830 }
   1831 
   1832 /*
   1833  * MII interface
   1834  *
   1835  * The GEM MII interface supports at least three different operating modes:
   1836  *
   1837  * Bitbang mode is implemented using data, clock and output enable registers.
   1838  *
   1839  * Frame mode is implemented by loading a complete frame into the frame
   1840  * register and polling the valid bit for completion.
   1841  *
   1842  * Polling mode uses the frame register but completion is indicated by
   1843  * an interrupt.
   1844  *
   1845  */
   1846 static int
   1847 gem_mii_readreg(self, phy, reg)
   1848 	struct device *self;
   1849 	int phy, reg;
   1850 {
   1851 	struct gem_softc *sc = (void *)self;
   1852 	bus_space_tag_t t = sc->sc_bustag;
   1853 	bus_space_handle_t mif = sc->sc_h;
   1854 	int n;
   1855 	u_int32_t v;
   1856 
   1857 #ifdef GEM_DEBUG1
   1858 	if (sc->sc_debug)
   1859 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
   1860 #endif
   1861 
   1862 #if 0
   1863 	/* Select the desired PHY in the MIF configuration register */
   1864 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1865 	/* Clear PHY select bit */
   1866 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1867 	if (phy == GEM_PHYAD_EXTERNAL)
   1868 		/* Set PHY select bit to get at external device */
   1869 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1870 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1871 #endif
   1872 
   1873 	/* Construct the frame command */
   1874 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   1875 		GEM_MIF_FRAME_READ;
   1876 
   1877 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1878 	for (n = 0; n < 100; n++) {
   1879 		DELAY(1);
   1880 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1881 		if (v & GEM_MIF_FRAME_TA0)
   1882 			return (v & GEM_MIF_FRAME_DATA);
   1883 	}
   1884 
   1885 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1886 	return (0);
   1887 }
   1888 
   1889 static void
   1890 gem_mii_writereg(self, phy, reg, val)
   1891 	struct device *self;
   1892 	int phy, reg, val;
   1893 {
   1894 	struct gem_softc *sc = (void *)self;
   1895 	bus_space_tag_t t = sc->sc_bustag;
   1896 	bus_space_handle_t mif = sc->sc_h;
   1897 	int n;
   1898 	u_int32_t v;
   1899 
   1900 #ifdef GEM_DEBUG1
   1901 	if (sc->sc_debug)
   1902 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
   1903 			phy, reg, val);
   1904 #endif
   1905 
   1906 #if 0
   1907 	/* Select the desired PHY in the MIF configuration register */
   1908 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1909 	/* Clear PHY select bit */
   1910 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1911 	if (phy == GEM_PHYAD_EXTERNAL)
   1912 		/* Set PHY select bit to get at external device */
   1913 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1914 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1915 #endif
   1916 	/* Construct the frame command */
   1917 	v = GEM_MIF_FRAME_WRITE			|
   1918 	    (phy << GEM_MIF_PHY_SHIFT)		|
   1919 	    (reg << GEM_MIF_REG_SHIFT)		|
   1920 	    (val & GEM_MIF_FRAME_DATA);
   1921 
   1922 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1923 	for (n = 0; n < 100; n++) {
   1924 		DELAY(1);
   1925 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1926 		if (v & GEM_MIF_FRAME_TA0)
   1927 			return;
   1928 	}
   1929 
   1930 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1931 }
   1932 
   1933 static void
   1934 gem_mii_statchg(dev)
   1935 	struct device *dev;
   1936 {
   1937 	struct gem_softc *sc = (void *)dev;
   1938 #ifdef GEM_DEBUG
   1939 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1940 #endif
   1941 	bus_space_tag_t t = sc->sc_bustag;
   1942 	bus_space_handle_t mac = sc->sc_h;
   1943 	u_int32_t v;
   1944 
   1945 #ifdef GEM_DEBUG
   1946 	if (sc->sc_debug)
   1947 		printf("gem_mii_statchg: status change: phy = %d\n",
   1948 			sc->sc_phys[instance]);
   1949 #endif
   1950 
   1951 
   1952 	/* Set tx full duplex options */
   1953 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   1954 	delay(10000); /* reg must be cleared and delay before changing. */
   1955 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
   1956 		GEM_MAC_TX_ENABLE;
   1957 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1958 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
   1959 	}
   1960 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
   1961 
   1962 	/* XIF Configuration */
   1963  /* We should really calculate all this rather than rely on defaults */
   1964 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
   1965 	v = GEM_MAC_XIF_LINK_LED;
   1966 	v |= GEM_MAC_XIF_TX_MII_ENA;
   1967 
   1968 	/* If an external transceiver is connected, enable its MII drivers */
   1969 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   1970 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   1971 		/* External MII needs echo disable if half duplex. */
   1972 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1973 			/* turn on full duplex LED */
   1974 			v |= GEM_MAC_XIF_FDPLX_LED;
   1975 		else
   1976 	 		/* half duplex -- disable echo */
   1977 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
   1978 
   1979 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   1980 			v |= GEM_MAC_XIF_GMII_MODE;
   1981 		else
   1982 			v &= ~GEM_MAC_XIF_GMII_MODE;
   1983 	} else
   1984 		/* Internal MII needs buf enable */
   1985 		v |= GEM_MAC_XIF_MII_BUF_ENA;
   1986 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   1987 }
   1988 
   1989 int
   1990 gem_mediachange(ifp)
   1991 	struct ifnet *ifp;
   1992 {
   1993 	struct gem_softc *sc = ifp->if_softc;
   1994 
   1995 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1996 		return (EINVAL);
   1997 
   1998 	return (mii_mediachg(&sc->sc_mii));
   1999 }
   2000 
   2001 void
   2002 gem_mediastatus(ifp, ifmr)
   2003 	struct ifnet *ifp;
   2004 	struct ifmediareq *ifmr;
   2005 {
   2006 	struct gem_softc *sc = ifp->if_softc;
   2007 
   2008 	if ((ifp->if_flags & IFF_UP) == 0)
   2009 		return;
   2010 
   2011 	mii_pollstat(&sc->sc_mii);
   2012 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2013 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2014 }
   2015 
   2016 int gem_ioctldebug = 0;
   2017 /*
   2018  * Process an ioctl request.
   2019  */
   2020 int
   2021 gem_ioctl(ifp, cmd, data)
   2022 	struct ifnet *ifp;
   2023 	u_long cmd;
   2024 	caddr_t data;
   2025 {
   2026 	struct gem_softc *sc = ifp->if_softc;
   2027 	struct ifreq *ifr = (struct ifreq *)data;
   2028 	int s, error = 0;
   2029 
   2030 	s = splnet();
   2031 
   2032 	switch (cmd) {
   2033 	case SIOCGIFMEDIA:
   2034 	case SIOCSIFMEDIA:
   2035 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   2036 		break;
   2037 
   2038 	default:
   2039 		error = ether_ioctl(ifp, cmd, data);
   2040 		if (error == ENETRESET) {
   2041 			/*
   2042 			 * Multicast list has changed; set the hardware filter
   2043 			 * accordingly.
   2044 			 */
   2045 			if (ifp->if_flags & IFF_RUNNING) {
   2046 if (gem_ioctldebug) printf("reset1\n");
   2047 				gem_init(ifp);
   2048 				delay(50000);
   2049 			}
   2050 			error = 0;
   2051 		}
   2052 		break;
   2053 	}
   2054 
   2055 	/* Try to get things going again */
   2056 	if (ifp->if_flags & IFF_UP) {
   2057 if (gem_ioctldebug) printf("start\n");
   2058 		gem_start(ifp);
   2059 	}
   2060 	splx(s);
   2061 	return (error);
   2062 }
   2063 
   2064 
   2065 void
   2066 gem_shutdown(arg)
   2067 	void *arg;
   2068 {
   2069 	struct gem_softc *sc = (struct gem_softc *)arg;
   2070 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2071 
   2072 	gem_stop(ifp, 1);
   2073 }
   2074 
   2075 /*
   2076  * Set up the logical address filter.
   2077  */
   2078 void
   2079 gem_setladrf(sc)
   2080 	struct gem_softc *sc;
   2081 {
   2082 	struct ethercom *ec = &sc->sc_ethercom;
   2083 	struct ifnet *ifp = &ec->ec_if;
   2084 	struct ether_multi *enm;
   2085 	struct ether_multistep step;
   2086 	bus_space_tag_t t = sc->sc_bustag;
   2087 	bus_space_handle_t h = sc->sc_h;
   2088 	u_int32_t crc;
   2089 	u_int32_t hash[16];
   2090 	u_int32_t v;
   2091 	int i;
   2092 
   2093 	/* Get current RX configuration */
   2094 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2095 
   2096 	/*
   2097 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2098 	 * and hash filter.  Depending on the case, the right bit will be
   2099 	 * enabled.
   2100 	 */
   2101 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2102 	    GEM_MAC_RX_PROMISC_GRP);
   2103 
   2104 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2105 		/* Turn on promiscuous mode */
   2106 		v |= GEM_MAC_RX_PROMISCUOUS;
   2107 		ifp->if_flags |= IFF_ALLMULTI;
   2108 		goto chipit;
   2109 	}
   2110 
   2111 	/*
   2112 	 * Set up multicast address filter by passing all multicast addresses
   2113 	 * through a crc generator, and then using the high order 8 bits as an
   2114 	 * index into the 256 bit logical address filter.  The high order 4
   2115 	 * bits select the word, while the other 4 bits select the bit within
   2116 	 * the word (where bit 0 is the MSB).
   2117 	 */
   2118 
   2119 	/* Clear hash table */
   2120 	memset(hash, 0, sizeof(hash));
   2121 
   2122 	ETHER_FIRST_MULTI(step, ec, enm);
   2123 	while (enm != NULL) {
   2124 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2125 			/*
   2126 			 * We must listen to a range of multicast addresses.
   2127 			 * For now, just accept all multicasts, rather than
   2128 			 * trying to set only those filter bits needed to match
   2129 			 * the range.  (At this time, the only use of address
   2130 			 * ranges is for IP multicast routing, for which the
   2131 			 * range is big enough to require all bits set.)
   2132 			 * XXX use the addr filter for this
   2133 			 */
   2134 			ifp->if_flags |= IFF_ALLMULTI;
   2135 			v |= GEM_MAC_RX_PROMISC_GRP;
   2136 			goto chipit;
   2137 		}
   2138 
   2139 		/* Get the LE CRC32 of the address */
   2140 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2141 
   2142 		/* Just want the 8 most significant bits. */
   2143 		crc >>= 24;
   2144 
   2145 		/* Set the corresponding bit in the filter. */
   2146 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2147 
   2148 		ETHER_NEXT_MULTI(step, enm);
   2149 	}
   2150 
   2151 	v |= GEM_MAC_RX_HASH_FILTER;
   2152 	ifp->if_flags &= ~IFF_ALLMULTI;
   2153 
   2154 	/* Now load the hash table into the chip (if we are using it) */
   2155 	for (i = 0; i < 16; i++) {
   2156 		bus_space_write_4(t, h,
   2157 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2158 		    hash[i]);
   2159 	}
   2160 
   2161 chipit:
   2162 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2163 }
   2164 
   2165 #if notyet
   2166 
   2167 /*
   2168  * gem_power:
   2169  *
   2170  *	Power management (suspend/resume) hook.
   2171  */
   2172 void
   2173 gem_power(why, arg)
   2174 	int why;
   2175 	void *arg;
   2176 {
   2177 	struct gem_softc *sc = arg;
   2178 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2179 	int s;
   2180 
   2181 	s = splnet();
   2182 	switch (why) {
   2183 	case PWR_SUSPEND:
   2184 	case PWR_STANDBY:
   2185 		gem_stop(ifp, 1);
   2186 		if (sc->sc_power != NULL)
   2187 			(*sc->sc_power)(sc, why);
   2188 		break;
   2189 	case PWR_RESUME:
   2190 		if (ifp->if_flags & IFF_UP) {
   2191 			if (sc->sc_power != NULL)
   2192 				(*sc->sc_power)(sc, why);
   2193 			gem_init(ifp);
   2194 		}
   2195 		break;
   2196 	case PWR_SOFTSUSPEND:
   2197 	case PWR_SOFTSTANDBY:
   2198 	case PWR_SOFTRESUME:
   2199 		break;
   2200 	}
   2201 	splx(s);
   2202 }
   2203 #endif
   2204