Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.41
      1 /*	$NetBSD: gem.c,v 1.41 2005/10/28 00:01:53 christos Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * All rights reserved.
      7  *
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  */
     31 
     32 /*
     33  * Driver for Sun GEM ethernet controllers.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.41 2005/10/28 00:01:53 christos Exp $");
     38 
     39 #include "opt_inet.h"
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/syslog.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 
     54 #include <machine/endian.h>
     55 
     56 #include <uvm/uvm_extern.h>
     57 
     58 #include <net/if.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_ether.h>
     62 
     63 #ifdef INET
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 #include <netinet/tcp.h>
     69 #include <netinet/udp.h>
     70 #endif
     71 
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 
     79 #include <dev/mii/mii.h>
     80 #include <dev/mii/miivar.h>
     81 #include <dev/mii/mii_bitbang.h>
     82 
     83 #include <dev/ic/gemreg.h>
     84 #include <dev/ic/gemvar.h>
     85 
     86 #define TRIES	10000
     87 
     88 static void	gem_start(struct ifnet *);
     89 static void	gem_stop(struct ifnet *, int);
     90 int		gem_ioctl(struct ifnet *, u_long, caddr_t);
     91 void		gem_tick(void *);
     92 void		gem_watchdog(struct ifnet *);
     93 void		gem_shutdown(void *);
     94 int		gem_init(struct ifnet *);
     95 void		gem_init_regs(struct gem_softc *sc);
     96 static int	gem_ringsize(int sz);
     97 static int	gem_meminit(struct gem_softc *);
     98 void		gem_mifinit(struct gem_softc *);
     99 static int	gem_bitwait(struct gem_softc *sc, int, u_int32_t, u_int32_t);
    100 void		gem_reset(struct gem_softc *);
    101 int		gem_reset_rx(struct gem_softc *sc);
    102 int		gem_reset_tx(struct gem_softc *sc);
    103 int		gem_disable_rx(struct gem_softc *sc);
    104 int		gem_disable_tx(struct gem_softc *sc);
    105 static void	gem_rxdrain(struct gem_softc *sc);
    106 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    107 void		gem_setladrf(struct gem_softc *);
    108 
    109 /* MII methods & callbacks */
    110 static int	gem_mii_readreg(struct device *, int, int);
    111 static void	gem_mii_writereg(struct device *, int, int, int);
    112 static void	gem_mii_statchg(struct device *);
    113 
    114 int		gem_mediachange(struct ifnet *);
    115 void		gem_mediastatus(struct ifnet *, struct ifmediareq *);
    116 
    117 struct mbuf	*gem_get(struct gem_softc *, int, int);
    118 int		gem_put(struct gem_softc *, int, struct mbuf *);
    119 void		gem_read(struct gem_softc *, int, int);
    120 int		gem_eint(struct gem_softc *, u_int);
    121 int		gem_rint(struct gem_softc *);
    122 int		gem_tint(struct gem_softc *);
    123 void		gem_power(int, void *);
    124 
    125 #ifdef GEM_DEBUG
    126 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    127 				printf x
    128 #else
    129 #define	DPRINTF(sc, x)	/* nothing */
    130 #endif
    131 
    132 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    133 
    134 
    135 /*
    136  * gem_attach:
    137  *
    138  *	Attach a Gem interface to the system.
    139  */
    140 void
    141 gem_attach(sc, enaddr)
    142 	struct gem_softc *sc;
    143 	const uint8_t *enaddr;
    144 {
    145 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    146 	struct mii_data *mii = &sc->sc_mii;
    147 	struct mii_softc *child;
    148 	struct ifmedia_entry *ifm;
    149 	int i, error;
    150 	u_int32_t v;
    151 	char *nullbuf;
    152 
    153 	/* Make sure the chip is stopped. */
    154 	ifp->if_softc = sc;
    155 	gem_stop(ifp, 0);
    156 	gem_reset(sc);
    157 
    158 	/*
    159 	 * Allocate the control data structures, and create and load the
    160 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    161 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    162 	 */
    163 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    164 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    165 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    166 		aprint_error(
    167 		   "%s: unable to allocate control data, error = %d\n",
    168 		    sc->sc_dev.dv_xname, error);
    169 		goto fail_0;
    170 	}
    171 
    172 /* XXX should map this in with correct endianness */
    173 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    174 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
    175 	    BUS_DMA_COHERENT)) != 0) {
    176 		aprint_error("%s: unable to map control data, error = %d\n",
    177 		    sc->sc_dev.dv_xname, error);
    178 		goto fail_1;
    179 	}
    180 
    181 	nullbuf =
    182 	    (caddr_t)sc->sc_control_data + sizeof(struct gem_control_data);
    183 
    184 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    185 	    sizeof(struct gem_control_data), 1,
    186 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    187 		aprint_error("%s: unable to create control data DMA map, "
    188 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    189 		goto fail_2;
    190 	}
    191 
    192 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    193 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    194 	    0)) != 0) {
    195 		aprint_error(
    196 		    "%s: unable to load control data DMA map, error = %d\n",
    197 		    sc->sc_dev.dv_xname, error);
    198 		goto fail_3;
    199 	}
    200 
    201 	memset(nullbuf, 0, ETHER_MIN_TX);
    202 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    203 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    204 		aprint_error("%s: unable to create padding DMA map, "
    205 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    206 		goto fail_4;
    207 	}
    208 
    209 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    210 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    211 		aprint_error(
    212 		    "%s: unable to load padding DMA map, error = %d\n",
    213 		    sc->sc_dev.dv_xname, error);
    214 		goto fail_5;
    215 	}
    216 
    217 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    218 	    BUS_DMASYNC_PREWRITE);
    219 
    220 	/*
    221 	 * Initialize the transmit job descriptors.
    222 	 */
    223 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    224 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    225 
    226 	/*
    227 	 * Create the transmit buffer DMA maps.
    228 	 */
    229 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    230 		struct gem_txsoft *txs;
    231 
    232 		txs = &sc->sc_txsoft[i];
    233 		txs->txs_mbuf = NULL;
    234 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    235 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    236 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    237 		    &txs->txs_dmamap)) != 0) {
    238 			aprint_error("%s: unable to create tx DMA map %d, "
    239 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    240 			goto fail_6;
    241 		}
    242 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    243 	}
    244 
    245 	/*
    246 	 * Create the receive buffer DMA maps.
    247 	 */
    248 	for (i = 0; i < GEM_NRXDESC; i++) {
    249 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    250 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    251 			aprint_error("%s: unable to create rx DMA map %d, "
    252 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    253 			goto fail_7;
    254 		}
    255 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    256 	}
    257 
    258 	/*
    259 	 * From this point forward, the attachment cannot fail.  A failure
    260 	 * before this point releases all resources that may have been
    261 	 * allocated.
    262 	 */
    263 
    264 	/* Announce ourselves. */
    265 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
    266 	    ether_sprintf(enaddr));
    267 
    268 	/* Get RX FIFO size */
    269 	sc->sc_rxfifosize = 64 *
    270 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
    271 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    272 
    273 	/* Get TX FIFO size */
    274 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
    275 	aprint_normal(", %uKB TX fifo\n", v / 16);
    276 
    277 	/* Initialize ifnet structure. */
    278 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    279 	ifp->if_softc = sc;
    280 	ifp->if_flags =
    281 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    282 	sc->sc_if_flags = ifp->if_flags;
    283 	ifp->if_capabilities |=
    284 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    285 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    286 	ifp->if_start = gem_start;
    287 	ifp->if_ioctl = gem_ioctl;
    288 	ifp->if_watchdog = gem_watchdog;
    289 	ifp->if_stop = gem_stop;
    290 	ifp->if_init = gem_init;
    291 	IFQ_SET_READY(&ifp->if_snd);
    292 
    293 	/* Initialize ifmedia structures and MII info */
    294 	mii->mii_ifp = ifp;
    295 	mii->mii_readreg = gem_mii_readreg;
    296 	mii->mii_writereg = gem_mii_writereg;
    297 	mii->mii_statchg = gem_mii_statchg;
    298 
    299 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
    300 
    301 	gem_mifinit(sc);
    302 
    303 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    304 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    305 
    306 	child = LIST_FIRST(&mii->mii_phys);
    307 	if (child == NULL) {
    308 		/* No PHY attached */
    309 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    310 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    311 	} else {
    312 		/*
    313 		 * Walk along the list of attached MII devices and
    314 		 * establish an `MII instance' to `phy number'
    315 		 * mapping. We'll use this mapping in media change
    316 		 * requests to determine which phy to use to program
    317 		 * the MIF configuration register.
    318 		 */
    319 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    320 			/*
    321 			 * Note: we support just two PHYs: the built-in
    322 			 * internal device and an external on the MII
    323 			 * connector.
    324 			 */
    325 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    326 				aprint_error(
    327 				    "%s: cannot accomodate MII device %s"
    328 				       " at phy %d, instance %d\n",
    329 				       sc->sc_dev.dv_xname,
    330 				       child->mii_dev.dv_xname,
    331 				       child->mii_phy, child->mii_inst);
    332 				continue;
    333 			}
    334 
    335 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    336 		}
    337 
    338 		/*
    339 		 * Now select and activate the PHY we will use.
    340 		 *
    341 		 * The order of preference is External (MDI1),
    342 		 * Internal (MDI0), Serial Link (no MII).
    343 		 */
    344 		if (sc->sc_phys[1]) {
    345 #ifdef GEM_DEBUG
    346 			aprint_debug("using external phy\n");
    347 #endif
    348 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    349 		} else {
    350 #ifdef GEM_DEBUG
    351 			aprint_debug("using internal phy\n");
    352 #endif
    353 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    354 		}
    355 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
    356 			sc->sc_mif_config);
    357 
    358 		/*
    359 		 * XXX - we can really do the following ONLY if the
    360 		 * phy indeed has the auto negotiation capability!!
    361 		 */
    362 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    363 	}
    364 
    365 	/*
    366 	 * If we support GigE media, we support jumbo frames too.
    367 	 * Unless we are Apple.
    368 	 */
    369 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
    370 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    371 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    372 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    373 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    374 			if (sc->sc_variant != GEM_APPLE_GMAC)
    375 				sc->sc_ethercom.ec_capabilities
    376 				    |= ETHERCAP_JUMBO_MTU;
    377 
    378 			sc->sc_flags |= GEM_GIGABIT;
    379 			break;
    380 		}
    381 	}
    382 
    383 	/* claim 802.1q capability */
    384 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    385 
    386 	/* Attach the interface. */
    387 	if_attach(ifp);
    388 	ether_ifattach(ifp, enaddr);
    389 
    390 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    391 	if (sc->sc_sh == NULL)
    392 		panic("gem_config: can't establish shutdownhook");
    393 
    394 #if NRND > 0
    395 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    396 			  RND_TYPE_NET, 0);
    397 #endif
    398 
    399 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    400 	    NULL, sc->sc_dev.dv_xname, "interrupts");
    401 #ifdef GEM_COUNTERS
    402 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    403 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
    404 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    405 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
    406 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    407 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
    408 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    409 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
    410 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    411 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
    412 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    413 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
    414 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    415 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
    416 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    417 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
    418 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    419 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
    420 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    421 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
    422 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    423 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
    424 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    425 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
    426 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    427 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
    428 #endif
    429 
    430 #if notyet
    431 	/*
    432 	 * Add a suspend hook to make sure we come back up after a
    433 	 * resume.
    434 	 */
    435 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
    436 	if (sc->sc_powerhook == NULL)
    437 		aprint_error("%s: WARNING: unable to establish power hook\n",
    438 		    sc->sc_dev.dv_xname);
    439 #endif
    440 
    441 	callout_init(&sc->sc_tick_ch);
    442 	return;
    443 
    444 	/*
    445 	 * Free any resources we've allocated during the failed attach
    446 	 * attempt.  Do this in reverse order and fall through.
    447 	 */
    448  fail_7:
    449 	for (i = 0; i < GEM_NRXDESC; i++) {
    450 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    451 			bus_dmamap_destroy(sc->sc_dmatag,
    452 			    sc->sc_rxsoft[i].rxs_dmamap);
    453 	}
    454  fail_6:
    455 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    456 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    457 			bus_dmamap_destroy(sc->sc_dmatag,
    458 			    sc->sc_txsoft[i].txs_dmamap);
    459 	}
    460 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    461  fail_5:
    462 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    463  fail_4:
    464 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)nullbuf, ETHER_MIN_TX);
    465  fail_3:
    466 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    467  fail_2:
    468 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
    469 	    sizeof(struct gem_control_data));
    470  fail_1:
    471 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    472  fail_0:
    473 	return;
    474 }
    475 
    476 
    477 void
    478 gem_tick(arg)
    479 	void *arg;
    480 {
    481 	struct gem_softc *sc = arg;
    482 	int s;
    483 
    484 	s = splnet();
    485 	mii_tick(&sc->sc_mii);
    486 	splx(s);
    487 
    488 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    489 
    490 }
    491 
    492 static int
    493 gem_bitwait(sc, r, clr, set)
    494 	struct gem_softc *sc;
    495 	int r;
    496 	u_int32_t clr;
    497 	u_int32_t set;
    498 {
    499 	int i;
    500 	u_int32_t reg;
    501 
    502 	for (i = TRIES; i--; DELAY(100)) {
    503 		reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
    504 		if ((r & clr) == 0 && (r & set) == set)
    505 			return (1);
    506 	}
    507 	return (0);
    508 }
    509 
    510 void
    511 gem_reset(sc)
    512 	struct gem_softc *sc;
    513 {
    514 	bus_space_tag_t t = sc->sc_bustag;
    515 	bus_space_handle_t h = sc->sc_h;
    516 	int s;
    517 
    518 	s = splnet();
    519 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    520 	gem_reset_rx(sc);
    521 	gem_reset_tx(sc);
    522 
    523 	/* Do a full reset */
    524 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    525 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    526 		printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
    527 	splx(s);
    528 }
    529 
    530 
    531 /*
    532  * gem_rxdrain:
    533  *
    534  *	Drain the receive queue.
    535  */
    536 static void
    537 gem_rxdrain(struct gem_softc *sc)
    538 {
    539 	struct gem_rxsoft *rxs;
    540 	int i;
    541 
    542 	for (i = 0; i < GEM_NRXDESC; i++) {
    543 		rxs = &sc->sc_rxsoft[i];
    544 		if (rxs->rxs_mbuf != NULL) {
    545 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    546 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    547 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    548 			m_freem(rxs->rxs_mbuf);
    549 			rxs->rxs_mbuf = NULL;
    550 		}
    551 	}
    552 }
    553 
    554 /*
    555  * Reset the whole thing.
    556  */
    557 static void
    558 gem_stop(struct ifnet *ifp, int disable)
    559 {
    560 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    561 	struct gem_txsoft *txs;
    562 
    563 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    564 
    565 	callout_stop(&sc->sc_tick_ch);
    566 	mii_down(&sc->sc_mii);
    567 
    568 	/* XXX - Should we reset these instead? */
    569 	gem_disable_rx(sc);
    570 	gem_disable_tx(sc);
    571 
    572 	/*
    573 	 * Release any queued transmit buffers.
    574 	 */
    575 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    576 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    577 		if (txs->txs_mbuf != NULL) {
    578 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    579 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    580 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    581 			m_freem(txs->txs_mbuf);
    582 			txs->txs_mbuf = NULL;
    583 		}
    584 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    585 	}
    586 
    587 	if (disable) {
    588 		gem_rxdrain(sc);
    589 	}
    590 
    591 	/*
    592 	 * Mark the interface down and cancel the watchdog timer.
    593 	 */
    594 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    595 	sc->sc_if_flags = ifp->if_flags;
    596 	ifp->if_timer = 0;
    597 }
    598 
    599 
    600 /*
    601  * Reset the receiver
    602  */
    603 int
    604 gem_reset_rx(struct gem_softc *sc)
    605 {
    606 	bus_space_tag_t t = sc->sc_bustag;
    607 	bus_space_handle_t h = sc->sc_h;
    608 
    609 	/*
    610 	 * Resetting while DMA is in progress can cause a bus hang, so we
    611 	 * disable DMA first.
    612 	 */
    613 	gem_disable_rx(sc);
    614 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    615 	/* Wait till it finishes */
    616 	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
    617 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    618 	/* Wait 5ms extra. */
    619 	delay(5000);
    620 
    621 	/* Finally, reset the ERX */
    622 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
    623 	/* Wait till it finishes */
    624 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
    625 		printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
    626 		return (1);
    627 	}
    628 	return (0);
    629 }
    630 
    631 
    632 /*
    633  * Reset the transmitter
    634  */
    635 int
    636 gem_reset_tx(struct gem_softc *sc)
    637 {
    638 	bus_space_tag_t t = sc->sc_bustag;
    639 	bus_space_handle_t h = sc->sc_h;
    640 
    641 	/*
    642 	 * Resetting while DMA is in progress can cause a bus hang, so we
    643 	 * disable DMA first.
    644 	 */
    645 	gem_disable_tx(sc);
    646 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    647 	/* Wait till it finishes */
    648 	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
    649 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    650 	/* Wait 5ms extra. */
    651 	delay(5000);
    652 
    653 	/* Finally, reset the ETX */
    654 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
    655 	/* Wait till it finishes */
    656 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
    657 		printf("%s: cannot reset receiver\n",
    658 			sc->sc_dev.dv_xname);
    659 		return (1);
    660 	}
    661 	return (0);
    662 }
    663 
    664 /*
    665  * disable receiver.
    666  */
    667 int
    668 gem_disable_rx(struct gem_softc *sc)
    669 {
    670 	bus_space_tag_t t = sc->sc_bustag;
    671 	bus_space_handle_t h = sc->sc_h;
    672 	u_int32_t cfg;
    673 
    674 	/* Flip the enable bit */
    675 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    676 	cfg &= ~GEM_MAC_RX_ENABLE;
    677 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    678 
    679 	/* Wait for it to finish */
    680 	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    681 }
    682 
    683 /*
    684  * disable transmitter.
    685  */
    686 int
    687 gem_disable_tx(struct gem_softc *sc)
    688 {
    689 	bus_space_tag_t t = sc->sc_bustag;
    690 	bus_space_handle_t h = sc->sc_h;
    691 	u_int32_t cfg;
    692 
    693 	/* Flip the enable bit */
    694 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    695 	cfg &= ~GEM_MAC_TX_ENABLE;
    696 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    697 
    698 	/* Wait for it to finish */
    699 	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    700 }
    701 
    702 /*
    703  * Initialize interface.
    704  */
    705 int
    706 gem_meminit(struct gem_softc *sc)
    707 {
    708 	struct gem_rxsoft *rxs;
    709 	int i, error;
    710 
    711 	/*
    712 	 * Initialize the transmit descriptor ring.
    713 	 */
    714 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    715 	for (i = 0; i < GEM_NTXDESC; i++) {
    716 		sc->sc_txdescs[i].gd_flags = 0;
    717 		sc->sc_txdescs[i].gd_addr = 0;
    718 	}
    719 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    720 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    721 	sc->sc_txfree = GEM_NTXDESC-1;
    722 	sc->sc_txnext = 0;
    723 	sc->sc_txwin = 0;
    724 
    725 	/*
    726 	 * Initialize the receive descriptor and receive job
    727 	 * descriptor rings.
    728 	 */
    729 	for (i = 0; i < GEM_NRXDESC; i++) {
    730 		rxs = &sc->sc_rxsoft[i];
    731 		if (rxs->rxs_mbuf == NULL) {
    732 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    733 				printf("%s: unable to allocate or map rx "
    734 				    "buffer %d, error = %d\n",
    735 				    sc->sc_dev.dv_xname, i, error);
    736 				/*
    737 				 * XXX Should attempt to run with fewer receive
    738 				 * XXX buffers instead of just failing.
    739 				 */
    740 				gem_rxdrain(sc);
    741 				return (1);
    742 			}
    743 		} else
    744 			GEM_INIT_RXDESC(sc, i);
    745 	}
    746 	sc->sc_rxptr = 0;
    747 
    748 	return (0);
    749 }
    750 
    751 static int
    752 gem_ringsize(int sz)
    753 {
    754 	switch (sz) {
    755 	case 32:
    756 		return GEM_RING_SZ_32;
    757 	case 64:
    758 		return GEM_RING_SZ_64;
    759 	case 128:
    760 		return GEM_RING_SZ_128;
    761 	case 256:
    762 		return GEM_RING_SZ_256;
    763 	case 512:
    764 		return GEM_RING_SZ_512;
    765 	case 1024:
    766 		return GEM_RING_SZ_1024;
    767 	case 2048:
    768 		return GEM_RING_SZ_2048;
    769 	case 4096:
    770 		return GEM_RING_SZ_4096;
    771 	case 8192:
    772 		return GEM_RING_SZ_8192;
    773 	default:
    774 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    775 		return GEM_RING_SZ_32;
    776 	}
    777 }
    778 
    779 /*
    780  * Initialization of interface; set up initialization block
    781  * and transmit/receive descriptor rings.
    782  */
    783 int
    784 gem_init(struct ifnet *ifp)
    785 {
    786 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    787 	bus_space_tag_t t = sc->sc_bustag;
    788 	bus_space_handle_t h = sc->sc_h;
    789 	int s;
    790 	u_int max_frame_size;
    791 	u_int32_t v;
    792 
    793 	s = splnet();
    794 
    795 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
    796 	/*
    797 	 * Initialization sequence. The numbered steps below correspond
    798 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    799 	 * Channel Engine manual (part of the PCIO manual).
    800 	 * See also the STP2002-STQ document from Sun Microsystems.
    801 	 */
    802 
    803 	/* step 1 & 2. Reset the Ethernet Channel */
    804 	gem_stop(ifp, 0);
    805 	gem_reset(sc);
    806 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
    807 
    808 	/* Re-initialize the MIF */
    809 	gem_mifinit(sc);
    810 
    811 	/* Call MI reset function if any */
    812 	if (sc->sc_hwreset)
    813 		(*sc->sc_hwreset)(sc);
    814 
    815 	/* step 3. Setup data structures in host memory */
    816 	gem_meminit(sc);
    817 
    818 	/* step 4. TX MAC registers & counters */
    819 	gem_init_regs(sc);
    820 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
    821 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
    822 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
    823 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
    824 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    825 	    max_frame_size|/* burst size */(0x2000<<16));
    826 
    827 	/* step 5. RX MAC registers & counters */
    828 	gem_setladrf(sc);
    829 
    830 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    831 	/* NOTE: we use only 32-bit DMA addresses here. */
    832 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
    833 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
    834 
    835 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    836 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    837 
    838 	/* step 8. Global Configuration & Interrupt Mask */
    839 	bus_space_write_4(t, h, GEM_INTMASK,
    840 		      ~(GEM_INTR_TX_INTME|
    841 			GEM_INTR_TX_EMPTY|
    842 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
    843 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
    844 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
    845 			GEM_INTR_BERR));
    846 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
    847 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
    848 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
    849 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
    850 
    851 	/* step 9. ETX Configuration: use mostly default values */
    852 
    853 	/* Enable DMA */
    854 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
    855 	bus_space_write_4(t, h, GEM_TX_CONFIG,
    856 		v|GEM_TX_CONFIG_TXDMA_EN|
    857 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
    858 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
    859 
    860 	/* step 10. ERX Configuration */
    861 
    862 	/* Encode Receive Descriptor ring size: four possible values */
    863 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    864 
    865 	/* Set receive h/w checksum offset */
    866 #ifdef INET
    867 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    868 	      ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    869 	        ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    870 #endif
    871 
    872 	/* Enable DMA */
    873 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    874 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
    875 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
    876 
    877 	/*
    878 	 * The following value is for an OFF Threshold of about 3/4 full
    879 	 * and an ON Threshold of 1/4 full.
    880 	 */
    881 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    882 	     (3 * sc->sc_rxfifosize / 256) |
    883 	     (   (sc->sc_rxfifosize / 256) << 12));
    884 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
    885 
    886 	/* step 11. Configure Media */
    887 	mii_mediachg(&sc->sc_mii);
    888 
    889 /* XXXX Serial link needs a whole different setup. */
    890 
    891 
    892 	/* step 12. RX_MAC Configuration Register */
    893 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    894 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
    895 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
    896 
    897 	/* step 14. Issue Transmit Pending command */
    898 
    899 	/* Call MI initialization function if any */
    900 	if (sc->sc_hwinit)
    901 		(*sc->sc_hwinit)(sc);
    902 
    903 
    904 	/* step 15.  Give the reciever a swift kick */
    905 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
    906 
    907 	/* Start the one second timer. */
    908 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    909 
    910 	ifp->if_flags |= IFF_RUNNING;
    911 	ifp->if_flags &= ~IFF_OACTIVE;
    912 	ifp->if_timer = 0;
    913 	sc->sc_if_flags = ifp->if_flags;
    914 	splx(s);
    915 
    916 	return (0);
    917 }
    918 
    919 void
    920 gem_init_regs(struct gem_softc *sc)
    921 {
    922 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    923 	bus_space_tag_t t = sc->sc_bustag;
    924 	bus_space_handle_t h = sc->sc_h;
    925 	const u_char *laddr = LLADDR(ifp->if_sadl);
    926 	u_int32_t v;
    927 
    928 	/* These regs are not cleared on reset */
    929 	if (!sc->sc_inited) {
    930 
    931 		/* Wooo.  Magic values. */
    932 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
    933 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
    934 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
    935 
    936 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
    937 		/* Max frame and max burst size */
    938 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    939 		     ETHER_MAX_LEN | (0x2000<<16));
    940 
    941 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
    942 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
    943 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
    944 		/* Dunno.... */
    945 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
    946 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
    947 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
    948 
    949 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
    950 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
    951 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
    952 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
    953 
    954 		/* MAC control addr set to 01:80:c2:00:00:01 */
    955 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
    956 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
    957 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
    958 
    959 		/* MAC filter addr set to 0:0:0:0:0:0 */
    960 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
    961 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
    962 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
    963 
    964 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
    965 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
    966 
    967 		sc->sc_inited = 1;
    968 	}
    969 
    970 	/* Counters need to be zeroed */
    971 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
    972 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
    973 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
    974 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
    975 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
    976 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
    977 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
    978 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
    979 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
    980 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
    981 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
    982 
    983 	/* Un-pause stuff */
    984 #if 0
    985 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
    986 #else
    987 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
    988 #endif
    989 
    990 	/*
    991 	 * Set the station address.
    992 	 */
    993 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
    994 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
    995 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
    996 
    997 #if 0
    998 	if (sc->sc_variant != APPLE_GMAC)
    999 		return;
   1000 #endif
   1001 
   1002 	/*
   1003 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1004 	 */
   1005 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1006 	v = GEM_MAC_XIF_TX_MII_ENA;
   1007 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1008 		v |= GEM_MAC_XIF_FDPLX_LED;
   1009 		if (sc->sc_flags & GEM_GIGABIT)
   1010 			v |= GEM_MAC_XIF_GMII_MODE;
   1011 	}
   1012 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1013 }
   1014 
   1015 static void
   1016 gem_start(ifp)
   1017 	struct ifnet *ifp;
   1018 {
   1019 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1020 	struct mbuf *m0, *m;
   1021 	struct gem_txsoft *txs, *last_txs;
   1022 	bus_dmamap_t dmamap;
   1023 	int error, firsttx, nexttx, lasttx = -1, ofree, seg;
   1024 	uint64_t flags = 0;
   1025 
   1026 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1027 		return;
   1028 
   1029 	/*
   1030 	 * Remember the previous number of free descriptors and
   1031 	 * the first descriptor we'll use.
   1032 	 */
   1033 	ofree = sc->sc_txfree;
   1034 	firsttx = sc->sc_txnext;
   1035 
   1036 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1037 	    sc->sc_dev.dv_xname, ofree, firsttx));
   1038 
   1039 	/*
   1040 	 * Loop through the send queue, setting up transmit descriptors
   1041 	 * until we drain the queue, or use up all available transmit
   1042 	 * descriptors.
   1043 	 */
   1044 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1045 	       sc->sc_txfree != 0) {
   1046 		/*
   1047 		 * Grab a packet off the queue.
   1048 		 */
   1049 		IFQ_POLL(&ifp->if_snd, m0);
   1050 		if (m0 == NULL)
   1051 			break;
   1052 		m = NULL;
   1053 
   1054 		dmamap = txs->txs_dmamap;
   1055 
   1056 		/*
   1057 		 * Load the DMA map.  If this fails, the packet either
   1058 		 * didn't fit in the alloted number of segments, or we were
   1059 		 * short on resources.  In this case, we'll copy and try
   1060 		 * again.
   1061 		 */
   1062 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1063 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1064 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1065 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1066 			if (m0->m_pkthdr.len > MCLBYTES) {
   1067 				printf("%s: unable to allocate jumbo Tx "
   1068 				    "cluster\n", sc->sc_dev.dv_xname);
   1069 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1070 				m_freem(m0);
   1071 				continue;
   1072 			}
   1073 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1074 			if (m == NULL) {
   1075 				printf("%s: unable to allocate Tx mbuf\n",
   1076 				    sc->sc_dev.dv_xname);
   1077 				break;
   1078 			}
   1079 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1080 			if (m0->m_pkthdr.len > MHLEN) {
   1081 				MCLGET(m, M_DONTWAIT);
   1082 				if ((m->m_flags & M_EXT) == 0) {
   1083 					printf("%s: unable to allocate Tx "
   1084 					    "cluster\n", sc->sc_dev.dv_xname);
   1085 					m_freem(m);
   1086 					break;
   1087 				}
   1088 			}
   1089 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1090 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1091 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1092 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1093 			if (error) {
   1094 				printf("%s: unable to load Tx buffer, "
   1095 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1096 				break;
   1097 			}
   1098 		}
   1099 
   1100 		/*
   1101 		 * Ensure we have enough descriptors free to describe
   1102 		 * the packet.
   1103 		 */
   1104 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1105 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1106 			/*
   1107 			 * Not enough free descriptors to transmit this
   1108 			 * packet.  We haven't committed to anything yet,
   1109 			 * so just unload the DMA map, put the packet
   1110 			 * back on the queue, and punt.  Notify the upper
   1111 			 * layer that there are no more slots left.
   1112 			 *
   1113 			 * XXX We could allocate an mbuf and copy, but
   1114 			 * XXX it is worth it?
   1115 			 */
   1116 			ifp->if_flags |= IFF_OACTIVE;
   1117 			sc->sc_if_flags = ifp->if_flags;
   1118 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1119 			if (m != NULL)
   1120 				m_freem(m);
   1121 			break;
   1122 		}
   1123 
   1124 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1125 		if (m != NULL) {
   1126 			m_freem(m0);
   1127 			m0 = m;
   1128 		}
   1129 
   1130 		/*
   1131 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1132 		 */
   1133 
   1134 		/* Sync the DMA map. */
   1135 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1136 		    BUS_DMASYNC_PREWRITE);
   1137 
   1138 		/*
   1139 		 * Initialize the transmit descriptors.
   1140 		 */
   1141 		for (nexttx = sc->sc_txnext, seg = 0;
   1142 		     seg < dmamap->dm_nsegs;
   1143 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1144 
   1145 			/*
   1146 			 * If this is the first descriptor we're
   1147 			 * enqueueing, set the start of packet flag,
   1148 			 * and the checksum stuff if we want the hardware
   1149 			 * to do it.
   1150 			 */
   1151 			sc->sc_txdescs[nexttx].gd_addr =
   1152 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1153 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1154 			if (nexttx == firsttx) {
   1155 				flags |= GEM_TD_START_OF_PACKET;
   1156 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1157 					sc->sc_txwin = 0;
   1158 					flags |= GEM_TD_INTERRUPT_ME;
   1159 				}
   1160 
   1161 #ifdef INET
   1162 				/* h/w checksum */
   1163 				if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
   1164 				    M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
   1165 				    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1166 					struct ether_header *eh;
   1167 					uint16_t offset, start;
   1168 
   1169 					eh = mtod(m0, struct ether_header *);
   1170 					switch (ntohs(eh->ether_type)) {
   1171 					case ETHERTYPE_IP:
   1172 						start = ETHER_HDR_LEN;
   1173 						break;
   1174 					case ETHERTYPE_VLAN:
   1175 						start = ETHER_HDR_LEN +
   1176 							ETHER_VLAN_ENCAP_LEN;
   1177 						break;
   1178 					default:
   1179 						/* unsupported, drop it */
   1180 						m_free(m0);
   1181 						continue;
   1182 					}
   1183 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1184 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1185 					flags |= (start <<
   1186 						  GEM_TD_CXSUM_STARTSHFT) |
   1187 						 (offset <<
   1188 						  GEM_TD_CXSUM_STUFFSHFT) |
   1189 						 GEM_TD_CXSUM_ENABLE;
   1190 				}
   1191 #endif
   1192 			}
   1193 			if (seg == dmamap->dm_nsegs - 1) {
   1194 				flags |= GEM_TD_END_OF_PACKET;
   1195 			} else {
   1196 				/* last flag set outside of loop */
   1197 				sc->sc_txdescs[nexttx].gd_flags =
   1198 					GEM_DMA_WRITE(sc, flags);
   1199 			}
   1200 			lasttx = nexttx;
   1201 		}
   1202 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1203 			/* add padding buffer at end of chain */
   1204 			flags &= ~GEM_TD_END_OF_PACKET;
   1205 			sc->sc_txdescs[lasttx].gd_flags =
   1206 			    GEM_DMA_WRITE(sc, flags);
   1207 
   1208 			sc->sc_txdescs[nexttx].gd_addr =
   1209 			    GEM_DMA_WRITE(sc,
   1210 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1211 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1212 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1213 			lasttx = nexttx;
   1214 			nexttx = GEM_NEXTTX(nexttx);
   1215 			seg++;
   1216 		}
   1217 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1218 
   1219 		KASSERT(lasttx != -1);
   1220 
   1221 		/*
   1222 		 * Store a pointer to the packet so we can free it later,
   1223 		 * and remember what txdirty will be once the packet is
   1224 		 * done.
   1225 		 */
   1226 		txs->txs_mbuf = m0;
   1227 		txs->txs_firstdesc = sc->sc_txnext;
   1228 		txs->txs_lastdesc = lasttx;
   1229 		txs->txs_ndescs = seg;
   1230 
   1231 #ifdef GEM_DEBUG
   1232 		if (ifp->if_flags & IFF_DEBUG) {
   1233 			printf("     gem_start %p transmit chain:\n", txs);
   1234 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
   1235 				printf("descriptor %d:\t", seg);
   1236 				printf("gd_flags:   0x%016llx\t", (long long)
   1237 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
   1238 				printf("gd_addr: 0x%016llx\n", (long long)
   1239 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
   1240 				if (seg == lasttx)
   1241 					break;
   1242 			}
   1243 		}
   1244 #endif
   1245 
   1246 		/* Sync the descriptors we're using. */
   1247 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1248 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1249 
   1250 		/* Advance the tx pointer. */
   1251 		sc->sc_txfree -= txs->txs_ndescs;
   1252 		sc->sc_txnext = nexttx;
   1253 
   1254 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1255 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1256 
   1257 		last_txs = txs;
   1258 
   1259 #if NBPFILTER > 0
   1260 		/*
   1261 		 * Pass the packet to any BPF listeners.
   1262 		 */
   1263 		if (ifp->if_bpf)
   1264 			bpf_mtap(ifp->if_bpf, m0);
   1265 #endif /* NBPFILTER > 0 */
   1266 	}
   1267 
   1268 	if (txs == NULL || sc->sc_txfree == 0) {
   1269 		/* No more slots left; notify upper layer. */
   1270 		ifp->if_flags |= IFF_OACTIVE;
   1271 		sc->sc_if_flags = ifp->if_flags;
   1272 	}
   1273 
   1274 	if (sc->sc_txfree != ofree) {
   1275 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1276 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1277 		/*
   1278 		 * The entire packet chain is set up.
   1279 		 * Kick the transmitter.
   1280 		 */
   1281 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1282 			sc->sc_dev.dv_xname, nexttx));
   1283 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
   1284 			sc->sc_txnext);
   1285 
   1286 		/* Set a watchdog timer in case the chip flakes out. */
   1287 		ifp->if_timer = 5;
   1288 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1289 			sc->sc_dev.dv_xname, ifp->if_timer));
   1290 	}
   1291 }
   1292 
   1293 /*
   1294  * Transmit interrupt.
   1295  */
   1296 int
   1297 gem_tint(sc)
   1298 	struct gem_softc *sc;
   1299 {
   1300 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1301 	bus_space_tag_t t = sc->sc_bustag;
   1302 	bus_space_handle_t mac = sc->sc_h;
   1303 	struct gem_txsoft *txs;
   1304 	int txlast;
   1305 	int progress = 0;
   1306 
   1307 
   1308 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1309 
   1310 	/*
   1311 	 * Unload collision counters
   1312 	 */
   1313 	ifp->if_collisions +=
   1314 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1315 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
   1316 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1317 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1318 
   1319 	/*
   1320 	 * then clear the hardware counters.
   1321 	 */
   1322 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1323 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1324 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1325 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1326 
   1327 	/*
   1328 	 * Go through our Tx list and free mbufs for those
   1329 	 * frames that have been transmitted.
   1330 	 */
   1331 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1332 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
   1333 		    txs->txs_ndescs,
   1334 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1335 
   1336 #ifdef GEM_DEBUG
   1337 		if (ifp->if_flags & IFF_DEBUG) {
   1338 			int i;
   1339 			printf("    txsoft %p transmit chain:\n", txs);
   1340 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
   1341 				printf("descriptor %d: ", i);
   1342 				printf("gd_flags: 0x%016llx\t", (long long)
   1343 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1344 				printf("gd_addr: 0x%016llx\n", (long long)
   1345 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1346 				if (i == txs->txs_lastdesc)
   1347 					break;
   1348 			}
   1349 		}
   1350 #endif
   1351 
   1352 		/*
   1353 		 * In theory, we could harveast some descriptors before
   1354 		 * the ring is empty, but that's a bit complicated.
   1355 		 *
   1356 		 * GEM_TX_COMPLETION points to the last descriptor
   1357 		 * processed +1.
   1358 		 */
   1359 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1360 		DPRINTF(sc,
   1361 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1362 				txs->txs_lastdesc, txlast));
   1363 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1364 			if ((txlast >= txs->txs_firstdesc) &&
   1365 				(txlast <= txs->txs_lastdesc))
   1366 				break;
   1367 		} else {
   1368 			/* Ick -- this command wraps */
   1369 			if ((txlast >= txs->txs_firstdesc) ||
   1370 				(txlast <= txs->txs_lastdesc))
   1371 				break;
   1372 		}
   1373 
   1374 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1375 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1376 
   1377 		sc->sc_txfree += txs->txs_ndescs;
   1378 
   1379 		if (txs->txs_mbuf == NULL) {
   1380 #ifdef DIAGNOSTIC
   1381 				panic("gem_txintr: null mbuf");
   1382 #endif
   1383 		}
   1384 
   1385 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1386 		    0, txs->txs_dmamap->dm_mapsize,
   1387 		    BUS_DMASYNC_POSTWRITE);
   1388 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1389 		m_freem(txs->txs_mbuf);
   1390 		txs->txs_mbuf = NULL;
   1391 
   1392 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1393 
   1394 		ifp->if_opackets++;
   1395 		progress = 1;
   1396 	}
   1397 
   1398 #if 0
   1399 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1400 		"GEM_TX_DATA_PTR %llx "
   1401 		"GEM_TX_COMPLETION %x\n",
   1402 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
   1403 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1404 			GEM_TX_DATA_PTR_HI) << 32) |
   1405 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1406 			GEM_TX_DATA_PTR_LO),
   1407 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
   1408 #endif
   1409 
   1410 	if (progress) {
   1411 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1412 			sc->sc_txwin = 0;
   1413 
   1414 		ifp->if_flags &= ~IFF_OACTIVE;
   1415 		sc->sc_if_flags = ifp->if_flags;
   1416 		gem_start(ifp);
   1417 
   1418 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
   1419 			ifp->if_timer = 0;
   1420 	}
   1421 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1422 		sc->sc_dev.dv_xname, ifp->if_timer));
   1423 
   1424 	return (1);
   1425 }
   1426 
   1427 /*
   1428  * Receive interrupt.
   1429  */
   1430 int
   1431 gem_rint(sc)
   1432 	struct gem_softc *sc;
   1433 {
   1434 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1435 	bus_space_tag_t t = sc->sc_bustag;
   1436 	bus_space_handle_t h = sc->sc_h;
   1437 	struct gem_rxsoft *rxs;
   1438 	struct mbuf *m;
   1439 	u_int64_t rxstat;
   1440 	u_int32_t rxcomp;
   1441 	int i, len, progress = 0;
   1442 
   1443 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1444 
   1445 	/*
   1446 	 * Read the completion register once.  This limits
   1447 	 * how long the following loop can execute.
   1448 	 */
   1449 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1450 
   1451 	/*
   1452 	 * XXXX Read the lastrx only once at the top for speed.
   1453 	 */
   1454 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1455 		sc->sc_rxptr, rxcomp));
   1456 
   1457 	/*
   1458 	 * Go into the loop at least once.
   1459 	 */
   1460 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1461 	     i = GEM_NEXTRX(i)) {
   1462 		rxs = &sc->sc_rxsoft[i];
   1463 
   1464 		GEM_CDRXSYNC(sc, i,
   1465 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1466 
   1467 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1468 
   1469 		if (rxstat & GEM_RD_OWN) {
   1470 			/*
   1471 			 * We have processed all of the receive buffers.
   1472 			 */
   1473 			break;
   1474 		}
   1475 
   1476 		progress++;
   1477 		ifp->if_ipackets++;
   1478 
   1479 		if (rxstat & GEM_RD_BAD_CRC) {
   1480 			ifp->if_ierrors++;
   1481 			printf("%s: receive error: CRC error\n",
   1482 				sc->sc_dev.dv_xname);
   1483 			GEM_INIT_RXDESC(sc, i);
   1484 			continue;
   1485 		}
   1486 
   1487 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1488 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1489 #ifdef GEM_DEBUG
   1490 		if (ifp->if_flags & IFF_DEBUG) {
   1491 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1492 			printf("gd_flags: 0x%016llx\t", (long long)
   1493 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1494 			printf("gd_addr: 0x%016llx\n", (long long)
   1495 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1496 		}
   1497 #endif
   1498 
   1499 		/* No errors; receive the packet. */
   1500 		len = GEM_RD_BUFLEN(rxstat);
   1501 
   1502 		/*
   1503 		 * Allocate a new mbuf cluster.  If that fails, we are
   1504 		 * out of memory, and must drop the packet and recycle
   1505 		 * the buffer that's already attached to this descriptor.
   1506 		 */
   1507 		m = rxs->rxs_mbuf;
   1508 		if (gem_add_rxbuf(sc, i) != 0) {
   1509 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1510 			ifp->if_ierrors++;
   1511 			GEM_INIT_RXDESC(sc, i);
   1512 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1513 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1514 			continue;
   1515 		}
   1516 		m->m_data += 2; /* We're already off by two */
   1517 
   1518 		m->m_pkthdr.rcvif = ifp;
   1519 		m->m_pkthdr.len = m->m_len = len;
   1520 
   1521 #if NBPFILTER > 0
   1522 		/*
   1523 		 * Pass this up to any BPF listeners, but only
   1524 		 * pass it up the stack if its for us.
   1525 		 */
   1526 		if (ifp->if_bpf)
   1527 			bpf_mtap(ifp->if_bpf, m);
   1528 #endif /* NPBFILTER > 0 */
   1529 
   1530 #ifdef INET
   1531 		/* hardware checksum */
   1532 		if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
   1533 			struct ether_header *eh;
   1534 			struct ip *ip;
   1535 			struct udphdr *uh;
   1536 			int32_t hlen, pktlen;
   1537 
   1538 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1539 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1540 					 ETHER_VLAN_ENCAP_LEN;
   1541 				eh = (struct ether_header *) mtod(m, caddr_t) +
   1542 					ETHER_VLAN_ENCAP_LEN;
   1543 			} else {
   1544 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1545 				eh = mtod(m, struct ether_header *);
   1546 			}
   1547 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1548 				goto swcsum;
   1549 			ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
   1550 
   1551 			/* IPv4 only */
   1552 			if (ip->ip_v != IPVERSION)
   1553 				goto swcsum;
   1554 
   1555 			hlen = ip->ip_hl << 2;
   1556 			if (hlen < sizeof(struct ip))
   1557 				goto swcsum;
   1558 
   1559 			/*
   1560 			 * bail if too short, has random trailing garbage,
   1561 			 * truncated, fragment, or has ethernet pad.
   1562 			 */
   1563 			if ((ntohs(ip->ip_len) < hlen) ||
   1564 			    (ntohs(ip->ip_len) != pktlen) ||
   1565 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1566 				goto swcsum;
   1567 
   1568 			switch (ip->ip_p) {
   1569 			case IPPROTO_TCP:
   1570 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1571 					goto swcsum;
   1572 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1573 					goto swcsum;
   1574 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1575 				break;
   1576 			case IPPROTO_UDP:
   1577 				if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
   1578 					goto swcsum;
   1579 				if (pktlen < (hlen + sizeof(struct udphdr)))
   1580 					goto swcsum;
   1581 				uh = (struct udphdr *)((caddr_t)ip + hlen);
   1582 				/* no checksum */
   1583 				if (uh->uh_sum == 0)
   1584 					goto swcsum;
   1585 				m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
   1586 				break;
   1587 			default:
   1588 				goto swcsum;
   1589 			}
   1590 
   1591 			/* the uncomplemented sum is expected */
   1592 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1593 
   1594 			/* if the pkt had ip options, we have to deduct them */
   1595 			if (hlen > sizeof(struct ip)) {
   1596 				uint16_t *opts;
   1597 				uint32_t optsum, temp;
   1598 
   1599 				optsum = 0;
   1600 				temp = hlen - sizeof(struct ip);
   1601 				opts = (uint16_t *) ((caddr_t) ip +
   1602 					sizeof(struct ip));
   1603 
   1604 				while (temp > 1) {
   1605 					optsum += ntohs(*opts++);
   1606 					temp -= 2;
   1607 				}
   1608 				while (optsum >> 16)
   1609 					optsum = (optsum >> 16) +
   1610 						 (optsum & 0xffff);
   1611 
   1612 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1613 				m->m_pkthdr.csum_data =
   1614 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1615 
   1616 				while (m->m_pkthdr.csum_data >> 16)
   1617 					m->m_pkthdr.csum_data =
   1618 						(m->m_pkthdr.csum_data >> 16) +
   1619 						(m->m_pkthdr.csum_data &
   1620 						 0xffff);
   1621 			}
   1622 
   1623 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1624 						  M_CSUM_NO_PSEUDOHDR;
   1625 		} else
   1626 swcsum:
   1627 			m->m_pkthdr.csum_flags = 0;
   1628 #endif
   1629 		/* Pass it on. */
   1630 		(*ifp->if_input)(ifp, m);
   1631 	}
   1632 
   1633 	if (progress) {
   1634 		/* Update the receive pointer. */
   1635 		if (i == sc->sc_rxptr) {
   1636 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1637 #ifdef GEM_DEBUG
   1638 			if (ifp->if_flags & IFF_DEBUG)
   1639 				printf("%s: rint: ring wrap\n",
   1640 				    sc->sc_dev.dv_xname);
   1641 #endif
   1642 		}
   1643 		sc->sc_rxptr = i;
   1644 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1645 	}
   1646 #ifdef GEM_COUNTERS
   1647 	if (progress <= 4) {
   1648 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1649 	} else if (progress < 32) {
   1650 		if (progress < 16)
   1651 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1652 		else
   1653 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1654 
   1655 	} else {
   1656 		if (progress < 64)
   1657 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1658 		else
   1659 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1660 	}
   1661 #endif
   1662 
   1663 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1664 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1665 
   1666 	return (1);
   1667 }
   1668 
   1669 
   1670 /*
   1671  * gem_add_rxbuf:
   1672  *
   1673  *	Add a receive buffer to the indicated descriptor.
   1674  */
   1675 int
   1676 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1677 {
   1678 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1679 	struct mbuf *m;
   1680 	int error;
   1681 
   1682 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1683 	if (m == NULL)
   1684 		return (ENOBUFS);
   1685 
   1686 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1687 	MCLGET(m, M_DONTWAIT);
   1688 	if ((m->m_flags & M_EXT) == 0) {
   1689 		m_freem(m);
   1690 		return (ENOBUFS);
   1691 	}
   1692 
   1693 #ifdef GEM_DEBUG
   1694 /* bzero the packet to check DMA */
   1695 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1696 #endif
   1697 
   1698 	if (rxs->rxs_mbuf != NULL)
   1699 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1700 
   1701 	rxs->rxs_mbuf = m;
   1702 
   1703 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1704 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1705 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1706 	if (error) {
   1707 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1708 		    sc->sc_dev.dv_xname, idx, error);
   1709 		panic("gem_add_rxbuf");	/* XXX */
   1710 	}
   1711 
   1712 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1713 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1714 
   1715 	GEM_INIT_RXDESC(sc, idx);
   1716 
   1717 	return (0);
   1718 }
   1719 
   1720 
   1721 int
   1722 gem_eint(sc, status)
   1723 	struct gem_softc *sc;
   1724 	u_int status;
   1725 {
   1726 	char bits[128];
   1727 
   1728 	if ((status & GEM_INTR_MIF) != 0) {
   1729 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1730 		return (1);
   1731 	}
   1732 
   1733 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1734 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   1735 	return (1);
   1736 }
   1737 
   1738 
   1739 int
   1740 gem_intr(v)
   1741 	void *v;
   1742 {
   1743 	struct gem_softc *sc = (struct gem_softc *)v;
   1744 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1745 	bus_space_tag_t t = sc->sc_bustag;
   1746 	bus_space_handle_t seb = sc->sc_h;
   1747 	u_int32_t status;
   1748 	int r = 0;
   1749 #ifdef GEM_DEBUG
   1750 	char bits[128];
   1751 #endif
   1752 
   1753 	sc->sc_ev_intr.ev_count++;
   1754 
   1755 	status = bus_space_read_4(t, seb, GEM_STATUS);
   1756 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   1757 		sc->sc_dev.dv_xname, (status >> 19),
   1758 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   1759 
   1760 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   1761 		r |= gem_eint(sc, status);
   1762 
   1763 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   1764 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   1765 		r |= gem_tint(sc);
   1766 	}
   1767 
   1768 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   1769 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   1770 		r |= gem_rint(sc);
   1771 	}
   1772 
   1773 	/* We should eventually do more than just print out error stats. */
   1774 	if (status & GEM_INTR_TX_MAC) {
   1775 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
   1776 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   1777 			printf("%s: MAC tx fault, status %x\n",
   1778 			    sc->sc_dev.dv_xname, txstat);
   1779 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   1780 			gem_init(ifp);
   1781 	}
   1782 	if (status & GEM_INTR_RX_MAC) {
   1783 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
   1784 		if (rxstat & ~GEM_MAC_RX_DONE)
   1785 			printf("%s: MAC rx fault, status %x\n",
   1786 			    sc->sc_dev.dv_xname, rxstat);
   1787 		/*
   1788 		 * On some chip revisions GEM_MAC_RX_OVERFLOW happen often
   1789 		 * due to a silicon bug so handle them silently.
   1790 		 */
   1791 		if (rxstat & GEM_MAC_RX_OVERFLOW)
   1792 			gem_init(ifp);
   1793 		else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   1794 			printf("%s: MAC rx fault, status %x\n",
   1795 			    sc->sc_dev.dv_xname, rxstat);
   1796 	}
   1797 	return (r);
   1798 }
   1799 
   1800 
   1801 void
   1802 gem_watchdog(ifp)
   1803 	struct ifnet *ifp;
   1804 {
   1805 	struct gem_softc *sc = ifp->if_softc;
   1806 
   1807 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   1808 		"GEM_MAC_RX_CONFIG %x\n",
   1809 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
   1810 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
   1811 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
   1812 
   1813 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1814 	++ifp->if_oerrors;
   1815 
   1816 	/* Try to get more packets going. */
   1817 	gem_start(ifp);
   1818 }
   1819 
   1820 /*
   1821  * Initialize the MII Management Interface
   1822  */
   1823 void
   1824 gem_mifinit(sc)
   1825 	struct gem_softc *sc;
   1826 {
   1827 	bus_space_tag_t t = sc->sc_bustag;
   1828 	bus_space_handle_t mif = sc->sc_h;
   1829 
   1830 	/* Configure the MIF in frame mode */
   1831 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1832 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   1833 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   1834 }
   1835 
   1836 /*
   1837  * MII interface
   1838  *
   1839  * The GEM MII interface supports at least three different operating modes:
   1840  *
   1841  * Bitbang mode is implemented using data, clock and output enable registers.
   1842  *
   1843  * Frame mode is implemented by loading a complete frame into the frame
   1844  * register and polling the valid bit for completion.
   1845  *
   1846  * Polling mode uses the frame register but completion is indicated by
   1847  * an interrupt.
   1848  *
   1849  */
   1850 static int
   1851 gem_mii_readreg(self, phy, reg)
   1852 	struct device *self;
   1853 	int phy, reg;
   1854 {
   1855 	struct gem_softc *sc = (void *)self;
   1856 	bus_space_tag_t t = sc->sc_bustag;
   1857 	bus_space_handle_t mif = sc->sc_h;
   1858 	int n;
   1859 	u_int32_t v;
   1860 
   1861 #ifdef GEM_DEBUG1
   1862 	if (sc->sc_debug)
   1863 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
   1864 #endif
   1865 
   1866 #if 0
   1867 	/* Select the desired PHY in the MIF configuration register */
   1868 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1869 	/* Clear PHY select bit */
   1870 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1871 	if (phy == GEM_PHYAD_EXTERNAL)
   1872 		/* Set PHY select bit to get at external device */
   1873 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1874 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1875 #endif
   1876 
   1877 	/* Construct the frame command */
   1878 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   1879 		GEM_MIF_FRAME_READ;
   1880 
   1881 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1882 	for (n = 0; n < 100; n++) {
   1883 		DELAY(1);
   1884 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1885 		if (v & GEM_MIF_FRAME_TA0)
   1886 			return (v & GEM_MIF_FRAME_DATA);
   1887 	}
   1888 
   1889 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1890 	return (0);
   1891 }
   1892 
   1893 static void
   1894 gem_mii_writereg(self, phy, reg, val)
   1895 	struct device *self;
   1896 	int phy, reg, val;
   1897 {
   1898 	struct gem_softc *sc = (void *)self;
   1899 	bus_space_tag_t t = sc->sc_bustag;
   1900 	bus_space_handle_t mif = sc->sc_h;
   1901 	int n;
   1902 	u_int32_t v;
   1903 
   1904 #ifdef GEM_DEBUG1
   1905 	if (sc->sc_debug)
   1906 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
   1907 			phy, reg, val);
   1908 #endif
   1909 
   1910 #if 0
   1911 	/* Select the desired PHY in the MIF configuration register */
   1912 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1913 	/* Clear PHY select bit */
   1914 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1915 	if (phy == GEM_PHYAD_EXTERNAL)
   1916 		/* Set PHY select bit to get at external device */
   1917 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1918 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1919 #endif
   1920 	/* Construct the frame command */
   1921 	v = GEM_MIF_FRAME_WRITE			|
   1922 	    (phy << GEM_MIF_PHY_SHIFT)		|
   1923 	    (reg << GEM_MIF_REG_SHIFT)		|
   1924 	    (val & GEM_MIF_FRAME_DATA);
   1925 
   1926 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1927 	for (n = 0; n < 100; n++) {
   1928 		DELAY(1);
   1929 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1930 		if (v & GEM_MIF_FRAME_TA0)
   1931 			return;
   1932 	}
   1933 
   1934 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1935 }
   1936 
   1937 static void
   1938 gem_mii_statchg(dev)
   1939 	struct device *dev;
   1940 {
   1941 	struct gem_softc *sc = (void *)dev;
   1942 #ifdef GEM_DEBUG
   1943 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1944 #endif
   1945 	bus_space_tag_t t = sc->sc_bustag;
   1946 	bus_space_handle_t mac = sc->sc_h;
   1947 	u_int32_t v;
   1948 
   1949 #ifdef GEM_DEBUG
   1950 	if (sc->sc_debug)
   1951 		printf("gem_mii_statchg: status change: phy = %d\n",
   1952 			sc->sc_phys[instance]);
   1953 #endif
   1954 
   1955 
   1956 	/* Set tx full duplex options */
   1957 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   1958 	delay(10000); /* reg must be cleared and delay before changing. */
   1959 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
   1960 		GEM_MAC_TX_ENABLE;
   1961 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1962 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
   1963 	}
   1964 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
   1965 
   1966 	/* XIF Configuration */
   1967  /* We should really calculate all this rather than rely on defaults */
   1968 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
   1969 	v = GEM_MAC_XIF_LINK_LED;
   1970 	v |= GEM_MAC_XIF_TX_MII_ENA;
   1971 
   1972 	/* If an external transceiver is connected, enable its MII drivers */
   1973 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   1974 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   1975 		/* External MII needs echo disable if half duplex. */
   1976 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1977 			/* turn on full duplex LED */
   1978 			v |= GEM_MAC_XIF_FDPLX_LED;
   1979 		else
   1980 	 		/* half duplex -- disable echo */
   1981 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
   1982 
   1983 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   1984 			v |= GEM_MAC_XIF_GMII_MODE;
   1985 		else
   1986 			v &= ~GEM_MAC_XIF_GMII_MODE;
   1987 	} else
   1988 		/* Internal MII needs buf enable */
   1989 		v |= GEM_MAC_XIF_MII_BUF_ENA;
   1990 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   1991 }
   1992 
   1993 int
   1994 gem_mediachange(ifp)
   1995 	struct ifnet *ifp;
   1996 {
   1997 	struct gem_softc *sc = ifp->if_softc;
   1998 
   1999 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   2000 		return (EINVAL);
   2001 
   2002 	return (mii_mediachg(&sc->sc_mii));
   2003 }
   2004 
   2005 void
   2006 gem_mediastatus(ifp, ifmr)
   2007 	struct ifnet *ifp;
   2008 	struct ifmediareq *ifmr;
   2009 {
   2010 	struct gem_softc *sc = ifp->if_softc;
   2011 
   2012 	if ((ifp->if_flags & IFF_UP) == 0)
   2013 		return;
   2014 
   2015 	mii_pollstat(&sc->sc_mii);
   2016 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2017 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2018 }
   2019 
   2020 int gem_ioctldebug = 0;
   2021 /*
   2022  * Process an ioctl request.
   2023  */
   2024 int
   2025 gem_ioctl(ifp, cmd, data)
   2026 	struct ifnet *ifp;
   2027 	u_long cmd;
   2028 	caddr_t data;
   2029 {
   2030 	struct gem_softc *sc = ifp->if_softc;
   2031 	struct ifreq *ifr = (struct ifreq *)data;
   2032 	int s, error = 0;
   2033 
   2034 	s = splnet();
   2035 
   2036 	switch (cmd) {
   2037 	case SIOCADDMULTI:
   2038 	case SIOCDELMULTI:
   2039 		gem_setladrf(sc);
   2040 		break;
   2041 	case SIOCGIFMEDIA:
   2042 	case SIOCSIFMEDIA:
   2043 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   2044 		break;
   2045 	case SIOCSIFFLAGS:
   2046 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   2047 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   2048 		    == (IFF_UP|IFF_RUNNING))
   2049 		    && ((ifp->if_flags & (~RESETIGN))
   2050 		    == (sc->sc_if_flags & (~RESETIGN)))) {
   2051 			gem_setladrf(sc);
   2052 			break;
   2053 		}
   2054 #undef RESETIGN
   2055 		/*FALLTHROUGH*/
   2056 	default:
   2057 		error = ether_ioctl(ifp, cmd, data);
   2058 		if (error == ENETRESET) {
   2059 			/*
   2060 			 * Multicast list has changed; set the hardware filter
   2061 			 * accordingly.
   2062 			 */
   2063 			if (ifp->if_flags & IFF_RUNNING) {
   2064 if (gem_ioctldebug) printf("reset1\n");
   2065 				gem_init(ifp);
   2066 				delay(50000);
   2067 			}
   2068 			error = 0;
   2069 		}
   2070 		break;
   2071 	}
   2072 
   2073 	/* Try to get things going again */
   2074 	if (ifp->if_flags & IFF_UP) {
   2075 if (gem_ioctldebug) printf("start\n");
   2076 		gem_start(ifp);
   2077 	}
   2078 	splx(s);
   2079 	return (error);
   2080 }
   2081 
   2082 
   2083 void
   2084 gem_shutdown(arg)
   2085 	void *arg;
   2086 {
   2087 	struct gem_softc *sc = (struct gem_softc *)arg;
   2088 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2089 
   2090 	gem_stop(ifp, 1);
   2091 }
   2092 
   2093 /*
   2094  * Set up the logical address filter.
   2095  */
   2096 void
   2097 gem_setladrf(sc)
   2098 	struct gem_softc *sc;
   2099 {
   2100 	struct ethercom *ec = &sc->sc_ethercom;
   2101 	struct ifnet *ifp = &ec->ec_if;
   2102 	struct ether_multi *enm;
   2103 	struct ether_multistep step;
   2104 	bus_space_tag_t t = sc->sc_bustag;
   2105 	bus_space_handle_t h = sc->sc_h;
   2106 	u_int32_t crc;
   2107 	u_int32_t hash[16];
   2108 	u_int32_t v;
   2109 	int i;
   2110 
   2111 	/* Get current RX configuration */
   2112 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2113 
   2114 	/*
   2115 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2116 	 * and hash filter.  Depending on the case, the right bit will be
   2117 	 * enabled.
   2118 	 */
   2119 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2120 	    GEM_MAC_RX_PROMISC_GRP);
   2121 
   2122 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2123 		/* Turn on promiscuous mode */
   2124 		v |= GEM_MAC_RX_PROMISCUOUS;
   2125 		ifp->if_flags |= IFF_ALLMULTI;
   2126 		goto chipit;
   2127 	}
   2128 
   2129 	/*
   2130 	 * Set up multicast address filter by passing all multicast addresses
   2131 	 * through a crc generator, and then using the high order 8 bits as an
   2132 	 * index into the 256 bit logical address filter.  The high order 4
   2133 	 * bits selects the word, while the other 4 bits select the bit within
   2134 	 * the word (where bit 0 is the MSB).
   2135 	 */
   2136 
   2137 	/* Clear hash table */
   2138 	memset(hash, 0, sizeof(hash));
   2139 
   2140 	ETHER_FIRST_MULTI(step, ec, enm);
   2141 	while (enm != NULL) {
   2142 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2143 			/*
   2144 			 * We must listen to a range of multicast addresses.
   2145 			 * For now, just accept all multicasts, rather than
   2146 			 * trying to set only those filter bits needed to match
   2147 			 * the range.  (At this time, the only use of address
   2148 			 * ranges is for IP multicast routing, for which the
   2149 			 * range is big enough to require all bits set.)
   2150 			 * XXX use the addr filter for this
   2151 			 */
   2152 			ifp->if_flags |= IFF_ALLMULTI;
   2153 			v |= GEM_MAC_RX_PROMISC_GRP;
   2154 			goto chipit;
   2155 		}
   2156 
   2157 		/* Get the LE CRC32 of the address */
   2158 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2159 
   2160 		/* Just want the 8 most significant bits. */
   2161 		crc >>= 24;
   2162 
   2163 		/* Set the corresponding bit in the filter. */
   2164 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2165 
   2166 		ETHER_NEXT_MULTI(step, enm);
   2167 	}
   2168 
   2169 	v |= GEM_MAC_RX_HASH_FILTER;
   2170 	ifp->if_flags &= ~IFF_ALLMULTI;
   2171 
   2172 	/* Now load the hash table into the chip (if we are using it) */
   2173 	for (i = 0; i < 16; i++) {
   2174 		bus_space_write_4(t, h,
   2175 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2176 		    hash[i]);
   2177 	}
   2178 
   2179 chipit:
   2180 	sc->sc_if_flags = ifp->if_flags;
   2181 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2182 }
   2183 
   2184 #if notyet
   2185 
   2186 /*
   2187  * gem_power:
   2188  *
   2189  *	Power management (suspend/resume) hook.
   2190  */
   2191 void
   2192 gem_power(why, arg)
   2193 	int why;
   2194 	void *arg;
   2195 {
   2196 	struct gem_softc *sc = arg;
   2197 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2198 	int s;
   2199 
   2200 	s = splnet();
   2201 	switch (why) {
   2202 	case PWR_SUSPEND:
   2203 	case PWR_STANDBY:
   2204 		gem_stop(ifp, 1);
   2205 		if (sc->sc_power != NULL)
   2206 			(*sc->sc_power)(sc, why);
   2207 		break;
   2208 	case PWR_RESUME:
   2209 		if (ifp->if_flags & IFF_UP) {
   2210 			if (sc->sc_power != NULL)
   2211 				(*sc->sc_power)(sc, why);
   2212 			gem_init(ifp);
   2213 		}
   2214 		break;
   2215 	case PWR_SOFTSUSPEND:
   2216 	case PWR_SOFTSTANDBY:
   2217 	case PWR_SOFTRESUME:
   2218 		break;
   2219 	}
   2220 	splx(s);
   2221 }
   2222 #endif
   2223