gem.c revision 1.43 1 /* $NetBSD: gem.c,v 1.43 2005/10/28 20:56:13 christos Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.43 2005/10/28 20:56:13 christos Exp $");
38
39 #include "opt_inet.h"
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/syslog.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53
54 #include <machine/endian.h>
55
56 #include <uvm/uvm_extern.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 #include <dev/mii/mii_bitbang.h>
82
83 #include <dev/ic/gemreg.h>
84 #include <dev/ic/gemvar.h>
85
86 #define TRIES 10000
87
88 static void gem_start(struct ifnet *);
89 static void gem_stop(struct ifnet *, int);
90 int gem_ioctl(struct ifnet *, u_long, caddr_t);
91 void gem_tick(void *);
92 void gem_watchdog(struct ifnet *);
93 void gem_shutdown(void *);
94 int gem_init(struct ifnet *);
95 void gem_init_regs(struct gem_softc *sc);
96 static int gem_ringsize(int sz);
97 static int gem_meminit(struct gem_softc *);
98 void gem_mifinit(struct gem_softc *);
99 static int gem_bitwait(struct gem_softc *sc, int, u_int32_t, u_int32_t);
100 void gem_reset(struct gem_softc *);
101 int gem_reset_rx(struct gem_softc *sc);
102 int gem_reset_tx(struct gem_softc *sc);
103 int gem_disable_rx(struct gem_softc *sc);
104 int gem_disable_tx(struct gem_softc *sc);
105 static void gem_rxdrain(struct gem_softc *sc);
106 int gem_add_rxbuf(struct gem_softc *sc, int idx);
107 void gem_setladrf(struct gem_softc *);
108
109 /* MII methods & callbacks */
110 static int gem_mii_readreg(struct device *, int, int);
111 static void gem_mii_writereg(struct device *, int, int, int);
112 static void gem_mii_statchg(struct device *);
113
114 int gem_mediachange(struct ifnet *);
115 void gem_mediastatus(struct ifnet *, struct ifmediareq *);
116
117 struct mbuf *gem_get(struct gem_softc *, int, int);
118 int gem_put(struct gem_softc *, int, struct mbuf *);
119 void gem_read(struct gem_softc *, int, int);
120 int gem_eint(struct gem_softc *, u_int);
121 int gem_rint(struct gem_softc *);
122 int gem_tint(struct gem_softc *);
123 void gem_power(int, void *);
124
125 #ifdef GEM_DEBUG
126 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
127 printf x
128 #else
129 #define DPRINTF(sc, x) /* nothing */
130 #endif
131
132 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
133
134
135 /*
136 * gem_attach:
137 *
138 * Attach a Gem interface to the system.
139 */
140 void
141 gem_attach(sc, enaddr)
142 struct gem_softc *sc;
143 const uint8_t *enaddr;
144 {
145 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
146 struct mii_data *mii = &sc->sc_mii;
147 struct mii_softc *child;
148 struct ifmedia_entry *ifm;
149 int i, error;
150 u_int32_t v;
151 char *nullbuf;
152
153 /* Make sure the chip is stopped. */
154 ifp->if_softc = sc;
155 gem_reset(sc);
156
157 /*
158 * Allocate the control data structures, and create and load the
159 * DMA map for it. gem_control_data is 9216 bytes, we have space for
160 * the padding buffer in the bus_dmamem_alloc()'d memory.
161 */
162 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
163 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
164 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
165 aprint_error(
166 "%s: unable to allocate control data, error = %d\n",
167 sc->sc_dev.dv_xname, error);
168 goto fail_0;
169 }
170
171 /* XXX should map this in with correct endianness */
172 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
173 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
174 BUS_DMA_COHERENT)) != 0) {
175 aprint_error("%s: unable to map control data, error = %d\n",
176 sc->sc_dev.dv_xname, error);
177 goto fail_1;
178 }
179
180 nullbuf =
181 (caddr_t)sc->sc_control_data + sizeof(struct gem_control_data);
182
183 if ((error = bus_dmamap_create(sc->sc_dmatag,
184 sizeof(struct gem_control_data), 1,
185 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
186 aprint_error("%s: unable to create control data DMA map, "
187 "error = %d\n", sc->sc_dev.dv_xname, error);
188 goto fail_2;
189 }
190
191 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
192 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
193 0)) != 0) {
194 aprint_error(
195 "%s: unable to load control data DMA map, error = %d\n",
196 sc->sc_dev.dv_xname, error);
197 goto fail_3;
198 }
199
200 memset(nullbuf, 0, ETHER_MIN_TX);
201 if ((error = bus_dmamap_create(sc->sc_dmatag,
202 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
203 aprint_error("%s: unable to create padding DMA map, "
204 "error = %d\n", sc->sc_dev.dv_xname, error);
205 goto fail_4;
206 }
207
208 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
209 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
210 aprint_error(
211 "%s: unable to load padding DMA map, error = %d\n",
212 sc->sc_dev.dv_xname, error);
213 goto fail_5;
214 }
215
216 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
217 BUS_DMASYNC_PREWRITE);
218
219 /*
220 * Initialize the transmit job descriptors.
221 */
222 SIMPLEQ_INIT(&sc->sc_txfreeq);
223 SIMPLEQ_INIT(&sc->sc_txdirtyq);
224
225 /*
226 * Create the transmit buffer DMA maps.
227 */
228 for (i = 0; i < GEM_TXQUEUELEN; i++) {
229 struct gem_txsoft *txs;
230
231 txs = &sc->sc_txsoft[i];
232 txs->txs_mbuf = NULL;
233 if ((error = bus_dmamap_create(sc->sc_dmatag,
234 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
235 ETHER_MAX_LEN_JUMBO, 0, 0,
236 &txs->txs_dmamap)) != 0) {
237 aprint_error("%s: unable to create tx DMA map %d, "
238 "error = %d\n", sc->sc_dev.dv_xname, i, error);
239 goto fail_6;
240 }
241 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
242 }
243
244 /*
245 * Create the receive buffer DMA maps.
246 */
247 for (i = 0; i < GEM_NRXDESC; i++) {
248 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
249 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
250 aprint_error("%s: unable to create rx DMA map %d, "
251 "error = %d\n", sc->sc_dev.dv_xname, i, error);
252 goto fail_7;
253 }
254 sc->sc_rxsoft[i].rxs_mbuf = NULL;
255 }
256
257 /*
258 * From this point forward, the attachment cannot fail. A failure
259 * before this point releases all resources that may have been
260 * allocated.
261 */
262
263 /* Announce ourselves. */
264 aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
265 ether_sprintf(enaddr));
266
267 /* Get RX FIFO size */
268 sc->sc_rxfifosize = 64 *
269 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
270 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
271
272 /* Get TX FIFO size */
273 v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
274 aprint_normal(", %uKB TX fifo\n", v / 16);
275
276 /* Initialize ifnet structure. */
277 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
278 ifp->if_softc = sc;
279 ifp->if_flags =
280 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
281 sc->sc_if_flags = ifp->if_flags;
282 ifp->if_capabilities |=
283 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
284 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
285 ifp->if_start = gem_start;
286 ifp->if_ioctl = gem_ioctl;
287 ifp->if_watchdog = gem_watchdog;
288 ifp->if_stop = gem_stop;
289 ifp->if_init = gem_init;
290 IFQ_SET_READY(&ifp->if_snd);
291
292 /* Initialize ifmedia structures and MII info */
293 mii->mii_ifp = ifp;
294 mii->mii_readreg = gem_mii_readreg;
295 mii->mii_writereg = gem_mii_writereg;
296 mii->mii_statchg = gem_mii_statchg;
297
298 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
299
300 gem_mifinit(sc);
301
302 mii_attach(&sc->sc_dev, mii, 0xffffffff,
303 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
304
305 child = LIST_FIRST(&mii->mii_phys);
306 if (child == NULL) {
307 /* No PHY attached */
308 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
309 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
310 } else {
311 /*
312 * Walk along the list of attached MII devices and
313 * establish an `MII instance' to `phy number'
314 * mapping. We'll use this mapping in media change
315 * requests to determine which phy to use to program
316 * the MIF configuration register.
317 */
318 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
319 /*
320 * Note: we support just two PHYs: the built-in
321 * internal device and an external on the MII
322 * connector.
323 */
324 if (child->mii_phy > 1 || child->mii_inst > 1) {
325 aprint_error(
326 "%s: cannot accomodate MII device %s"
327 " at phy %d, instance %d\n",
328 sc->sc_dev.dv_xname,
329 child->mii_dev.dv_xname,
330 child->mii_phy, child->mii_inst);
331 continue;
332 }
333
334 sc->sc_phys[child->mii_inst] = child->mii_phy;
335 }
336
337 /*
338 * Now select and activate the PHY we will use.
339 *
340 * The order of preference is External (MDI1),
341 * Internal (MDI0), Serial Link (no MII).
342 */
343 if (sc->sc_phys[1]) {
344 #ifdef GEM_DEBUG
345 aprint_debug("using external phy\n");
346 #endif
347 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
348 } else {
349 #ifdef GEM_DEBUG
350 aprint_debug("using internal phy\n");
351 #endif
352 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
353 }
354 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
355 sc->sc_mif_config);
356
357 /*
358 * XXX - we can really do the following ONLY if the
359 * phy indeed has the auto negotiation capability!!
360 */
361 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
362 }
363
364 /*
365 * If we support GigE media, we support jumbo frames too.
366 * Unless we are Apple.
367 */
368 TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
369 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
370 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
371 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
372 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
373 if (sc->sc_variant != GEM_APPLE_GMAC)
374 sc->sc_ethercom.ec_capabilities
375 |= ETHERCAP_JUMBO_MTU;
376
377 sc->sc_flags |= GEM_GIGABIT;
378 break;
379 }
380 }
381
382 /* claim 802.1q capability */
383 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
384
385 /* Attach the interface. */
386 if_attach(ifp);
387 ether_ifattach(ifp, enaddr);
388
389 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
390 if (sc->sc_sh == NULL)
391 panic("gem_config: can't establish shutdownhook");
392
393 #if NRND > 0
394 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
395 RND_TYPE_NET, 0);
396 #endif
397
398 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
399 NULL, sc->sc_dev.dv_xname, "interrupts");
400 #ifdef GEM_COUNTERS
401 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
402 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
403 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
404 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
405 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
406 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
407 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
408 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
409 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
410 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
411 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
412 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
413 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
414 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
415 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
416 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
417 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
418 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
419 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
420 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
421 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
422 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
423 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
424 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
425 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
426 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
427 #endif
428
429 #if notyet
430 /*
431 * Add a suspend hook to make sure we come back up after a
432 * resume.
433 */
434 sc->sc_powerhook = powerhook_establish(gem_power, sc);
435 if (sc->sc_powerhook == NULL)
436 aprint_error("%s: WARNING: unable to establish power hook\n",
437 sc->sc_dev.dv_xname);
438 #endif
439
440 callout_init(&sc->sc_tick_ch);
441 return;
442
443 /*
444 * Free any resources we've allocated during the failed attach
445 * attempt. Do this in reverse order and fall through.
446 */
447 fail_7:
448 for (i = 0; i < GEM_NRXDESC; i++) {
449 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
450 bus_dmamap_destroy(sc->sc_dmatag,
451 sc->sc_rxsoft[i].rxs_dmamap);
452 }
453 fail_6:
454 for (i = 0; i < GEM_TXQUEUELEN; i++) {
455 if (sc->sc_txsoft[i].txs_dmamap != NULL)
456 bus_dmamap_destroy(sc->sc_dmatag,
457 sc->sc_txsoft[i].txs_dmamap);
458 }
459 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
460 fail_5:
461 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
462 fail_4:
463 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)nullbuf, ETHER_MIN_TX);
464 fail_3:
465 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
466 fail_2:
467 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
468 sizeof(struct gem_control_data));
469 fail_1:
470 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
471 fail_0:
472 return;
473 }
474
475
476 void
477 gem_tick(arg)
478 void *arg;
479 {
480 struct gem_softc *sc = arg;
481 int s;
482
483 s = splnet();
484 mii_tick(&sc->sc_mii);
485 splx(s);
486
487 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
488
489 }
490
491 static int
492 gem_bitwait(sc, r, clr, set)
493 struct gem_softc *sc;
494 int r;
495 u_int32_t clr;
496 u_int32_t set;
497 {
498 int i;
499 u_int32_t reg;
500
501 for (i = TRIES; i--; DELAY(100)) {
502 reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
503 if ((r & clr) == 0 && (r & set) == set)
504 return (1);
505 }
506 return (0);
507 }
508
509 void
510 gem_reset(sc)
511 struct gem_softc *sc;
512 {
513 bus_space_tag_t t = sc->sc_bustag;
514 bus_space_handle_t h = sc->sc_h;
515 int s;
516
517 s = splnet();
518 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
519 gem_reset_rx(sc);
520 gem_reset_tx(sc);
521
522 /* Do a full reset */
523 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
524 if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
525 printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
526 splx(s);
527 }
528
529
530 /*
531 * gem_rxdrain:
532 *
533 * Drain the receive queue.
534 */
535 static void
536 gem_rxdrain(struct gem_softc *sc)
537 {
538 struct gem_rxsoft *rxs;
539 int i;
540
541 for (i = 0; i < GEM_NRXDESC; i++) {
542 rxs = &sc->sc_rxsoft[i];
543 if (rxs->rxs_mbuf != NULL) {
544 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
545 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
546 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
547 m_freem(rxs->rxs_mbuf);
548 rxs->rxs_mbuf = NULL;
549 }
550 }
551 }
552
553 /*
554 * Reset the whole thing.
555 */
556 static void
557 gem_stop(struct ifnet *ifp, int disable)
558 {
559 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
560 struct gem_txsoft *txs;
561
562 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
563
564 callout_stop(&sc->sc_tick_ch);
565 mii_down(&sc->sc_mii);
566
567 /* XXX - Should we reset these instead? */
568 gem_disable_rx(sc);
569 gem_disable_tx(sc);
570
571 /*
572 * Release any queued transmit buffers.
573 */
574 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
575 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
576 if (txs->txs_mbuf != NULL) {
577 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
578 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
579 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
580 m_freem(txs->txs_mbuf);
581 txs->txs_mbuf = NULL;
582 }
583 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
584 }
585
586 if (disable) {
587 gem_rxdrain(sc);
588 }
589
590 /*
591 * Mark the interface down and cancel the watchdog timer.
592 */
593 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
594 sc->sc_if_flags = ifp->if_flags;
595 ifp->if_timer = 0;
596 }
597
598
599 /*
600 * Reset the receiver
601 */
602 int
603 gem_reset_rx(struct gem_softc *sc)
604 {
605 bus_space_tag_t t = sc->sc_bustag;
606 bus_space_handle_t h = sc->sc_h;
607
608 /*
609 * Resetting while DMA is in progress can cause a bus hang, so we
610 * disable DMA first.
611 */
612 gem_disable_rx(sc);
613 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
614 /* Wait till it finishes */
615 if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
616 printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
617 /* Wait 5ms extra. */
618 delay(5000);
619
620 /* Finally, reset the ERX */
621 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
622 /* Wait till it finishes */
623 if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
624 printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
625 return (1);
626 }
627 return (0);
628 }
629
630
631 /*
632 * Reset the transmitter
633 */
634 int
635 gem_reset_tx(struct gem_softc *sc)
636 {
637 bus_space_tag_t t = sc->sc_bustag;
638 bus_space_handle_t h = sc->sc_h;
639
640 /*
641 * Resetting while DMA is in progress can cause a bus hang, so we
642 * disable DMA first.
643 */
644 gem_disable_tx(sc);
645 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
646 /* Wait till it finishes */
647 if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
648 printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
649 /* Wait 5ms extra. */
650 delay(5000);
651
652 /* Finally, reset the ETX */
653 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
654 /* Wait till it finishes */
655 if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
656 printf("%s: cannot reset receiver\n",
657 sc->sc_dev.dv_xname);
658 return (1);
659 }
660 return (0);
661 }
662
663 /*
664 * disable receiver.
665 */
666 int
667 gem_disable_rx(struct gem_softc *sc)
668 {
669 bus_space_tag_t t = sc->sc_bustag;
670 bus_space_handle_t h = sc->sc_h;
671 u_int32_t cfg;
672
673 /* Flip the enable bit */
674 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
675 cfg &= ~GEM_MAC_RX_ENABLE;
676 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
677
678 /* Wait for it to finish */
679 return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
680 }
681
682 /*
683 * disable transmitter.
684 */
685 int
686 gem_disable_tx(struct gem_softc *sc)
687 {
688 bus_space_tag_t t = sc->sc_bustag;
689 bus_space_handle_t h = sc->sc_h;
690 u_int32_t cfg;
691
692 /* Flip the enable bit */
693 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
694 cfg &= ~GEM_MAC_TX_ENABLE;
695 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
696
697 /* Wait for it to finish */
698 return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
699 }
700
701 /*
702 * Initialize interface.
703 */
704 int
705 gem_meminit(struct gem_softc *sc)
706 {
707 struct gem_rxsoft *rxs;
708 int i, error;
709
710 /*
711 * Initialize the transmit descriptor ring.
712 */
713 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
714 for (i = 0; i < GEM_NTXDESC; i++) {
715 sc->sc_txdescs[i].gd_flags = 0;
716 sc->sc_txdescs[i].gd_addr = 0;
717 }
718 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
719 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
720 sc->sc_txfree = GEM_NTXDESC-1;
721 sc->sc_txnext = 0;
722 sc->sc_txwin = 0;
723
724 /*
725 * Initialize the receive descriptor and receive job
726 * descriptor rings.
727 */
728 for (i = 0; i < GEM_NRXDESC; i++) {
729 rxs = &sc->sc_rxsoft[i];
730 if (rxs->rxs_mbuf == NULL) {
731 if ((error = gem_add_rxbuf(sc, i)) != 0) {
732 printf("%s: unable to allocate or map rx "
733 "buffer %d, error = %d\n",
734 sc->sc_dev.dv_xname, i, error);
735 /*
736 * XXX Should attempt to run with fewer receive
737 * XXX buffers instead of just failing.
738 */
739 gem_rxdrain(sc);
740 return (1);
741 }
742 } else
743 GEM_INIT_RXDESC(sc, i);
744 }
745 sc->sc_rxptr = 0;
746
747 return (0);
748 }
749
750 static int
751 gem_ringsize(int sz)
752 {
753 switch (sz) {
754 case 32:
755 return GEM_RING_SZ_32;
756 case 64:
757 return GEM_RING_SZ_64;
758 case 128:
759 return GEM_RING_SZ_128;
760 case 256:
761 return GEM_RING_SZ_256;
762 case 512:
763 return GEM_RING_SZ_512;
764 case 1024:
765 return GEM_RING_SZ_1024;
766 case 2048:
767 return GEM_RING_SZ_2048;
768 case 4096:
769 return GEM_RING_SZ_4096;
770 case 8192:
771 return GEM_RING_SZ_8192;
772 default:
773 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
774 return GEM_RING_SZ_32;
775 }
776 }
777
778 /*
779 * Initialization of interface; set up initialization block
780 * and transmit/receive descriptor rings.
781 */
782 int
783 gem_init(struct ifnet *ifp)
784 {
785 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
786 bus_space_tag_t t = sc->sc_bustag;
787 bus_space_handle_t h = sc->sc_h;
788 int s;
789 u_int max_frame_size;
790 u_int32_t v;
791
792 s = splnet();
793
794 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
795 /*
796 * Initialization sequence. The numbered steps below correspond
797 * to the sequence outlined in section 6.3.5.1 in the Ethernet
798 * Channel Engine manual (part of the PCIO manual).
799 * See also the STP2002-STQ document from Sun Microsystems.
800 */
801
802 /* step 1 & 2. Reset the Ethernet Channel */
803 gem_stop(ifp, 0);
804 gem_reset(sc);
805 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
806
807 /* Re-initialize the MIF */
808 gem_mifinit(sc);
809
810 /* Call MI reset function if any */
811 if (sc->sc_hwreset)
812 (*sc->sc_hwreset)(sc);
813
814 /* step 3. Setup data structures in host memory */
815 gem_meminit(sc);
816
817 /* step 4. TX MAC registers & counters */
818 gem_init_regs(sc);
819 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
820 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
821 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
822 max_frame_size += ETHER_VLAN_ENCAP_LEN;
823 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
824 max_frame_size|/* burst size */(0x2000<<16));
825
826 /* step 5. RX MAC registers & counters */
827 gem_setladrf(sc);
828
829 /* step 6 & 7. Program Descriptor Ring Base Addresses */
830 /* NOTE: we use only 32-bit DMA addresses here. */
831 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
832 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
833
834 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
835 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
836
837 /* step 8. Global Configuration & Interrupt Mask */
838 bus_space_write_4(t, h, GEM_INTMASK,
839 ~(GEM_INTR_TX_INTME|
840 GEM_INTR_TX_EMPTY|
841 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
842 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
843 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
844 GEM_INTR_BERR));
845 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
846 GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
847 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
848 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
849
850 /* step 9. ETX Configuration: use mostly default values */
851
852 /* Enable DMA */
853 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
854 bus_space_write_4(t, h, GEM_TX_CONFIG,
855 v|GEM_TX_CONFIG_TXDMA_EN|
856 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
857 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
858
859 /* step 10. ERX Configuration */
860
861 /* Encode Receive Descriptor ring size: four possible values */
862 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
863
864 /* Set receive h/w checksum offset */
865 #ifdef INET
866 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
867 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
868 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
869 #endif
870
871 /* Enable DMA */
872 bus_space_write_4(t, h, GEM_RX_CONFIG,
873 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
874 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
875
876 /*
877 * The following value is for an OFF Threshold of about 3/4 full
878 * and an ON Threshold of 1/4 full.
879 */
880 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
881 (3 * sc->sc_rxfifosize / 256) |
882 ( (sc->sc_rxfifosize / 256) << 12));
883 bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
884
885 /* step 11. Configure Media */
886 mii_mediachg(&sc->sc_mii);
887
888 /* XXXX Serial link needs a whole different setup. */
889
890
891 /* step 12. RX_MAC Configuration Register */
892 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
893 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
894 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
895
896 /* step 14. Issue Transmit Pending command */
897
898 /* Call MI initialization function if any */
899 if (sc->sc_hwinit)
900 (*sc->sc_hwinit)(sc);
901
902
903 /* step 15. Give the reciever a swift kick */
904 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
905
906 /* Start the one second timer. */
907 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
908
909 ifp->if_flags |= IFF_RUNNING;
910 ifp->if_flags &= ~IFF_OACTIVE;
911 ifp->if_timer = 0;
912 sc->sc_if_flags = ifp->if_flags;
913 splx(s);
914
915 return (0);
916 }
917
918 void
919 gem_init_regs(struct gem_softc *sc)
920 {
921 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
922 bus_space_tag_t t = sc->sc_bustag;
923 bus_space_handle_t h = sc->sc_h;
924 const u_char *laddr = LLADDR(ifp->if_sadl);
925 u_int32_t v;
926
927 /* These regs are not cleared on reset */
928 if (!sc->sc_inited) {
929
930 /* Wooo. Magic values. */
931 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
932 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
933 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
934
935 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
936 /* Max frame and max burst size */
937 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
938 ETHER_MAX_LEN | (0x2000<<16));
939
940 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
941 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
942 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
943 /* Dunno.... */
944 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
945 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
946 ((laddr[5]<<8)|laddr[4])&0x3ff);
947
948 /* Secondary MAC addr set to 0:0:0:0:0:0 */
949 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
950 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
951 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
952
953 /* MAC control addr set to 01:80:c2:00:00:01 */
954 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
955 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
956 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
957
958 /* MAC filter addr set to 0:0:0:0:0:0 */
959 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
960 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
961 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
962
963 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
964 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
965
966 sc->sc_inited = 1;
967 }
968
969 /* Counters need to be zeroed */
970 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
971 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
972 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
973 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
974 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
975 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
976 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
977 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
978 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
979 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
980 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
981
982 /* Un-pause stuff */
983 #if 0
984 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
985 #else
986 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
987 #endif
988
989 /*
990 * Set the station address.
991 */
992 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
993 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
994 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
995
996 #if 0
997 if (sc->sc_variant != APPLE_GMAC)
998 return;
999 #endif
1000
1001 /*
1002 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1003 */
1004 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1005 v = GEM_MAC_XIF_TX_MII_ENA;
1006 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1007 v |= GEM_MAC_XIF_FDPLX_LED;
1008 if (sc->sc_flags & GEM_GIGABIT)
1009 v |= GEM_MAC_XIF_GMII_MODE;
1010 }
1011 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1012 }
1013
1014 static void
1015 gem_start(ifp)
1016 struct ifnet *ifp;
1017 {
1018 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1019 struct mbuf *m0, *m;
1020 struct gem_txsoft *txs, *last_txs;
1021 bus_dmamap_t dmamap;
1022 int error, firsttx, nexttx, lasttx = -1, ofree, seg;
1023 uint64_t flags = 0;
1024
1025 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1026 return;
1027
1028 /*
1029 * Remember the previous number of free descriptors and
1030 * the first descriptor we'll use.
1031 */
1032 ofree = sc->sc_txfree;
1033 firsttx = sc->sc_txnext;
1034
1035 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1036 sc->sc_dev.dv_xname, ofree, firsttx));
1037
1038 /*
1039 * Loop through the send queue, setting up transmit descriptors
1040 * until we drain the queue, or use up all available transmit
1041 * descriptors.
1042 */
1043 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1044 sc->sc_txfree != 0) {
1045 /*
1046 * Grab a packet off the queue.
1047 */
1048 IFQ_POLL(&ifp->if_snd, m0);
1049 if (m0 == NULL)
1050 break;
1051 m = NULL;
1052
1053 dmamap = txs->txs_dmamap;
1054
1055 /*
1056 * Load the DMA map. If this fails, the packet either
1057 * didn't fit in the alloted number of segments, or we were
1058 * short on resources. In this case, we'll copy and try
1059 * again.
1060 */
1061 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1062 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1063 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1064 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1065 if (m0->m_pkthdr.len > MCLBYTES) {
1066 printf("%s: unable to allocate jumbo Tx "
1067 "cluster\n", sc->sc_dev.dv_xname);
1068 IFQ_DEQUEUE(&ifp->if_snd, m0);
1069 m_freem(m0);
1070 continue;
1071 }
1072 MGETHDR(m, M_DONTWAIT, MT_DATA);
1073 if (m == NULL) {
1074 printf("%s: unable to allocate Tx mbuf\n",
1075 sc->sc_dev.dv_xname);
1076 break;
1077 }
1078 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1079 if (m0->m_pkthdr.len > MHLEN) {
1080 MCLGET(m, M_DONTWAIT);
1081 if ((m->m_flags & M_EXT) == 0) {
1082 printf("%s: unable to allocate Tx "
1083 "cluster\n", sc->sc_dev.dv_xname);
1084 m_freem(m);
1085 break;
1086 }
1087 }
1088 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1089 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1090 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1091 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1092 if (error) {
1093 printf("%s: unable to load Tx buffer, "
1094 "error = %d\n", sc->sc_dev.dv_xname, error);
1095 break;
1096 }
1097 }
1098
1099 /*
1100 * Ensure we have enough descriptors free to describe
1101 * the packet.
1102 */
1103 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1104 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1105 /*
1106 * Not enough free descriptors to transmit this
1107 * packet. We haven't committed to anything yet,
1108 * so just unload the DMA map, put the packet
1109 * back on the queue, and punt. Notify the upper
1110 * layer that there are no more slots left.
1111 *
1112 * XXX We could allocate an mbuf and copy, but
1113 * XXX it is worth it?
1114 */
1115 ifp->if_flags |= IFF_OACTIVE;
1116 sc->sc_if_flags = ifp->if_flags;
1117 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1118 if (m != NULL)
1119 m_freem(m);
1120 break;
1121 }
1122
1123 IFQ_DEQUEUE(&ifp->if_snd, m0);
1124 if (m != NULL) {
1125 m_freem(m0);
1126 m0 = m;
1127 }
1128
1129 /*
1130 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1131 */
1132
1133 /* Sync the DMA map. */
1134 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1135 BUS_DMASYNC_PREWRITE);
1136
1137 /*
1138 * Initialize the transmit descriptors.
1139 */
1140 for (nexttx = sc->sc_txnext, seg = 0;
1141 seg < dmamap->dm_nsegs;
1142 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1143
1144 /*
1145 * If this is the first descriptor we're
1146 * enqueueing, set the start of packet flag,
1147 * and the checksum stuff if we want the hardware
1148 * to do it.
1149 */
1150 sc->sc_txdescs[nexttx].gd_addr =
1151 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1152 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1153 if (nexttx == firsttx) {
1154 flags |= GEM_TD_START_OF_PACKET;
1155 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1156 sc->sc_txwin = 0;
1157 flags |= GEM_TD_INTERRUPT_ME;
1158 }
1159
1160 #ifdef INET
1161 /* h/w checksum */
1162 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
1163 M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
1164 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1165 struct ether_header *eh;
1166 uint16_t offset, start;
1167
1168 eh = mtod(m0, struct ether_header *);
1169 switch (ntohs(eh->ether_type)) {
1170 case ETHERTYPE_IP:
1171 start = ETHER_HDR_LEN;
1172 break;
1173 case ETHERTYPE_VLAN:
1174 start = ETHER_HDR_LEN +
1175 ETHER_VLAN_ENCAP_LEN;
1176 break;
1177 default:
1178 /* unsupported, drop it */
1179 m_free(m0);
1180 continue;
1181 }
1182 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1183 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1184 flags |= (start <<
1185 GEM_TD_CXSUM_STARTSHFT) |
1186 (offset <<
1187 GEM_TD_CXSUM_STUFFSHFT) |
1188 GEM_TD_CXSUM_ENABLE;
1189 }
1190 #endif
1191 }
1192 if (seg == dmamap->dm_nsegs - 1) {
1193 flags |= GEM_TD_END_OF_PACKET;
1194 } else {
1195 /* last flag set outside of loop */
1196 sc->sc_txdescs[nexttx].gd_flags =
1197 GEM_DMA_WRITE(sc, flags);
1198 }
1199 lasttx = nexttx;
1200 }
1201 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1202 /* add padding buffer at end of chain */
1203 flags &= ~GEM_TD_END_OF_PACKET;
1204 sc->sc_txdescs[lasttx].gd_flags =
1205 GEM_DMA_WRITE(sc, flags);
1206
1207 sc->sc_txdescs[nexttx].gd_addr =
1208 GEM_DMA_WRITE(sc,
1209 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1210 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1211 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1212 lasttx = nexttx;
1213 nexttx = GEM_NEXTTX(nexttx);
1214 seg++;
1215 }
1216 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1217
1218 KASSERT(lasttx != -1);
1219
1220 /*
1221 * Store a pointer to the packet so we can free it later,
1222 * and remember what txdirty will be once the packet is
1223 * done.
1224 */
1225 txs->txs_mbuf = m0;
1226 txs->txs_firstdesc = sc->sc_txnext;
1227 txs->txs_lastdesc = lasttx;
1228 txs->txs_ndescs = seg;
1229
1230 #ifdef GEM_DEBUG
1231 if (ifp->if_flags & IFF_DEBUG) {
1232 printf(" gem_start %p transmit chain:\n", txs);
1233 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1234 printf("descriptor %d:\t", seg);
1235 printf("gd_flags: 0x%016llx\t", (long long)
1236 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1237 printf("gd_addr: 0x%016llx\n", (long long)
1238 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1239 if (seg == lasttx)
1240 break;
1241 }
1242 }
1243 #endif
1244
1245 /* Sync the descriptors we're using. */
1246 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1247 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1248
1249 /* Advance the tx pointer. */
1250 sc->sc_txfree -= txs->txs_ndescs;
1251 sc->sc_txnext = nexttx;
1252
1253 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1254 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1255
1256 last_txs = txs;
1257
1258 #if NBPFILTER > 0
1259 /*
1260 * Pass the packet to any BPF listeners.
1261 */
1262 if (ifp->if_bpf)
1263 bpf_mtap(ifp->if_bpf, m0);
1264 #endif /* NBPFILTER > 0 */
1265 }
1266
1267 if (txs == NULL || sc->sc_txfree == 0) {
1268 /* No more slots left; notify upper layer. */
1269 ifp->if_flags |= IFF_OACTIVE;
1270 sc->sc_if_flags = ifp->if_flags;
1271 }
1272
1273 if (sc->sc_txfree != ofree) {
1274 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1275 sc->sc_dev.dv_xname, lasttx, firsttx));
1276 /*
1277 * The entire packet chain is set up.
1278 * Kick the transmitter.
1279 */
1280 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1281 sc->sc_dev.dv_xname, nexttx));
1282 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1283 sc->sc_txnext);
1284
1285 /* Set a watchdog timer in case the chip flakes out. */
1286 ifp->if_timer = 5;
1287 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1288 sc->sc_dev.dv_xname, ifp->if_timer));
1289 }
1290 }
1291
1292 /*
1293 * Transmit interrupt.
1294 */
1295 int
1296 gem_tint(sc)
1297 struct gem_softc *sc;
1298 {
1299 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1300 bus_space_tag_t t = sc->sc_bustag;
1301 bus_space_handle_t mac = sc->sc_h;
1302 struct gem_txsoft *txs;
1303 int txlast;
1304 int progress = 0;
1305
1306
1307 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1308
1309 /*
1310 * Unload collision counters
1311 */
1312 ifp->if_collisions +=
1313 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1314 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1315 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1316 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1317
1318 /*
1319 * then clear the hardware counters.
1320 */
1321 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1322 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1323 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1324 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1325
1326 /*
1327 * Go through our Tx list and free mbufs for those
1328 * frames that have been transmitted.
1329 */
1330 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1331 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1332 txs->txs_ndescs,
1333 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1334
1335 #ifdef GEM_DEBUG
1336 if (ifp->if_flags & IFF_DEBUG) {
1337 int i;
1338 printf(" txsoft %p transmit chain:\n", txs);
1339 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1340 printf("descriptor %d: ", i);
1341 printf("gd_flags: 0x%016llx\t", (long long)
1342 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1343 printf("gd_addr: 0x%016llx\n", (long long)
1344 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1345 if (i == txs->txs_lastdesc)
1346 break;
1347 }
1348 }
1349 #endif
1350
1351 /*
1352 * In theory, we could harveast some descriptors before
1353 * the ring is empty, but that's a bit complicated.
1354 *
1355 * GEM_TX_COMPLETION points to the last descriptor
1356 * processed +1.
1357 */
1358 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1359 DPRINTF(sc,
1360 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1361 txs->txs_lastdesc, txlast));
1362 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1363 if ((txlast >= txs->txs_firstdesc) &&
1364 (txlast <= txs->txs_lastdesc))
1365 break;
1366 } else {
1367 /* Ick -- this command wraps */
1368 if ((txlast >= txs->txs_firstdesc) ||
1369 (txlast <= txs->txs_lastdesc))
1370 break;
1371 }
1372
1373 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1374 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1375
1376 sc->sc_txfree += txs->txs_ndescs;
1377
1378 if (txs->txs_mbuf == NULL) {
1379 #ifdef DIAGNOSTIC
1380 panic("gem_txintr: null mbuf");
1381 #endif
1382 }
1383
1384 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1385 0, txs->txs_dmamap->dm_mapsize,
1386 BUS_DMASYNC_POSTWRITE);
1387 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1388 m_freem(txs->txs_mbuf);
1389 txs->txs_mbuf = NULL;
1390
1391 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1392
1393 ifp->if_opackets++;
1394 progress = 1;
1395 }
1396
1397 #if 0
1398 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1399 "GEM_TX_DATA_PTR %llx "
1400 "GEM_TX_COMPLETION %x\n",
1401 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1402 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1403 GEM_TX_DATA_PTR_HI) << 32) |
1404 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1405 GEM_TX_DATA_PTR_LO),
1406 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1407 #endif
1408
1409 if (progress) {
1410 if (sc->sc_txfree == GEM_NTXDESC - 1)
1411 sc->sc_txwin = 0;
1412
1413 ifp->if_flags &= ~IFF_OACTIVE;
1414 sc->sc_if_flags = ifp->if_flags;
1415 gem_start(ifp);
1416
1417 if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1418 ifp->if_timer = 0;
1419 }
1420 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1421 sc->sc_dev.dv_xname, ifp->if_timer));
1422
1423 return (1);
1424 }
1425
1426 /*
1427 * Receive interrupt.
1428 */
1429 int
1430 gem_rint(sc)
1431 struct gem_softc *sc;
1432 {
1433 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1434 bus_space_tag_t t = sc->sc_bustag;
1435 bus_space_handle_t h = sc->sc_h;
1436 struct gem_rxsoft *rxs;
1437 struct mbuf *m;
1438 u_int64_t rxstat;
1439 u_int32_t rxcomp;
1440 int i, len, progress = 0;
1441
1442 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1443
1444 /*
1445 * Read the completion register once. This limits
1446 * how long the following loop can execute.
1447 */
1448 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1449
1450 /*
1451 * XXXX Read the lastrx only once at the top for speed.
1452 */
1453 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1454 sc->sc_rxptr, rxcomp));
1455
1456 /*
1457 * Go into the loop at least once.
1458 */
1459 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1460 i = GEM_NEXTRX(i)) {
1461 rxs = &sc->sc_rxsoft[i];
1462
1463 GEM_CDRXSYNC(sc, i,
1464 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1465
1466 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1467
1468 if (rxstat & GEM_RD_OWN) {
1469 /*
1470 * We have processed all of the receive buffers.
1471 */
1472 break;
1473 }
1474
1475 progress++;
1476 ifp->if_ipackets++;
1477
1478 if (rxstat & GEM_RD_BAD_CRC) {
1479 ifp->if_ierrors++;
1480 printf("%s: receive error: CRC error\n",
1481 sc->sc_dev.dv_xname);
1482 GEM_INIT_RXDESC(sc, i);
1483 continue;
1484 }
1485
1486 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1487 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1488 #ifdef GEM_DEBUG
1489 if (ifp->if_flags & IFF_DEBUG) {
1490 printf(" rxsoft %p descriptor %d: ", rxs, i);
1491 printf("gd_flags: 0x%016llx\t", (long long)
1492 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1493 printf("gd_addr: 0x%016llx\n", (long long)
1494 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1495 }
1496 #endif
1497
1498 /* No errors; receive the packet. */
1499 len = GEM_RD_BUFLEN(rxstat);
1500
1501 /*
1502 * Allocate a new mbuf cluster. If that fails, we are
1503 * out of memory, and must drop the packet and recycle
1504 * the buffer that's already attached to this descriptor.
1505 */
1506 m = rxs->rxs_mbuf;
1507 if (gem_add_rxbuf(sc, i) != 0) {
1508 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1509 ifp->if_ierrors++;
1510 GEM_INIT_RXDESC(sc, i);
1511 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1512 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1513 continue;
1514 }
1515 m->m_data += 2; /* We're already off by two */
1516
1517 m->m_pkthdr.rcvif = ifp;
1518 m->m_pkthdr.len = m->m_len = len;
1519
1520 #if NBPFILTER > 0
1521 /*
1522 * Pass this up to any BPF listeners, but only
1523 * pass it up the stack if its for us.
1524 */
1525 if (ifp->if_bpf)
1526 bpf_mtap(ifp->if_bpf, m);
1527 #endif /* NPBFILTER > 0 */
1528
1529 #ifdef INET
1530 /* hardware checksum */
1531 if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
1532 struct ether_header *eh;
1533 struct ip *ip;
1534 struct udphdr *uh;
1535 int32_t hlen, pktlen;
1536
1537 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1538 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1539 ETHER_VLAN_ENCAP_LEN;
1540 eh = (struct ether_header *) mtod(m, caddr_t) +
1541 ETHER_VLAN_ENCAP_LEN;
1542 } else {
1543 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1544 eh = mtod(m, struct ether_header *);
1545 }
1546 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1547 goto swcsum;
1548 ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
1549
1550 /* IPv4 only */
1551 if (ip->ip_v != IPVERSION)
1552 goto swcsum;
1553
1554 hlen = ip->ip_hl << 2;
1555 if (hlen < sizeof(struct ip))
1556 goto swcsum;
1557
1558 /*
1559 * bail if too short, has random trailing garbage,
1560 * truncated, fragment, or has ethernet pad.
1561 */
1562 if ((ntohs(ip->ip_len) < hlen) ||
1563 (ntohs(ip->ip_len) != pktlen) ||
1564 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1565 goto swcsum;
1566
1567 switch (ip->ip_p) {
1568 case IPPROTO_TCP:
1569 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1570 goto swcsum;
1571 if (pktlen < (hlen + sizeof(struct tcphdr)))
1572 goto swcsum;
1573 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1574 break;
1575 case IPPROTO_UDP:
1576 if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
1577 goto swcsum;
1578 if (pktlen < (hlen + sizeof(struct udphdr)))
1579 goto swcsum;
1580 uh = (struct udphdr *)((caddr_t)ip + hlen);
1581 /* no checksum */
1582 if (uh->uh_sum == 0)
1583 goto swcsum;
1584 m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
1585 break;
1586 default:
1587 goto swcsum;
1588 }
1589
1590 /* the uncomplemented sum is expected */
1591 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1592
1593 /* if the pkt had ip options, we have to deduct them */
1594 if (hlen > sizeof(struct ip)) {
1595 uint16_t *opts;
1596 uint32_t optsum, temp;
1597
1598 optsum = 0;
1599 temp = hlen - sizeof(struct ip);
1600 opts = (uint16_t *) ((caddr_t) ip +
1601 sizeof(struct ip));
1602
1603 while (temp > 1) {
1604 optsum += ntohs(*opts++);
1605 temp -= 2;
1606 }
1607 while (optsum >> 16)
1608 optsum = (optsum >> 16) +
1609 (optsum & 0xffff);
1610
1611 /* Deduct ip opts sum from hwsum (rfc 1624). */
1612 m->m_pkthdr.csum_data =
1613 ~((~m->m_pkthdr.csum_data) - ~optsum);
1614
1615 while (m->m_pkthdr.csum_data >> 16)
1616 m->m_pkthdr.csum_data =
1617 (m->m_pkthdr.csum_data >> 16) +
1618 (m->m_pkthdr.csum_data &
1619 0xffff);
1620 }
1621
1622 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1623 M_CSUM_NO_PSEUDOHDR;
1624 } else
1625 swcsum:
1626 m->m_pkthdr.csum_flags = 0;
1627 #endif
1628 /* Pass it on. */
1629 (*ifp->if_input)(ifp, m);
1630 }
1631
1632 if (progress) {
1633 /* Update the receive pointer. */
1634 if (i == sc->sc_rxptr) {
1635 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1636 #ifdef GEM_DEBUG
1637 if (ifp->if_flags & IFF_DEBUG)
1638 printf("%s: rint: ring wrap\n",
1639 sc->sc_dev.dv_xname);
1640 #endif
1641 }
1642 sc->sc_rxptr = i;
1643 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1644 }
1645 #ifdef GEM_COUNTERS
1646 if (progress <= 4) {
1647 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1648 } else if (progress < 32) {
1649 if (progress < 16)
1650 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1651 else
1652 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1653
1654 } else {
1655 if (progress < 64)
1656 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1657 else
1658 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1659 }
1660 #endif
1661
1662 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1663 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1664
1665 return (1);
1666 }
1667
1668
1669 /*
1670 * gem_add_rxbuf:
1671 *
1672 * Add a receive buffer to the indicated descriptor.
1673 */
1674 int
1675 gem_add_rxbuf(struct gem_softc *sc, int idx)
1676 {
1677 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1678 struct mbuf *m;
1679 int error;
1680
1681 MGETHDR(m, M_DONTWAIT, MT_DATA);
1682 if (m == NULL)
1683 return (ENOBUFS);
1684
1685 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1686 MCLGET(m, M_DONTWAIT);
1687 if ((m->m_flags & M_EXT) == 0) {
1688 m_freem(m);
1689 return (ENOBUFS);
1690 }
1691
1692 #ifdef GEM_DEBUG
1693 /* bzero the packet to check DMA */
1694 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1695 #endif
1696
1697 if (rxs->rxs_mbuf != NULL)
1698 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1699
1700 rxs->rxs_mbuf = m;
1701
1702 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1703 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1704 BUS_DMA_READ|BUS_DMA_NOWAIT);
1705 if (error) {
1706 printf("%s: can't load rx DMA map %d, error = %d\n",
1707 sc->sc_dev.dv_xname, idx, error);
1708 panic("gem_add_rxbuf"); /* XXX */
1709 }
1710
1711 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1712 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1713
1714 GEM_INIT_RXDESC(sc, idx);
1715
1716 return (0);
1717 }
1718
1719
1720 int
1721 gem_eint(sc, status)
1722 struct gem_softc *sc;
1723 u_int status;
1724 {
1725 char bits[128];
1726
1727 if ((status & GEM_INTR_MIF) != 0) {
1728 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1729 return (1);
1730 }
1731
1732 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1733 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1734 return (1);
1735 }
1736
1737
1738 int
1739 gem_intr(v)
1740 void *v;
1741 {
1742 struct gem_softc *sc = (struct gem_softc *)v;
1743 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1744 bus_space_tag_t t = sc->sc_bustag;
1745 bus_space_handle_t seb = sc->sc_h;
1746 u_int32_t status;
1747 int r = 0;
1748 #ifdef GEM_DEBUG
1749 char bits[128];
1750 #endif
1751
1752 sc->sc_ev_intr.ev_count++;
1753
1754 status = bus_space_read_4(t, seb, GEM_STATUS);
1755 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
1756 sc->sc_dev.dv_xname, (status >> 19),
1757 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1758
1759 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1760 r |= gem_eint(sc, status);
1761
1762 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1763 GEM_COUNTER_INCR(sc, sc_ev_txint);
1764 r |= gem_tint(sc);
1765 }
1766
1767 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1768 GEM_COUNTER_INCR(sc, sc_ev_rxint);
1769 r |= gem_rint(sc);
1770 }
1771
1772 /* We should eventually do more than just print out error stats. */
1773 if (status & GEM_INTR_TX_MAC) {
1774 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1775 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1776 printf("%s: MAC tx fault, status %x\n",
1777 sc->sc_dev.dv_xname, txstat);
1778 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
1779 gem_init(ifp);
1780 }
1781 if (status & GEM_INTR_RX_MAC) {
1782 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1783 if (rxstat & ~GEM_MAC_RX_DONE)
1784 printf("%s: MAC rx fault, status %x\n",
1785 sc->sc_dev.dv_xname, rxstat);
1786 /*
1787 * On some chip revisions GEM_MAC_RX_OVERFLOW happen often
1788 * due to a silicon bug so handle them silently.
1789 */
1790 if (rxstat & GEM_MAC_RX_OVERFLOW)
1791 gem_init(ifp);
1792 else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
1793 printf("%s: MAC rx fault, status %x\n",
1794 sc->sc_dev.dv_xname, rxstat);
1795 }
1796 return (r);
1797 }
1798
1799
1800 void
1801 gem_watchdog(ifp)
1802 struct ifnet *ifp;
1803 {
1804 struct gem_softc *sc = ifp->if_softc;
1805
1806 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1807 "GEM_MAC_RX_CONFIG %x\n",
1808 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1809 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1810 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1811
1812 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1813 ++ifp->if_oerrors;
1814
1815 /* Try to get more packets going. */
1816 gem_start(ifp);
1817 }
1818
1819 /*
1820 * Initialize the MII Management Interface
1821 */
1822 void
1823 gem_mifinit(sc)
1824 struct gem_softc *sc;
1825 {
1826 bus_space_tag_t t = sc->sc_bustag;
1827 bus_space_handle_t mif = sc->sc_h;
1828
1829 /* Configure the MIF in frame mode */
1830 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1831 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1832 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1833 }
1834
1835 /*
1836 * MII interface
1837 *
1838 * The GEM MII interface supports at least three different operating modes:
1839 *
1840 * Bitbang mode is implemented using data, clock and output enable registers.
1841 *
1842 * Frame mode is implemented by loading a complete frame into the frame
1843 * register and polling the valid bit for completion.
1844 *
1845 * Polling mode uses the frame register but completion is indicated by
1846 * an interrupt.
1847 *
1848 */
1849 static int
1850 gem_mii_readreg(self, phy, reg)
1851 struct device *self;
1852 int phy, reg;
1853 {
1854 struct gem_softc *sc = (void *)self;
1855 bus_space_tag_t t = sc->sc_bustag;
1856 bus_space_handle_t mif = sc->sc_h;
1857 int n;
1858 u_int32_t v;
1859
1860 #ifdef GEM_DEBUG1
1861 if (sc->sc_debug)
1862 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1863 #endif
1864
1865 #if 0
1866 /* Select the desired PHY in the MIF configuration register */
1867 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1868 /* Clear PHY select bit */
1869 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1870 if (phy == GEM_PHYAD_EXTERNAL)
1871 /* Set PHY select bit to get at external device */
1872 v |= GEM_MIF_CONFIG_PHY_SEL;
1873 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1874 #endif
1875
1876 /* Construct the frame command */
1877 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1878 GEM_MIF_FRAME_READ;
1879
1880 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1881 for (n = 0; n < 100; n++) {
1882 DELAY(1);
1883 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1884 if (v & GEM_MIF_FRAME_TA0)
1885 return (v & GEM_MIF_FRAME_DATA);
1886 }
1887
1888 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1889 return (0);
1890 }
1891
1892 static void
1893 gem_mii_writereg(self, phy, reg, val)
1894 struct device *self;
1895 int phy, reg, val;
1896 {
1897 struct gem_softc *sc = (void *)self;
1898 bus_space_tag_t t = sc->sc_bustag;
1899 bus_space_handle_t mif = sc->sc_h;
1900 int n;
1901 u_int32_t v;
1902
1903 #ifdef GEM_DEBUG1
1904 if (sc->sc_debug)
1905 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1906 phy, reg, val);
1907 #endif
1908
1909 #if 0
1910 /* Select the desired PHY in the MIF configuration register */
1911 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1912 /* Clear PHY select bit */
1913 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1914 if (phy == GEM_PHYAD_EXTERNAL)
1915 /* Set PHY select bit to get at external device */
1916 v |= GEM_MIF_CONFIG_PHY_SEL;
1917 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1918 #endif
1919 /* Construct the frame command */
1920 v = GEM_MIF_FRAME_WRITE |
1921 (phy << GEM_MIF_PHY_SHIFT) |
1922 (reg << GEM_MIF_REG_SHIFT) |
1923 (val & GEM_MIF_FRAME_DATA);
1924
1925 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1926 for (n = 0; n < 100; n++) {
1927 DELAY(1);
1928 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1929 if (v & GEM_MIF_FRAME_TA0)
1930 return;
1931 }
1932
1933 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1934 }
1935
1936 static void
1937 gem_mii_statchg(dev)
1938 struct device *dev;
1939 {
1940 struct gem_softc *sc = (void *)dev;
1941 #ifdef GEM_DEBUG
1942 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1943 #endif
1944 bus_space_tag_t t = sc->sc_bustag;
1945 bus_space_handle_t mac = sc->sc_h;
1946 u_int32_t v;
1947
1948 #ifdef GEM_DEBUG
1949 if (sc->sc_debug)
1950 printf("gem_mii_statchg: status change: phy = %d\n",
1951 sc->sc_phys[instance]);
1952 #endif
1953
1954
1955 /* Set tx full duplex options */
1956 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1957 delay(10000); /* reg must be cleared and delay before changing. */
1958 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1959 GEM_MAC_TX_ENABLE;
1960 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1961 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1962 }
1963 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1964
1965 /* XIF Configuration */
1966 /* We should really calculate all this rather than rely on defaults */
1967 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1968 v = GEM_MAC_XIF_LINK_LED;
1969 v |= GEM_MAC_XIF_TX_MII_ENA;
1970
1971 /* If an external transceiver is connected, enable its MII drivers */
1972 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1973 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1974 /* External MII needs echo disable if half duplex. */
1975 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1976 /* turn on full duplex LED */
1977 v |= GEM_MAC_XIF_FDPLX_LED;
1978 else
1979 /* half duplex -- disable echo */
1980 v |= GEM_MAC_XIF_ECHO_DISABL;
1981
1982 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1983 v |= GEM_MAC_XIF_GMII_MODE;
1984 else
1985 v &= ~GEM_MAC_XIF_GMII_MODE;
1986 } else
1987 /* Internal MII needs buf enable */
1988 v |= GEM_MAC_XIF_MII_BUF_ENA;
1989 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1990 }
1991
1992 int
1993 gem_mediachange(ifp)
1994 struct ifnet *ifp;
1995 {
1996 struct gem_softc *sc = ifp->if_softc;
1997
1998 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1999 return (EINVAL);
2000
2001 return (mii_mediachg(&sc->sc_mii));
2002 }
2003
2004 void
2005 gem_mediastatus(ifp, ifmr)
2006 struct ifnet *ifp;
2007 struct ifmediareq *ifmr;
2008 {
2009 struct gem_softc *sc = ifp->if_softc;
2010
2011 if ((ifp->if_flags & IFF_UP) == 0)
2012 return;
2013
2014 mii_pollstat(&sc->sc_mii);
2015 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2016 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2017 }
2018
2019 /*
2020 * Process an ioctl request.
2021 */
2022 int
2023 gem_ioctl(ifp, cmd, data)
2024 struct ifnet *ifp;
2025 u_long cmd;
2026 caddr_t data;
2027 {
2028 struct gem_softc *sc = ifp->if_softc;
2029 struct ifreq *ifr = (struct ifreq *)data;
2030 int s, error = 0;
2031
2032 s = splnet();
2033
2034 switch (cmd) {
2035 case SIOCGIFMEDIA:
2036 case SIOCSIFMEDIA:
2037 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
2038 break;
2039 case SIOCSIFFLAGS:
2040 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
2041 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
2042 == (IFF_UP|IFF_RUNNING))
2043 && ((ifp->if_flags & (~RESETIGN))
2044 == (sc->sc_if_flags & (~RESETIGN)))) {
2045 gem_setladrf(sc);
2046 break;
2047 }
2048 #undef RESETIGN
2049 /*FALLTHROUGH*/
2050 default:
2051 error = ether_ioctl(ifp, cmd, data);
2052 if (error == ENETRESET) {
2053 /*
2054 * Multicast list has changed; set the hardware filter
2055 * accordingly.
2056 */
2057 if (ifp->if_flags & IFF_RUNNING)
2058 gem_setladrf(sc);
2059 error = 0;
2060 }
2061 break;
2062 }
2063
2064 /* Try to get things going again */
2065 if (ifp->if_flags & IFF_UP)
2066 gem_start(ifp);
2067 splx(s);
2068 return (error);
2069 }
2070
2071
2072 void
2073 gem_shutdown(arg)
2074 void *arg;
2075 {
2076 struct gem_softc *sc = (struct gem_softc *)arg;
2077 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2078
2079 gem_stop(ifp, 1);
2080 }
2081
2082 /*
2083 * Set up the logical address filter.
2084 */
2085 void
2086 gem_setladrf(sc)
2087 struct gem_softc *sc;
2088 {
2089 struct ethercom *ec = &sc->sc_ethercom;
2090 struct ifnet *ifp = &ec->ec_if;
2091 struct ether_multi *enm;
2092 struct ether_multistep step;
2093 bus_space_tag_t t = sc->sc_bustag;
2094 bus_space_handle_t h = sc->sc_h;
2095 u_int32_t crc;
2096 u_int32_t hash[16];
2097 u_int32_t v;
2098 int i;
2099
2100 /* Get current RX configuration */
2101 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2102
2103 /*
2104 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2105 * and hash filter. Depending on the case, the right bit will be
2106 * enabled.
2107 */
2108 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2109 GEM_MAC_RX_PROMISC_GRP);
2110
2111 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2112 /* Turn on promiscuous mode */
2113 v |= GEM_MAC_RX_PROMISCUOUS;
2114 ifp->if_flags |= IFF_ALLMULTI;
2115 goto chipit;
2116 }
2117
2118 /*
2119 * Set up multicast address filter by passing all multicast addresses
2120 * through a crc generator, and then using the high order 8 bits as an
2121 * index into the 256 bit logical address filter. The high order 4
2122 * bits selects the word, while the other 4 bits select the bit within
2123 * the word (where bit 0 is the MSB).
2124 */
2125
2126 /* Clear hash table */
2127 memset(hash, 0, sizeof(hash));
2128
2129 ETHER_FIRST_MULTI(step, ec, enm);
2130 while (enm != NULL) {
2131 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2132 /*
2133 * We must listen to a range of multicast addresses.
2134 * For now, just accept all multicasts, rather than
2135 * trying to set only those filter bits needed to match
2136 * the range. (At this time, the only use of address
2137 * ranges is for IP multicast routing, for which the
2138 * range is big enough to require all bits set.)
2139 * XXX use the addr filter for this
2140 */
2141 ifp->if_flags |= IFF_ALLMULTI;
2142 v |= GEM_MAC_RX_PROMISC_GRP;
2143 goto chipit;
2144 }
2145
2146 /* Get the LE CRC32 of the address */
2147 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2148
2149 /* Just want the 8 most significant bits. */
2150 crc >>= 24;
2151
2152 /* Set the corresponding bit in the filter. */
2153 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2154
2155 ETHER_NEXT_MULTI(step, enm);
2156 }
2157
2158 v |= GEM_MAC_RX_HASH_FILTER;
2159 ifp->if_flags &= ~IFF_ALLMULTI;
2160
2161 /* Now load the hash table into the chip (if we are using it) */
2162 for (i = 0; i < 16; i++) {
2163 bus_space_write_4(t, h,
2164 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2165 hash[i]);
2166 }
2167
2168 chipit:
2169 sc->sc_if_flags = ifp->if_flags;
2170 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2171 }
2172
2173 #if notyet
2174
2175 /*
2176 * gem_power:
2177 *
2178 * Power management (suspend/resume) hook.
2179 */
2180 void
2181 gem_power(why, arg)
2182 int why;
2183 void *arg;
2184 {
2185 struct gem_softc *sc = arg;
2186 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2187 int s;
2188
2189 s = splnet();
2190 switch (why) {
2191 case PWR_SUSPEND:
2192 case PWR_STANDBY:
2193 gem_stop(ifp, 1);
2194 if (sc->sc_power != NULL)
2195 (*sc->sc_power)(sc, why);
2196 break;
2197 case PWR_RESUME:
2198 if (ifp->if_flags & IFF_UP) {
2199 if (sc->sc_power != NULL)
2200 (*sc->sc_power)(sc, why);
2201 gem_init(ifp);
2202 }
2203 break;
2204 case PWR_SOFTSUSPEND:
2205 case PWR_SOFTSTANDBY:
2206 case PWR_SOFTRESUME:
2207 break;
2208 }
2209 splx(s);
2210 }
2211 #endif
2212