Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.43
      1 /*	$NetBSD: gem.c,v 1.43 2005/10/28 20:56:13 christos Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * All rights reserved.
      7  *
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  */
     31 
     32 /*
     33  * Driver for Sun GEM ethernet controllers.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.43 2005/10/28 20:56:13 christos Exp $");
     38 
     39 #include "opt_inet.h"
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/syslog.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 
     54 #include <machine/endian.h>
     55 
     56 #include <uvm/uvm_extern.h>
     57 
     58 #include <net/if.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_ether.h>
     62 
     63 #ifdef INET
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 #include <netinet/tcp.h>
     69 #include <netinet/udp.h>
     70 #endif
     71 
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 
     79 #include <dev/mii/mii.h>
     80 #include <dev/mii/miivar.h>
     81 #include <dev/mii/mii_bitbang.h>
     82 
     83 #include <dev/ic/gemreg.h>
     84 #include <dev/ic/gemvar.h>
     85 
     86 #define TRIES	10000
     87 
     88 static void	gem_start(struct ifnet *);
     89 static void	gem_stop(struct ifnet *, int);
     90 int		gem_ioctl(struct ifnet *, u_long, caddr_t);
     91 void		gem_tick(void *);
     92 void		gem_watchdog(struct ifnet *);
     93 void		gem_shutdown(void *);
     94 int		gem_init(struct ifnet *);
     95 void		gem_init_regs(struct gem_softc *sc);
     96 static int	gem_ringsize(int sz);
     97 static int	gem_meminit(struct gem_softc *);
     98 void		gem_mifinit(struct gem_softc *);
     99 static int	gem_bitwait(struct gem_softc *sc, int, u_int32_t, u_int32_t);
    100 void		gem_reset(struct gem_softc *);
    101 int		gem_reset_rx(struct gem_softc *sc);
    102 int		gem_reset_tx(struct gem_softc *sc);
    103 int		gem_disable_rx(struct gem_softc *sc);
    104 int		gem_disable_tx(struct gem_softc *sc);
    105 static void	gem_rxdrain(struct gem_softc *sc);
    106 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    107 void		gem_setladrf(struct gem_softc *);
    108 
    109 /* MII methods & callbacks */
    110 static int	gem_mii_readreg(struct device *, int, int);
    111 static void	gem_mii_writereg(struct device *, int, int, int);
    112 static void	gem_mii_statchg(struct device *);
    113 
    114 int		gem_mediachange(struct ifnet *);
    115 void		gem_mediastatus(struct ifnet *, struct ifmediareq *);
    116 
    117 struct mbuf	*gem_get(struct gem_softc *, int, int);
    118 int		gem_put(struct gem_softc *, int, struct mbuf *);
    119 void		gem_read(struct gem_softc *, int, int);
    120 int		gem_eint(struct gem_softc *, u_int);
    121 int		gem_rint(struct gem_softc *);
    122 int		gem_tint(struct gem_softc *);
    123 void		gem_power(int, void *);
    124 
    125 #ifdef GEM_DEBUG
    126 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    127 				printf x
    128 #else
    129 #define	DPRINTF(sc, x)	/* nothing */
    130 #endif
    131 
    132 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    133 
    134 
    135 /*
    136  * gem_attach:
    137  *
    138  *	Attach a Gem interface to the system.
    139  */
    140 void
    141 gem_attach(sc, enaddr)
    142 	struct gem_softc *sc;
    143 	const uint8_t *enaddr;
    144 {
    145 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    146 	struct mii_data *mii = &sc->sc_mii;
    147 	struct mii_softc *child;
    148 	struct ifmedia_entry *ifm;
    149 	int i, error;
    150 	u_int32_t v;
    151 	char *nullbuf;
    152 
    153 	/* Make sure the chip is stopped. */
    154 	ifp->if_softc = sc;
    155 	gem_reset(sc);
    156 
    157 	/*
    158 	 * Allocate the control data structures, and create and load the
    159 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    160 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    161 	 */
    162 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    163 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    164 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    165 		aprint_error(
    166 		   "%s: unable to allocate control data, error = %d\n",
    167 		    sc->sc_dev.dv_xname, error);
    168 		goto fail_0;
    169 	}
    170 
    171 /* XXX should map this in with correct endianness */
    172 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    173 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
    174 	    BUS_DMA_COHERENT)) != 0) {
    175 		aprint_error("%s: unable to map control data, error = %d\n",
    176 		    sc->sc_dev.dv_xname, error);
    177 		goto fail_1;
    178 	}
    179 
    180 	nullbuf =
    181 	    (caddr_t)sc->sc_control_data + sizeof(struct gem_control_data);
    182 
    183 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    184 	    sizeof(struct gem_control_data), 1,
    185 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    186 		aprint_error("%s: unable to create control data DMA map, "
    187 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    188 		goto fail_2;
    189 	}
    190 
    191 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    192 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    193 	    0)) != 0) {
    194 		aprint_error(
    195 		    "%s: unable to load control data DMA map, error = %d\n",
    196 		    sc->sc_dev.dv_xname, error);
    197 		goto fail_3;
    198 	}
    199 
    200 	memset(nullbuf, 0, ETHER_MIN_TX);
    201 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    202 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    203 		aprint_error("%s: unable to create padding DMA map, "
    204 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    205 		goto fail_4;
    206 	}
    207 
    208 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    209 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    210 		aprint_error(
    211 		    "%s: unable to load padding DMA map, error = %d\n",
    212 		    sc->sc_dev.dv_xname, error);
    213 		goto fail_5;
    214 	}
    215 
    216 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    217 	    BUS_DMASYNC_PREWRITE);
    218 
    219 	/*
    220 	 * Initialize the transmit job descriptors.
    221 	 */
    222 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    223 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    224 
    225 	/*
    226 	 * Create the transmit buffer DMA maps.
    227 	 */
    228 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    229 		struct gem_txsoft *txs;
    230 
    231 		txs = &sc->sc_txsoft[i];
    232 		txs->txs_mbuf = NULL;
    233 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    234 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    235 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    236 		    &txs->txs_dmamap)) != 0) {
    237 			aprint_error("%s: unable to create tx DMA map %d, "
    238 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    239 			goto fail_6;
    240 		}
    241 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    242 	}
    243 
    244 	/*
    245 	 * Create the receive buffer DMA maps.
    246 	 */
    247 	for (i = 0; i < GEM_NRXDESC; i++) {
    248 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    249 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    250 			aprint_error("%s: unable to create rx DMA map %d, "
    251 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    252 			goto fail_7;
    253 		}
    254 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    255 	}
    256 
    257 	/*
    258 	 * From this point forward, the attachment cannot fail.  A failure
    259 	 * before this point releases all resources that may have been
    260 	 * allocated.
    261 	 */
    262 
    263 	/* Announce ourselves. */
    264 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
    265 	    ether_sprintf(enaddr));
    266 
    267 	/* Get RX FIFO size */
    268 	sc->sc_rxfifosize = 64 *
    269 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
    270 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    271 
    272 	/* Get TX FIFO size */
    273 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
    274 	aprint_normal(", %uKB TX fifo\n", v / 16);
    275 
    276 	/* Initialize ifnet structure. */
    277 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    278 	ifp->if_softc = sc;
    279 	ifp->if_flags =
    280 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    281 	sc->sc_if_flags = ifp->if_flags;
    282 	ifp->if_capabilities |=
    283 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    284 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    285 	ifp->if_start = gem_start;
    286 	ifp->if_ioctl = gem_ioctl;
    287 	ifp->if_watchdog = gem_watchdog;
    288 	ifp->if_stop = gem_stop;
    289 	ifp->if_init = gem_init;
    290 	IFQ_SET_READY(&ifp->if_snd);
    291 
    292 	/* Initialize ifmedia structures and MII info */
    293 	mii->mii_ifp = ifp;
    294 	mii->mii_readreg = gem_mii_readreg;
    295 	mii->mii_writereg = gem_mii_writereg;
    296 	mii->mii_statchg = gem_mii_statchg;
    297 
    298 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
    299 
    300 	gem_mifinit(sc);
    301 
    302 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    303 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    304 
    305 	child = LIST_FIRST(&mii->mii_phys);
    306 	if (child == NULL) {
    307 		/* No PHY attached */
    308 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    309 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    310 	} else {
    311 		/*
    312 		 * Walk along the list of attached MII devices and
    313 		 * establish an `MII instance' to `phy number'
    314 		 * mapping. We'll use this mapping in media change
    315 		 * requests to determine which phy to use to program
    316 		 * the MIF configuration register.
    317 		 */
    318 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    319 			/*
    320 			 * Note: we support just two PHYs: the built-in
    321 			 * internal device and an external on the MII
    322 			 * connector.
    323 			 */
    324 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    325 				aprint_error(
    326 				    "%s: cannot accomodate MII device %s"
    327 				       " at phy %d, instance %d\n",
    328 				       sc->sc_dev.dv_xname,
    329 				       child->mii_dev.dv_xname,
    330 				       child->mii_phy, child->mii_inst);
    331 				continue;
    332 			}
    333 
    334 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    335 		}
    336 
    337 		/*
    338 		 * Now select and activate the PHY we will use.
    339 		 *
    340 		 * The order of preference is External (MDI1),
    341 		 * Internal (MDI0), Serial Link (no MII).
    342 		 */
    343 		if (sc->sc_phys[1]) {
    344 #ifdef GEM_DEBUG
    345 			aprint_debug("using external phy\n");
    346 #endif
    347 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    348 		} else {
    349 #ifdef GEM_DEBUG
    350 			aprint_debug("using internal phy\n");
    351 #endif
    352 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    353 		}
    354 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
    355 			sc->sc_mif_config);
    356 
    357 		/*
    358 		 * XXX - we can really do the following ONLY if the
    359 		 * phy indeed has the auto negotiation capability!!
    360 		 */
    361 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    362 	}
    363 
    364 	/*
    365 	 * If we support GigE media, we support jumbo frames too.
    366 	 * Unless we are Apple.
    367 	 */
    368 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
    369 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    370 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    371 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    372 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    373 			if (sc->sc_variant != GEM_APPLE_GMAC)
    374 				sc->sc_ethercom.ec_capabilities
    375 				    |= ETHERCAP_JUMBO_MTU;
    376 
    377 			sc->sc_flags |= GEM_GIGABIT;
    378 			break;
    379 		}
    380 	}
    381 
    382 	/* claim 802.1q capability */
    383 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    384 
    385 	/* Attach the interface. */
    386 	if_attach(ifp);
    387 	ether_ifattach(ifp, enaddr);
    388 
    389 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    390 	if (sc->sc_sh == NULL)
    391 		panic("gem_config: can't establish shutdownhook");
    392 
    393 #if NRND > 0
    394 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    395 			  RND_TYPE_NET, 0);
    396 #endif
    397 
    398 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    399 	    NULL, sc->sc_dev.dv_xname, "interrupts");
    400 #ifdef GEM_COUNTERS
    401 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    402 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
    403 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    404 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
    405 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    406 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
    407 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    408 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
    409 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    410 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
    411 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    412 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
    413 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    414 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
    415 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    416 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
    417 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    418 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
    419 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    420 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
    421 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    422 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
    423 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    424 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
    425 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    426 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
    427 #endif
    428 
    429 #if notyet
    430 	/*
    431 	 * Add a suspend hook to make sure we come back up after a
    432 	 * resume.
    433 	 */
    434 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
    435 	if (sc->sc_powerhook == NULL)
    436 		aprint_error("%s: WARNING: unable to establish power hook\n",
    437 		    sc->sc_dev.dv_xname);
    438 #endif
    439 
    440 	callout_init(&sc->sc_tick_ch);
    441 	return;
    442 
    443 	/*
    444 	 * Free any resources we've allocated during the failed attach
    445 	 * attempt.  Do this in reverse order and fall through.
    446 	 */
    447  fail_7:
    448 	for (i = 0; i < GEM_NRXDESC; i++) {
    449 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    450 			bus_dmamap_destroy(sc->sc_dmatag,
    451 			    sc->sc_rxsoft[i].rxs_dmamap);
    452 	}
    453  fail_6:
    454 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    455 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    456 			bus_dmamap_destroy(sc->sc_dmatag,
    457 			    sc->sc_txsoft[i].txs_dmamap);
    458 	}
    459 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    460  fail_5:
    461 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    462  fail_4:
    463 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)nullbuf, ETHER_MIN_TX);
    464  fail_3:
    465 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    466  fail_2:
    467 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
    468 	    sizeof(struct gem_control_data));
    469  fail_1:
    470 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    471  fail_0:
    472 	return;
    473 }
    474 
    475 
    476 void
    477 gem_tick(arg)
    478 	void *arg;
    479 {
    480 	struct gem_softc *sc = arg;
    481 	int s;
    482 
    483 	s = splnet();
    484 	mii_tick(&sc->sc_mii);
    485 	splx(s);
    486 
    487 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    488 
    489 }
    490 
    491 static int
    492 gem_bitwait(sc, r, clr, set)
    493 	struct gem_softc *sc;
    494 	int r;
    495 	u_int32_t clr;
    496 	u_int32_t set;
    497 {
    498 	int i;
    499 	u_int32_t reg;
    500 
    501 	for (i = TRIES; i--; DELAY(100)) {
    502 		reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
    503 		if ((r & clr) == 0 && (r & set) == set)
    504 			return (1);
    505 	}
    506 	return (0);
    507 }
    508 
    509 void
    510 gem_reset(sc)
    511 	struct gem_softc *sc;
    512 {
    513 	bus_space_tag_t t = sc->sc_bustag;
    514 	bus_space_handle_t h = sc->sc_h;
    515 	int s;
    516 
    517 	s = splnet();
    518 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    519 	gem_reset_rx(sc);
    520 	gem_reset_tx(sc);
    521 
    522 	/* Do a full reset */
    523 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    524 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    525 		printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
    526 	splx(s);
    527 }
    528 
    529 
    530 /*
    531  * gem_rxdrain:
    532  *
    533  *	Drain the receive queue.
    534  */
    535 static void
    536 gem_rxdrain(struct gem_softc *sc)
    537 {
    538 	struct gem_rxsoft *rxs;
    539 	int i;
    540 
    541 	for (i = 0; i < GEM_NRXDESC; i++) {
    542 		rxs = &sc->sc_rxsoft[i];
    543 		if (rxs->rxs_mbuf != NULL) {
    544 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    545 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    546 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    547 			m_freem(rxs->rxs_mbuf);
    548 			rxs->rxs_mbuf = NULL;
    549 		}
    550 	}
    551 }
    552 
    553 /*
    554  * Reset the whole thing.
    555  */
    556 static void
    557 gem_stop(struct ifnet *ifp, int disable)
    558 {
    559 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    560 	struct gem_txsoft *txs;
    561 
    562 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    563 
    564 	callout_stop(&sc->sc_tick_ch);
    565 	mii_down(&sc->sc_mii);
    566 
    567 	/* XXX - Should we reset these instead? */
    568 	gem_disable_rx(sc);
    569 	gem_disable_tx(sc);
    570 
    571 	/*
    572 	 * Release any queued transmit buffers.
    573 	 */
    574 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    575 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    576 		if (txs->txs_mbuf != NULL) {
    577 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    578 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    579 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    580 			m_freem(txs->txs_mbuf);
    581 			txs->txs_mbuf = NULL;
    582 		}
    583 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    584 	}
    585 
    586 	if (disable) {
    587 		gem_rxdrain(sc);
    588 	}
    589 
    590 	/*
    591 	 * Mark the interface down and cancel the watchdog timer.
    592 	 */
    593 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    594 	sc->sc_if_flags = ifp->if_flags;
    595 	ifp->if_timer = 0;
    596 }
    597 
    598 
    599 /*
    600  * Reset the receiver
    601  */
    602 int
    603 gem_reset_rx(struct gem_softc *sc)
    604 {
    605 	bus_space_tag_t t = sc->sc_bustag;
    606 	bus_space_handle_t h = sc->sc_h;
    607 
    608 	/*
    609 	 * Resetting while DMA is in progress can cause a bus hang, so we
    610 	 * disable DMA first.
    611 	 */
    612 	gem_disable_rx(sc);
    613 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    614 	/* Wait till it finishes */
    615 	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
    616 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    617 	/* Wait 5ms extra. */
    618 	delay(5000);
    619 
    620 	/* Finally, reset the ERX */
    621 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
    622 	/* Wait till it finishes */
    623 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
    624 		printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
    625 		return (1);
    626 	}
    627 	return (0);
    628 }
    629 
    630 
    631 /*
    632  * Reset the transmitter
    633  */
    634 int
    635 gem_reset_tx(struct gem_softc *sc)
    636 {
    637 	bus_space_tag_t t = sc->sc_bustag;
    638 	bus_space_handle_t h = sc->sc_h;
    639 
    640 	/*
    641 	 * Resetting while DMA is in progress can cause a bus hang, so we
    642 	 * disable DMA first.
    643 	 */
    644 	gem_disable_tx(sc);
    645 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    646 	/* Wait till it finishes */
    647 	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
    648 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    649 	/* Wait 5ms extra. */
    650 	delay(5000);
    651 
    652 	/* Finally, reset the ETX */
    653 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
    654 	/* Wait till it finishes */
    655 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
    656 		printf("%s: cannot reset receiver\n",
    657 			sc->sc_dev.dv_xname);
    658 		return (1);
    659 	}
    660 	return (0);
    661 }
    662 
    663 /*
    664  * disable receiver.
    665  */
    666 int
    667 gem_disable_rx(struct gem_softc *sc)
    668 {
    669 	bus_space_tag_t t = sc->sc_bustag;
    670 	bus_space_handle_t h = sc->sc_h;
    671 	u_int32_t cfg;
    672 
    673 	/* Flip the enable bit */
    674 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    675 	cfg &= ~GEM_MAC_RX_ENABLE;
    676 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    677 
    678 	/* Wait for it to finish */
    679 	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    680 }
    681 
    682 /*
    683  * disable transmitter.
    684  */
    685 int
    686 gem_disable_tx(struct gem_softc *sc)
    687 {
    688 	bus_space_tag_t t = sc->sc_bustag;
    689 	bus_space_handle_t h = sc->sc_h;
    690 	u_int32_t cfg;
    691 
    692 	/* Flip the enable bit */
    693 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    694 	cfg &= ~GEM_MAC_TX_ENABLE;
    695 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    696 
    697 	/* Wait for it to finish */
    698 	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    699 }
    700 
    701 /*
    702  * Initialize interface.
    703  */
    704 int
    705 gem_meminit(struct gem_softc *sc)
    706 {
    707 	struct gem_rxsoft *rxs;
    708 	int i, error;
    709 
    710 	/*
    711 	 * Initialize the transmit descriptor ring.
    712 	 */
    713 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    714 	for (i = 0; i < GEM_NTXDESC; i++) {
    715 		sc->sc_txdescs[i].gd_flags = 0;
    716 		sc->sc_txdescs[i].gd_addr = 0;
    717 	}
    718 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    719 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    720 	sc->sc_txfree = GEM_NTXDESC-1;
    721 	sc->sc_txnext = 0;
    722 	sc->sc_txwin = 0;
    723 
    724 	/*
    725 	 * Initialize the receive descriptor and receive job
    726 	 * descriptor rings.
    727 	 */
    728 	for (i = 0; i < GEM_NRXDESC; i++) {
    729 		rxs = &sc->sc_rxsoft[i];
    730 		if (rxs->rxs_mbuf == NULL) {
    731 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    732 				printf("%s: unable to allocate or map rx "
    733 				    "buffer %d, error = %d\n",
    734 				    sc->sc_dev.dv_xname, i, error);
    735 				/*
    736 				 * XXX Should attempt to run with fewer receive
    737 				 * XXX buffers instead of just failing.
    738 				 */
    739 				gem_rxdrain(sc);
    740 				return (1);
    741 			}
    742 		} else
    743 			GEM_INIT_RXDESC(sc, i);
    744 	}
    745 	sc->sc_rxptr = 0;
    746 
    747 	return (0);
    748 }
    749 
    750 static int
    751 gem_ringsize(int sz)
    752 {
    753 	switch (sz) {
    754 	case 32:
    755 		return GEM_RING_SZ_32;
    756 	case 64:
    757 		return GEM_RING_SZ_64;
    758 	case 128:
    759 		return GEM_RING_SZ_128;
    760 	case 256:
    761 		return GEM_RING_SZ_256;
    762 	case 512:
    763 		return GEM_RING_SZ_512;
    764 	case 1024:
    765 		return GEM_RING_SZ_1024;
    766 	case 2048:
    767 		return GEM_RING_SZ_2048;
    768 	case 4096:
    769 		return GEM_RING_SZ_4096;
    770 	case 8192:
    771 		return GEM_RING_SZ_8192;
    772 	default:
    773 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    774 		return GEM_RING_SZ_32;
    775 	}
    776 }
    777 
    778 /*
    779  * Initialization of interface; set up initialization block
    780  * and transmit/receive descriptor rings.
    781  */
    782 int
    783 gem_init(struct ifnet *ifp)
    784 {
    785 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    786 	bus_space_tag_t t = sc->sc_bustag;
    787 	bus_space_handle_t h = sc->sc_h;
    788 	int s;
    789 	u_int max_frame_size;
    790 	u_int32_t v;
    791 
    792 	s = splnet();
    793 
    794 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
    795 	/*
    796 	 * Initialization sequence. The numbered steps below correspond
    797 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    798 	 * Channel Engine manual (part of the PCIO manual).
    799 	 * See also the STP2002-STQ document from Sun Microsystems.
    800 	 */
    801 
    802 	/* step 1 & 2. Reset the Ethernet Channel */
    803 	gem_stop(ifp, 0);
    804 	gem_reset(sc);
    805 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
    806 
    807 	/* Re-initialize the MIF */
    808 	gem_mifinit(sc);
    809 
    810 	/* Call MI reset function if any */
    811 	if (sc->sc_hwreset)
    812 		(*sc->sc_hwreset)(sc);
    813 
    814 	/* step 3. Setup data structures in host memory */
    815 	gem_meminit(sc);
    816 
    817 	/* step 4. TX MAC registers & counters */
    818 	gem_init_regs(sc);
    819 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
    820 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
    821 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
    822 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
    823 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    824 	    max_frame_size|/* burst size */(0x2000<<16));
    825 
    826 	/* step 5. RX MAC registers & counters */
    827 	gem_setladrf(sc);
    828 
    829 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    830 	/* NOTE: we use only 32-bit DMA addresses here. */
    831 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
    832 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
    833 
    834 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    835 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    836 
    837 	/* step 8. Global Configuration & Interrupt Mask */
    838 	bus_space_write_4(t, h, GEM_INTMASK,
    839 		      ~(GEM_INTR_TX_INTME|
    840 			GEM_INTR_TX_EMPTY|
    841 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
    842 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
    843 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
    844 			GEM_INTR_BERR));
    845 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
    846 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
    847 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
    848 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
    849 
    850 	/* step 9. ETX Configuration: use mostly default values */
    851 
    852 	/* Enable DMA */
    853 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
    854 	bus_space_write_4(t, h, GEM_TX_CONFIG,
    855 		v|GEM_TX_CONFIG_TXDMA_EN|
    856 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
    857 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
    858 
    859 	/* step 10. ERX Configuration */
    860 
    861 	/* Encode Receive Descriptor ring size: four possible values */
    862 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    863 
    864 	/* Set receive h/w checksum offset */
    865 #ifdef INET
    866 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    867 	      ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    868 	        ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    869 #endif
    870 
    871 	/* Enable DMA */
    872 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    873 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
    874 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
    875 
    876 	/*
    877 	 * The following value is for an OFF Threshold of about 3/4 full
    878 	 * and an ON Threshold of 1/4 full.
    879 	 */
    880 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    881 	     (3 * sc->sc_rxfifosize / 256) |
    882 	     (   (sc->sc_rxfifosize / 256) << 12));
    883 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
    884 
    885 	/* step 11. Configure Media */
    886 	mii_mediachg(&sc->sc_mii);
    887 
    888 /* XXXX Serial link needs a whole different setup. */
    889 
    890 
    891 	/* step 12. RX_MAC Configuration Register */
    892 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    893 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
    894 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
    895 
    896 	/* step 14. Issue Transmit Pending command */
    897 
    898 	/* Call MI initialization function if any */
    899 	if (sc->sc_hwinit)
    900 		(*sc->sc_hwinit)(sc);
    901 
    902 
    903 	/* step 15.  Give the reciever a swift kick */
    904 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
    905 
    906 	/* Start the one second timer. */
    907 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    908 
    909 	ifp->if_flags |= IFF_RUNNING;
    910 	ifp->if_flags &= ~IFF_OACTIVE;
    911 	ifp->if_timer = 0;
    912 	sc->sc_if_flags = ifp->if_flags;
    913 	splx(s);
    914 
    915 	return (0);
    916 }
    917 
    918 void
    919 gem_init_regs(struct gem_softc *sc)
    920 {
    921 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    922 	bus_space_tag_t t = sc->sc_bustag;
    923 	bus_space_handle_t h = sc->sc_h;
    924 	const u_char *laddr = LLADDR(ifp->if_sadl);
    925 	u_int32_t v;
    926 
    927 	/* These regs are not cleared on reset */
    928 	if (!sc->sc_inited) {
    929 
    930 		/* Wooo.  Magic values. */
    931 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
    932 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
    933 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
    934 
    935 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
    936 		/* Max frame and max burst size */
    937 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    938 		     ETHER_MAX_LEN | (0x2000<<16));
    939 
    940 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
    941 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
    942 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
    943 		/* Dunno.... */
    944 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
    945 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
    946 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
    947 
    948 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
    949 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
    950 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
    951 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
    952 
    953 		/* MAC control addr set to 01:80:c2:00:00:01 */
    954 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
    955 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
    956 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
    957 
    958 		/* MAC filter addr set to 0:0:0:0:0:0 */
    959 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
    960 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
    961 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
    962 
    963 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
    964 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
    965 
    966 		sc->sc_inited = 1;
    967 	}
    968 
    969 	/* Counters need to be zeroed */
    970 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
    971 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
    972 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
    973 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
    974 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
    975 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
    976 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
    977 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
    978 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
    979 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
    980 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
    981 
    982 	/* Un-pause stuff */
    983 #if 0
    984 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
    985 #else
    986 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
    987 #endif
    988 
    989 	/*
    990 	 * Set the station address.
    991 	 */
    992 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
    993 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
    994 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
    995 
    996 #if 0
    997 	if (sc->sc_variant != APPLE_GMAC)
    998 		return;
    999 #endif
   1000 
   1001 	/*
   1002 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1003 	 */
   1004 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1005 	v = GEM_MAC_XIF_TX_MII_ENA;
   1006 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1007 		v |= GEM_MAC_XIF_FDPLX_LED;
   1008 		if (sc->sc_flags & GEM_GIGABIT)
   1009 			v |= GEM_MAC_XIF_GMII_MODE;
   1010 	}
   1011 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1012 }
   1013 
   1014 static void
   1015 gem_start(ifp)
   1016 	struct ifnet *ifp;
   1017 {
   1018 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1019 	struct mbuf *m0, *m;
   1020 	struct gem_txsoft *txs, *last_txs;
   1021 	bus_dmamap_t dmamap;
   1022 	int error, firsttx, nexttx, lasttx = -1, ofree, seg;
   1023 	uint64_t flags = 0;
   1024 
   1025 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1026 		return;
   1027 
   1028 	/*
   1029 	 * Remember the previous number of free descriptors and
   1030 	 * the first descriptor we'll use.
   1031 	 */
   1032 	ofree = sc->sc_txfree;
   1033 	firsttx = sc->sc_txnext;
   1034 
   1035 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1036 	    sc->sc_dev.dv_xname, ofree, firsttx));
   1037 
   1038 	/*
   1039 	 * Loop through the send queue, setting up transmit descriptors
   1040 	 * until we drain the queue, or use up all available transmit
   1041 	 * descriptors.
   1042 	 */
   1043 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1044 	       sc->sc_txfree != 0) {
   1045 		/*
   1046 		 * Grab a packet off the queue.
   1047 		 */
   1048 		IFQ_POLL(&ifp->if_snd, m0);
   1049 		if (m0 == NULL)
   1050 			break;
   1051 		m = NULL;
   1052 
   1053 		dmamap = txs->txs_dmamap;
   1054 
   1055 		/*
   1056 		 * Load the DMA map.  If this fails, the packet either
   1057 		 * didn't fit in the alloted number of segments, or we were
   1058 		 * short on resources.  In this case, we'll copy and try
   1059 		 * again.
   1060 		 */
   1061 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1062 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1063 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1064 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1065 			if (m0->m_pkthdr.len > MCLBYTES) {
   1066 				printf("%s: unable to allocate jumbo Tx "
   1067 				    "cluster\n", sc->sc_dev.dv_xname);
   1068 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1069 				m_freem(m0);
   1070 				continue;
   1071 			}
   1072 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1073 			if (m == NULL) {
   1074 				printf("%s: unable to allocate Tx mbuf\n",
   1075 				    sc->sc_dev.dv_xname);
   1076 				break;
   1077 			}
   1078 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1079 			if (m0->m_pkthdr.len > MHLEN) {
   1080 				MCLGET(m, M_DONTWAIT);
   1081 				if ((m->m_flags & M_EXT) == 0) {
   1082 					printf("%s: unable to allocate Tx "
   1083 					    "cluster\n", sc->sc_dev.dv_xname);
   1084 					m_freem(m);
   1085 					break;
   1086 				}
   1087 			}
   1088 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1089 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1090 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1091 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1092 			if (error) {
   1093 				printf("%s: unable to load Tx buffer, "
   1094 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1095 				break;
   1096 			}
   1097 		}
   1098 
   1099 		/*
   1100 		 * Ensure we have enough descriptors free to describe
   1101 		 * the packet.
   1102 		 */
   1103 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1104 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1105 			/*
   1106 			 * Not enough free descriptors to transmit this
   1107 			 * packet.  We haven't committed to anything yet,
   1108 			 * so just unload the DMA map, put the packet
   1109 			 * back on the queue, and punt.  Notify the upper
   1110 			 * layer that there are no more slots left.
   1111 			 *
   1112 			 * XXX We could allocate an mbuf and copy, but
   1113 			 * XXX it is worth it?
   1114 			 */
   1115 			ifp->if_flags |= IFF_OACTIVE;
   1116 			sc->sc_if_flags = ifp->if_flags;
   1117 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1118 			if (m != NULL)
   1119 				m_freem(m);
   1120 			break;
   1121 		}
   1122 
   1123 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1124 		if (m != NULL) {
   1125 			m_freem(m0);
   1126 			m0 = m;
   1127 		}
   1128 
   1129 		/*
   1130 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1131 		 */
   1132 
   1133 		/* Sync the DMA map. */
   1134 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1135 		    BUS_DMASYNC_PREWRITE);
   1136 
   1137 		/*
   1138 		 * Initialize the transmit descriptors.
   1139 		 */
   1140 		for (nexttx = sc->sc_txnext, seg = 0;
   1141 		     seg < dmamap->dm_nsegs;
   1142 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1143 
   1144 			/*
   1145 			 * If this is the first descriptor we're
   1146 			 * enqueueing, set the start of packet flag,
   1147 			 * and the checksum stuff if we want the hardware
   1148 			 * to do it.
   1149 			 */
   1150 			sc->sc_txdescs[nexttx].gd_addr =
   1151 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1152 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1153 			if (nexttx == firsttx) {
   1154 				flags |= GEM_TD_START_OF_PACKET;
   1155 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1156 					sc->sc_txwin = 0;
   1157 					flags |= GEM_TD_INTERRUPT_ME;
   1158 				}
   1159 
   1160 #ifdef INET
   1161 				/* h/w checksum */
   1162 				if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
   1163 				    M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
   1164 				    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1165 					struct ether_header *eh;
   1166 					uint16_t offset, start;
   1167 
   1168 					eh = mtod(m0, struct ether_header *);
   1169 					switch (ntohs(eh->ether_type)) {
   1170 					case ETHERTYPE_IP:
   1171 						start = ETHER_HDR_LEN;
   1172 						break;
   1173 					case ETHERTYPE_VLAN:
   1174 						start = ETHER_HDR_LEN +
   1175 							ETHER_VLAN_ENCAP_LEN;
   1176 						break;
   1177 					default:
   1178 						/* unsupported, drop it */
   1179 						m_free(m0);
   1180 						continue;
   1181 					}
   1182 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1183 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1184 					flags |= (start <<
   1185 						  GEM_TD_CXSUM_STARTSHFT) |
   1186 						 (offset <<
   1187 						  GEM_TD_CXSUM_STUFFSHFT) |
   1188 						 GEM_TD_CXSUM_ENABLE;
   1189 				}
   1190 #endif
   1191 			}
   1192 			if (seg == dmamap->dm_nsegs - 1) {
   1193 				flags |= GEM_TD_END_OF_PACKET;
   1194 			} else {
   1195 				/* last flag set outside of loop */
   1196 				sc->sc_txdescs[nexttx].gd_flags =
   1197 					GEM_DMA_WRITE(sc, flags);
   1198 			}
   1199 			lasttx = nexttx;
   1200 		}
   1201 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1202 			/* add padding buffer at end of chain */
   1203 			flags &= ~GEM_TD_END_OF_PACKET;
   1204 			sc->sc_txdescs[lasttx].gd_flags =
   1205 			    GEM_DMA_WRITE(sc, flags);
   1206 
   1207 			sc->sc_txdescs[nexttx].gd_addr =
   1208 			    GEM_DMA_WRITE(sc,
   1209 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1210 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1211 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1212 			lasttx = nexttx;
   1213 			nexttx = GEM_NEXTTX(nexttx);
   1214 			seg++;
   1215 		}
   1216 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1217 
   1218 		KASSERT(lasttx != -1);
   1219 
   1220 		/*
   1221 		 * Store a pointer to the packet so we can free it later,
   1222 		 * and remember what txdirty will be once the packet is
   1223 		 * done.
   1224 		 */
   1225 		txs->txs_mbuf = m0;
   1226 		txs->txs_firstdesc = sc->sc_txnext;
   1227 		txs->txs_lastdesc = lasttx;
   1228 		txs->txs_ndescs = seg;
   1229 
   1230 #ifdef GEM_DEBUG
   1231 		if (ifp->if_flags & IFF_DEBUG) {
   1232 			printf("     gem_start %p transmit chain:\n", txs);
   1233 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
   1234 				printf("descriptor %d:\t", seg);
   1235 				printf("gd_flags:   0x%016llx\t", (long long)
   1236 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
   1237 				printf("gd_addr: 0x%016llx\n", (long long)
   1238 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
   1239 				if (seg == lasttx)
   1240 					break;
   1241 			}
   1242 		}
   1243 #endif
   1244 
   1245 		/* Sync the descriptors we're using. */
   1246 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1247 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1248 
   1249 		/* Advance the tx pointer. */
   1250 		sc->sc_txfree -= txs->txs_ndescs;
   1251 		sc->sc_txnext = nexttx;
   1252 
   1253 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1254 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1255 
   1256 		last_txs = txs;
   1257 
   1258 #if NBPFILTER > 0
   1259 		/*
   1260 		 * Pass the packet to any BPF listeners.
   1261 		 */
   1262 		if (ifp->if_bpf)
   1263 			bpf_mtap(ifp->if_bpf, m0);
   1264 #endif /* NBPFILTER > 0 */
   1265 	}
   1266 
   1267 	if (txs == NULL || sc->sc_txfree == 0) {
   1268 		/* No more slots left; notify upper layer. */
   1269 		ifp->if_flags |= IFF_OACTIVE;
   1270 		sc->sc_if_flags = ifp->if_flags;
   1271 	}
   1272 
   1273 	if (sc->sc_txfree != ofree) {
   1274 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1275 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1276 		/*
   1277 		 * The entire packet chain is set up.
   1278 		 * Kick the transmitter.
   1279 		 */
   1280 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1281 			sc->sc_dev.dv_xname, nexttx));
   1282 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
   1283 			sc->sc_txnext);
   1284 
   1285 		/* Set a watchdog timer in case the chip flakes out. */
   1286 		ifp->if_timer = 5;
   1287 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1288 			sc->sc_dev.dv_xname, ifp->if_timer));
   1289 	}
   1290 }
   1291 
   1292 /*
   1293  * Transmit interrupt.
   1294  */
   1295 int
   1296 gem_tint(sc)
   1297 	struct gem_softc *sc;
   1298 {
   1299 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1300 	bus_space_tag_t t = sc->sc_bustag;
   1301 	bus_space_handle_t mac = sc->sc_h;
   1302 	struct gem_txsoft *txs;
   1303 	int txlast;
   1304 	int progress = 0;
   1305 
   1306 
   1307 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1308 
   1309 	/*
   1310 	 * Unload collision counters
   1311 	 */
   1312 	ifp->if_collisions +=
   1313 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1314 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
   1315 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1316 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1317 
   1318 	/*
   1319 	 * then clear the hardware counters.
   1320 	 */
   1321 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1322 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1323 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1324 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1325 
   1326 	/*
   1327 	 * Go through our Tx list and free mbufs for those
   1328 	 * frames that have been transmitted.
   1329 	 */
   1330 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1331 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
   1332 		    txs->txs_ndescs,
   1333 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1334 
   1335 #ifdef GEM_DEBUG
   1336 		if (ifp->if_flags & IFF_DEBUG) {
   1337 			int i;
   1338 			printf("    txsoft %p transmit chain:\n", txs);
   1339 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
   1340 				printf("descriptor %d: ", i);
   1341 				printf("gd_flags: 0x%016llx\t", (long long)
   1342 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1343 				printf("gd_addr: 0x%016llx\n", (long long)
   1344 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1345 				if (i == txs->txs_lastdesc)
   1346 					break;
   1347 			}
   1348 		}
   1349 #endif
   1350 
   1351 		/*
   1352 		 * In theory, we could harveast some descriptors before
   1353 		 * the ring is empty, but that's a bit complicated.
   1354 		 *
   1355 		 * GEM_TX_COMPLETION points to the last descriptor
   1356 		 * processed +1.
   1357 		 */
   1358 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1359 		DPRINTF(sc,
   1360 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1361 				txs->txs_lastdesc, txlast));
   1362 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1363 			if ((txlast >= txs->txs_firstdesc) &&
   1364 				(txlast <= txs->txs_lastdesc))
   1365 				break;
   1366 		} else {
   1367 			/* Ick -- this command wraps */
   1368 			if ((txlast >= txs->txs_firstdesc) ||
   1369 				(txlast <= txs->txs_lastdesc))
   1370 				break;
   1371 		}
   1372 
   1373 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1374 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1375 
   1376 		sc->sc_txfree += txs->txs_ndescs;
   1377 
   1378 		if (txs->txs_mbuf == NULL) {
   1379 #ifdef DIAGNOSTIC
   1380 				panic("gem_txintr: null mbuf");
   1381 #endif
   1382 		}
   1383 
   1384 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1385 		    0, txs->txs_dmamap->dm_mapsize,
   1386 		    BUS_DMASYNC_POSTWRITE);
   1387 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1388 		m_freem(txs->txs_mbuf);
   1389 		txs->txs_mbuf = NULL;
   1390 
   1391 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1392 
   1393 		ifp->if_opackets++;
   1394 		progress = 1;
   1395 	}
   1396 
   1397 #if 0
   1398 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1399 		"GEM_TX_DATA_PTR %llx "
   1400 		"GEM_TX_COMPLETION %x\n",
   1401 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
   1402 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1403 			GEM_TX_DATA_PTR_HI) << 32) |
   1404 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1405 			GEM_TX_DATA_PTR_LO),
   1406 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
   1407 #endif
   1408 
   1409 	if (progress) {
   1410 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1411 			sc->sc_txwin = 0;
   1412 
   1413 		ifp->if_flags &= ~IFF_OACTIVE;
   1414 		sc->sc_if_flags = ifp->if_flags;
   1415 		gem_start(ifp);
   1416 
   1417 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
   1418 			ifp->if_timer = 0;
   1419 	}
   1420 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1421 		sc->sc_dev.dv_xname, ifp->if_timer));
   1422 
   1423 	return (1);
   1424 }
   1425 
   1426 /*
   1427  * Receive interrupt.
   1428  */
   1429 int
   1430 gem_rint(sc)
   1431 	struct gem_softc *sc;
   1432 {
   1433 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1434 	bus_space_tag_t t = sc->sc_bustag;
   1435 	bus_space_handle_t h = sc->sc_h;
   1436 	struct gem_rxsoft *rxs;
   1437 	struct mbuf *m;
   1438 	u_int64_t rxstat;
   1439 	u_int32_t rxcomp;
   1440 	int i, len, progress = 0;
   1441 
   1442 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1443 
   1444 	/*
   1445 	 * Read the completion register once.  This limits
   1446 	 * how long the following loop can execute.
   1447 	 */
   1448 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1449 
   1450 	/*
   1451 	 * XXXX Read the lastrx only once at the top for speed.
   1452 	 */
   1453 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1454 		sc->sc_rxptr, rxcomp));
   1455 
   1456 	/*
   1457 	 * Go into the loop at least once.
   1458 	 */
   1459 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1460 	     i = GEM_NEXTRX(i)) {
   1461 		rxs = &sc->sc_rxsoft[i];
   1462 
   1463 		GEM_CDRXSYNC(sc, i,
   1464 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1465 
   1466 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1467 
   1468 		if (rxstat & GEM_RD_OWN) {
   1469 			/*
   1470 			 * We have processed all of the receive buffers.
   1471 			 */
   1472 			break;
   1473 		}
   1474 
   1475 		progress++;
   1476 		ifp->if_ipackets++;
   1477 
   1478 		if (rxstat & GEM_RD_BAD_CRC) {
   1479 			ifp->if_ierrors++;
   1480 			printf("%s: receive error: CRC error\n",
   1481 				sc->sc_dev.dv_xname);
   1482 			GEM_INIT_RXDESC(sc, i);
   1483 			continue;
   1484 		}
   1485 
   1486 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1487 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1488 #ifdef GEM_DEBUG
   1489 		if (ifp->if_flags & IFF_DEBUG) {
   1490 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1491 			printf("gd_flags: 0x%016llx\t", (long long)
   1492 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1493 			printf("gd_addr: 0x%016llx\n", (long long)
   1494 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1495 		}
   1496 #endif
   1497 
   1498 		/* No errors; receive the packet. */
   1499 		len = GEM_RD_BUFLEN(rxstat);
   1500 
   1501 		/*
   1502 		 * Allocate a new mbuf cluster.  If that fails, we are
   1503 		 * out of memory, and must drop the packet and recycle
   1504 		 * the buffer that's already attached to this descriptor.
   1505 		 */
   1506 		m = rxs->rxs_mbuf;
   1507 		if (gem_add_rxbuf(sc, i) != 0) {
   1508 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1509 			ifp->if_ierrors++;
   1510 			GEM_INIT_RXDESC(sc, i);
   1511 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1512 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1513 			continue;
   1514 		}
   1515 		m->m_data += 2; /* We're already off by two */
   1516 
   1517 		m->m_pkthdr.rcvif = ifp;
   1518 		m->m_pkthdr.len = m->m_len = len;
   1519 
   1520 #if NBPFILTER > 0
   1521 		/*
   1522 		 * Pass this up to any BPF listeners, but only
   1523 		 * pass it up the stack if its for us.
   1524 		 */
   1525 		if (ifp->if_bpf)
   1526 			bpf_mtap(ifp->if_bpf, m);
   1527 #endif /* NPBFILTER > 0 */
   1528 
   1529 #ifdef INET
   1530 		/* hardware checksum */
   1531 		if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
   1532 			struct ether_header *eh;
   1533 			struct ip *ip;
   1534 			struct udphdr *uh;
   1535 			int32_t hlen, pktlen;
   1536 
   1537 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1538 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1539 					 ETHER_VLAN_ENCAP_LEN;
   1540 				eh = (struct ether_header *) mtod(m, caddr_t) +
   1541 					ETHER_VLAN_ENCAP_LEN;
   1542 			} else {
   1543 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1544 				eh = mtod(m, struct ether_header *);
   1545 			}
   1546 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1547 				goto swcsum;
   1548 			ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
   1549 
   1550 			/* IPv4 only */
   1551 			if (ip->ip_v != IPVERSION)
   1552 				goto swcsum;
   1553 
   1554 			hlen = ip->ip_hl << 2;
   1555 			if (hlen < sizeof(struct ip))
   1556 				goto swcsum;
   1557 
   1558 			/*
   1559 			 * bail if too short, has random trailing garbage,
   1560 			 * truncated, fragment, or has ethernet pad.
   1561 			 */
   1562 			if ((ntohs(ip->ip_len) < hlen) ||
   1563 			    (ntohs(ip->ip_len) != pktlen) ||
   1564 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1565 				goto swcsum;
   1566 
   1567 			switch (ip->ip_p) {
   1568 			case IPPROTO_TCP:
   1569 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1570 					goto swcsum;
   1571 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1572 					goto swcsum;
   1573 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1574 				break;
   1575 			case IPPROTO_UDP:
   1576 				if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
   1577 					goto swcsum;
   1578 				if (pktlen < (hlen + sizeof(struct udphdr)))
   1579 					goto swcsum;
   1580 				uh = (struct udphdr *)((caddr_t)ip + hlen);
   1581 				/* no checksum */
   1582 				if (uh->uh_sum == 0)
   1583 					goto swcsum;
   1584 				m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
   1585 				break;
   1586 			default:
   1587 				goto swcsum;
   1588 			}
   1589 
   1590 			/* the uncomplemented sum is expected */
   1591 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1592 
   1593 			/* if the pkt had ip options, we have to deduct them */
   1594 			if (hlen > sizeof(struct ip)) {
   1595 				uint16_t *opts;
   1596 				uint32_t optsum, temp;
   1597 
   1598 				optsum = 0;
   1599 				temp = hlen - sizeof(struct ip);
   1600 				opts = (uint16_t *) ((caddr_t) ip +
   1601 					sizeof(struct ip));
   1602 
   1603 				while (temp > 1) {
   1604 					optsum += ntohs(*opts++);
   1605 					temp -= 2;
   1606 				}
   1607 				while (optsum >> 16)
   1608 					optsum = (optsum >> 16) +
   1609 						 (optsum & 0xffff);
   1610 
   1611 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1612 				m->m_pkthdr.csum_data =
   1613 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1614 
   1615 				while (m->m_pkthdr.csum_data >> 16)
   1616 					m->m_pkthdr.csum_data =
   1617 						(m->m_pkthdr.csum_data >> 16) +
   1618 						(m->m_pkthdr.csum_data &
   1619 						 0xffff);
   1620 			}
   1621 
   1622 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1623 						  M_CSUM_NO_PSEUDOHDR;
   1624 		} else
   1625 swcsum:
   1626 			m->m_pkthdr.csum_flags = 0;
   1627 #endif
   1628 		/* Pass it on. */
   1629 		(*ifp->if_input)(ifp, m);
   1630 	}
   1631 
   1632 	if (progress) {
   1633 		/* Update the receive pointer. */
   1634 		if (i == sc->sc_rxptr) {
   1635 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1636 #ifdef GEM_DEBUG
   1637 			if (ifp->if_flags & IFF_DEBUG)
   1638 				printf("%s: rint: ring wrap\n",
   1639 				    sc->sc_dev.dv_xname);
   1640 #endif
   1641 		}
   1642 		sc->sc_rxptr = i;
   1643 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1644 	}
   1645 #ifdef GEM_COUNTERS
   1646 	if (progress <= 4) {
   1647 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1648 	} else if (progress < 32) {
   1649 		if (progress < 16)
   1650 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1651 		else
   1652 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1653 
   1654 	} else {
   1655 		if (progress < 64)
   1656 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1657 		else
   1658 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1659 	}
   1660 #endif
   1661 
   1662 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1663 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1664 
   1665 	return (1);
   1666 }
   1667 
   1668 
   1669 /*
   1670  * gem_add_rxbuf:
   1671  *
   1672  *	Add a receive buffer to the indicated descriptor.
   1673  */
   1674 int
   1675 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1676 {
   1677 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1678 	struct mbuf *m;
   1679 	int error;
   1680 
   1681 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1682 	if (m == NULL)
   1683 		return (ENOBUFS);
   1684 
   1685 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1686 	MCLGET(m, M_DONTWAIT);
   1687 	if ((m->m_flags & M_EXT) == 0) {
   1688 		m_freem(m);
   1689 		return (ENOBUFS);
   1690 	}
   1691 
   1692 #ifdef GEM_DEBUG
   1693 /* bzero the packet to check DMA */
   1694 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1695 #endif
   1696 
   1697 	if (rxs->rxs_mbuf != NULL)
   1698 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1699 
   1700 	rxs->rxs_mbuf = m;
   1701 
   1702 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1703 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1704 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1705 	if (error) {
   1706 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1707 		    sc->sc_dev.dv_xname, idx, error);
   1708 		panic("gem_add_rxbuf");	/* XXX */
   1709 	}
   1710 
   1711 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1712 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1713 
   1714 	GEM_INIT_RXDESC(sc, idx);
   1715 
   1716 	return (0);
   1717 }
   1718 
   1719 
   1720 int
   1721 gem_eint(sc, status)
   1722 	struct gem_softc *sc;
   1723 	u_int status;
   1724 {
   1725 	char bits[128];
   1726 
   1727 	if ((status & GEM_INTR_MIF) != 0) {
   1728 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1729 		return (1);
   1730 	}
   1731 
   1732 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1733 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   1734 	return (1);
   1735 }
   1736 
   1737 
   1738 int
   1739 gem_intr(v)
   1740 	void *v;
   1741 {
   1742 	struct gem_softc *sc = (struct gem_softc *)v;
   1743 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1744 	bus_space_tag_t t = sc->sc_bustag;
   1745 	bus_space_handle_t seb = sc->sc_h;
   1746 	u_int32_t status;
   1747 	int r = 0;
   1748 #ifdef GEM_DEBUG
   1749 	char bits[128];
   1750 #endif
   1751 
   1752 	sc->sc_ev_intr.ev_count++;
   1753 
   1754 	status = bus_space_read_4(t, seb, GEM_STATUS);
   1755 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   1756 		sc->sc_dev.dv_xname, (status >> 19),
   1757 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   1758 
   1759 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   1760 		r |= gem_eint(sc, status);
   1761 
   1762 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   1763 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   1764 		r |= gem_tint(sc);
   1765 	}
   1766 
   1767 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   1768 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   1769 		r |= gem_rint(sc);
   1770 	}
   1771 
   1772 	/* We should eventually do more than just print out error stats. */
   1773 	if (status & GEM_INTR_TX_MAC) {
   1774 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
   1775 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   1776 			printf("%s: MAC tx fault, status %x\n",
   1777 			    sc->sc_dev.dv_xname, txstat);
   1778 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   1779 			gem_init(ifp);
   1780 	}
   1781 	if (status & GEM_INTR_RX_MAC) {
   1782 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
   1783 		if (rxstat & ~GEM_MAC_RX_DONE)
   1784 			printf("%s: MAC rx fault, status %x\n",
   1785 			    sc->sc_dev.dv_xname, rxstat);
   1786 		/*
   1787 		 * On some chip revisions GEM_MAC_RX_OVERFLOW happen often
   1788 		 * due to a silicon bug so handle them silently.
   1789 		 */
   1790 		if (rxstat & GEM_MAC_RX_OVERFLOW)
   1791 			gem_init(ifp);
   1792 		else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   1793 			printf("%s: MAC rx fault, status %x\n",
   1794 			    sc->sc_dev.dv_xname, rxstat);
   1795 	}
   1796 	return (r);
   1797 }
   1798 
   1799 
   1800 void
   1801 gem_watchdog(ifp)
   1802 	struct ifnet *ifp;
   1803 {
   1804 	struct gem_softc *sc = ifp->if_softc;
   1805 
   1806 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   1807 		"GEM_MAC_RX_CONFIG %x\n",
   1808 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
   1809 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
   1810 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
   1811 
   1812 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1813 	++ifp->if_oerrors;
   1814 
   1815 	/* Try to get more packets going. */
   1816 	gem_start(ifp);
   1817 }
   1818 
   1819 /*
   1820  * Initialize the MII Management Interface
   1821  */
   1822 void
   1823 gem_mifinit(sc)
   1824 	struct gem_softc *sc;
   1825 {
   1826 	bus_space_tag_t t = sc->sc_bustag;
   1827 	bus_space_handle_t mif = sc->sc_h;
   1828 
   1829 	/* Configure the MIF in frame mode */
   1830 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1831 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   1832 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   1833 }
   1834 
   1835 /*
   1836  * MII interface
   1837  *
   1838  * The GEM MII interface supports at least three different operating modes:
   1839  *
   1840  * Bitbang mode is implemented using data, clock and output enable registers.
   1841  *
   1842  * Frame mode is implemented by loading a complete frame into the frame
   1843  * register and polling the valid bit for completion.
   1844  *
   1845  * Polling mode uses the frame register but completion is indicated by
   1846  * an interrupt.
   1847  *
   1848  */
   1849 static int
   1850 gem_mii_readreg(self, phy, reg)
   1851 	struct device *self;
   1852 	int phy, reg;
   1853 {
   1854 	struct gem_softc *sc = (void *)self;
   1855 	bus_space_tag_t t = sc->sc_bustag;
   1856 	bus_space_handle_t mif = sc->sc_h;
   1857 	int n;
   1858 	u_int32_t v;
   1859 
   1860 #ifdef GEM_DEBUG1
   1861 	if (sc->sc_debug)
   1862 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
   1863 #endif
   1864 
   1865 #if 0
   1866 	/* Select the desired PHY in the MIF configuration register */
   1867 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1868 	/* Clear PHY select bit */
   1869 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1870 	if (phy == GEM_PHYAD_EXTERNAL)
   1871 		/* Set PHY select bit to get at external device */
   1872 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1873 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1874 #endif
   1875 
   1876 	/* Construct the frame command */
   1877 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   1878 		GEM_MIF_FRAME_READ;
   1879 
   1880 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1881 	for (n = 0; n < 100; n++) {
   1882 		DELAY(1);
   1883 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1884 		if (v & GEM_MIF_FRAME_TA0)
   1885 			return (v & GEM_MIF_FRAME_DATA);
   1886 	}
   1887 
   1888 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1889 	return (0);
   1890 }
   1891 
   1892 static void
   1893 gem_mii_writereg(self, phy, reg, val)
   1894 	struct device *self;
   1895 	int phy, reg, val;
   1896 {
   1897 	struct gem_softc *sc = (void *)self;
   1898 	bus_space_tag_t t = sc->sc_bustag;
   1899 	bus_space_handle_t mif = sc->sc_h;
   1900 	int n;
   1901 	u_int32_t v;
   1902 
   1903 #ifdef GEM_DEBUG1
   1904 	if (sc->sc_debug)
   1905 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
   1906 			phy, reg, val);
   1907 #endif
   1908 
   1909 #if 0
   1910 	/* Select the desired PHY in the MIF configuration register */
   1911 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1912 	/* Clear PHY select bit */
   1913 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1914 	if (phy == GEM_PHYAD_EXTERNAL)
   1915 		/* Set PHY select bit to get at external device */
   1916 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1917 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1918 #endif
   1919 	/* Construct the frame command */
   1920 	v = GEM_MIF_FRAME_WRITE			|
   1921 	    (phy << GEM_MIF_PHY_SHIFT)		|
   1922 	    (reg << GEM_MIF_REG_SHIFT)		|
   1923 	    (val & GEM_MIF_FRAME_DATA);
   1924 
   1925 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1926 	for (n = 0; n < 100; n++) {
   1927 		DELAY(1);
   1928 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1929 		if (v & GEM_MIF_FRAME_TA0)
   1930 			return;
   1931 	}
   1932 
   1933 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1934 }
   1935 
   1936 static void
   1937 gem_mii_statchg(dev)
   1938 	struct device *dev;
   1939 {
   1940 	struct gem_softc *sc = (void *)dev;
   1941 #ifdef GEM_DEBUG
   1942 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1943 #endif
   1944 	bus_space_tag_t t = sc->sc_bustag;
   1945 	bus_space_handle_t mac = sc->sc_h;
   1946 	u_int32_t v;
   1947 
   1948 #ifdef GEM_DEBUG
   1949 	if (sc->sc_debug)
   1950 		printf("gem_mii_statchg: status change: phy = %d\n",
   1951 			sc->sc_phys[instance]);
   1952 #endif
   1953 
   1954 
   1955 	/* Set tx full duplex options */
   1956 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   1957 	delay(10000); /* reg must be cleared and delay before changing. */
   1958 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
   1959 		GEM_MAC_TX_ENABLE;
   1960 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1961 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
   1962 	}
   1963 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
   1964 
   1965 	/* XIF Configuration */
   1966  /* We should really calculate all this rather than rely on defaults */
   1967 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
   1968 	v = GEM_MAC_XIF_LINK_LED;
   1969 	v |= GEM_MAC_XIF_TX_MII_ENA;
   1970 
   1971 	/* If an external transceiver is connected, enable its MII drivers */
   1972 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   1973 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   1974 		/* External MII needs echo disable if half duplex. */
   1975 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1976 			/* turn on full duplex LED */
   1977 			v |= GEM_MAC_XIF_FDPLX_LED;
   1978 		else
   1979 	 		/* half duplex -- disable echo */
   1980 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
   1981 
   1982 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   1983 			v |= GEM_MAC_XIF_GMII_MODE;
   1984 		else
   1985 			v &= ~GEM_MAC_XIF_GMII_MODE;
   1986 	} else
   1987 		/* Internal MII needs buf enable */
   1988 		v |= GEM_MAC_XIF_MII_BUF_ENA;
   1989 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   1990 }
   1991 
   1992 int
   1993 gem_mediachange(ifp)
   1994 	struct ifnet *ifp;
   1995 {
   1996 	struct gem_softc *sc = ifp->if_softc;
   1997 
   1998 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1999 		return (EINVAL);
   2000 
   2001 	return (mii_mediachg(&sc->sc_mii));
   2002 }
   2003 
   2004 void
   2005 gem_mediastatus(ifp, ifmr)
   2006 	struct ifnet *ifp;
   2007 	struct ifmediareq *ifmr;
   2008 {
   2009 	struct gem_softc *sc = ifp->if_softc;
   2010 
   2011 	if ((ifp->if_flags & IFF_UP) == 0)
   2012 		return;
   2013 
   2014 	mii_pollstat(&sc->sc_mii);
   2015 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2016 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2017 }
   2018 
   2019 /*
   2020  * Process an ioctl request.
   2021  */
   2022 int
   2023 gem_ioctl(ifp, cmd, data)
   2024 	struct ifnet *ifp;
   2025 	u_long cmd;
   2026 	caddr_t data;
   2027 {
   2028 	struct gem_softc *sc = ifp->if_softc;
   2029 	struct ifreq *ifr = (struct ifreq *)data;
   2030 	int s, error = 0;
   2031 
   2032 	s = splnet();
   2033 
   2034 	switch (cmd) {
   2035 	case SIOCGIFMEDIA:
   2036 	case SIOCSIFMEDIA:
   2037 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   2038 		break;
   2039 	case SIOCSIFFLAGS:
   2040 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   2041 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   2042 		    == (IFF_UP|IFF_RUNNING))
   2043 		    && ((ifp->if_flags & (~RESETIGN))
   2044 		    == (sc->sc_if_flags & (~RESETIGN)))) {
   2045 			gem_setladrf(sc);
   2046 			break;
   2047 		}
   2048 #undef RESETIGN
   2049 		/*FALLTHROUGH*/
   2050 	default:
   2051 		error = ether_ioctl(ifp, cmd, data);
   2052 		if (error == ENETRESET) {
   2053 			/*
   2054 			 * Multicast list has changed; set the hardware filter
   2055 			 * accordingly.
   2056 			 */
   2057 			if (ifp->if_flags & IFF_RUNNING)
   2058 				gem_setladrf(sc);
   2059 			error = 0;
   2060 		}
   2061 		break;
   2062 	}
   2063 
   2064 	/* Try to get things going again */
   2065 	if (ifp->if_flags & IFF_UP)
   2066 		gem_start(ifp);
   2067 	splx(s);
   2068 	return (error);
   2069 }
   2070 
   2071 
   2072 void
   2073 gem_shutdown(arg)
   2074 	void *arg;
   2075 {
   2076 	struct gem_softc *sc = (struct gem_softc *)arg;
   2077 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2078 
   2079 	gem_stop(ifp, 1);
   2080 }
   2081 
   2082 /*
   2083  * Set up the logical address filter.
   2084  */
   2085 void
   2086 gem_setladrf(sc)
   2087 	struct gem_softc *sc;
   2088 {
   2089 	struct ethercom *ec = &sc->sc_ethercom;
   2090 	struct ifnet *ifp = &ec->ec_if;
   2091 	struct ether_multi *enm;
   2092 	struct ether_multistep step;
   2093 	bus_space_tag_t t = sc->sc_bustag;
   2094 	bus_space_handle_t h = sc->sc_h;
   2095 	u_int32_t crc;
   2096 	u_int32_t hash[16];
   2097 	u_int32_t v;
   2098 	int i;
   2099 
   2100 	/* Get current RX configuration */
   2101 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2102 
   2103 	/*
   2104 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2105 	 * and hash filter.  Depending on the case, the right bit will be
   2106 	 * enabled.
   2107 	 */
   2108 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2109 	    GEM_MAC_RX_PROMISC_GRP);
   2110 
   2111 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2112 		/* Turn on promiscuous mode */
   2113 		v |= GEM_MAC_RX_PROMISCUOUS;
   2114 		ifp->if_flags |= IFF_ALLMULTI;
   2115 		goto chipit;
   2116 	}
   2117 
   2118 	/*
   2119 	 * Set up multicast address filter by passing all multicast addresses
   2120 	 * through a crc generator, and then using the high order 8 bits as an
   2121 	 * index into the 256 bit logical address filter.  The high order 4
   2122 	 * bits selects the word, while the other 4 bits select the bit within
   2123 	 * the word (where bit 0 is the MSB).
   2124 	 */
   2125 
   2126 	/* Clear hash table */
   2127 	memset(hash, 0, sizeof(hash));
   2128 
   2129 	ETHER_FIRST_MULTI(step, ec, enm);
   2130 	while (enm != NULL) {
   2131 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2132 			/*
   2133 			 * We must listen to a range of multicast addresses.
   2134 			 * For now, just accept all multicasts, rather than
   2135 			 * trying to set only those filter bits needed to match
   2136 			 * the range.  (At this time, the only use of address
   2137 			 * ranges is for IP multicast routing, for which the
   2138 			 * range is big enough to require all bits set.)
   2139 			 * XXX use the addr filter for this
   2140 			 */
   2141 			ifp->if_flags |= IFF_ALLMULTI;
   2142 			v |= GEM_MAC_RX_PROMISC_GRP;
   2143 			goto chipit;
   2144 		}
   2145 
   2146 		/* Get the LE CRC32 of the address */
   2147 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2148 
   2149 		/* Just want the 8 most significant bits. */
   2150 		crc >>= 24;
   2151 
   2152 		/* Set the corresponding bit in the filter. */
   2153 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2154 
   2155 		ETHER_NEXT_MULTI(step, enm);
   2156 	}
   2157 
   2158 	v |= GEM_MAC_RX_HASH_FILTER;
   2159 	ifp->if_flags &= ~IFF_ALLMULTI;
   2160 
   2161 	/* Now load the hash table into the chip (if we are using it) */
   2162 	for (i = 0; i < 16; i++) {
   2163 		bus_space_write_4(t, h,
   2164 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2165 		    hash[i]);
   2166 	}
   2167 
   2168 chipit:
   2169 	sc->sc_if_flags = ifp->if_flags;
   2170 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2171 }
   2172 
   2173 #if notyet
   2174 
   2175 /*
   2176  * gem_power:
   2177  *
   2178  *	Power management (suspend/resume) hook.
   2179  */
   2180 void
   2181 gem_power(why, arg)
   2182 	int why;
   2183 	void *arg;
   2184 {
   2185 	struct gem_softc *sc = arg;
   2186 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2187 	int s;
   2188 
   2189 	s = splnet();
   2190 	switch (why) {
   2191 	case PWR_SUSPEND:
   2192 	case PWR_STANDBY:
   2193 		gem_stop(ifp, 1);
   2194 		if (sc->sc_power != NULL)
   2195 			(*sc->sc_power)(sc, why);
   2196 		break;
   2197 	case PWR_RESUME:
   2198 		if (ifp->if_flags & IFF_UP) {
   2199 			if (sc->sc_power != NULL)
   2200 				(*sc->sc_power)(sc, why);
   2201 			gem_init(ifp);
   2202 		}
   2203 		break;
   2204 	case PWR_SOFTSUSPEND:
   2205 	case PWR_SOFTSTANDBY:
   2206 	case PWR_SOFTRESUME:
   2207 		break;
   2208 	}
   2209 	splx(s);
   2210 }
   2211 #endif
   2212