Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.48
      1 /*	$NetBSD: gem.c,v 1.48 2006/09/24 03:53:08 jmcneill Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * All rights reserved.
      7  *
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  */
     31 
     32 /*
     33  * Driver for Sun GEM ethernet controllers.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.48 2006/09/24 03:53:08 jmcneill Exp $");
     38 
     39 #include "opt_inet.h"
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/syslog.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 
     54 #include <machine/endian.h>
     55 
     56 #include <uvm/uvm_extern.h>
     57 
     58 #include <net/if.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_ether.h>
     62 
     63 #ifdef INET
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 #include <netinet/tcp.h>
     69 #include <netinet/udp.h>
     70 #endif
     71 
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 
     79 #include <dev/mii/mii.h>
     80 #include <dev/mii/miivar.h>
     81 #include <dev/mii/mii_bitbang.h>
     82 
     83 #include <dev/ic/gemreg.h>
     84 #include <dev/ic/gemvar.h>
     85 
     86 #define TRIES	10000
     87 
     88 static void	gem_start(struct ifnet *);
     89 static void	gem_stop(struct ifnet *, int);
     90 int		gem_ioctl(struct ifnet *, u_long, caddr_t);
     91 void		gem_tick(void *);
     92 void		gem_watchdog(struct ifnet *);
     93 void		gem_shutdown(void *);
     94 int		gem_init(struct ifnet *);
     95 void		gem_init_regs(struct gem_softc *sc);
     96 static int	gem_ringsize(int sz);
     97 static int	gem_meminit(struct gem_softc *);
     98 void		gem_mifinit(struct gem_softc *);
     99 static int	gem_bitwait(struct gem_softc *sc, int, u_int32_t, u_int32_t);
    100 void		gem_reset(struct gem_softc *);
    101 int		gem_reset_rx(struct gem_softc *sc);
    102 int		gem_reset_tx(struct gem_softc *sc);
    103 int		gem_disable_rx(struct gem_softc *sc);
    104 int		gem_disable_tx(struct gem_softc *sc);
    105 static void	gem_rxdrain(struct gem_softc *sc);
    106 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    107 void		gem_setladrf(struct gem_softc *);
    108 
    109 /* MII methods & callbacks */
    110 static int	gem_mii_readreg(struct device *, int, int);
    111 static void	gem_mii_writereg(struct device *, int, int, int);
    112 static void	gem_mii_statchg(struct device *);
    113 
    114 int		gem_mediachange(struct ifnet *);
    115 void		gem_mediastatus(struct ifnet *, struct ifmediareq *);
    116 
    117 struct mbuf	*gem_get(struct gem_softc *, int, int);
    118 int		gem_put(struct gem_softc *, int, struct mbuf *);
    119 void		gem_read(struct gem_softc *, int, int);
    120 int		gem_eint(struct gem_softc *, u_int);
    121 int		gem_rint(struct gem_softc *);
    122 int		gem_tint(struct gem_softc *);
    123 void		gem_power(int, void *);
    124 
    125 #ifdef GEM_DEBUG
    126 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    127 				printf x
    128 #else
    129 #define	DPRINTF(sc, x)	/* nothing */
    130 #endif
    131 
    132 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    133 
    134 
    135 /*
    136  * gem_attach:
    137  *
    138  *	Attach a Gem interface to the system.
    139  */
    140 void
    141 gem_attach(sc, enaddr)
    142 	struct gem_softc *sc;
    143 	const uint8_t *enaddr;
    144 {
    145 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    146 	struct mii_data *mii = &sc->sc_mii;
    147 	struct mii_softc *child;
    148 	struct ifmedia_entry *ifm;
    149 	int i, error;
    150 	u_int32_t v;
    151 	char *nullbuf;
    152 
    153 	/* Make sure the chip is stopped. */
    154 	ifp->if_softc = sc;
    155 	gem_reset(sc);
    156 
    157 	/*
    158 	 * Allocate the control data structures, and create and load the
    159 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    160 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    161 	 */
    162 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    163 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    164 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    165 		aprint_error(
    166 		   "%s: unable to allocate control data, error = %d\n",
    167 		    sc->sc_dev.dv_xname, error);
    168 		goto fail_0;
    169 	}
    170 
    171 /* XXX should map this in with correct endianness */
    172 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    173 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
    174 	    BUS_DMA_COHERENT)) != 0) {
    175 		aprint_error("%s: unable to map control data, error = %d\n",
    176 		    sc->sc_dev.dv_xname, error);
    177 		goto fail_1;
    178 	}
    179 
    180 	nullbuf =
    181 	    (caddr_t)sc->sc_control_data + sizeof(struct gem_control_data);
    182 
    183 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    184 	    sizeof(struct gem_control_data), 1,
    185 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    186 		aprint_error("%s: unable to create control data DMA map, "
    187 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    188 		goto fail_2;
    189 	}
    190 
    191 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    192 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    193 	    0)) != 0) {
    194 		aprint_error(
    195 		    "%s: unable to load control data DMA map, error = %d\n",
    196 		    sc->sc_dev.dv_xname, error);
    197 		goto fail_3;
    198 	}
    199 
    200 	memset(nullbuf, 0, ETHER_MIN_TX);
    201 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    202 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    203 		aprint_error("%s: unable to create padding DMA map, "
    204 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    205 		goto fail_4;
    206 	}
    207 
    208 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    209 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    210 		aprint_error(
    211 		    "%s: unable to load padding DMA map, error = %d\n",
    212 		    sc->sc_dev.dv_xname, error);
    213 		goto fail_5;
    214 	}
    215 
    216 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    217 	    BUS_DMASYNC_PREWRITE);
    218 
    219 	/*
    220 	 * Initialize the transmit job descriptors.
    221 	 */
    222 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    223 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    224 
    225 	/*
    226 	 * Create the transmit buffer DMA maps.
    227 	 */
    228 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    229 		struct gem_txsoft *txs;
    230 
    231 		txs = &sc->sc_txsoft[i];
    232 		txs->txs_mbuf = NULL;
    233 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    234 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    235 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    236 		    &txs->txs_dmamap)) != 0) {
    237 			aprint_error("%s: unable to create tx DMA map %d, "
    238 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    239 			goto fail_6;
    240 		}
    241 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    242 	}
    243 
    244 	/*
    245 	 * Create the receive buffer DMA maps.
    246 	 */
    247 	for (i = 0; i < GEM_NRXDESC; i++) {
    248 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    249 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    250 			aprint_error("%s: unable to create rx DMA map %d, "
    251 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    252 			goto fail_7;
    253 		}
    254 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    255 	}
    256 
    257 	/*
    258 	 * From this point forward, the attachment cannot fail.  A failure
    259 	 * before this point releases all resources that may have been
    260 	 * allocated.
    261 	 */
    262 
    263 	/* Announce ourselves. */
    264 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
    265 	    ether_sprintf(enaddr));
    266 
    267 	/* Get RX FIFO size */
    268 	sc->sc_rxfifosize = 64 *
    269 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
    270 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    271 
    272 	/* Get TX FIFO size */
    273 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
    274 	aprint_normal(", %uKB TX fifo\n", v / 16);
    275 
    276 	/* Initialize ifnet structure. */
    277 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    278 	ifp->if_softc = sc;
    279 	ifp->if_flags =
    280 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    281 	sc->sc_if_flags = ifp->if_flags;
    282 	ifp->if_capabilities |=
    283 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    284 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    285 	ifp->if_start = gem_start;
    286 	ifp->if_ioctl = gem_ioctl;
    287 	ifp->if_watchdog = gem_watchdog;
    288 	ifp->if_stop = gem_stop;
    289 	ifp->if_init = gem_init;
    290 	IFQ_SET_READY(&ifp->if_snd);
    291 
    292 	/* Initialize ifmedia structures and MII info */
    293 	mii->mii_ifp = ifp;
    294 	mii->mii_readreg = gem_mii_readreg;
    295 	mii->mii_writereg = gem_mii_writereg;
    296 	mii->mii_statchg = gem_mii_statchg;
    297 
    298 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
    299 
    300 	gem_mifinit(sc);
    301 
    302 #if defined (PMAC_G5)
    303 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    304 			1, MII_OFFSET_ANY, MIIF_FORCEANEG);
    305 #else
    306 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    307 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    308 #endif
    309 
    310 	child = LIST_FIRST(&mii->mii_phys);
    311 	if (child == NULL) {
    312 		/* No PHY attached */
    313 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    314 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    315 	} else {
    316 		/*
    317 		 * Walk along the list of attached MII devices and
    318 		 * establish an `MII instance' to `phy number'
    319 		 * mapping. We'll use this mapping in media change
    320 		 * requests to determine which phy to use to program
    321 		 * the MIF configuration register.
    322 		 */
    323 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    324 			/*
    325 			 * Note: we support just two PHYs: the built-in
    326 			 * internal device and an external on the MII
    327 			 * connector.
    328 			 */
    329 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    330 				aprint_error(
    331 				    "%s: cannot accomodate MII device %s"
    332 				       " at phy %d, instance %d\n",
    333 				       sc->sc_dev.dv_xname,
    334 				       child->mii_dev.dv_xname,
    335 				       child->mii_phy, child->mii_inst);
    336 				continue;
    337 			}
    338 
    339 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    340 		}
    341 
    342 		/*
    343 		 * Now select and activate the PHY we will use.
    344 		 *
    345 		 * The order of preference is External (MDI1),
    346 		 * Internal (MDI0), Serial Link (no MII).
    347 		 */
    348 		if (sc->sc_phys[1]) {
    349 #ifdef GEM_DEBUG
    350 			aprint_debug("using external phy\n");
    351 #endif
    352 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    353 		} else {
    354 #ifdef GEM_DEBUG
    355 			aprint_debug("using internal phy\n");
    356 #endif
    357 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    358 		}
    359 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
    360 			sc->sc_mif_config);
    361 
    362 		/*
    363 		 * XXX - we can really do the following ONLY if the
    364 		 * phy indeed has the auto negotiation capability!!
    365 		 */
    366 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    367 	}
    368 
    369 	/*
    370 	 * If we support GigE media, we support jumbo frames too.
    371 	 * Unless we are Apple.
    372 	 */
    373 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
    374 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    375 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    376 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    377 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    378 			if (sc->sc_variant != GEM_APPLE_GMAC)
    379 				sc->sc_ethercom.ec_capabilities
    380 				    |= ETHERCAP_JUMBO_MTU;
    381 
    382 			sc->sc_flags |= GEM_GIGABIT;
    383 			break;
    384 		}
    385 	}
    386 
    387 	/* claim 802.1q capability */
    388 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    389 
    390 	/* Attach the interface. */
    391 	if_attach(ifp);
    392 	ether_ifattach(ifp, enaddr);
    393 
    394 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    395 	if (sc->sc_sh == NULL)
    396 		panic("gem_config: can't establish shutdownhook");
    397 
    398 #if NRND > 0
    399 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    400 			  RND_TYPE_NET, 0);
    401 #endif
    402 
    403 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    404 	    NULL, sc->sc_dev.dv_xname, "interrupts");
    405 #ifdef GEM_COUNTERS
    406 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    407 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
    408 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    409 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
    410 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    411 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
    412 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    413 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
    414 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    415 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
    416 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    417 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
    418 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    419 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
    420 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    421 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
    422 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    423 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
    424 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    425 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
    426 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    427 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
    428 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    429 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
    430 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    431 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
    432 #endif
    433 
    434 #if notyet
    435 	/*
    436 	 * Add a suspend hook to make sure we come back up after a
    437 	 * resume.
    438 	 */
    439 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    440 	    gem_power, sc);
    441 	if (sc->sc_powerhook == NULL)
    442 		aprint_error("%s: WARNING: unable to establish power hook\n",
    443 		    sc->sc_dev.dv_xname);
    444 #endif
    445 
    446 	callout_init(&sc->sc_tick_ch);
    447 	return;
    448 
    449 	/*
    450 	 * Free any resources we've allocated during the failed attach
    451 	 * attempt.  Do this in reverse order and fall through.
    452 	 */
    453  fail_7:
    454 	for (i = 0; i < GEM_NRXDESC; i++) {
    455 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    456 			bus_dmamap_destroy(sc->sc_dmatag,
    457 			    sc->sc_rxsoft[i].rxs_dmamap);
    458 	}
    459  fail_6:
    460 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    461 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    462 			bus_dmamap_destroy(sc->sc_dmatag,
    463 			    sc->sc_txsoft[i].txs_dmamap);
    464 	}
    465 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    466  fail_5:
    467 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    468  fail_4:
    469 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)nullbuf, ETHER_MIN_TX);
    470  fail_3:
    471 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    472  fail_2:
    473 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
    474 	    sizeof(struct gem_control_data));
    475  fail_1:
    476 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    477  fail_0:
    478 	return;
    479 }
    480 
    481 
    482 void
    483 gem_tick(arg)
    484 	void *arg;
    485 {
    486 	struct gem_softc *sc = arg;
    487 	int s;
    488 
    489 	s = splnet();
    490 	mii_tick(&sc->sc_mii);
    491 	splx(s);
    492 
    493 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    494 
    495 }
    496 
    497 static int
    498 gem_bitwait(sc, r, clr, set)
    499 	struct gem_softc *sc;
    500 	int r;
    501 	u_int32_t clr;
    502 	u_int32_t set;
    503 {
    504 	int i;
    505 	u_int32_t reg;
    506 
    507 	for (i = TRIES; i--; DELAY(100)) {
    508 		reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
    509 		if ((r & clr) == 0 && (r & set) == set)
    510 			return (1);
    511 	}
    512 	return (0);
    513 }
    514 
    515 void
    516 gem_reset(sc)
    517 	struct gem_softc *sc;
    518 {
    519 	bus_space_tag_t t = sc->sc_bustag;
    520 	bus_space_handle_t h = sc->sc_h;
    521 	int s;
    522 
    523 	s = splnet();
    524 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    525 	gem_reset_rx(sc);
    526 	gem_reset_tx(sc);
    527 
    528 	/* Do a full reset */
    529 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    530 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    531 		printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
    532 	splx(s);
    533 }
    534 
    535 
    536 /*
    537  * gem_rxdrain:
    538  *
    539  *	Drain the receive queue.
    540  */
    541 static void
    542 gem_rxdrain(struct gem_softc *sc)
    543 {
    544 	struct gem_rxsoft *rxs;
    545 	int i;
    546 
    547 	for (i = 0; i < GEM_NRXDESC; i++) {
    548 		rxs = &sc->sc_rxsoft[i];
    549 		if (rxs->rxs_mbuf != NULL) {
    550 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    551 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    552 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    553 			m_freem(rxs->rxs_mbuf);
    554 			rxs->rxs_mbuf = NULL;
    555 		}
    556 	}
    557 }
    558 
    559 /*
    560  * Reset the whole thing.
    561  */
    562 static void
    563 gem_stop(struct ifnet *ifp, int disable)
    564 {
    565 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    566 	struct gem_txsoft *txs;
    567 
    568 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    569 
    570 	callout_stop(&sc->sc_tick_ch);
    571 	mii_down(&sc->sc_mii);
    572 
    573 	/* XXX - Should we reset these instead? */
    574 	gem_disable_rx(sc);
    575 	gem_disable_tx(sc);
    576 
    577 	/*
    578 	 * Release any queued transmit buffers.
    579 	 */
    580 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    581 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    582 		if (txs->txs_mbuf != NULL) {
    583 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    584 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    585 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    586 			m_freem(txs->txs_mbuf);
    587 			txs->txs_mbuf = NULL;
    588 		}
    589 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    590 	}
    591 
    592 	if (disable) {
    593 		gem_rxdrain(sc);
    594 	}
    595 
    596 	/*
    597 	 * Mark the interface down and cancel the watchdog timer.
    598 	 */
    599 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    600 	sc->sc_if_flags = ifp->if_flags;
    601 	ifp->if_timer = 0;
    602 }
    603 
    604 
    605 /*
    606  * Reset the receiver
    607  */
    608 int
    609 gem_reset_rx(struct gem_softc *sc)
    610 {
    611 	bus_space_tag_t t = sc->sc_bustag;
    612 	bus_space_handle_t h = sc->sc_h;
    613 
    614 	/*
    615 	 * Resetting while DMA is in progress can cause a bus hang, so we
    616 	 * disable DMA first.
    617 	 */
    618 	gem_disable_rx(sc);
    619 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    620 	/* Wait till it finishes */
    621 	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
    622 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    623 	/* Wait 5ms extra. */
    624 	delay(5000);
    625 
    626 	/* Finally, reset the ERX */
    627 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
    628 	/* Wait till it finishes */
    629 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
    630 		printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
    631 		return (1);
    632 	}
    633 	return (0);
    634 }
    635 
    636 
    637 /*
    638  * Reset the transmitter
    639  */
    640 int
    641 gem_reset_tx(struct gem_softc *sc)
    642 {
    643 	bus_space_tag_t t = sc->sc_bustag;
    644 	bus_space_handle_t h = sc->sc_h;
    645 
    646 	/*
    647 	 * Resetting while DMA is in progress can cause a bus hang, so we
    648 	 * disable DMA first.
    649 	 */
    650 	gem_disable_tx(sc);
    651 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    652 	/* Wait till it finishes */
    653 	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
    654 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    655 	/* Wait 5ms extra. */
    656 	delay(5000);
    657 
    658 	/* Finally, reset the ETX */
    659 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
    660 	/* Wait till it finishes */
    661 	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
    662 		printf("%s: cannot reset receiver\n",
    663 			sc->sc_dev.dv_xname);
    664 		return (1);
    665 	}
    666 	return (0);
    667 }
    668 
    669 /*
    670  * disable receiver.
    671  */
    672 int
    673 gem_disable_rx(struct gem_softc *sc)
    674 {
    675 	bus_space_tag_t t = sc->sc_bustag;
    676 	bus_space_handle_t h = sc->sc_h;
    677 	u_int32_t cfg;
    678 
    679 	/* Flip the enable bit */
    680 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    681 	cfg &= ~GEM_MAC_RX_ENABLE;
    682 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    683 
    684 	/* Wait for it to finish */
    685 	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    686 }
    687 
    688 /*
    689  * disable transmitter.
    690  */
    691 int
    692 gem_disable_tx(struct gem_softc *sc)
    693 {
    694 	bus_space_tag_t t = sc->sc_bustag;
    695 	bus_space_handle_t h = sc->sc_h;
    696 	u_int32_t cfg;
    697 
    698 	/* Flip the enable bit */
    699 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    700 	cfg &= ~GEM_MAC_TX_ENABLE;
    701 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    702 
    703 	/* Wait for it to finish */
    704 	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    705 }
    706 
    707 /*
    708  * Initialize interface.
    709  */
    710 int
    711 gem_meminit(struct gem_softc *sc)
    712 {
    713 	struct gem_rxsoft *rxs;
    714 	int i, error;
    715 
    716 	/*
    717 	 * Initialize the transmit descriptor ring.
    718 	 */
    719 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    720 	for (i = 0; i < GEM_NTXDESC; i++) {
    721 		sc->sc_txdescs[i].gd_flags = 0;
    722 		sc->sc_txdescs[i].gd_addr = 0;
    723 	}
    724 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    725 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    726 	sc->sc_txfree = GEM_NTXDESC-1;
    727 	sc->sc_txnext = 0;
    728 	sc->sc_txwin = 0;
    729 
    730 	/*
    731 	 * Initialize the receive descriptor and receive job
    732 	 * descriptor rings.
    733 	 */
    734 	for (i = 0; i < GEM_NRXDESC; i++) {
    735 		rxs = &sc->sc_rxsoft[i];
    736 		if (rxs->rxs_mbuf == NULL) {
    737 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    738 				printf("%s: unable to allocate or map rx "
    739 				    "buffer %d, error = %d\n",
    740 				    sc->sc_dev.dv_xname, i, error);
    741 				/*
    742 				 * XXX Should attempt to run with fewer receive
    743 				 * XXX buffers instead of just failing.
    744 				 */
    745 				gem_rxdrain(sc);
    746 				return (1);
    747 			}
    748 		} else
    749 			GEM_INIT_RXDESC(sc, i);
    750 	}
    751 	sc->sc_rxptr = 0;
    752 
    753 	return (0);
    754 }
    755 
    756 static int
    757 gem_ringsize(int sz)
    758 {
    759 	switch (sz) {
    760 	case 32:
    761 		return GEM_RING_SZ_32;
    762 	case 64:
    763 		return GEM_RING_SZ_64;
    764 	case 128:
    765 		return GEM_RING_SZ_128;
    766 	case 256:
    767 		return GEM_RING_SZ_256;
    768 	case 512:
    769 		return GEM_RING_SZ_512;
    770 	case 1024:
    771 		return GEM_RING_SZ_1024;
    772 	case 2048:
    773 		return GEM_RING_SZ_2048;
    774 	case 4096:
    775 		return GEM_RING_SZ_4096;
    776 	case 8192:
    777 		return GEM_RING_SZ_8192;
    778 	default:
    779 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    780 		return GEM_RING_SZ_32;
    781 	}
    782 }
    783 
    784 /*
    785  * Initialization of interface; set up initialization block
    786  * and transmit/receive descriptor rings.
    787  */
    788 int
    789 gem_init(struct ifnet *ifp)
    790 {
    791 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    792 	bus_space_tag_t t = sc->sc_bustag;
    793 	bus_space_handle_t h = sc->sc_h;
    794 	int s;
    795 	u_int max_frame_size;
    796 	u_int32_t v;
    797 
    798 	s = splnet();
    799 
    800 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
    801 	/*
    802 	 * Initialization sequence. The numbered steps below correspond
    803 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    804 	 * Channel Engine manual (part of the PCIO manual).
    805 	 * See also the STP2002-STQ document from Sun Microsystems.
    806 	 */
    807 
    808 	/* step 1 & 2. Reset the Ethernet Channel */
    809 	gem_stop(ifp, 0);
    810 	gem_reset(sc);
    811 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
    812 
    813 	/* Re-initialize the MIF */
    814 	gem_mifinit(sc);
    815 
    816 	/* Call MI reset function if any */
    817 	if (sc->sc_hwreset)
    818 		(*sc->sc_hwreset)(sc);
    819 
    820 	/* step 3. Setup data structures in host memory */
    821 	gem_meminit(sc);
    822 
    823 	/* step 4. TX MAC registers & counters */
    824 	gem_init_regs(sc);
    825 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
    826 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
    827 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
    828 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
    829 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    830 	    max_frame_size|/* burst size */(0x2000<<16));
    831 
    832 	/* step 5. RX MAC registers & counters */
    833 	gem_setladrf(sc);
    834 
    835 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    836 	/* NOTE: we use only 32-bit DMA addresses here. */
    837 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
    838 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
    839 
    840 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    841 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    842 
    843 	/* step 8. Global Configuration & Interrupt Mask */
    844 	bus_space_write_4(t, h, GEM_INTMASK,
    845 		      ~(GEM_INTR_TX_INTME|
    846 			GEM_INTR_TX_EMPTY|
    847 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
    848 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
    849 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
    850 			GEM_INTR_BERR));
    851 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
    852 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
    853 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
    854 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
    855 
    856 	/* step 9. ETX Configuration: use mostly default values */
    857 
    858 	/* Enable DMA */
    859 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
    860 	bus_space_write_4(t, h, GEM_TX_CONFIG,
    861 		v|GEM_TX_CONFIG_TXDMA_EN|
    862 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
    863 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
    864 
    865 	/* step 10. ERX Configuration */
    866 
    867 	/* Encode Receive Descriptor ring size: four possible values */
    868 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    869 
    870 	/* Set receive h/w checksum offset */
    871 #ifdef INET
    872 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    873 	      ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    874 	        ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    875 #endif
    876 
    877 	/* Enable DMA */
    878 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    879 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
    880 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
    881 
    882 	/*
    883 	 * The following value is for an OFF Threshold of about 3/4 full
    884 	 * and an ON Threshold of 1/4 full.
    885 	 */
    886 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    887 	     (3 * sc->sc_rxfifosize / 256) |
    888 	     (   (sc->sc_rxfifosize / 256) << 12));
    889 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
    890 
    891 	/* step 11. Configure Media */
    892 	mii_mediachg(&sc->sc_mii);
    893 
    894 /* XXXX Serial link needs a whole different setup. */
    895 
    896 
    897 	/* step 12. RX_MAC Configuration Register */
    898 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    899 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
    900 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
    901 
    902 	/* step 14. Issue Transmit Pending command */
    903 
    904 	/* Call MI initialization function if any */
    905 	if (sc->sc_hwinit)
    906 		(*sc->sc_hwinit)(sc);
    907 
    908 
    909 	/* step 15.  Give the reciever a swift kick */
    910 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
    911 
    912 	/* Start the one second timer. */
    913 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    914 
    915 	ifp->if_flags |= IFF_RUNNING;
    916 	ifp->if_flags &= ~IFF_OACTIVE;
    917 	ifp->if_timer = 0;
    918 	sc->sc_if_flags = ifp->if_flags;
    919 	splx(s);
    920 
    921 	return (0);
    922 }
    923 
    924 void
    925 gem_init_regs(struct gem_softc *sc)
    926 {
    927 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    928 	bus_space_tag_t t = sc->sc_bustag;
    929 	bus_space_handle_t h = sc->sc_h;
    930 	const u_char *laddr = LLADDR(ifp->if_sadl);
    931 	u_int32_t v;
    932 
    933 	/* These regs are not cleared on reset */
    934 	if (!sc->sc_inited) {
    935 
    936 		/* Wooo.  Magic values. */
    937 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
    938 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
    939 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
    940 
    941 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
    942 		/* Max frame and max burst size */
    943 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    944 		     ETHER_MAX_LEN | (0x2000<<16));
    945 
    946 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
    947 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
    948 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
    949 		/* Dunno.... */
    950 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
    951 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
    952 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
    953 
    954 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
    955 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
    956 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
    957 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
    958 
    959 		/* MAC control addr set to 01:80:c2:00:00:01 */
    960 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
    961 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
    962 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
    963 
    964 		/* MAC filter addr set to 0:0:0:0:0:0 */
    965 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
    966 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
    967 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
    968 
    969 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
    970 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
    971 
    972 		sc->sc_inited = 1;
    973 	}
    974 
    975 	/* Counters need to be zeroed */
    976 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
    977 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
    978 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
    979 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
    980 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
    981 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
    982 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
    983 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
    984 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
    985 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
    986 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
    987 
    988 	/* Un-pause stuff */
    989 #if 0
    990 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
    991 #else
    992 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
    993 #endif
    994 
    995 	/*
    996 	 * Set the station address.
    997 	 */
    998 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
    999 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1000 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1001 
   1002 #if 0
   1003 	if (sc->sc_variant != APPLE_GMAC)
   1004 		return;
   1005 #endif
   1006 
   1007 	/*
   1008 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1009 	 */
   1010 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1011 	v = GEM_MAC_XIF_TX_MII_ENA;
   1012 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1013 		v |= GEM_MAC_XIF_FDPLX_LED;
   1014 		if (sc->sc_flags & GEM_GIGABIT)
   1015 			v |= GEM_MAC_XIF_GMII_MODE;
   1016 	}
   1017 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1018 }
   1019 
   1020 static void
   1021 gem_start(ifp)
   1022 	struct ifnet *ifp;
   1023 {
   1024 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1025 	struct mbuf *m0, *m;
   1026 	struct gem_txsoft *txs, *last_txs;
   1027 	bus_dmamap_t dmamap;
   1028 	int error, firsttx, nexttx, lasttx = -1, ofree, seg;
   1029 	uint64_t flags = 0;
   1030 
   1031 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1032 		return;
   1033 
   1034 	/*
   1035 	 * Remember the previous number of free descriptors and
   1036 	 * the first descriptor we'll use.
   1037 	 */
   1038 	ofree = sc->sc_txfree;
   1039 	firsttx = sc->sc_txnext;
   1040 
   1041 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1042 	    sc->sc_dev.dv_xname, ofree, firsttx));
   1043 
   1044 	/*
   1045 	 * Loop through the send queue, setting up transmit descriptors
   1046 	 * until we drain the queue, or use up all available transmit
   1047 	 * descriptors.
   1048 	 */
   1049 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1050 	       sc->sc_txfree != 0) {
   1051 		/*
   1052 		 * Grab a packet off the queue.
   1053 		 */
   1054 		IFQ_POLL(&ifp->if_snd, m0);
   1055 		if (m0 == NULL)
   1056 			break;
   1057 		m = NULL;
   1058 
   1059 		dmamap = txs->txs_dmamap;
   1060 
   1061 		/*
   1062 		 * Load the DMA map.  If this fails, the packet either
   1063 		 * didn't fit in the alloted number of segments, or we were
   1064 		 * short on resources.  In this case, we'll copy and try
   1065 		 * again.
   1066 		 */
   1067 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1068 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1069 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1070 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1071 			if (m0->m_pkthdr.len > MCLBYTES) {
   1072 				printf("%s: unable to allocate jumbo Tx "
   1073 				    "cluster\n", sc->sc_dev.dv_xname);
   1074 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1075 				m_freem(m0);
   1076 				continue;
   1077 			}
   1078 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1079 			if (m == NULL) {
   1080 				printf("%s: unable to allocate Tx mbuf\n",
   1081 				    sc->sc_dev.dv_xname);
   1082 				break;
   1083 			}
   1084 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1085 			if (m0->m_pkthdr.len > MHLEN) {
   1086 				MCLGET(m, M_DONTWAIT);
   1087 				if ((m->m_flags & M_EXT) == 0) {
   1088 					printf("%s: unable to allocate Tx "
   1089 					    "cluster\n", sc->sc_dev.dv_xname);
   1090 					m_freem(m);
   1091 					break;
   1092 				}
   1093 			}
   1094 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1095 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1096 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1097 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1098 			if (error) {
   1099 				printf("%s: unable to load Tx buffer, "
   1100 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1101 				break;
   1102 			}
   1103 		}
   1104 
   1105 		/*
   1106 		 * Ensure we have enough descriptors free to describe
   1107 		 * the packet.
   1108 		 */
   1109 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1110 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1111 			/*
   1112 			 * Not enough free descriptors to transmit this
   1113 			 * packet.  We haven't committed to anything yet,
   1114 			 * so just unload the DMA map, put the packet
   1115 			 * back on the queue, and punt.  Notify the upper
   1116 			 * layer that there are no more slots left.
   1117 			 *
   1118 			 * XXX We could allocate an mbuf and copy, but
   1119 			 * XXX it is worth it?
   1120 			 */
   1121 			ifp->if_flags |= IFF_OACTIVE;
   1122 			sc->sc_if_flags = ifp->if_flags;
   1123 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1124 			if (m != NULL)
   1125 				m_freem(m);
   1126 			break;
   1127 		}
   1128 
   1129 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1130 		if (m != NULL) {
   1131 			m_freem(m0);
   1132 			m0 = m;
   1133 		}
   1134 
   1135 		/*
   1136 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1137 		 */
   1138 
   1139 		/* Sync the DMA map. */
   1140 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1141 		    BUS_DMASYNC_PREWRITE);
   1142 
   1143 		/*
   1144 		 * Initialize the transmit descriptors.
   1145 		 */
   1146 		for (nexttx = sc->sc_txnext, seg = 0;
   1147 		     seg < dmamap->dm_nsegs;
   1148 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1149 
   1150 			/*
   1151 			 * If this is the first descriptor we're
   1152 			 * enqueueing, set the start of packet flag,
   1153 			 * and the checksum stuff if we want the hardware
   1154 			 * to do it.
   1155 			 */
   1156 			sc->sc_txdescs[nexttx].gd_addr =
   1157 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1158 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1159 			if (nexttx == firsttx) {
   1160 				flags |= GEM_TD_START_OF_PACKET;
   1161 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1162 					sc->sc_txwin = 0;
   1163 					flags |= GEM_TD_INTERRUPT_ME;
   1164 				}
   1165 
   1166 #ifdef INET
   1167 				/* h/w checksum */
   1168 				if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
   1169 				    M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
   1170 				    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1171 					struct ether_header *eh;
   1172 					uint16_t offset, start;
   1173 
   1174 					eh = mtod(m0, struct ether_header *);
   1175 					switch (ntohs(eh->ether_type)) {
   1176 					case ETHERTYPE_IP:
   1177 						start = ETHER_HDR_LEN;
   1178 						break;
   1179 					case ETHERTYPE_VLAN:
   1180 						start = ETHER_HDR_LEN +
   1181 							ETHER_VLAN_ENCAP_LEN;
   1182 						break;
   1183 					default:
   1184 						/* unsupported, drop it */
   1185 						m_free(m0);
   1186 						continue;
   1187 					}
   1188 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1189 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1190 					flags |= (start <<
   1191 						  GEM_TD_CXSUM_STARTSHFT) |
   1192 						 (offset <<
   1193 						  GEM_TD_CXSUM_STUFFSHFT) |
   1194 						 GEM_TD_CXSUM_ENABLE;
   1195 				}
   1196 #endif
   1197 			}
   1198 			if (seg == dmamap->dm_nsegs - 1) {
   1199 				flags |= GEM_TD_END_OF_PACKET;
   1200 			} else {
   1201 				/* last flag set outside of loop */
   1202 				sc->sc_txdescs[nexttx].gd_flags =
   1203 					GEM_DMA_WRITE(sc, flags);
   1204 			}
   1205 			lasttx = nexttx;
   1206 		}
   1207 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1208 			/* add padding buffer at end of chain */
   1209 			flags &= ~GEM_TD_END_OF_PACKET;
   1210 			sc->sc_txdescs[lasttx].gd_flags =
   1211 			    GEM_DMA_WRITE(sc, flags);
   1212 
   1213 			sc->sc_txdescs[nexttx].gd_addr =
   1214 			    GEM_DMA_WRITE(sc,
   1215 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1216 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1217 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1218 			lasttx = nexttx;
   1219 			nexttx = GEM_NEXTTX(nexttx);
   1220 			seg++;
   1221 		}
   1222 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1223 
   1224 		KASSERT(lasttx != -1);
   1225 
   1226 		/*
   1227 		 * Store a pointer to the packet so we can free it later,
   1228 		 * and remember what txdirty will be once the packet is
   1229 		 * done.
   1230 		 */
   1231 		txs->txs_mbuf = m0;
   1232 		txs->txs_firstdesc = sc->sc_txnext;
   1233 		txs->txs_lastdesc = lasttx;
   1234 		txs->txs_ndescs = seg;
   1235 
   1236 #ifdef GEM_DEBUG
   1237 		if (ifp->if_flags & IFF_DEBUG) {
   1238 			printf("     gem_start %p transmit chain:\n", txs);
   1239 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
   1240 				printf("descriptor %d:\t", seg);
   1241 				printf("gd_flags:   0x%016llx\t", (long long)
   1242 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
   1243 				printf("gd_addr: 0x%016llx\n", (long long)
   1244 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
   1245 				if (seg == lasttx)
   1246 					break;
   1247 			}
   1248 		}
   1249 #endif
   1250 
   1251 		/* Sync the descriptors we're using. */
   1252 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1253 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1254 
   1255 		/* Advance the tx pointer. */
   1256 		sc->sc_txfree -= txs->txs_ndescs;
   1257 		sc->sc_txnext = nexttx;
   1258 
   1259 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1260 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1261 
   1262 		last_txs = txs;
   1263 
   1264 #if NBPFILTER > 0
   1265 		/*
   1266 		 * Pass the packet to any BPF listeners.
   1267 		 */
   1268 		if (ifp->if_bpf)
   1269 			bpf_mtap(ifp->if_bpf, m0);
   1270 #endif /* NBPFILTER > 0 */
   1271 	}
   1272 
   1273 	if (txs == NULL || sc->sc_txfree == 0) {
   1274 		/* No more slots left; notify upper layer. */
   1275 		ifp->if_flags |= IFF_OACTIVE;
   1276 		sc->sc_if_flags = ifp->if_flags;
   1277 	}
   1278 
   1279 	if (sc->sc_txfree != ofree) {
   1280 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1281 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1282 		/*
   1283 		 * The entire packet chain is set up.
   1284 		 * Kick the transmitter.
   1285 		 */
   1286 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1287 			sc->sc_dev.dv_xname, nexttx));
   1288 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
   1289 			sc->sc_txnext);
   1290 
   1291 		/* Set a watchdog timer in case the chip flakes out. */
   1292 		ifp->if_timer = 5;
   1293 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1294 			sc->sc_dev.dv_xname, ifp->if_timer));
   1295 	}
   1296 }
   1297 
   1298 /*
   1299  * Transmit interrupt.
   1300  */
   1301 int
   1302 gem_tint(sc)
   1303 	struct gem_softc *sc;
   1304 {
   1305 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1306 	bus_space_tag_t t = sc->sc_bustag;
   1307 	bus_space_handle_t mac = sc->sc_h;
   1308 	struct gem_txsoft *txs;
   1309 	int txlast;
   1310 	int progress = 0;
   1311 
   1312 
   1313 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1314 
   1315 	/*
   1316 	 * Unload collision counters
   1317 	 */
   1318 	ifp->if_collisions +=
   1319 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1320 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
   1321 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1322 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1323 
   1324 	/*
   1325 	 * then clear the hardware counters.
   1326 	 */
   1327 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1328 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1329 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1330 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1331 
   1332 	/*
   1333 	 * Go through our Tx list and free mbufs for those
   1334 	 * frames that have been transmitted.
   1335 	 */
   1336 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1337 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
   1338 		    txs->txs_ndescs,
   1339 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1340 
   1341 #ifdef GEM_DEBUG
   1342 		if (ifp->if_flags & IFF_DEBUG) {
   1343 			int i;
   1344 			printf("    txsoft %p transmit chain:\n", txs);
   1345 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
   1346 				printf("descriptor %d: ", i);
   1347 				printf("gd_flags: 0x%016llx\t", (long long)
   1348 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1349 				printf("gd_addr: 0x%016llx\n", (long long)
   1350 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1351 				if (i == txs->txs_lastdesc)
   1352 					break;
   1353 			}
   1354 		}
   1355 #endif
   1356 
   1357 		/*
   1358 		 * In theory, we could harveast some descriptors before
   1359 		 * the ring is empty, but that's a bit complicated.
   1360 		 *
   1361 		 * GEM_TX_COMPLETION points to the last descriptor
   1362 		 * processed +1.
   1363 		 */
   1364 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1365 		DPRINTF(sc,
   1366 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1367 				txs->txs_lastdesc, txlast));
   1368 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1369 			if ((txlast >= txs->txs_firstdesc) &&
   1370 				(txlast <= txs->txs_lastdesc))
   1371 				break;
   1372 		} else {
   1373 			/* Ick -- this command wraps */
   1374 			if ((txlast >= txs->txs_firstdesc) ||
   1375 				(txlast <= txs->txs_lastdesc))
   1376 				break;
   1377 		}
   1378 
   1379 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1380 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1381 
   1382 		sc->sc_txfree += txs->txs_ndescs;
   1383 
   1384 		if (txs->txs_mbuf == NULL) {
   1385 #ifdef DIAGNOSTIC
   1386 				panic("gem_txintr: null mbuf");
   1387 #endif
   1388 		}
   1389 
   1390 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1391 		    0, txs->txs_dmamap->dm_mapsize,
   1392 		    BUS_DMASYNC_POSTWRITE);
   1393 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1394 		m_freem(txs->txs_mbuf);
   1395 		txs->txs_mbuf = NULL;
   1396 
   1397 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1398 
   1399 		ifp->if_opackets++;
   1400 		progress = 1;
   1401 	}
   1402 
   1403 #if 0
   1404 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1405 		"GEM_TX_DATA_PTR %llx "
   1406 		"GEM_TX_COMPLETION %x\n",
   1407 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
   1408 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1409 			GEM_TX_DATA_PTR_HI) << 32) |
   1410 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1411 			GEM_TX_DATA_PTR_LO),
   1412 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
   1413 #endif
   1414 
   1415 	if (progress) {
   1416 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1417 			sc->sc_txwin = 0;
   1418 
   1419 		ifp->if_flags &= ~IFF_OACTIVE;
   1420 		sc->sc_if_flags = ifp->if_flags;
   1421 		gem_start(ifp);
   1422 
   1423 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
   1424 			ifp->if_timer = 0;
   1425 	}
   1426 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1427 		sc->sc_dev.dv_xname, ifp->if_timer));
   1428 
   1429 	return (1);
   1430 }
   1431 
   1432 /*
   1433  * Receive interrupt.
   1434  */
   1435 int
   1436 gem_rint(sc)
   1437 	struct gem_softc *sc;
   1438 {
   1439 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1440 	bus_space_tag_t t = sc->sc_bustag;
   1441 	bus_space_handle_t h = sc->sc_h;
   1442 	struct gem_rxsoft *rxs;
   1443 	struct mbuf *m;
   1444 	u_int64_t rxstat;
   1445 	u_int32_t rxcomp;
   1446 	int i, len, progress = 0;
   1447 
   1448 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1449 
   1450 	/*
   1451 	 * Read the completion register once.  This limits
   1452 	 * how long the following loop can execute.
   1453 	 */
   1454 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1455 
   1456 	/*
   1457 	 * XXXX Read the lastrx only once at the top for speed.
   1458 	 */
   1459 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1460 		sc->sc_rxptr, rxcomp));
   1461 
   1462 	/*
   1463 	 * Go into the loop at least once.
   1464 	 */
   1465 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1466 	     i = GEM_NEXTRX(i)) {
   1467 		rxs = &sc->sc_rxsoft[i];
   1468 
   1469 		GEM_CDRXSYNC(sc, i,
   1470 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1471 
   1472 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1473 
   1474 		if (rxstat & GEM_RD_OWN) {
   1475 			/*
   1476 			 * We have processed all of the receive buffers.
   1477 			 */
   1478 			break;
   1479 		}
   1480 
   1481 		progress++;
   1482 		ifp->if_ipackets++;
   1483 
   1484 		if (rxstat & GEM_RD_BAD_CRC) {
   1485 			ifp->if_ierrors++;
   1486 			printf("%s: receive error: CRC error\n",
   1487 				sc->sc_dev.dv_xname);
   1488 			GEM_INIT_RXDESC(sc, i);
   1489 			continue;
   1490 		}
   1491 
   1492 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1493 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1494 #ifdef GEM_DEBUG
   1495 		if (ifp->if_flags & IFF_DEBUG) {
   1496 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1497 			printf("gd_flags: 0x%016llx\t", (long long)
   1498 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1499 			printf("gd_addr: 0x%016llx\n", (long long)
   1500 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1501 		}
   1502 #endif
   1503 
   1504 		/* No errors; receive the packet. */
   1505 		len = GEM_RD_BUFLEN(rxstat);
   1506 
   1507 		/*
   1508 		 * Allocate a new mbuf cluster.  If that fails, we are
   1509 		 * out of memory, and must drop the packet and recycle
   1510 		 * the buffer that's already attached to this descriptor.
   1511 		 */
   1512 		m = rxs->rxs_mbuf;
   1513 		if (gem_add_rxbuf(sc, i) != 0) {
   1514 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1515 			ifp->if_ierrors++;
   1516 			GEM_INIT_RXDESC(sc, i);
   1517 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1518 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1519 			continue;
   1520 		}
   1521 		m->m_data += 2; /* We're already off by two */
   1522 
   1523 		m->m_pkthdr.rcvif = ifp;
   1524 		m->m_pkthdr.len = m->m_len = len;
   1525 
   1526 #if NBPFILTER > 0
   1527 		/*
   1528 		 * Pass this up to any BPF listeners, but only
   1529 		 * pass it up the stack if its for us.
   1530 		 */
   1531 		if (ifp->if_bpf)
   1532 			bpf_mtap(ifp->if_bpf, m);
   1533 #endif /* NPBFILTER > 0 */
   1534 
   1535 #ifdef INET
   1536 		/* hardware checksum */
   1537 		if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
   1538 			struct ether_header *eh;
   1539 			struct ip *ip;
   1540 			struct udphdr *uh;
   1541 			int32_t hlen, pktlen;
   1542 
   1543 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1544 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1545 					 ETHER_VLAN_ENCAP_LEN;
   1546 				eh = (struct ether_header *) mtod(m, caddr_t) +
   1547 					ETHER_VLAN_ENCAP_LEN;
   1548 			} else {
   1549 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1550 				eh = mtod(m, struct ether_header *);
   1551 			}
   1552 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1553 				goto swcsum;
   1554 			ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
   1555 
   1556 			/* IPv4 only */
   1557 			if (ip->ip_v != IPVERSION)
   1558 				goto swcsum;
   1559 
   1560 			hlen = ip->ip_hl << 2;
   1561 			if (hlen < sizeof(struct ip))
   1562 				goto swcsum;
   1563 
   1564 			/*
   1565 			 * bail if too short, has random trailing garbage,
   1566 			 * truncated, fragment, or has ethernet pad.
   1567 			 */
   1568 			if ((ntohs(ip->ip_len) < hlen) ||
   1569 			    (ntohs(ip->ip_len) != pktlen) ||
   1570 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1571 				goto swcsum;
   1572 
   1573 			switch (ip->ip_p) {
   1574 			case IPPROTO_TCP:
   1575 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1576 					goto swcsum;
   1577 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1578 					goto swcsum;
   1579 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1580 				break;
   1581 			case IPPROTO_UDP:
   1582 				if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
   1583 					goto swcsum;
   1584 				if (pktlen < (hlen + sizeof(struct udphdr)))
   1585 					goto swcsum;
   1586 				uh = (struct udphdr *)((caddr_t)ip + hlen);
   1587 				/* no checksum */
   1588 				if (uh->uh_sum == 0)
   1589 					goto swcsum;
   1590 				m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
   1591 				break;
   1592 			default:
   1593 				goto swcsum;
   1594 			}
   1595 
   1596 			/* the uncomplemented sum is expected */
   1597 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1598 
   1599 			/* if the pkt had ip options, we have to deduct them */
   1600 			if (hlen > sizeof(struct ip)) {
   1601 				uint16_t *opts;
   1602 				uint32_t optsum, temp;
   1603 
   1604 				optsum = 0;
   1605 				temp = hlen - sizeof(struct ip);
   1606 				opts = (uint16_t *) ((caddr_t) ip +
   1607 					sizeof(struct ip));
   1608 
   1609 				while (temp > 1) {
   1610 					optsum += ntohs(*opts++);
   1611 					temp -= 2;
   1612 				}
   1613 				while (optsum >> 16)
   1614 					optsum = (optsum >> 16) +
   1615 						 (optsum & 0xffff);
   1616 
   1617 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1618 				m->m_pkthdr.csum_data =
   1619 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1620 
   1621 				while (m->m_pkthdr.csum_data >> 16)
   1622 					m->m_pkthdr.csum_data =
   1623 						(m->m_pkthdr.csum_data >> 16) +
   1624 						(m->m_pkthdr.csum_data &
   1625 						 0xffff);
   1626 			}
   1627 
   1628 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1629 						  M_CSUM_NO_PSEUDOHDR;
   1630 		} else
   1631 swcsum:
   1632 			m->m_pkthdr.csum_flags = 0;
   1633 #endif
   1634 		/* Pass it on. */
   1635 		(*ifp->if_input)(ifp, m);
   1636 	}
   1637 
   1638 	if (progress) {
   1639 		/* Update the receive pointer. */
   1640 		if (i == sc->sc_rxptr) {
   1641 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1642 #ifdef GEM_DEBUG
   1643 			if (ifp->if_flags & IFF_DEBUG)
   1644 				printf("%s: rint: ring wrap\n",
   1645 				    sc->sc_dev.dv_xname);
   1646 #endif
   1647 		}
   1648 		sc->sc_rxptr = i;
   1649 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1650 	}
   1651 #ifdef GEM_COUNTERS
   1652 	if (progress <= 4) {
   1653 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1654 	} else if (progress < 32) {
   1655 		if (progress < 16)
   1656 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1657 		else
   1658 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1659 
   1660 	} else {
   1661 		if (progress < 64)
   1662 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1663 		else
   1664 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1665 	}
   1666 #endif
   1667 
   1668 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1669 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1670 
   1671 	return (1);
   1672 }
   1673 
   1674 
   1675 /*
   1676  * gem_add_rxbuf:
   1677  *
   1678  *	Add a receive buffer to the indicated descriptor.
   1679  */
   1680 int
   1681 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1682 {
   1683 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1684 	struct mbuf *m;
   1685 	int error;
   1686 
   1687 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1688 	if (m == NULL)
   1689 		return (ENOBUFS);
   1690 
   1691 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1692 	MCLGET(m, M_DONTWAIT);
   1693 	if ((m->m_flags & M_EXT) == 0) {
   1694 		m_freem(m);
   1695 		return (ENOBUFS);
   1696 	}
   1697 
   1698 #ifdef GEM_DEBUG
   1699 /* bzero the packet to check DMA */
   1700 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1701 #endif
   1702 
   1703 	if (rxs->rxs_mbuf != NULL)
   1704 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1705 
   1706 	rxs->rxs_mbuf = m;
   1707 
   1708 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1709 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1710 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1711 	if (error) {
   1712 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1713 		    sc->sc_dev.dv_xname, idx, error);
   1714 		panic("gem_add_rxbuf");	/* XXX */
   1715 	}
   1716 
   1717 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1718 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1719 
   1720 	GEM_INIT_RXDESC(sc, idx);
   1721 
   1722 	return (0);
   1723 }
   1724 
   1725 
   1726 int
   1727 gem_eint(sc, status)
   1728 	struct gem_softc *sc;
   1729 	u_int status;
   1730 {
   1731 	char bits[128];
   1732 
   1733 	if ((status & GEM_INTR_MIF) != 0) {
   1734 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1735 		return (1);
   1736 	}
   1737 
   1738 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1739 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   1740 	return (1);
   1741 }
   1742 
   1743 
   1744 int
   1745 gem_intr(v)
   1746 	void *v;
   1747 {
   1748 	struct gem_softc *sc = (struct gem_softc *)v;
   1749 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1750 	bus_space_tag_t t = sc->sc_bustag;
   1751 	bus_space_handle_t seb = sc->sc_h;
   1752 	u_int32_t status;
   1753 	int r = 0;
   1754 #ifdef GEM_DEBUG
   1755 	char bits[128];
   1756 #endif
   1757 
   1758 	sc->sc_ev_intr.ev_count++;
   1759 
   1760 	status = bus_space_read_4(t, seb, GEM_STATUS);
   1761 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   1762 		sc->sc_dev.dv_xname, (status >> 19),
   1763 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   1764 
   1765 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   1766 		r |= gem_eint(sc, status);
   1767 
   1768 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   1769 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   1770 		r |= gem_tint(sc);
   1771 	}
   1772 
   1773 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   1774 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   1775 		r |= gem_rint(sc);
   1776 	}
   1777 
   1778 	/* We should eventually do more than just print out error stats. */
   1779 	if (status & GEM_INTR_TX_MAC) {
   1780 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
   1781 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   1782 			printf("%s: MAC tx fault, status %x\n",
   1783 			    sc->sc_dev.dv_xname, txstat);
   1784 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   1785 			gem_init(ifp);
   1786 	}
   1787 	if (status & GEM_INTR_RX_MAC) {
   1788 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
   1789 		if (rxstat & ~GEM_MAC_RX_DONE)
   1790 			printf("%s: MAC rx fault, status %x\n",
   1791 			    sc->sc_dev.dv_xname, rxstat);
   1792 		/*
   1793 		 * On some chip revisions GEM_MAC_RX_OVERFLOW happen often
   1794 		 * due to a silicon bug so handle them silently.
   1795 		 */
   1796 		if (rxstat & GEM_MAC_RX_OVERFLOW)
   1797 			gem_init(ifp);
   1798 		else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   1799 			printf("%s: MAC rx fault, status %x\n",
   1800 			    sc->sc_dev.dv_xname, rxstat);
   1801 	}
   1802 #if NRND > 0
   1803 	rnd_add_uint32(&sc->rnd_source, status);
   1804 #endif
   1805 	return (r);
   1806 }
   1807 
   1808 
   1809 void
   1810 gem_watchdog(ifp)
   1811 	struct ifnet *ifp;
   1812 {
   1813 	struct gem_softc *sc = ifp->if_softc;
   1814 
   1815 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   1816 		"GEM_MAC_RX_CONFIG %x\n",
   1817 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
   1818 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
   1819 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
   1820 
   1821 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1822 	++ifp->if_oerrors;
   1823 
   1824 	/* Try to get more packets going. */
   1825 	gem_start(ifp);
   1826 }
   1827 
   1828 /*
   1829  * Initialize the MII Management Interface
   1830  */
   1831 void
   1832 gem_mifinit(sc)
   1833 	struct gem_softc *sc;
   1834 {
   1835 	bus_space_tag_t t = sc->sc_bustag;
   1836 	bus_space_handle_t mif = sc->sc_h;
   1837 
   1838 	/* Configure the MIF in frame mode */
   1839 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1840 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   1841 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   1842 }
   1843 
   1844 /*
   1845  * MII interface
   1846  *
   1847  * The GEM MII interface supports at least three different operating modes:
   1848  *
   1849  * Bitbang mode is implemented using data, clock and output enable registers.
   1850  *
   1851  * Frame mode is implemented by loading a complete frame into the frame
   1852  * register and polling the valid bit for completion.
   1853  *
   1854  * Polling mode uses the frame register but completion is indicated by
   1855  * an interrupt.
   1856  *
   1857  */
   1858 static int
   1859 gem_mii_readreg(self, phy, reg)
   1860 	struct device *self;
   1861 	int phy, reg;
   1862 {
   1863 	struct gem_softc *sc = (void *)self;
   1864 	bus_space_tag_t t = sc->sc_bustag;
   1865 	bus_space_handle_t mif = sc->sc_h;
   1866 	int n;
   1867 	u_int32_t v;
   1868 
   1869 #ifdef GEM_DEBUG1
   1870 	if (sc->sc_debug)
   1871 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
   1872 #endif
   1873 
   1874 #if 0
   1875 	/* Select the desired PHY in the MIF configuration register */
   1876 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1877 	/* Clear PHY select bit */
   1878 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1879 	if (phy == GEM_PHYAD_EXTERNAL)
   1880 		/* Set PHY select bit to get at external device */
   1881 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1882 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1883 #endif
   1884 
   1885 	/* Construct the frame command */
   1886 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   1887 		GEM_MIF_FRAME_READ;
   1888 
   1889 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1890 	for (n = 0; n < 100; n++) {
   1891 		DELAY(1);
   1892 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1893 		if (v & GEM_MIF_FRAME_TA0)
   1894 			return (v & GEM_MIF_FRAME_DATA);
   1895 	}
   1896 
   1897 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1898 	return (0);
   1899 }
   1900 
   1901 static void
   1902 gem_mii_writereg(self, phy, reg, val)
   1903 	struct device *self;
   1904 	int phy, reg, val;
   1905 {
   1906 	struct gem_softc *sc = (void *)self;
   1907 	bus_space_tag_t t = sc->sc_bustag;
   1908 	bus_space_handle_t mif = sc->sc_h;
   1909 	int n;
   1910 	u_int32_t v;
   1911 
   1912 #ifdef GEM_DEBUG1
   1913 	if (sc->sc_debug)
   1914 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
   1915 			phy, reg, val);
   1916 #endif
   1917 
   1918 #if 0
   1919 	/* Select the desired PHY in the MIF configuration register */
   1920 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1921 	/* Clear PHY select bit */
   1922 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1923 	if (phy == GEM_PHYAD_EXTERNAL)
   1924 		/* Set PHY select bit to get at external device */
   1925 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1926 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1927 #endif
   1928 	/* Construct the frame command */
   1929 	v = GEM_MIF_FRAME_WRITE			|
   1930 	    (phy << GEM_MIF_PHY_SHIFT)		|
   1931 	    (reg << GEM_MIF_REG_SHIFT)		|
   1932 	    (val & GEM_MIF_FRAME_DATA);
   1933 
   1934 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1935 	for (n = 0; n < 100; n++) {
   1936 		DELAY(1);
   1937 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1938 		if (v & GEM_MIF_FRAME_TA0)
   1939 			return;
   1940 	}
   1941 
   1942 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1943 }
   1944 
   1945 static void
   1946 gem_mii_statchg(dev)
   1947 	struct device *dev;
   1948 {
   1949 	struct gem_softc *sc = (void *)dev;
   1950 #ifdef GEM_DEBUG
   1951 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1952 #endif
   1953 	bus_space_tag_t t = sc->sc_bustag;
   1954 	bus_space_handle_t mac = sc->sc_h;
   1955 	u_int32_t v;
   1956 
   1957 #ifdef GEM_DEBUG
   1958 	if (sc->sc_debug)
   1959 		printf("gem_mii_statchg: status change: phy = %d\n",
   1960 			sc->sc_phys[instance]);
   1961 #endif
   1962 
   1963 
   1964 	/* Set tx full duplex options */
   1965 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   1966 	delay(10000); /* reg must be cleared and delay before changing. */
   1967 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
   1968 		GEM_MAC_TX_ENABLE;
   1969 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1970 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
   1971 	}
   1972 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
   1973 
   1974 	/* XIF Configuration */
   1975  /* We should really calculate all this rather than rely on defaults */
   1976 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
   1977 	v = GEM_MAC_XIF_LINK_LED;
   1978 	v |= GEM_MAC_XIF_TX_MII_ENA;
   1979 
   1980 	/* If an external transceiver is connected, enable its MII drivers */
   1981 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   1982 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   1983 		/* External MII needs echo disable if half duplex. */
   1984 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1985 			/* turn on full duplex LED */
   1986 			v |= GEM_MAC_XIF_FDPLX_LED;
   1987 		else
   1988 	 		/* half duplex -- disable echo */
   1989 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
   1990 
   1991 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   1992 			v |= GEM_MAC_XIF_GMII_MODE;
   1993 		else
   1994 			v &= ~GEM_MAC_XIF_GMII_MODE;
   1995 	} else
   1996 		/* Internal MII needs buf enable */
   1997 		v |= GEM_MAC_XIF_MII_BUF_ENA;
   1998 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   1999 }
   2000 
   2001 int
   2002 gem_mediachange(ifp)
   2003 	struct ifnet *ifp;
   2004 {
   2005 	struct gem_softc *sc = ifp->if_softc;
   2006 
   2007 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   2008 		return (EINVAL);
   2009 
   2010 	return (mii_mediachg(&sc->sc_mii));
   2011 }
   2012 
   2013 void
   2014 gem_mediastatus(ifp, ifmr)
   2015 	struct ifnet *ifp;
   2016 	struct ifmediareq *ifmr;
   2017 {
   2018 	struct gem_softc *sc = ifp->if_softc;
   2019 
   2020 	if ((ifp->if_flags & IFF_UP) == 0)
   2021 		return;
   2022 
   2023 	mii_pollstat(&sc->sc_mii);
   2024 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2025 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2026 }
   2027 
   2028 /*
   2029  * Process an ioctl request.
   2030  */
   2031 int
   2032 gem_ioctl(ifp, cmd, data)
   2033 	struct ifnet *ifp;
   2034 	u_long cmd;
   2035 	caddr_t data;
   2036 {
   2037 	struct gem_softc *sc = ifp->if_softc;
   2038 	struct ifreq *ifr = (struct ifreq *)data;
   2039 	int s, error = 0;
   2040 
   2041 	s = splnet();
   2042 
   2043 	switch (cmd) {
   2044 	case SIOCGIFMEDIA:
   2045 	case SIOCSIFMEDIA:
   2046 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   2047 		break;
   2048 	case SIOCSIFFLAGS:
   2049 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   2050 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   2051 		    == (IFF_UP|IFF_RUNNING))
   2052 		    && ((ifp->if_flags & (~RESETIGN))
   2053 		    == (sc->sc_if_flags & (~RESETIGN)))) {
   2054 			gem_setladrf(sc);
   2055 			break;
   2056 		}
   2057 #undef RESETIGN
   2058 		/*FALLTHROUGH*/
   2059 	default:
   2060 		error = ether_ioctl(ifp, cmd, data);
   2061 		if (error == ENETRESET) {
   2062 			/*
   2063 			 * Multicast list has changed; set the hardware filter
   2064 			 * accordingly.
   2065 			 */
   2066 			if (ifp->if_flags & IFF_RUNNING)
   2067 				gem_setladrf(sc);
   2068 			error = 0;
   2069 		}
   2070 		break;
   2071 	}
   2072 
   2073 	/* Try to get things going again */
   2074 	if (ifp->if_flags & IFF_UP)
   2075 		gem_start(ifp);
   2076 	splx(s);
   2077 	return (error);
   2078 }
   2079 
   2080 
   2081 void
   2082 gem_shutdown(arg)
   2083 	void *arg;
   2084 {
   2085 	struct gem_softc *sc = (struct gem_softc *)arg;
   2086 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2087 
   2088 	gem_stop(ifp, 1);
   2089 }
   2090 
   2091 /*
   2092  * Set up the logical address filter.
   2093  */
   2094 void
   2095 gem_setladrf(sc)
   2096 	struct gem_softc *sc;
   2097 {
   2098 	struct ethercom *ec = &sc->sc_ethercom;
   2099 	struct ifnet *ifp = &ec->ec_if;
   2100 	struct ether_multi *enm;
   2101 	struct ether_multistep step;
   2102 	bus_space_tag_t t = sc->sc_bustag;
   2103 	bus_space_handle_t h = sc->sc_h;
   2104 	u_int32_t crc;
   2105 	u_int32_t hash[16];
   2106 	u_int32_t v;
   2107 	int i;
   2108 
   2109 	/* Get current RX configuration */
   2110 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2111 
   2112 	/*
   2113 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2114 	 * and hash filter.  Depending on the case, the right bit will be
   2115 	 * enabled.
   2116 	 */
   2117 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2118 	    GEM_MAC_RX_PROMISC_GRP);
   2119 
   2120 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2121 		/* Turn on promiscuous mode */
   2122 		v |= GEM_MAC_RX_PROMISCUOUS;
   2123 		ifp->if_flags |= IFF_ALLMULTI;
   2124 		goto chipit;
   2125 	}
   2126 
   2127 	/*
   2128 	 * Set up multicast address filter by passing all multicast addresses
   2129 	 * through a crc generator, and then using the high order 8 bits as an
   2130 	 * index into the 256 bit logical address filter.  The high order 4
   2131 	 * bits selects the word, while the other 4 bits select the bit within
   2132 	 * the word (where bit 0 is the MSB).
   2133 	 */
   2134 
   2135 	/* Clear hash table */
   2136 	memset(hash, 0, sizeof(hash));
   2137 
   2138 	ETHER_FIRST_MULTI(step, ec, enm);
   2139 	while (enm != NULL) {
   2140 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2141 			/*
   2142 			 * We must listen to a range of multicast addresses.
   2143 			 * For now, just accept all multicasts, rather than
   2144 			 * trying to set only those filter bits needed to match
   2145 			 * the range.  (At this time, the only use of address
   2146 			 * ranges is for IP multicast routing, for which the
   2147 			 * range is big enough to require all bits set.)
   2148 			 * XXX use the addr filter for this
   2149 			 */
   2150 			ifp->if_flags |= IFF_ALLMULTI;
   2151 			v |= GEM_MAC_RX_PROMISC_GRP;
   2152 			goto chipit;
   2153 		}
   2154 
   2155 		/* Get the LE CRC32 of the address */
   2156 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2157 
   2158 		/* Just want the 8 most significant bits. */
   2159 		crc >>= 24;
   2160 
   2161 		/* Set the corresponding bit in the filter. */
   2162 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2163 
   2164 		ETHER_NEXT_MULTI(step, enm);
   2165 	}
   2166 
   2167 	v |= GEM_MAC_RX_HASH_FILTER;
   2168 	ifp->if_flags &= ~IFF_ALLMULTI;
   2169 
   2170 	/* Now load the hash table into the chip (if we are using it) */
   2171 	for (i = 0; i < 16; i++) {
   2172 		bus_space_write_4(t, h,
   2173 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2174 		    hash[i]);
   2175 	}
   2176 
   2177 chipit:
   2178 	sc->sc_if_flags = ifp->if_flags;
   2179 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2180 }
   2181 
   2182 #if notyet
   2183 
   2184 /*
   2185  * gem_power:
   2186  *
   2187  *	Power management (suspend/resume) hook.
   2188  */
   2189 void
   2190 gem_power(why, arg)
   2191 	int why;
   2192 	void *arg;
   2193 {
   2194 	struct gem_softc *sc = arg;
   2195 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2196 	int s;
   2197 
   2198 	s = splnet();
   2199 	switch (why) {
   2200 	case PWR_SUSPEND:
   2201 	case PWR_STANDBY:
   2202 		gem_stop(ifp, 1);
   2203 		if (sc->sc_power != NULL)
   2204 			(*sc->sc_power)(sc, why);
   2205 		break;
   2206 	case PWR_RESUME:
   2207 		if (ifp->if_flags & IFF_UP) {
   2208 			if (sc->sc_power != NULL)
   2209 				(*sc->sc_power)(sc, why);
   2210 			gem_init(ifp);
   2211 		}
   2212 		break;
   2213 	case PWR_SOFTSUSPEND:
   2214 	case PWR_SOFTSTANDBY:
   2215 	case PWR_SOFTRESUME:
   2216 		break;
   2217 	}
   2218 	splx(s);
   2219 }
   2220 #endif
   2221