Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.5
      1 /*	$NetBSD: gem.c,v 1.5 2001/10/18 06:28:17 thorpej Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * All rights reserved.
      7  *
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  */
     31 
     32 /*
     33  * Driver for Sun GEM ethernet controllers.
     34  */
     35 
     36 #include "bpfilter.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/callout.h>
     41 #include <sys/mbuf.h>
     42 #include <sys/syslog.h>
     43 #include <sys/malloc.h>
     44 #include <sys/kernel.h>
     45 #include <sys/socket.h>
     46 #include <sys/ioctl.h>
     47 #include <sys/errno.h>
     48 #include <sys/device.h>
     49 
     50 #include <machine/endian.h>
     51 
     52 #include <uvm/uvm_extern.h>
     53 
     54 #include <net/if.h>
     55 #include <net/if_dl.h>
     56 #include <net/if_media.h>
     57 #include <net/if_ether.h>
     58 
     59 #if NBPFILTER > 0
     60 #include <net/bpf.h>
     61 #endif
     62 
     63 #include <machine/bus.h>
     64 #include <machine/intr.h>
     65 
     66 #include <dev/mii/mii.h>
     67 #include <dev/mii/miivar.h>
     68 #include <dev/mii/mii_bitbang.h>
     69 
     70 #include <dev/ic/gemreg.h>
     71 #include <dev/ic/gemvar.h>
     72 
     73 #define TRIES	10000
     74 
     75 void		gem_start __P((struct ifnet *));
     76 void		gem_stop __P((struct ifnet *, int));
     77 int		gem_ioctl __P((struct ifnet *, u_long, caddr_t));
     78 void		gem_tick __P((void *));
     79 void		gem_watchdog __P((struct ifnet *));
     80 void		gem_shutdown __P((void *));
     81 int		gem_init __P((struct ifnet *));
     82 void		gem_init_regs(struct gem_softc *sc);
     83 static int	gem_ringsize(int sz);
     84 int		gem_meminit __P((struct gem_softc *));
     85 void		gem_mifinit __P((struct gem_softc *));
     86 void		gem_reset __P((struct gem_softc *));
     87 int		gem_reset_rx(struct gem_softc *sc);
     88 int		gem_reset_tx(struct gem_softc *sc);
     89 int		gem_disable_rx(struct gem_softc *sc);
     90 int		gem_disable_tx(struct gem_softc *sc);
     91 void		gem_rxdrain(struct gem_softc *sc);
     92 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
     93 void		gem_setladrf __P((struct gem_softc *));
     94 
     95 /* MII methods & callbacks */
     96 static int	gem_mii_readreg __P((struct device *, int, int));
     97 static void	gem_mii_writereg __P((struct device *, int, int, int));
     98 static void	gem_mii_statchg __P((struct device *));
     99 
    100 int		gem_mediachange __P((struct ifnet *));
    101 void		gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
    102 
    103 struct mbuf	*gem_get __P((struct gem_softc *, int, int));
    104 int		gem_put __P((struct gem_softc *, int, struct mbuf *));
    105 void		gem_read __P((struct gem_softc *, int, int));
    106 int		gem_eint __P((struct gem_softc *, u_int));
    107 int		gem_rint __P((struct gem_softc *));
    108 int		gem_tint __P((struct gem_softc *));
    109 void		gem_power __P((int, void *));
    110 
    111 static int	ether_cmp __P((u_char *, u_char *));
    112 
    113 /* Default buffer copy routines */
    114 void	gem_copytobuf_contig __P((struct gem_softc *, void *, int, int));
    115 void	gem_copyfrombuf_contig __P((struct gem_softc *, void *, int, int));
    116 void	gem_zerobuf_contig __P((struct gem_softc *, int, int));
    117 
    118 
    119 #ifdef GEM_DEBUG
    120 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    121 				printf x
    122 #else
    123 #define	DPRINTF(sc, x)	/* nothing */
    124 #endif
    125 
    126 
    127 /*
    128  * gem_config:
    129  *
    130  *	Attach a Gem interface to the system.
    131  */
    132 void
    133 gem_config(sc)
    134 	struct gem_softc *sc;
    135 {
    136 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    137 	struct mii_data *mii = &sc->sc_mii;
    138 	struct mii_softc *child;
    139 	int i, error;
    140 
    141 	/* Make sure the chip is stopped. */
    142 	ifp->if_softc = sc;
    143 	gem_reset(sc);
    144 
    145 	/*
    146 	 * Allocate the control data structures, and create and load the
    147 	 * DMA map for it.
    148 	 */
    149 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    150 	    sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    151 	    1, &sc->sc_cdnseg, 0)) != 0) {
    152 		printf("%s: unable to allocate control data, error = %d\n",
    153 		    sc->sc_dev.dv_xname, error);
    154 		goto fail_0;
    155 	}
    156 
    157 /* XXX should map this in with correct endianness */
    158 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    159 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
    160 	    BUS_DMA_COHERENT)) != 0) {
    161 		printf("%s: unable to map control data, error = %d\n",
    162 		    sc->sc_dev.dv_xname, error);
    163 		goto fail_1;
    164 	}
    165 
    166 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    167 	    sizeof(struct gem_control_data), 1,
    168 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    169 		printf("%s: unable to create control data DMA map, "
    170 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    171 		goto fail_2;
    172 	}
    173 
    174 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    175 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    176 	    0)) != 0) {
    177 		printf("%s: unable to load control data DMA map, error = %d\n",
    178 		    sc->sc_dev.dv_xname, error);
    179 		goto fail_3;
    180 	}
    181 
    182 	/*
    183 	 * Initialize the transmit job descriptors.
    184 	 */
    185 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    186 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    187 
    188 	/*
    189 	 * Create the transmit buffer DMA maps.
    190 	 */
    191 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    192 		struct gem_txsoft *txs;
    193 
    194 		txs = &sc->sc_txsoft[i];
    195 		txs->txs_mbuf = NULL;
    196 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
    197 		    GEM_NTXSEGS, MCLBYTES, 0, 0,
    198 		    &txs->txs_dmamap)) != 0) {
    199 			printf("%s: unable to create tx DMA map %d, "
    200 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    201 			goto fail_4;
    202 		}
    203 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    204 	}
    205 
    206 	/*
    207 	 * Create the receive buffer DMA maps.
    208 	 */
    209 	for (i = 0; i < GEM_NRXDESC; i++) {
    210 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    211 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    212 			printf("%s: unable to create rx DMA map %d, "
    213 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    214 			goto fail_5;
    215 		}
    216 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    217 	}
    218 
    219 	/*
    220 	 * From this point forward, the attachment cannot fail.  A failure
    221 	 * before this point releases all resources that may have been
    222 	 * allocated.
    223 	 */
    224 
    225 	/* Announce ourselves. */
    226 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    227 	    ether_sprintf(sc->sc_enaddr));
    228 
    229 	/* Initialize ifnet structure. */
    230 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    231 	ifp->if_softc = sc;
    232 	ifp->if_flags =
    233 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    234 	ifp->if_start = gem_start;
    235 	ifp->if_ioctl = gem_ioctl;
    236 	ifp->if_watchdog = gem_watchdog;
    237 	ifp->if_stop = gem_stop;
    238 	ifp->if_init = gem_init;
    239 	IFQ_SET_READY(&ifp->if_snd);
    240 
    241 	/* Initialize ifmedia structures and MII info */
    242 	mii->mii_ifp = ifp;
    243 	mii->mii_readreg = gem_mii_readreg;
    244 	mii->mii_writereg = gem_mii_writereg;
    245 	mii->mii_statchg = gem_mii_statchg;
    246 
    247 	ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
    248 
    249 	gem_mifinit(sc);
    250 
    251 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    252 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
    253 
    254 	child = LIST_FIRST(&mii->mii_phys);
    255 	if (child == NULL) {
    256 		/* No PHY attached */
    257 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    258 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    259 	} else {
    260 		/*
    261 		 * Walk along the list of attached MII devices and
    262 		 * establish an `MII instance' to `phy number'
    263 		 * mapping. We'll use this mapping in media change
    264 		 * requests to determine which phy to use to program
    265 		 * the MIF configuration register.
    266 		 */
    267 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    268 			/*
    269 			 * Note: we support just two PHYs: the built-in
    270 			 * internal device and an external on the MII
    271 			 * connector.
    272 			 */
    273 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    274 				printf("%s: cannot accomodate MII device %s"
    275 				       " at phy %d, instance %d\n",
    276 				       sc->sc_dev.dv_xname,
    277 				       child->mii_dev.dv_xname,
    278 				       child->mii_phy, child->mii_inst);
    279 				continue;
    280 			}
    281 
    282 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    283 		}
    284 
    285 		/*
    286 		 * Now select and activate the PHY we will use.
    287 		 *
    288 		 * The order of preference is External (MDI1),
    289 		 * Internal (MDI0), Serial Link (no MII).
    290 		 */
    291 		if (sc->sc_phys[1]) {
    292 #ifdef DEBUG
    293 			printf("using external phy\n");
    294 #endif
    295 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    296 		} else {
    297 #ifdef DEBUG
    298 			printf("using internal phy\n");
    299 #endif
    300 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    301 		}
    302 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
    303 			sc->sc_mif_config);
    304 
    305 		/*
    306 		 * XXX - we can really do the following ONLY if the
    307 		 * phy indeed has the auto negotiation capability!!
    308 		 */
    309 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    310 	}
    311 
    312 	/* claim 802.1q capability */
    313 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    314 
    315 	/* Attach the interface. */
    316 	if_attach(ifp);
    317 	ether_ifattach(ifp, sc->sc_enaddr);
    318 
    319 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    320 	if (sc->sc_sh == NULL)
    321 		panic("gem_config: can't establish shutdownhook");
    322 
    323 #if NRND > 0
    324 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    325 			  RND_TYPE_NET, 0);
    326 #endif
    327 
    328 
    329 #if notyet
    330 	/*
    331 	 * Add a suspend hook to make sure we come back up after a
    332 	 * resume.
    333 	 */
    334 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
    335 	if (sc->sc_powerhook == NULL)
    336 		printf("%s: WARNING: unable to establish power hook\n",
    337 		    sc->sc_dev.dv_xname);
    338 #endif
    339 
    340 	callout_init(&sc->sc_tick_ch);
    341 	return;
    342 
    343 	/*
    344 	 * Free any resources we've allocated during the failed attach
    345 	 * attempt.  Do this in reverse order and fall through.
    346 	 */
    347  fail_5:
    348 	for (i = 0; i < GEM_NRXDESC; i++) {
    349 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    350 			bus_dmamap_destroy(sc->sc_dmatag,
    351 			    sc->sc_rxsoft[i].rxs_dmamap);
    352 	}
    353  fail_4:
    354 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    355 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    356 			bus_dmamap_destroy(sc->sc_dmatag,
    357 			    sc->sc_txsoft[i].txs_dmamap);
    358 	}
    359 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    360  fail_3:
    361 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    362  fail_2:
    363 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
    364 	    sizeof(struct gem_control_data));
    365  fail_1:
    366 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    367  fail_0:
    368 	return;
    369 }
    370 
    371 
    372 void
    373 gem_tick(arg)
    374 	void *arg;
    375 {
    376 	struct gem_softc *sc = arg;
    377 	int s;
    378 
    379 	s = splnet();
    380 	mii_tick(&sc->sc_mii);
    381 	splx(s);
    382 
    383 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    384 
    385 }
    386 
    387 void
    388 gem_reset(sc)
    389 	struct gem_softc *sc;
    390 {
    391 	bus_space_tag_t t = sc->sc_bustag;
    392 	bus_space_handle_t h = sc->sc_h;
    393 	int i;
    394 	int s;
    395 
    396 	s = splnet();
    397 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    398 	gem_reset_rx(sc);
    399 	gem_reset_tx(sc);
    400 
    401 	/* Do a full reset */
    402 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    403 	for (i=TRIES; i--; delay(100))
    404 		if ((bus_space_read_4(t, h, GEM_RESET) &
    405 			(GEM_RESET_RX|GEM_RESET_TX)) == 0)
    406 			break;
    407 	if ((bus_space_read_4(t, h, GEM_RESET) &
    408 		(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
    409 		printf("%s: cannot reset device\n",
    410 			sc->sc_dev.dv_xname);
    411 	}
    412 	splx(s);
    413 }
    414 
    415 
    416 /*
    417  * gem_rxdrain:
    418  *
    419  *	Drain the receive queue.
    420  */
    421 void
    422 gem_rxdrain(struct gem_softc *sc)
    423 {
    424 	struct gem_rxsoft *rxs;
    425 	int i;
    426 
    427 	for (i = 0; i < GEM_NRXDESC; i++) {
    428 		rxs = &sc->sc_rxsoft[i];
    429 		if (rxs->rxs_mbuf != NULL) {
    430 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    431 			m_freem(rxs->rxs_mbuf);
    432 			rxs->rxs_mbuf = NULL;
    433 		}
    434 	}
    435 }
    436 
    437 /*
    438  * Reset the whole thing.
    439  */
    440 void
    441 gem_stop(struct ifnet *ifp, int disable)
    442 {
    443 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    444 	struct gem_txsoft *txs;
    445 
    446 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    447 
    448 	callout_stop(&sc->sc_tick_ch);
    449 	mii_down(&sc->sc_mii);
    450 
    451 	/* XXX - Should we reset these instead? */
    452 	gem_disable_rx(sc);
    453 	gem_disable_rx(sc);
    454 
    455 	/*
    456 	 * Release any queued transmit buffers.
    457 	 */
    458 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    459 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
    460 		if (txs->txs_mbuf != NULL) {
    461 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    462 			m_freem(txs->txs_mbuf);
    463 			txs->txs_mbuf = NULL;
    464 		}
    465 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    466 	}
    467 
    468 	if (disable) {
    469 		gem_rxdrain(sc);
    470 	}
    471 
    472 	/*
    473 	 * Mark the interface down and cancel the watchdog timer.
    474 	 */
    475 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    476 	ifp->if_timer = 0;
    477 }
    478 
    479 
    480 /*
    481  * Reset the receiver
    482  */
    483 int
    484 gem_reset_rx(struct gem_softc *sc)
    485 {
    486 	bus_space_tag_t t = sc->sc_bustag;
    487 	bus_space_handle_t h = sc->sc_h;
    488 	int i;
    489 
    490 
    491 	/*
    492 	 * Resetting while DMA is in progress can cause a bus hang, so we
    493 	 * disable DMA first.
    494 	 */
    495 	gem_disable_rx(sc);
    496 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    497 	/* Wait till it finishes */
    498 	for (i=TRIES; i--; delay(100))
    499 		if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
    500 			break;
    501 	if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
    502 		printf("%s: cannot disable read dma\n",
    503 			sc->sc_dev.dv_xname);
    504 
    505 	/* Wait 5ms extra. */
    506 	delay(5000);
    507 
    508 	/* Finally, reset the ERX */
    509 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
    510 	/* Wait till it finishes */
    511 	for (i=TRIES; i--; delay(100))
    512 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
    513 			break;
    514 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
    515 		printf("%s: cannot reset receiver\n",
    516 			sc->sc_dev.dv_xname);
    517 		return (1);
    518 	}
    519 	return (0);
    520 }
    521 
    522 
    523 /*
    524  * Reset the transmitter
    525  */
    526 int
    527 gem_reset_tx(struct gem_softc *sc)
    528 {
    529 	bus_space_tag_t t = sc->sc_bustag;
    530 	bus_space_handle_t h = sc->sc_h;
    531 	int i;
    532 
    533 	/*
    534 	 * Resetting while DMA is in progress can cause a bus hang, so we
    535 	 * disable DMA first.
    536 	 */
    537 	gem_disable_tx(sc);
    538 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    539 	/* Wait till it finishes */
    540 	for (i=TRIES; i--; delay(100))
    541 		if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
    542 			break;
    543 	if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
    544 		printf("%s: cannot disable read dma\n",
    545 			sc->sc_dev.dv_xname);
    546 
    547 	/* Wait 5ms extra. */
    548 	delay(5000);
    549 
    550 	/* Finally, reset the ETX */
    551 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
    552 	/* Wait till it finishes */
    553 	for (i=TRIES; i--; delay(100))
    554 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
    555 			break;
    556 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
    557 		printf("%s: cannot reset receiver\n",
    558 			sc->sc_dev.dv_xname);
    559 		return (1);
    560 	}
    561 	return (0);
    562 }
    563 
    564 /*
    565  * disable receiver.
    566  */
    567 int
    568 gem_disable_rx(struct gem_softc *sc)
    569 {
    570 	bus_space_tag_t t = sc->sc_bustag;
    571 	bus_space_handle_t h = sc->sc_h;
    572 	int i;
    573 	u_int32_t cfg;
    574 
    575 	/* Flip the enable bit */
    576 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    577 	cfg &= ~GEM_MAC_RX_ENABLE;
    578 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    579 
    580 	/* Wait for it to finish */
    581 	for (i=TRIES; i--; delay(100))
    582 		if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
    583 			GEM_MAC_RX_ENABLE) == 0)
    584 			return (0);
    585 	return (1);
    586 }
    587 
    588 /*
    589  * disable transmitter.
    590  */
    591 int
    592 gem_disable_tx(struct gem_softc *sc)
    593 {
    594 	bus_space_tag_t t = sc->sc_bustag;
    595 	bus_space_handle_t h = sc->sc_h;
    596 	int i;
    597 	u_int32_t cfg;
    598 
    599 	/* Flip the enable bit */
    600 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    601 	cfg &= ~GEM_MAC_TX_ENABLE;
    602 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    603 
    604 	/* Wait for it to finish */
    605 	for (i=TRIES; i--; delay(100))
    606 		if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
    607 			GEM_MAC_TX_ENABLE) == 0)
    608 			return (0);
    609 	return (1);
    610 }
    611 
    612 /*
    613  * Initialize interface.
    614  */
    615 int
    616 gem_meminit(struct gem_softc *sc)
    617 {
    618 	struct gem_rxsoft *rxs;
    619 	int i, error;
    620 
    621 	/*
    622 	 * Initialize the transmit descriptor ring.
    623 	 */
    624 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    625 	for (i = 0; i < GEM_NTXDESC; i++) {
    626 		sc->sc_txdescs[i].gd_flags = 0;
    627 		sc->sc_txdescs[i].gd_addr = 0;
    628 	}
    629 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    630 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    631 	sc->sc_txfree = GEM_NTXDESC;
    632 	sc->sc_txnext = 0;
    633 
    634 	/*
    635 	 * Initialize the receive descriptor and receive job
    636 	 * descriptor rings.
    637 	 */
    638 	for (i = 0; i < GEM_NRXDESC; i++) {
    639 		rxs = &sc->sc_rxsoft[i];
    640 		if (rxs->rxs_mbuf == NULL) {
    641 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    642 				printf("%s: unable to allocate or map rx "
    643 				    "buffer %d, error = %d\n",
    644 				    sc->sc_dev.dv_xname, i, error);
    645 				/*
    646 				 * XXX Should attempt to run with fewer receive
    647 				 * XXX buffers instead of just failing.
    648 				 */
    649 				gem_rxdrain(sc);
    650 				return (1);
    651 			}
    652 		} else
    653 			GEM_INIT_RXDESC(sc, i);
    654 	}
    655 	sc->sc_rxptr = 0;
    656 
    657 	return (0);
    658 }
    659 
    660 static int
    661 gem_ringsize(int sz)
    662 {
    663 	int v;
    664 
    665 	switch (sz) {
    666 	case 32:
    667 		v = GEM_RING_SZ_32;
    668 		break;
    669 	case 64:
    670 		v = GEM_RING_SZ_64;
    671 		break;
    672 	case 128:
    673 		v = GEM_RING_SZ_128;
    674 		break;
    675 	case 256:
    676 		v = GEM_RING_SZ_256;
    677 		break;
    678 	case 512:
    679 		v = GEM_RING_SZ_512;
    680 		break;
    681 	case 1024:
    682 		v = GEM_RING_SZ_1024;
    683 		break;
    684 	case 2048:
    685 		v = GEM_RING_SZ_2048;
    686 		break;
    687 	case 4096:
    688 		v = GEM_RING_SZ_4096;
    689 		break;
    690 	case 8192:
    691 		v = GEM_RING_SZ_8192;
    692 		break;
    693 	default:
    694 		printf("gem: invalid Receive Descriptor ring size\n");
    695 		break;
    696 	}
    697 	return (v);
    698 }
    699 
    700 /*
    701  * Initialization of interface; set up initialization block
    702  * and transmit/receive descriptor rings.
    703  */
    704 int
    705 gem_init(struct ifnet *ifp)
    706 {
    707 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    708 	bus_space_tag_t t = sc->sc_bustag;
    709 	bus_space_handle_t h = sc->sc_h;
    710 	int s;
    711 	u_int32_t v;
    712 
    713 	s = splnet();
    714 
    715 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
    716 	/*
    717 	 * Initialization sequence. The numbered steps below correspond
    718 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    719 	 * Channel Engine manual (part of the PCIO manual).
    720 	 * See also the STP2002-STQ document from Sun Microsystems.
    721 	 */
    722 
    723 	/* step 1 & 2. Reset the Ethernet Channel */
    724 	gem_stop(ifp, 0);
    725 	gem_reset(sc);
    726 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
    727 
    728 	/* Re-initialize the MIF */
    729 	gem_mifinit(sc);
    730 
    731 	/* Call MI reset function if any */
    732 	if (sc->sc_hwreset)
    733 		(*sc->sc_hwreset)(sc);
    734 
    735 	/* step 3. Setup data structures in host memory */
    736 	gem_meminit(sc);
    737 
    738 	/* step 4. TX MAC registers & counters */
    739 	gem_init_regs(sc);
    740 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    741 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    742 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN  + sizeof(struct ether_header):
    743             ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
    744 
    745 	/* step 5. RX MAC registers & counters */
    746 	gem_setladrf(sc);
    747 
    748 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    749 	/* NOTE: we use only 32-bit DMA addresses here. */
    750 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
    751 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
    752 
    753 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    754 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    755 
    756 	/* step 8. Global Configuration & Interrupt Mask */
    757 	bus_space_write_4(t, h, GEM_INTMASK,
    758 		      ~(GEM_INTR_TX_INTME|
    759 			GEM_INTR_TX_EMPTY|
    760 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
    761 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
    762 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
    763 			GEM_INTR_BERR));
    764 	bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
    765 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
    766 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
    767 
    768 	/* step 9. ETX Configuration: use mostly default values */
    769 
    770 	/* Enable DMA */
    771 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
    772 	bus_space_write_4(t, h, GEM_TX_CONFIG,
    773 		v|GEM_TX_CONFIG_TXDMA_EN|
    774 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
    775 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
    776 
    777 	/* step 10. ERX Configuration */
    778 
    779 	/* Encode Receive Descriptor ring size: four possible values */
    780 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    781 
    782 	/* Enable DMA */
    783 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    784 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
    785 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
    786 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
    787 	/*
    788 	 * The following value is for an OFF Threshold of about 15.5 Kbytes
    789 	 * and an ON Threshold of 4K bytes.
    790 	 */
    791 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
    792 	bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
    793 
    794 	/* step 11. Configure Media */
    795 	gem_mii_statchg(&sc->sc_dev);
    796 
    797 /* XXXX Serial link needs a whole different setup. */
    798 
    799 
    800 	/* step 12. RX_MAC Configuration Register */
    801 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    802 	v |= GEM_MAC_RX_ENABLE;
    803 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
    804 
    805 	/* step 14. Issue Transmit Pending command */
    806 
    807 	/* Call MI initialization function if any */
    808 	if (sc->sc_hwinit)
    809 		(*sc->sc_hwinit)(sc);
    810 
    811 
    812 	/* step 15.  Give the reciever a swift kick */
    813 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
    814 
    815 	/* Start the one second timer. */
    816 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    817 
    818 	ifp->if_flags |= IFF_RUNNING;
    819 	ifp->if_flags &= ~IFF_OACTIVE;
    820 	ifp->if_timer = 0;
    821 	splx(s);
    822 
    823 	return (0);
    824 }
    825 
    826 /*
    827  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    828  * speed.
    829  */
    830 static __inline__ int
    831 ether_cmp(a, b)
    832 	u_char *a, *b;
    833 {
    834 
    835 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    836 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    837 		return (0);
    838 	return (1);
    839 }
    840 
    841 
    842 void
    843 gem_init_regs(struct gem_softc *sc)
    844 {
    845 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    846 	bus_space_tag_t t = sc->sc_bustag;
    847 	bus_space_handle_t h = sc->sc_h;
    848 
    849 	/* These regs are not cleared on reset */
    850 	sc->sc_inited = 0;
    851 	if (!sc->sc_inited) {
    852 
    853 		/* Wooo.  Magic values. */
    854 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
    855 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
    856 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
    857 
    858 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
    859 		/* Max frame and max burst size */
    860 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    861 			(ifp->if_mtu+18) | (0x2000<<16)/* Burst size */);
    862 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
    863 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
    864 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
    865 		/* Dunno.... */
    866 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
    867 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
    868 			((sc->sc_enaddr[5]<<8)|sc->sc_enaddr[4])&0x3ff);
    869 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
    870 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
    871 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
    872 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
    873 		/* MAC control addr set to 0:1:c2:0:1:80 */
    874 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
    875 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
    876 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
    877 
    878 		/* MAC filter addr set to 0:0:0:0:0:0 */
    879 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
    880 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
    881 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
    882 
    883 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
    884 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
    885 
    886 		sc->sc_inited = 1;
    887 	}
    888 
    889 	/* Counters need to be zeroed */
    890 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
    891 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
    892 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
    893 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
    894 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
    895 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
    896 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
    897 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
    898 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
    899 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
    900 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
    901 
    902 	/* Un-pause stuff */
    903 #if 0
    904 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
    905 #else
    906 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
    907 #endif
    908 
    909 	/*
    910 	 * Set the station address.
    911 	 */
    912 	bus_space_write_4(t, h, GEM_MAC_ADDR0,
    913 		(sc->sc_enaddr[4]<<8) | sc->sc_enaddr[5]);
    914 	bus_space_write_4(t, h, GEM_MAC_ADDR1,
    915 		(sc->sc_enaddr[2]<<8) | sc->sc_enaddr[3]);
    916 	bus_space_write_4(t, h, GEM_MAC_ADDR2,
    917 		(sc->sc_enaddr[0]<<8) | sc->sc_enaddr[1]);
    918 
    919 }
    920 
    921 
    922 
    923 void
    924 gem_start(ifp)
    925 	struct ifnet *ifp;
    926 {
    927 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    928 	struct mbuf *m0, *m;
    929 	struct gem_txsoft *txs, *last_txs;
    930 	bus_dmamap_t dmamap;
    931 	int error, firsttx, nexttx, lasttx, ofree, seg;
    932 
    933 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    934 		return;
    935 
    936 	/*
    937 	 * Remember the previous number of free descriptors and
    938 	 * the first descriptor we'll use.
    939 	 */
    940 	ofree = sc->sc_txfree;
    941 	firsttx = sc->sc_txnext;
    942 
    943 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
    944 	    sc->sc_dev.dv_xname, ofree, firsttx));
    945 
    946 	/*
    947 	 * Loop through the send queue, setting up transmit descriptors
    948 	 * until we drain the queue, or use up all available transmit
    949 	 * descriptors.
    950 	 */
    951 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
    952 	       sc->sc_txfree != 0) {
    953 		/*
    954 		 * Grab a packet off the queue.
    955 		 */
    956 		IFQ_POLL(&ifp->if_snd, m0);
    957 		if (m0 == NULL)
    958 			break;
    959 		m = NULL;
    960 
    961 		dmamap = txs->txs_dmamap;
    962 
    963 		/*
    964 		 * Load the DMA map.  If this fails, the packet either
    965 		 * didn't fit in the alloted number of segments, or we were
    966 		 * short on resources.  In this case, we'll copy and try
    967 		 * again.
    968 		 */
    969 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
    970 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    971 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    972 			if (m == NULL) {
    973 				printf("%s: unable to allocate Tx mbuf\n",
    974 				    sc->sc_dev.dv_xname);
    975 				break;
    976 			}
    977 			if (m0->m_pkthdr.len > MHLEN) {
    978 				MCLGET(m, M_DONTWAIT);
    979 				if ((m->m_flags & M_EXT) == 0) {
    980 					printf("%s: unable to allocate Tx "
    981 					    "cluster\n", sc->sc_dev.dv_xname);
    982 					m_freem(m);
    983 					break;
    984 				}
    985 			}
    986 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    987 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    988 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
    989 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    990 			if (error) {
    991 				printf("%s: unable to load Tx buffer, "
    992 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    993 				break;
    994 			}
    995 		}
    996 
    997 		/*
    998 		 * Ensure we have enough descriptors free to describe
    999 		 * the packet.
   1000 		 */
   1001 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   1002 			/*
   1003 			 * Not enough free descriptors to transmit this
   1004 			 * packet.  We haven't committed to anything yet,
   1005 			 * so just unload the DMA map, put the packet
   1006 			 * back on the queue, and punt.  Notify the upper
   1007 			 * layer that there are no more slots left.
   1008 			 *
   1009 			 * XXX We could allocate an mbuf and copy, but
   1010 			 * XXX it is worth it?
   1011 			 */
   1012 			ifp->if_flags |= IFF_OACTIVE;
   1013 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1014 			if (m != NULL)
   1015 				m_freem(m);
   1016 			break;
   1017 		}
   1018 
   1019 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1020 		if (m != NULL) {
   1021 			m_freem(m0);
   1022 			m0 = m;
   1023 		}
   1024 
   1025 		/*
   1026 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1027 		 */
   1028 
   1029 		/* Sync the DMA map. */
   1030 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1031 		    BUS_DMASYNC_PREWRITE);
   1032 
   1033 		/*
   1034 		 * Initialize the transmit descriptors.
   1035 		 */
   1036 		for (nexttx = sc->sc_txnext, seg = 0;
   1037 		     seg < dmamap->dm_nsegs;
   1038 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1039 			uint64_t flags;
   1040 
   1041 			/*
   1042 			 * If this is the first descriptor we're
   1043 			 * enqueueing, set the start of packet flag,
   1044 			 * and the checksum stuff if we want the hardware
   1045 			 * to do it.
   1046 			 */
   1047 			sc->sc_txdescs[nexttx].gd_addr =
   1048 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1049 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1050 			if (nexttx == firsttx) {
   1051 				flags |= GEM_TD_START_OF_PACKET;
   1052 			}
   1053 			if (seg == dmamap->dm_nsegs - 1) {
   1054 				flags |= GEM_TD_END_OF_PACKET;
   1055 			}
   1056 			sc->sc_txdescs[nexttx].gd_flags =
   1057 				GEM_DMA_WRITE(sc, flags);
   1058 			lasttx = nexttx;
   1059 		}
   1060 
   1061 #ifdef GEM_DEBUG
   1062 		if (ifp->if_flags & IFF_DEBUG) {
   1063 			printf("     gem_start %p transmit chain:\n", txs);
   1064 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
   1065 				printf("descriptor %d:\t", seg);
   1066 				printf("gd_flags:   0x%016llx\t", (long long)
   1067 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
   1068 				printf("gd_addr: 0x%016llx\n", (long long)
   1069 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
   1070 				if (seg == lasttx)
   1071 					break;
   1072 			}
   1073 		}
   1074 #endif
   1075 
   1076 		/* Sync the descriptors we're using. */
   1077 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1078 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1079 
   1080 		/*
   1081 		 * Store a pointer to the packet so we can free it later,
   1082 		 * and remember what txdirty will be once the packet is
   1083 		 * done.
   1084 		 */
   1085 		txs->txs_mbuf = m0;
   1086 		txs->txs_firstdesc = sc->sc_txnext;
   1087 		txs->txs_lastdesc = lasttx;
   1088 		txs->txs_ndescs = dmamap->dm_nsegs;
   1089 
   1090 		/* Advance the tx pointer. */
   1091 		sc->sc_txfree -= dmamap->dm_nsegs;
   1092 		sc->sc_txnext = nexttx;
   1093 
   1094 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
   1095 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1096 
   1097 		last_txs = txs;
   1098 
   1099 #if NBPFILTER > 0
   1100 		/*
   1101 		 * Pass the packet to any BPF listeners.
   1102 		 */
   1103 		if (ifp->if_bpf)
   1104 			bpf_mtap(ifp->if_bpf, m0);
   1105 #endif /* NBPFILTER > 0 */
   1106 	}
   1107 
   1108 	if (txs == NULL || sc->sc_txfree == 0) {
   1109 		/* No more slots left; notify upper layer. */
   1110 		ifp->if_flags |= IFF_OACTIVE;
   1111 	}
   1112 
   1113 	if (sc->sc_txfree != ofree) {
   1114 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1115 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1116 		/*
   1117 		 * The entire packet chain is set up.
   1118 		 * Kick the transmitter.
   1119 		 */
   1120 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1121 			sc->sc_dev.dv_xname, nexttx));
   1122 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
   1123 			sc->sc_txnext);
   1124 
   1125 		/* Set a watchdog timer in case the chip flakes out. */
   1126 		ifp->if_timer = 5;
   1127 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1128 			sc->sc_dev.dv_xname, ifp->if_timer));
   1129 	}
   1130 }
   1131 
   1132 /*
   1133  * Transmit interrupt.
   1134  */
   1135 int
   1136 gem_tint(sc)
   1137 	struct gem_softc *sc;
   1138 {
   1139 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1140 	bus_space_tag_t t = sc->sc_bustag;
   1141 	bus_space_handle_t mac = sc->sc_h;
   1142 	struct gem_txsoft *txs;
   1143 	int txlast;
   1144 
   1145 
   1146 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1147 
   1148 	/*
   1149 	 * Unload collision counters
   1150 	 */
   1151 	ifp->if_collisions +=
   1152 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1153 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
   1154 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1155 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1156 
   1157 	/*
   1158 	 * then clear the hardware counters.
   1159 	 */
   1160 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1161 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1162 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1163 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1164 
   1165 	/*
   1166 	 * Go through our Tx list and free mbufs for those
   1167 	 * frames that have been transmitted.
   1168 	 */
   1169 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1170 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
   1171 		    txs->txs_ndescs,
   1172 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1173 
   1174 #ifdef GEM_DEBUG
   1175 		if (ifp->if_flags & IFF_DEBUG) {
   1176 			int i;
   1177 			printf("    txsoft %p transmit chain:\n", txs);
   1178 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
   1179 				printf("descriptor %d: ", i);
   1180 				printf("gd_flags: 0x%016llx\t", (long long)
   1181 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1182 				printf("gd_addr: 0x%016llx\n", (long long)
   1183 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1184 				if (i == txs->txs_lastdesc)
   1185 					break;
   1186 			}
   1187 		}
   1188 #endif
   1189 
   1190 		/*
   1191 		 * In theory, we could harveast some descriptors before
   1192 		 * the ring is empty, but that's a bit complicated.
   1193 		 *
   1194 		 * GEM_TX_COMPLETION points to the last descriptor
   1195 		 * processed +1.
   1196 		 */
   1197 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1198 		DPRINTF(sc,
   1199 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1200 				txs->txs_lastdesc, txlast));
   1201 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1202 			if ((txlast >= txs->txs_firstdesc) &&
   1203 				(txlast <= txs->txs_lastdesc))
   1204 				break;
   1205 		} else {
   1206 			/* Ick -- this command wraps */
   1207 			if ((txlast >= txs->txs_firstdesc) ||
   1208 				(txlast <= txs->txs_lastdesc))
   1209 				break;
   1210 		}
   1211 
   1212 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1213 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1214 
   1215 		sc->sc_txfree += txs->txs_ndescs;
   1216 
   1217 		if (txs->txs_mbuf == NULL) {
   1218 #ifdef DIAGNOSTIC
   1219 				panic("gem_txintr: null mbuf");
   1220 #endif
   1221 		}
   1222 
   1223 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1224 		    0, txs->txs_dmamap->dm_mapsize,
   1225 		    BUS_DMASYNC_POSTWRITE);
   1226 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1227 		m_freem(txs->txs_mbuf);
   1228 		txs->txs_mbuf = NULL;
   1229 
   1230 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1231 
   1232 		ifp->if_opackets++;
   1233 	}
   1234 
   1235 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1236 		"GEM_TX_DATA_PTR %llx "
   1237 		"GEM_TX_COMPLETION %x\n",
   1238 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
   1239 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1240 			GEM_TX_DATA_PTR_HI) << 32) |
   1241 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1242 			GEM_TX_DATA_PTR_LO),
   1243 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
   1244 
   1245 	gem_start(ifp);
   1246 
   1247 	if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
   1248 		ifp->if_timer = 0;
   1249 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1250 		sc->sc_dev.dv_xname, ifp->if_timer));
   1251 
   1252 	return (1);
   1253 }
   1254 
   1255 /*
   1256  * Receive interrupt.
   1257  */
   1258 int
   1259 gem_rint(sc)
   1260 	struct gem_softc *sc;
   1261 {
   1262 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1263 	bus_space_tag_t t = sc->sc_bustag;
   1264 	bus_space_handle_t h = sc->sc_h;
   1265 	struct ether_header *eh;
   1266 	struct gem_rxsoft *rxs;
   1267 	struct mbuf *m;
   1268 	u_int64_t rxstat;
   1269 	int i, len;
   1270 
   1271 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1272 	/*
   1273 	 * XXXX Read the lastrx only once at the top for speed.
   1274 	 */
   1275 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1276 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1277 	for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1278 	     i = GEM_NEXTRX(i)) {
   1279 		rxs = &sc->sc_rxsoft[i];
   1280 
   1281 		GEM_CDRXSYNC(sc, i,
   1282 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1283 
   1284 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1285 
   1286 		if (rxstat & GEM_RD_OWN) {
   1287 			printf("gem_rint: completed descriptor "
   1288 				"still owned %d\n", i);
   1289 			/*
   1290 			 * We have processed all of the receive buffers.
   1291 			 */
   1292 			break;
   1293 		}
   1294 
   1295 		if (rxstat & GEM_RD_BAD_CRC) {
   1296 			printf("%s: receive error: CRC error\n",
   1297 				sc->sc_dev.dv_xname);
   1298 			GEM_INIT_RXDESC(sc, i);
   1299 			continue;
   1300 		}
   1301 
   1302 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1303 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1304 #ifdef GEM_DEBUG
   1305 		if (ifp->if_flags & IFF_DEBUG) {
   1306 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1307 			printf("gd_flags: 0x%016llx\t", (long long)
   1308 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1309 			printf("gd_addr: 0x%016llx\n", (long long)
   1310 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1311 		}
   1312 #endif
   1313 
   1314 		/*
   1315 		 * No errors; receive the packet.  Note the Gem
   1316 		 * includes the CRC with every packet.
   1317 		 */
   1318 		len = GEM_RD_BUFLEN(rxstat);
   1319 
   1320 		/*
   1321 		 * Allocate a new mbuf cluster.  If that fails, we are
   1322 		 * out of memory, and must drop the packet and recycle
   1323 		 * the buffer that's already attached to this descriptor.
   1324 		 */
   1325 		m = rxs->rxs_mbuf;
   1326 		if (gem_add_rxbuf(sc, i) != 0) {
   1327 			ifp->if_ierrors++;
   1328 			GEM_INIT_RXDESC(sc, i);
   1329 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1330 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1331 			continue;
   1332 		}
   1333 		m->m_data += 2; /* We're already off by two */
   1334 
   1335 		ifp->if_ipackets++;
   1336 		eh = mtod(m, struct ether_header *);
   1337 		m->m_flags |= M_HASFCS;
   1338 		m->m_pkthdr.rcvif = ifp;
   1339 		m->m_pkthdr.len = m->m_len = len;
   1340 
   1341 #if NBPFILTER > 0
   1342 		/*
   1343 		 * Pass this up to any BPF listeners, but only
   1344 		 * pass it up the stack if its for us.
   1345 		 */
   1346 		if (ifp->if_bpf)
   1347 			bpf_mtap(ifp->if_bpf, m);
   1348 #endif /* NPBFILTER > 0 */
   1349 
   1350 #if 0
   1351 		/*
   1352 		 * We sometimes have to run the 21140 in Hash-Only
   1353 		 * mode.  If we're in that mode, and not in promiscuous
   1354 		 * mode, and we have a unicast packet that isn't for
   1355 		 * us, then drop it.
   1356 		 */
   1357 		if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY &&
   1358 		    (ifp->if_flags & IFF_PROMISC) == 0 &&
   1359 		    ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
   1360 		    memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
   1361 			   ETHER_ADDR_LEN) != 0) {
   1362 			m_freem(m);
   1363 			continue;
   1364 		}
   1365 #endif
   1366 
   1367 		/* Pass it on. */
   1368 		(*ifp->if_input)(ifp, m);
   1369 	}
   1370 
   1371 	/* Update the receive pointer. */
   1372 	sc->sc_rxptr = i;
   1373 	bus_space_write_4(t, h, GEM_RX_KICK, i);
   1374 
   1375 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1376 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1377 
   1378 	return (1);
   1379 }
   1380 
   1381 
   1382 /*
   1383  * gem_add_rxbuf:
   1384  *
   1385  *	Add a receive buffer to the indicated descriptor.
   1386  */
   1387 int
   1388 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1389 {
   1390 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1391 	struct mbuf *m;
   1392 	int error;
   1393 
   1394 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1395 	if (m == NULL)
   1396 		return (ENOBUFS);
   1397 
   1398 	MCLGET(m, M_DONTWAIT);
   1399 	if ((m->m_flags & M_EXT) == 0) {
   1400 		m_freem(m);
   1401 		return (ENOBUFS);
   1402 	}
   1403 
   1404 #ifdef GEM_DEBUG
   1405 /* bzero the packet to check dma */
   1406 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1407 #endif
   1408 
   1409 	if (rxs->rxs_mbuf != NULL)
   1410 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1411 
   1412 	rxs->rxs_mbuf = m;
   1413 
   1414 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1415 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1416 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1417 	if (error) {
   1418 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1419 		    sc->sc_dev.dv_xname, idx, error);
   1420 		panic("gem_add_rxbuf");	/* XXX */
   1421 	}
   1422 
   1423 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1424 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1425 
   1426 	GEM_INIT_RXDESC(sc, idx);
   1427 
   1428 	return (0);
   1429 }
   1430 
   1431 
   1432 int
   1433 gem_eint(sc, status)
   1434 	struct gem_softc *sc;
   1435 	u_int status;
   1436 {
   1437 	char bits[128];
   1438 
   1439 	if ((status & GEM_INTR_MIF) != 0) {
   1440 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1441 		return (1);
   1442 	}
   1443 
   1444 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1445 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   1446 	return (1);
   1447 }
   1448 
   1449 
   1450 int
   1451 gem_intr(v)
   1452 	void *v;
   1453 {
   1454 	struct gem_softc *sc = (struct gem_softc *)v;
   1455 	bus_space_tag_t t = sc->sc_bustag;
   1456 	bus_space_handle_t seb = sc->sc_h;
   1457 	u_int32_t status;
   1458 	int r = 0;
   1459 #ifdef GEM_DEBUG
   1460 	char bits[128];
   1461 #endif
   1462 
   1463 	status = bus_space_read_4(t, seb, GEM_STATUS);
   1464 	DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
   1465 		sc->sc_dev.dv_xname, (status>>19),
   1466 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   1467 
   1468 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   1469 		r |= gem_eint(sc, status);
   1470 
   1471 	if ((status &
   1472 		(GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME))
   1473 		!= 0)
   1474 		r |= gem_tint(sc);
   1475 
   1476 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
   1477 		r |= gem_rint(sc);
   1478 
   1479 	/* We should eventually do more than just print out error stats. */
   1480 	if (status & GEM_INTR_TX_MAC) {
   1481 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
   1482 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   1483 			printf("MAC tx fault, status %x\n", txstat);
   1484 	}
   1485 	if (status & GEM_INTR_RX_MAC) {
   1486 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
   1487 		if (rxstat & ~GEM_MAC_RX_DONE)
   1488 			printf("MAC rx fault, status %x\n", rxstat);
   1489 	}
   1490 	return (r);
   1491 }
   1492 
   1493 
   1494 void
   1495 gem_watchdog(ifp)
   1496 	struct ifnet *ifp;
   1497 {
   1498 	struct gem_softc *sc = ifp->if_softc;
   1499 
   1500 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   1501 		"GEM_MAC_RX_CONFIG %x\n",
   1502 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
   1503 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
   1504 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
   1505 
   1506 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1507 	++ifp->if_oerrors;
   1508 
   1509 	/* Try to get more packets going. */
   1510 	gem_start(ifp);
   1511 }
   1512 
   1513 /*
   1514  * Initialize the MII Management Interface
   1515  */
   1516 void
   1517 gem_mifinit(sc)
   1518 	struct gem_softc *sc;
   1519 {
   1520 	bus_space_tag_t t = sc->sc_bustag;
   1521 	bus_space_handle_t mif = sc->sc_h;
   1522 
   1523 	/* Configure the MIF in frame mode */
   1524 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1525 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   1526 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   1527 }
   1528 
   1529 /*
   1530  * MII interface
   1531  *
   1532  * The GEM MII interface supports at least three different operating modes:
   1533  *
   1534  * Bitbang mode is implemented using data, clock and output enable registers.
   1535  *
   1536  * Frame mode is implemented by loading a complete frame into the frame
   1537  * register and polling the valid bit for completion.
   1538  *
   1539  * Polling mode uses the frame register but completion is indicated by
   1540  * an interrupt.
   1541  *
   1542  */
   1543 static int
   1544 gem_mii_readreg(self, phy, reg)
   1545 	struct device *self;
   1546 	int phy, reg;
   1547 {
   1548 	struct gem_softc *sc = (void *)self;
   1549 	bus_space_tag_t t = sc->sc_bustag;
   1550 	bus_space_handle_t mif = sc->sc_h;
   1551 	int n;
   1552 	u_int32_t v;
   1553 
   1554 #ifdef GEM_DEBUG1
   1555 	if (sc->sc_debug)
   1556 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
   1557 #endif
   1558 
   1559 #if 0
   1560 	/* Select the desired PHY in the MIF configuration register */
   1561 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1562 	/* Clear PHY select bit */
   1563 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1564 	if (phy == GEM_PHYAD_EXTERNAL)
   1565 		/* Set PHY select bit to get at external device */
   1566 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1567 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1568 #endif
   1569 
   1570 	/* Construct the frame command */
   1571 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   1572 		GEM_MIF_FRAME_READ;
   1573 
   1574 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1575 	for (n = 0; n < 100; n++) {
   1576 		DELAY(1);
   1577 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1578 		if (v & GEM_MIF_FRAME_TA0)
   1579 			return (v & GEM_MIF_FRAME_DATA);
   1580 	}
   1581 
   1582 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1583 	return (0);
   1584 }
   1585 
   1586 static void
   1587 gem_mii_writereg(self, phy, reg, val)
   1588 	struct device *self;
   1589 	int phy, reg, val;
   1590 {
   1591 	struct gem_softc *sc = (void *)self;
   1592 	bus_space_tag_t t = sc->sc_bustag;
   1593 	bus_space_handle_t mif = sc->sc_h;
   1594 	int n;
   1595 	u_int32_t v;
   1596 
   1597 #ifdef GEM_DEBUG1
   1598 	if (sc->sc_debug)
   1599 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
   1600 			phy, reg, val);
   1601 #endif
   1602 
   1603 #if 0
   1604 	/* Select the desired PHY in the MIF configuration register */
   1605 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1606 	/* Clear PHY select bit */
   1607 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1608 	if (phy == GEM_PHYAD_EXTERNAL)
   1609 		/* Set PHY select bit to get at external device */
   1610 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1611 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1612 #endif
   1613 	/* Construct the frame command */
   1614 	v = GEM_MIF_FRAME_WRITE			|
   1615 	    (phy << GEM_MIF_PHY_SHIFT)		|
   1616 	    (reg << GEM_MIF_REG_SHIFT)		|
   1617 	    (val & GEM_MIF_FRAME_DATA);
   1618 
   1619 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1620 	for (n = 0; n < 100; n++) {
   1621 		DELAY(1);
   1622 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1623 		if (v & GEM_MIF_FRAME_TA0)
   1624 			return;
   1625 	}
   1626 
   1627 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1628 }
   1629 
   1630 static void
   1631 gem_mii_statchg(dev)
   1632 	struct device *dev;
   1633 {
   1634 	struct gem_softc *sc = (void *)dev;
   1635 #ifdef GEM_DEBUG
   1636 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1637 #endif
   1638 	bus_space_tag_t t = sc->sc_bustag;
   1639 	bus_space_handle_t mac = sc->sc_h;
   1640 	u_int32_t v;
   1641 
   1642 #ifdef GEM_DEBUG
   1643 	if (sc->sc_debug)
   1644 		printf("gem_mii_statchg: status change: phy = %d\n",
   1645 			sc->sc_phys[instance];);
   1646 #endif
   1647 
   1648 
   1649 	/* Set tx full duplex options */
   1650 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   1651 	delay(10000); /* reg must be cleared and delay before changing. */
   1652 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
   1653 		GEM_MAC_TX_ENABLE;
   1654 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1655 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
   1656 	}
   1657 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
   1658 
   1659 	/* XIF Configuration */
   1660  /* We should really calculate all this rather than rely on defaults */
   1661 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
   1662 	v = GEM_MAC_XIF_LINK_LED;
   1663 	v |= GEM_MAC_XIF_TX_MII_ENA;
   1664 	/* If an external transceiver is connected, enable its MII drivers */
   1665 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   1666 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   1667 		/* External MII needs echo disable if half duplex. */
   1668 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1669 			/* turn on full duplex LED */
   1670 			v |= GEM_MAC_XIF_FDPLX_LED;
   1671  			else
   1672 	 			/* half duplex -- disable echo */
   1673 		 		v |= GEM_MAC_XIF_ECHO_DISABL;
   1674 	} else
   1675 		/* Internal MII needs buf enable */
   1676 		v |= GEM_MAC_XIF_MII_BUF_ENA;
   1677 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   1678 }
   1679 
   1680 int
   1681 gem_mediachange(ifp)
   1682 	struct ifnet *ifp;
   1683 {
   1684 	struct gem_softc *sc = ifp->if_softc;
   1685 
   1686 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1687 		return (EINVAL);
   1688 
   1689 	return (mii_mediachg(&sc->sc_mii));
   1690 }
   1691 
   1692 void
   1693 gem_mediastatus(ifp, ifmr)
   1694 	struct ifnet *ifp;
   1695 	struct ifmediareq *ifmr;
   1696 {
   1697 	struct gem_softc *sc = ifp->if_softc;
   1698 
   1699 	if ((ifp->if_flags & IFF_UP) == 0)
   1700 		return;
   1701 
   1702 	mii_pollstat(&sc->sc_mii);
   1703 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1704 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1705 }
   1706 
   1707 int gem_ioctldebug = 0;
   1708 /*
   1709  * Process an ioctl request.
   1710  */
   1711 int
   1712 gem_ioctl(ifp, cmd, data)
   1713 	struct ifnet *ifp;
   1714 	u_long cmd;
   1715 	caddr_t data;
   1716 {
   1717 	struct gem_softc *sc = ifp->if_softc;
   1718 	struct ifreq *ifr = (struct ifreq *)data;
   1719 	int s, error = 0;
   1720 
   1721 
   1722 	switch (cmd) {
   1723 	case SIOCGIFMEDIA:
   1724 	case SIOCSIFMEDIA:
   1725 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1726 		break;
   1727 
   1728 	default:
   1729 		error = ether_ioctl(ifp, cmd, data);
   1730 		if (error == ENETRESET) {
   1731 			/*
   1732 			 * Multicast list has changed; set the hardware filter
   1733 			 * accordingly.
   1734 			 */
   1735 if (gem_ioctldebug) printf("reset1\n");
   1736 			gem_init(ifp);
   1737 			delay(50000);
   1738 			error = 0;
   1739 		}
   1740 		break;
   1741 	}
   1742 
   1743 	/* Try to get things going again */
   1744 	if (ifp->if_flags & IFF_UP) {
   1745 if (gem_ioctldebug) printf("start\n");
   1746 		gem_start(ifp);
   1747 	}
   1748 	splx(s);
   1749 	return (error);
   1750 }
   1751 
   1752 
   1753 void
   1754 gem_shutdown(arg)
   1755 	void *arg;
   1756 {
   1757 	struct gem_softc *sc = (struct gem_softc *)arg;
   1758 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1759 
   1760 	gem_stop(ifp, 1);
   1761 }
   1762 
   1763 /*
   1764  * Set up the logical address filter.
   1765  */
   1766 void
   1767 gem_setladrf(sc)
   1768 	struct gem_softc *sc;
   1769 {
   1770 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1771 	struct ether_multi *enm;
   1772 	struct ether_multistep step;
   1773 	struct ethercom *ec = &sc->sc_ethercom;
   1774 	bus_space_tag_t t = sc->sc_bustag;
   1775 	bus_space_handle_t h = sc->sc_h;
   1776 	u_char *cp;
   1777 	u_int32_t crc;
   1778 	u_int32_t hash[16];
   1779 	u_int32_t v;
   1780 	int len;
   1781 
   1782 	/* Clear hash table */
   1783 	memset(hash, 0, sizeof(hash));
   1784 
   1785 	/* Get current RX configuration */
   1786 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1787 
   1788 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1789 		/* Turn on promiscuous mode; turn off the hash filter */
   1790 		v |= GEM_MAC_RX_PROMISCUOUS;
   1791 		v &= ~GEM_MAC_RX_HASH_FILTER;
   1792 		ifp->if_flags |= IFF_ALLMULTI;
   1793 		goto chipit;
   1794 	}
   1795 
   1796 	/* Turn off promiscuous mode; turn on the hash filter */
   1797 	v &= ~GEM_MAC_RX_PROMISCUOUS;
   1798 	v |= GEM_MAC_RX_HASH_FILTER;
   1799 
   1800 	/*
   1801 	 * Set up multicast address filter by passing all multicast addresses
   1802 	 * through a crc generator, and then using the high order 6 bits as an
   1803 	 * index into the 256 bit logical address filter.  The high order bit
   1804 	 * selects the word, while the rest of the bits select the bit within
   1805 	 * the word.
   1806 	 */
   1807 
   1808 	ETHER_FIRST_MULTI(step, ec, enm);
   1809 	while (enm != NULL) {
   1810 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1811 			/*
   1812 			 * We must listen to a range of multicast addresses.
   1813 			 * For now, just accept all multicasts, rather than
   1814 			 * trying to set only those filter bits needed to match
   1815 			 * the range.  (At this time, the only use of address
   1816 			 * ranges is for IP multicast routing, for which the
   1817 			 * range is big enough to require all bits set.)
   1818 			 */
   1819 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1820 			ifp->if_flags |= IFF_ALLMULTI;
   1821 			goto chipit;
   1822 		}
   1823 
   1824 		cp = enm->enm_addrlo;
   1825 		crc = 0xffffffff;
   1826 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1827 			int octet = *cp++;
   1828 			int i;
   1829 
   1830 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1831 			for (i = 0; i < 8; i++) {
   1832 				if ((crc & 1) ^ (octet & 1)) {
   1833 					crc >>= 1;
   1834 					crc ^= MC_POLY_LE;
   1835 				} else {
   1836 					crc >>= 1;
   1837 				}
   1838 				octet >>= 1;
   1839 			}
   1840 		}
   1841 		/* Just want the 8 most significant bits. */
   1842 		crc >>= 24;
   1843 
   1844 		/* Set the corresponding bit in the filter. */
   1845 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1846 
   1847 		ETHER_NEXT_MULTI(step, enm);
   1848 	}
   1849 
   1850 	ifp->if_flags &= ~IFF_ALLMULTI;
   1851 
   1852 chipit:
   1853 	/* Now load the hash table into the chip */
   1854 	bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
   1855 	bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
   1856 	bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
   1857 	bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
   1858 	bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
   1859 	bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
   1860 	bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
   1861 	bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
   1862 	bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
   1863 	bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
   1864 	bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
   1865 	bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
   1866 	bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
   1867 	bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
   1868 	bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
   1869 	bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
   1870 
   1871 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1872 }
   1873 
   1874 #if notyet
   1875 
   1876 /*
   1877  * gem_power:
   1878  *
   1879  *	Power management (suspend/resume) hook.
   1880  */
   1881 void
   1882 gem_power(why, arg)
   1883 	int why;
   1884 	void *arg;
   1885 {
   1886 	struct gem_softc *sc = arg;
   1887 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1888 	int s;
   1889 
   1890 	s = splnet();
   1891 	switch (why) {
   1892 	case PWR_SUSPEND:
   1893 	case PWR_STANDBY:
   1894 		gem_stop(ifp, 1);
   1895 		if (sc->sc_power != NULL)
   1896 			(*sc->sc_power)(sc, why);
   1897 		break;
   1898 	case PWR_RESUME:
   1899 		if (ifp->if_flags & IFF_UP) {
   1900 			if (sc->sc_power != NULL)
   1901 				(*sc->sc_power)(sc, why);
   1902 			gem_init(ifp);
   1903 		}
   1904 		break;
   1905 	case PWR_SOFTSUSPEND:
   1906 	case PWR_SOFTSTANDBY:
   1907 	case PWR_SOFTRESUME:
   1908 		break;
   1909 	}
   1910 	splx(s);
   1911 }
   1912 #endif
   1913