gem.c revision 1.6 1 /* $NetBSD: gem.c,v 1.6 2001/10/18 15:09:15 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include "bpfilter.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/mbuf.h>
42 #include <sys/syslog.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/ioctl.h>
47 #include <sys/errno.h>
48 #include <sys/device.h>
49
50 #include <machine/endian.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58
59 #if NBPFILTER > 0
60 #include <net/bpf.h>
61 #endif
62
63 #include <machine/bus.h>
64 #include <machine/intr.h>
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 #include <dev/mii/mii_bitbang.h>
69
70 #include <dev/ic/gemreg.h>
71 #include <dev/ic/gemvar.h>
72
73 #define TRIES 10000
74
75 void gem_start __P((struct ifnet *));
76 void gem_stop __P((struct ifnet *, int));
77 int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
78 void gem_tick __P((void *));
79 void gem_watchdog __P((struct ifnet *));
80 void gem_shutdown __P((void *));
81 int gem_init __P((struct ifnet *));
82 void gem_init_regs(struct gem_softc *sc);
83 static int gem_ringsize(int sz);
84 int gem_meminit __P((struct gem_softc *));
85 void gem_mifinit __P((struct gem_softc *));
86 void gem_reset __P((struct gem_softc *));
87 int gem_reset_rx(struct gem_softc *sc);
88 int gem_reset_tx(struct gem_softc *sc);
89 int gem_disable_rx(struct gem_softc *sc);
90 int gem_disable_tx(struct gem_softc *sc);
91 void gem_rxdrain(struct gem_softc *sc);
92 int gem_add_rxbuf(struct gem_softc *sc, int idx);
93 void gem_setladrf __P((struct gem_softc *));
94
95 /* MII methods & callbacks */
96 static int gem_mii_readreg __P((struct device *, int, int));
97 static void gem_mii_writereg __P((struct device *, int, int, int));
98 static void gem_mii_statchg __P((struct device *));
99
100 int gem_mediachange __P((struct ifnet *));
101 void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
102
103 struct mbuf *gem_get __P((struct gem_softc *, int, int));
104 int gem_put __P((struct gem_softc *, int, struct mbuf *));
105 void gem_read __P((struct gem_softc *, int, int));
106 int gem_eint __P((struct gem_softc *, u_int));
107 int gem_rint __P((struct gem_softc *));
108 int gem_tint __P((struct gem_softc *));
109 void gem_power __P((int, void *));
110
111 /* Default buffer copy routines */
112 void gem_copytobuf_contig __P((struct gem_softc *, void *, int, int));
113 void gem_copyfrombuf_contig __P((struct gem_softc *, void *, int, int));
114 void gem_zerobuf_contig __P((struct gem_softc *, int, int));
115
116
117 #ifdef GEM_DEBUG
118 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
119 printf x
120 #else
121 #define DPRINTF(sc, x) /* nothing */
122 #endif
123
124
125 /*
126 * gem_attach:
127 *
128 * Attach a Gem interface to the system.
129 */
130 void
131 gem_attach(sc, enaddr)
132 struct gem_softc *sc;
133 const uint8_t *enaddr;
134 {
135 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
136 struct mii_data *mii = &sc->sc_mii;
137 struct mii_softc *child;
138 int i, error;
139
140 /* Make sure the chip is stopped. */
141 ifp->if_softc = sc;
142 gem_reset(sc);
143
144 /*
145 * Allocate the control data structures, and create and load the
146 * DMA map for it.
147 */
148 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
149 sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
150 1, &sc->sc_cdnseg, 0)) != 0) {
151 printf("%s: unable to allocate control data, error = %d\n",
152 sc->sc_dev.dv_xname, error);
153 goto fail_0;
154 }
155
156 /* XXX should map this in with correct endianness */
157 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
158 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
159 BUS_DMA_COHERENT)) != 0) {
160 printf("%s: unable to map control data, error = %d\n",
161 sc->sc_dev.dv_xname, error);
162 goto fail_1;
163 }
164
165 if ((error = bus_dmamap_create(sc->sc_dmatag,
166 sizeof(struct gem_control_data), 1,
167 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
168 printf("%s: unable to create control data DMA map, "
169 "error = %d\n", sc->sc_dev.dv_xname, error);
170 goto fail_2;
171 }
172
173 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
174 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
175 0)) != 0) {
176 printf("%s: unable to load control data DMA map, error = %d\n",
177 sc->sc_dev.dv_xname, error);
178 goto fail_3;
179 }
180
181 /*
182 * Initialize the transmit job descriptors.
183 */
184 SIMPLEQ_INIT(&sc->sc_txfreeq);
185 SIMPLEQ_INIT(&sc->sc_txdirtyq);
186
187 /*
188 * Create the transmit buffer DMA maps.
189 */
190 for (i = 0; i < GEM_TXQUEUELEN; i++) {
191 struct gem_txsoft *txs;
192
193 txs = &sc->sc_txsoft[i];
194 txs->txs_mbuf = NULL;
195 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
196 GEM_NTXSEGS, MCLBYTES, 0, 0,
197 &txs->txs_dmamap)) != 0) {
198 printf("%s: unable to create tx DMA map %d, "
199 "error = %d\n", sc->sc_dev.dv_xname, i, error);
200 goto fail_4;
201 }
202 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
203 }
204
205 /*
206 * Create the receive buffer DMA maps.
207 */
208 for (i = 0; i < GEM_NRXDESC; i++) {
209 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
210 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
211 printf("%s: unable to create rx DMA map %d, "
212 "error = %d\n", sc->sc_dev.dv_xname, i, error);
213 goto fail_5;
214 }
215 sc->sc_rxsoft[i].rxs_mbuf = NULL;
216 }
217
218 /*
219 * From this point forward, the attachment cannot fail. A failure
220 * before this point releases all resources that may have been
221 * allocated.
222 */
223
224 /* Announce ourselves. */
225 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
226 ether_sprintf(enaddr));
227
228 /* Initialize ifnet structure. */
229 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
230 ifp->if_softc = sc;
231 ifp->if_flags =
232 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
233 ifp->if_start = gem_start;
234 ifp->if_ioctl = gem_ioctl;
235 ifp->if_watchdog = gem_watchdog;
236 ifp->if_stop = gem_stop;
237 ifp->if_init = gem_init;
238 IFQ_SET_READY(&ifp->if_snd);
239
240 /* Initialize ifmedia structures and MII info */
241 mii->mii_ifp = ifp;
242 mii->mii_readreg = gem_mii_readreg;
243 mii->mii_writereg = gem_mii_writereg;
244 mii->mii_statchg = gem_mii_statchg;
245
246 ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
247
248 gem_mifinit(sc);
249
250 mii_attach(&sc->sc_dev, mii, 0xffffffff,
251 MII_PHY_ANY, MII_OFFSET_ANY, 0);
252
253 child = LIST_FIRST(&mii->mii_phys);
254 if (child == NULL) {
255 /* No PHY attached */
256 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
257 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
258 } else {
259 /*
260 * Walk along the list of attached MII devices and
261 * establish an `MII instance' to `phy number'
262 * mapping. We'll use this mapping in media change
263 * requests to determine which phy to use to program
264 * the MIF configuration register.
265 */
266 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
267 /*
268 * Note: we support just two PHYs: the built-in
269 * internal device and an external on the MII
270 * connector.
271 */
272 if (child->mii_phy > 1 || child->mii_inst > 1) {
273 printf("%s: cannot accomodate MII device %s"
274 " at phy %d, instance %d\n",
275 sc->sc_dev.dv_xname,
276 child->mii_dev.dv_xname,
277 child->mii_phy, child->mii_inst);
278 continue;
279 }
280
281 sc->sc_phys[child->mii_inst] = child->mii_phy;
282 }
283
284 /*
285 * Now select and activate the PHY we will use.
286 *
287 * The order of preference is External (MDI1),
288 * Internal (MDI0), Serial Link (no MII).
289 */
290 if (sc->sc_phys[1]) {
291 #ifdef DEBUG
292 printf("using external phy\n");
293 #endif
294 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
295 } else {
296 #ifdef DEBUG
297 printf("using internal phy\n");
298 #endif
299 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
300 }
301 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
302 sc->sc_mif_config);
303
304 /*
305 * XXX - we can really do the following ONLY if the
306 * phy indeed has the auto negotiation capability!!
307 */
308 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
309 }
310
311 /* claim 802.1q capability */
312 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
313
314 /* Attach the interface. */
315 if_attach(ifp);
316 ether_ifattach(ifp, enaddr);
317
318 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
319 if (sc->sc_sh == NULL)
320 panic("gem_config: can't establish shutdownhook");
321
322 #if NRND > 0
323 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
324 RND_TYPE_NET, 0);
325 #endif
326
327
328 #if notyet
329 /*
330 * Add a suspend hook to make sure we come back up after a
331 * resume.
332 */
333 sc->sc_powerhook = powerhook_establish(gem_power, sc);
334 if (sc->sc_powerhook == NULL)
335 printf("%s: WARNING: unable to establish power hook\n",
336 sc->sc_dev.dv_xname);
337 #endif
338
339 callout_init(&sc->sc_tick_ch);
340 return;
341
342 /*
343 * Free any resources we've allocated during the failed attach
344 * attempt. Do this in reverse order and fall through.
345 */
346 fail_5:
347 for (i = 0; i < GEM_NRXDESC; i++) {
348 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
349 bus_dmamap_destroy(sc->sc_dmatag,
350 sc->sc_rxsoft[i].rxs_dmamap);
351 }
352 fail_4:
353 for (i = 0; i < GEM_TXQUEUELEN; i++) {
354 if (sc->sc_txsoft[i].txs_dmamap != NULL)
355 bus_dmamap_destroy(sc->sc_dmatag,
356 sc->sc_txsoft[i].txs_dmamap);
357 }
358 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
359 fail_3:
360 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
361 fail_2:
362 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
363 sizeof(struct gem_control_data));
364 fail_1:
365 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
366 fail_0:
367 return;
368 }
369
370
371 void
372 gem_tick(arg)
373 void *arg;
374 {
375 struct gem_softc *sc = arg;
376 int s;
377
378 s = splnet();
379 mii_tick(&sc->sc_mii);
380 splx(s);
381
382 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
383
384 }
385
386 void
387 gem_reset(sc)
388 struct gem_softc *sc;
389 {
390 bus_space_tag_t t = sc->sc_bustag;
391 bus_space_handle_t h = sc->sc_h;
392 int i;
393 int s;
394
395 s = splnet();
396 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
397 gem_reset_rx(sc);
398 gem_reset_tx(sc);
399
400 /* Do a full reset */
401 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
402 for (i=TRIES; i--; delay(100))
403 if ((bus_space_read_4(t, h, GEM_RESET) &
404 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
405 break;
406 if ((bus_space_read_4(t, h, GEM_RESET) &
407 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
408 printf("%s: cannot reset device\n",
409 sc->sc_dev.dv_xname);
410 }
411 splx(s);
412 }
413
414
415 /*
416 * gem_rxdrain:
417 *
418 * Drain the receive queue.
419 */
420 void
421 gem_rxdrain(struct gem_softc *sc)
422 {
423 struct gem_rxsoft *rxs;
424 int i;
425
426 for (i = 0; i < GEM_NRXDESC; i++) {
427 rxs = &sc->sc_rxsoft[i];
428 if (rxs->rxs_mbuf != NULL) {
429 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
430 m_freem(rxs->rxs_mbuf);
431 rxs->rxs_mbuf = NULL;
432 }
433 }
434 }
435
436 /*
437 * Reset the whole thing.
438 */
439 void
440 gem_stop(struct ifnet *ifp, int disable)
441 {
442 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
443 struct gem_txsoft *txs;
444
445 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
446
447 callout_stop(&sc->sc_tick_ch);
448 mii_down(&sc->sc_mii);
449
450 /* XXX - Should we reset these instead? */
451 gem_disable_rx(sc);
452 gem_disable_rx(sc);
453
454 /*
455 * Release any queued transmit buffers.
456 */
457 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
458 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
459 if (txs->txs_mbuf != NULL) {
460 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
461 m_freem(txs->txs_mbuf);
462 txs->txs_mbuf = NULL;
463 }
464 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
465 }
466
467 if (disable) {
468 gem_rxdrain(sc);
469 }
470
471 /*
472 * Mark the interface down and cancel the watchdog timer.
473 */
474 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
475 ifp->if_timer = 0;
476 }
477
478
479 /*
480 * Reset the receiver
481 */
482 int
483 gem_reset_rx(struct gem_softc *sc)
484 {
485 bus_space_tag_t t = sc->sc_bustag;
486 bus_space_handle_t h = sc->sc_h;
487 int i;
488
489
490 /*
491 * Resetting while DMA is in progress can cause a bus hang, so we
492 * disable DMA first.
493 */
494 gem_disable_rx(sc);
495 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
496 /* Wait till it finishes */
497 for (i=TRIES; i--; delay(100))
498 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
499 break;
500 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
501 printf("%s: cannot disable read dma\n",
502 sc->sc_dev.dv_xname);
503
504 /* Wait 5ms extra. */
505 delay(5000);
506
507 /* Finally, reset the ERX */
508 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
509 /* Wait till it finishes */
510 for (i=TRIES; i--; delay(100))
511 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
512 break;
513 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
514 printf("%s: cannot reset receiver\n",
515 sc->sc_dev.dv_xname);
516 return (1);
517 }
518 return (0);
519 }
520
521
522 /*
523 * Reset the transmitter
524 */
525 int
526 gem_reset_tx(struct gem_softc *sc)
527 {
528 bus_space_tag_t t = sc->sc_bustag;
529 bus_space_handle_t h = sc->sc_h;
530 int i;
531
532 /*
533 * Resetting while DMA is in progress can cause a bus hang, so we
534 * disable DMA first.
535 */
536 gem_disable_tx(sc);
537 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
538 /* Wait till it finishes */
539 for (i=TRIES; i--; delay(100))
540 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
541 break;
542 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
543 printf("%s: cannot disable read dma\n",
544 sc->sc_dev.dv_xname);
545
546 /* Wait 5ms extra. */
547 delay(5000);
548
549 /* Finally, reset the ETX */
550 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
551 /* Wait till it finishes */
552 for (i=TRIES; i--; delay(100))
553 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
554 break;
555 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
556 printf("%s: cannot reset receiver\n",
557 sc->sc_dev.dv_xname);
558 return (1);
559 }
560 return (0);
561 }
562
563 /*
564 * disable receiver.
565 */
566 int
567 gem_disable_rx(struct gem_softc *sc)
568 {
569 bus_space_tag_t t = sc->sc_bustag;
570 bus_space_handle_t h = sc->sc_h;
571 int i;
572 u_int32_t cfg;
573
574 /* Flip the enable bit */
575 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
576 cfg &= ~GEM_MAC_RX_ENABLE;
577 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
578
579 /* Wait for it to finish */
580 for (i=TRIES; i--; delay(100))
581 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
582 GEM_MAC_RX_ENABLE) == 0)
583 return (0);
584 return (1);
585 }
586
587 /*
588 * disable transmitter.
589 */
590 int
591 gem_disable_tx(struct gem_softc *sc)
592 {
593 bus_space_tag_t t = sc->sc_bustag;
594 bus_space_handle_t h = sc->sc_h;
595 int i;
596 u_int32_t cfg;
597
598 /* Flip the enable bit */
599 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
600 cfg &= ~GEM_MAC_TX_ENABLE;
601 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
602
603 /* Wait for it to finish */
604 for (i=TRIES; i--; delay(100))
605 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
606 GEM_MAC_TX_ENABLE) == 0)
607 return (0);
608 return (1);
609 }
610
611 /*
612 * Initialize interface.
613 */
614 int
615 gem_meminit(struct gem_softc *sc)
616 {
617 struct gem_rxsoft *rxs;
618 int i, error;
619
620 /*
621 * Initialize the transmit descriptor ring.
622 */
623 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
624 for (i = 0; i < GEM_NTXDESC; i++) {
625 sc->sc_txdescs[i].gd_flags = 0;
626 sc->sc_txdescs[i].gd_addr = 0;
627 }
628 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
629 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
630 sc->sc_txfree = GEM_NTXDESC;
631 sc->sc_txnext = 0;
632
633 /*
634 * Initialize the receive descriptor and receive job
635 * descriptor rings.
636 */
637 for (i = 0; i < GEM_NRXDESC; i++) {
638 rxs = &sc->sc_rxsoft[i];
639 if (rxs->rxs_mbuf == NULL) {
640 if ((error = gem_add_rxbuf(sc, i)) != 0) {
641 printf("%s: unable to allocate or map rx "
642 "buffer %d, error = %d\n",
643 sc->sc_dev.dv_xname, i, error);
644 /*
645 * XXX Should attempt to run with fewer receive
646 * XXX buffers instead of just failing.
647 */
648 gem_rxdrain(sc);
649 return (1);
650 }
651 } else
652 GEM_INIT_RXDESC(sc, i);
653 }
654 sc->sc_rxptr = 0;
655
656 return (0);
657 }
658
659 static int
660 gem_ringsize(int sz)
661 {
662 int v;
663
664 switch (sz) {
665 case 32:
666 v = GEM_RING_SZ_32;
667 break;
668 case 64:
669 v = GEM_RING_SZ_64;
670 break;
671 case 128:
672 v = GEM_RING_SZ_128;
673 break;
674 case 256:
675 v = GEM_RING_SZ_256;
676 break;
677 case 512:
678 v = GEM_RING_SZ_512;
679 break;
680 case 1024:
681 v = GEM_RING_SZ_1024;
682 break;
683 case 2048:
684 v = GEM_RING_SZ_2048;
685 break;
686 case 4096:
687 v = GEM_RING_SZ_4096;
688 break;
689 case 8192:
690 v = GEM_RING_SZ_8192;
691 break;
692 default:
693 printf("gem: invalid Receive Descriptor ring size\n");
694 break;
695 }
696 return (v);
697 }
698
699 /*
700 * Initialization of interface; set up initialization block
701 * and transmit/receive descriptor rings.
702 */
703 int
704 gem_init(struct ifnet *ifp)
705 {
706 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
707 bus_space_tag_t t = sc->sc_bustag;
708 bus_space_handle_t h = sc->sc_h;
709 int s;
710 u_int32_t v;
711
712 s = splnet();
713
714 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
715 /*
716 * Initialization sequence. The numbered steps below correspond
717 * to the sequence outlined in section 6.3.5.1 in the Ethernet
718 * Channel Engine manual (part of the PCIO manual).
719 * See also the STP2002-STQ document from Sun Microsystems.
720 */
721
722 /* step 1 & 2. Reset the Ethernet Channel */
723 gem_stop(ifp, 0);
724 gem_reset(sc);
725 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
726
727 /* Re-initialize the MIF */
728 gem_mifinit(sc);
729
730 /* Call MI reset function if any */
731 if (sc->sc_hwreset)
732 (*sc->sc_hwreset)(sc);
733
734 /* step 3. Setup data structures in host memory */
735 gem_meminit(sc);
736
737 /* step 4. TX MAC registers & counters */
738 gem_init_regs(sc);
739 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
740 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
741 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN + sizeof(struct ether_header):
742 ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
743
744 /* step 5. RX MAC registers & counters */
745 gem_setladrf(sc);
746
747 /* step 6 & 7. Program Descriptor Ring Base Addresses */
748 /* NOTE: we use only 32-bit DMA addresses here. */
749 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
750 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
751
752 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
753 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
754
755 /* step 8. Global Configuration & Interrupt Mask */
756 bus_space_write_4(t, h, GEM_INTMASK,
757 ~(GEM_INTR_TX_INTME|
758 GEM_INTR_TX_EMPTY|
759 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
760 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
761 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
762 GEM_INTR_BERR));
763 bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
764 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
765 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
766
767 /* step 9. ETX Configuration: use mostly default values */
768
769 /* Enable DMA */
770 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
771 bus_space_write_4(t, h, GEM_TX_CONFIG,
772 v|GEM_TX_CONFIG_TXDMA_EN|
773 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
774 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
775
776 /* step 10. ERX Configuration */
777
778 /* Encode Receive Descriptor ring size: four possible values */
779 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
780
781 /* Enable DMA */
782 bus_space_write_4(t, h, GEM_RX_CONFIG,
783 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
784 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
785 (0<<GEM_RX_CONFIG_CXM_START_SHFT));
786 /*
787 * The following value is for an OFF Threshold of about 15.5 Kbytes
788 * and an ON Threshold of 4K bytes.
789 */
790 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
791 bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
792
793 /* step 11. Configure Media */
794 gem_mii_statchg(&sc->sc_dev);
795
796 /* XXXX Serial link needs a whole different setup. */
797
798
799 /* step 12. RX_MAC Configuration Register */
800 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
801 v |= GEM_MAC_RX_ENABLE;
802 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
803
804 /* step 14. Issue Transmit Pending command */
805
806 /* Call MI initialization function if any */
807 if (sc->sc_hwinit)
808 (*sc->sc_hwinit)(sc);
809
810
811 /* step 15. Give the reciever a swift kick */
812 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
813
814 /* Start the one second timer. */
815 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
816
817 ifp->if_flags |= IFF_RUNNING;
818 ifp->if_flags &= ~IFF_OACTIVE;
819 ifp->if_timer = 0;
820 splx(s);
821
822 return (0);
823 }
824
825 void
826 gem_init_regs(struct gem_softc *sc)
827 {
828 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
829 bus_space_tag_t t = sc->sc_bustag;
830 bus_space_handle_t h = sc->sc_h;
831
832 /* These regs are not cleared on reset */
833 sc->sc_inited = 0;
834 if (!sc->sc_inited) {
835
836 /* Wooo. Magic values. */
837 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
838 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
839 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
840
841 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
842 /* Max frame and max burst size */
843 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
844 (ifp->if_mtu+18) | (0x2000<<16)/* Burst size */);
845 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
846 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
847 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
848 /* Dunno.... */
849 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
850 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
851 ((LLADDR(ifp->if_sadl)[5]<<8)|
852 LLADDR(ifp->if_sadl)[4])&0x3ff);
853 /* Secondary MAC addr set to 0:0:0:0:0:0 */
854 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
855 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
856 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
857 /* MAC control addr set to 0:1:c2:0:1:80 */
858 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
859 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
860 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
861
862 /* MAC filter addr set to 0:0:0:0:0:0 */
863 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
864 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
865 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
866
867 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
868 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
869
870 sc->sc_inited = 1;
871 }
872
873 /* Counters need to be zeroed */
874 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
875 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
876 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
877 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
878 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
879 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
880 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
881 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
882 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
883 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
884 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
885
886 /* Un-pause stuff */
887 #if 0
888 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
889 #else
890 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
891 #endif
892
893 /*
894 * Set the station address.
895 */
896 bus_space_write_4(t, h, GEM_MAC_ADDR0,
897 (LLADDR(ifp->if_sadl)[4]<<8) | LLADDR(ifp->if_sadl)[5]);
898 bus_space_write_4(t, h, GEM_MAC_ADDR1,
899 (LLADDR(ifp->if_sadl)[2]<<8) | LLADDR(ifp->if_sadl)[3]);
900 bus_space_write_4(t, h, GEM_MAC_ADDR2,
901 (LLADDR(ifp->if_sadl)[0]<<8) | LLADDR(ifp->if_sadl)[1]);
902
903 }
904
905
906
907 void
908 gem_start(ifp)
909 struct ifnet *ifp;
910 {
911 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
912 struct mbuf *m0, *m;
913 struct gem_txsoft *txs, *last_txs;
914 bus_dmamap_t dmamap;
915 int error, firsttx, nexttx, lasttx, ofree, seg;
916
917 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
918 return;
919
920 /*
921 * Remember the previous number of free descriptors and
922 * the first descriptor we'll use.
923 */
924 ofree = sc->sc_txfree;
925 firsttx = sc->sc_txnext;
926
927 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
928 sc->sc_dev.dv_xname, ofree, firsttx));
929
930 /*
931 * Loop through the send queue, setting up transmit descriptors
932 * until we drain the queue, or use up all available transmit
933 * descriptors.
934 */
935 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
936 sc->sc_txfree != 0) {
937 /*
938 * Grab a packet off the queue.
939 */
940 IFQ_POLL(&ifp->if_snd, m0);
941 if (m0 == NULL)
942 break;
943 m = NULL;
944
945 dmamap = txs->txs_dmamap;
946
947 /*
948 * Load the DMA map. If this fails, the packet either
949 * didn't fit in the alloted number of segments, or we were
950 * short on resources. In this case, we'll copy and try
951 * again.
952 */
953 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
954 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
955 MGETHDR(m, M_DONTWAIT, MT_DATA);
956 if (m == NULL) {
957 printf("%s: unable to allocate Tx mbuf\n",
958 sc->sc_dev.dv_xname);
959 break;
960 }
961 if (m0->m_pkthdr.len > MHLEN) {
962 MCLGET(m, M_DONTWAIT);
963 if ((m->m_flags & M_EXT) == 0) {
964 printf("%s: unable to allocate Tx "
965 "cluster\n", sc->sc_dev.dv_xname);
966 m_freem(m);
967 break;
968 }
969 }
970 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
971 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
972 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
973 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
974 if (error) {
975 printf("%s: unable to load Tx buffer, "
976 "error = %d\n", sc->sc_dev.dv_xname, error);
977 break;
978 }
979 }
980
981 /*
982 * Ensure we have enough descriptors free to describe
983 * the packet.
984 */
985 if (dmamap->dm_nsegs > sc->sc_txfree) {
986 /*
987 * Not enough free descriptors to transmit this
988 * packet. We haven't committed to anything yet,
989 * so just unload the DMA map, put the packet
990 * back on the queue, and punt. Notify the upper
991 * layer that there are no more slots left.
992 *
993 * XXX We could allocate an mbuf and copy, but
994 * XXX it is worth it?
995 */
996 ifp->if_flags |= IFF_OACTIVE;
997 bus_dmamap_unload(sc->sc_dmatag, dmamap);
998 if (m != NULL)
999 m_freem(m);
1000 break;
1001 }
1002
1003 IFQ_DEQUEUE(&ifp->if_snd, m0);
1004 if (m != NULL) {
1005 m_freem(m0);
1006 m0 = m;
1007 }
1008
1009 /*
1010 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1011 */
1012
1013 /* Sync the DMA map. */
1014 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1015 BUS_DMASYNC_PREWRITE);
1016
1017 /*
1018 * Initialize the transmit descriptors.
1019 */
1020 for (nexttx = sc->sc_txnext, seg = 0;
1021 seg < dmamap->dm_nsegs;
1022 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1023 uint64_t flags;
1024
1025 /*
1026 * If this is the first descriptor we're
1027 * enqueueing, set the start of packet flag,
1028 * and the checksum stuff if we want the hardware
1029 * to do it.
1030 */
1031 sc->sc_txdescs[nexttx].gd_addr =
1032 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1033 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1034 if (nexttx == firsttx) {
1035 flags |= GEM_TD_START_OF_PACKET;
1036 }
1037 if (seg == dmamap->dm_nsegs - 1) {
1038 flags |= GEM_TD_END_OF_PACKET;
1039 }
1040 sc->sc_txdescs[nexttx].gd_flags =
1041 GEM_DMA_WRITE(sc, flags);
1042 lasttx = nexttx;
1043 }
1044
1045 #ifdef GEM_DEBUG
1046 if (ifp->if_flags & IFF_DEBUG) {
1047 printf(" gem_start %p transmit chain:\n", txs);
1048 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1049 printf("descriptor %d:\t", seg);
1050 printf("gd_flags: 0x%016llx\t", (long long)
1051 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1052 printf("gd_addr: 0x%016llx\n", (long long)
1053 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1054 if (seg == lasttx)
1055 break;
1056 }
1057 }
1058 #endif
1059
1060 /* Sync the descriptors we're using. */
1061 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1062 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1063
1064 /*
1065 * Store a pointer to the packet so we can free it later,
1066 * and remember what txdirty will be once the packet is
1067 * done.
1068 */
1069 txs->txs_mbuf = m0;
1070 txs->txs_firstdesc = sc->sc_txnext;
1071 txs->txs_lastdesc = lasttx;
1072 txs->txs_ndescs = dmamap->dm_nsegs;
1073
1074 /* Advance the tx pointer. */
1075 sc->sc_txfree -= dmamap->dm_nsegs;
1076 sc->sc_txnext = nexttx;
1077
1078 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1079 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1080
1081 last_txs = txs;
1082
1083 #if NBPFILTER > 0
1084 /*
1085 * Pass the packet to any BPF listeners.
1086 */
1087 if (ifp->if_bpf)
1088 bpf_mtap(ifp->if_bpf, m0);
1089 #endif /* NBPFILTER > 0 */
1090 }
1091
1092 if (txs == NULL || sc->sc_txfree == 0) {
1093 /* No more slots left; notify upper layer. */
1094 ifp->if_flags |= IFF_OACTIVE;
1095 }
1096
1097 if (sc->sc_txfree != ofree) {
1098 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1099 sc->sc_dev.dv_xname, lasttx, firsttx));
1100 /*
1101 * The entire packet chain is set up.
1102 * Kick the transmitter.
1103 */
1104 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1105 sc->sc_dev.dv_xname, nexttx));
1106 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1107 sc->sc_txnext);
1108
1109 /* Set a watchdog timer in case the chip flakes out. */
1110 ifp->if_timer = 5;
1111 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1112 sc->sc_dev.dv_xname, ifp->if_timer));
1113 }
1114 }
1115
1116 /*
1117 * Transmit interrupt.
1118 */
1119 int
1120 gem_tint(sc)
1121 struct gem_softc *sc;
1122 {
1123 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1124 bus_space_tag_t t = sc->sc_bustag;
1125 bus_space_handle_t mac = sc->sc_h;
1126 struct gem_txsoft *txs;
1127 int txlast;
1128
1129
1130 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1131
1132 /*
1133 * Unload collision counters
1134 */
1135 ifp->if_collisions +=
1136 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1137 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1138 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1139 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1140
1141 /*
1142 * then clear the hardware counters.
1143 */
1144 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1145 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1146 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1147 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1148
1149 /*
1150 * Go through our Tx list and free mbufs for those
1151 * frames that have been transmitted.
1152 */
1153 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1154 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1155 txs->txs_ndescs,
1156 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1157
1158 #ifdef GEM_DEBUG
1159 if (ifp->if_flags & IFF_DEBUG) {
1160 int i;
1161 printf(" txsoft %p transmit chain:\n", txs);
1162 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1163 printf("descriptor %d: ", i);
1164 printf("gd_flags: 0x%016llx\t", (long long)
1165 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1166 printf("gd_addr: 0x%016llx\n", (long long)
1167 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1168 if (i == txs->txs_lastdesc)
1169 break;
1170 }
1171 }
1172 #endif
1173
1174 /*
1175 * In theory, we could harveast some descriptors before
1176 * the ring is empty, but that's a bit complicated.
1177 *
1178 * GEM_TX_COMPLETION points to the last descriptor
1179 * processed +1.
1180 */
1181 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1182 DPRINTF(sc,
1183 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1184 txs->txs_lastdesc, txlast));
1185 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1186 if ((txlast >= txs->txs_firstdesc) &&
1187 (txlast <= txs->txs_lastdesc))
1188 break;
1189 } else {
1190 /* Ick -- this command wraps */
1191 if ((txlast >= txs->txs_firstdesc) ||
1192 (txlast <= txs->txs_lastdesc))
1193 break;
1194 }
1195
1196 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1197 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1198
1199 sc->sc_txfree += txs->txs_ndescs;
1200
1201 if (txs->txs_mbuf == NULL) {
1202 #ifdef DIAGNOSTIC
1203 panic("gem_txintr: null mbuf");
1204 #endif
1205 }
1206
1207 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1208 0, txs->txs_dmamap->dm_mapsize,
1209 BUS_DMASYNC_POSTWRITE);
1210 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1211 m_freem(txs->txs_mbuf);
1212 txs->txs_mbuf = NULL;
1213
1214 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1215
1216 ifp->if_opackets++;
1217 }
1218
1219 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1220 "GEM_TX_DATA_PTR %llx "
1221 "GEM_TX_COMPLETION %x\n",
1222 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1223 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1224 GEM_TX_DATA_PTR_HI) << 32) |
1225 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1226 GEM_TX_DATA_PTR_LO),
1227 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1228
1229 gem_start(ifp);
1230
1231 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1232 ifp->if_timer = 0;
1233 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1234 sc->sc_dev.dv_xname, ifp->if_timer));
1235
1236 return (1);
1237 }
1238
1239 /*
1240 * Receive interrupt.
1241 */
1242 int
1243 gem_rint(sc)
1244 struct gem_softc *sc;
1245 {
1246 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1247 bus_space_tag_t t = sc->sc_bustag;
1248 bus_space_handle_t h = sc->sc_h;
1249 struct ether_header *eh;
1250 struct gem_rxsoft *rxs;
1251 struct mbuf *m;
1252 u_int64_t rxstat;
1253 int i, len;
1254
1255 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1256 /*
1257 * XXXX Read the lastrx only once at the top for speed.
1258 */
1259 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1260 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1261 for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1262 i = GEM_NEXTRX(i)) {
1263 rxs = &sc->sc_rxsoft[i];
1264
1265 GEM_CDRXSYNC(sc, i,
1266 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1267
1268 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1269
1270 if (rxstat & GEM_RD_OWN) {
1271 printf("gem_rint: completed descriptor "
1272 "still owned %d\n", i);
1273 /*
1274 * We have processed all of the receive buffers.
1275 */
1276 break;
1277 }
1278
1279 if (rxstat & GEM_RD_BAD_CRC) {
1280 printf("%s: receive error: CRC error\n",
1281 sc->sc_dev.dv_xname);
1282 GEM_INIT_RXDESC(sc, i);
1283 continue;
1284 }
1285
1286 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1287 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1288 #ifdef GEM_DEBUG
1289 if (ifp->if_flags & IFF_DEBUG) {
1290 printf(" rxsoft %p descriptor %d: ", rxs, i);
1291 printf("gd_flags: 0x%016llx\t", (long long)
1292 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1293 printf("gd_addr: 0x%016llx\n", (long long)
1294 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1295 }
1296 #endif
1297
1298 /*
1299 * No errors; receive the packet. Note the Gem
1300 * includes the CRC with every packet.
1301 */
1302 len = GEM_RD_BUFLEN(rxstat);
1303
1304 /*
1305 * Allocate a new mbuf cluster. If that fails, we are
1306 * out of memory, and must drop the packet and recycle
1307 * the buffer that's already attached to this descriptor.
1308 */
1309 m = rxs->rxs_mbuf;
1310 if (gem_add_rxbuf(sc, i) != 0) {
1311 ifp->if_ierrors++;
1312 GEM_INIT_RXDESC(sc, i);
1313 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1314 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1315 continue;
1316 }
1317 m->m_data += 2; /* We're already off by two */
1318
1319 ifp->if_ipackets++;
1320 eh = mtod(m, struct ether_header *);
1321 m->m_flags |= M_HASFCS;
1322 m->m_pkthdr.rcvif = ifp;
1323 m->m_pkthdr.len = m->m_len = len;
1324
1325 #if NBPFILTER > 0
1326 /*
1327 * Pass this up to any BPF listeners, but only
1328 * pass it up the stack if its for us.
1329 */
1330 if (ifp->if_bpf)
1331 bpf_mtap(ifp->if_bpf, m);
1332 #endif /* NPBFILTER > 0 */
1333
1334 #if 0
1335 /*
1336 * We sometimes have to run the 21140 in Hash-Only
1337 * mode. If we're in that mode, and not in promiscuous
1338 * mode, and we have a unicast packet that isn't for
1339 * us, then drop it.
1340 */
1341 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY &&
1342 (ifp->if_flags & IFF_PROMISC) == 0 &&
1343 ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
1344 memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
1345 ETHER_ADDR_LEN) != 0) {
1346 m_freem(m);
1347 continue;
1348 }
1349 #endif
1350
1351 /* Pass it on. */
1352 (*ifp->if_input)(ifp, m);
1353 }
1354
1355 /* Update the receive pointer. */
1356 sc->sc_rxptr = i;
1357 bus_space_write_4(t, h, GEM_RX_KICK, i);
1358
1359 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1360 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1361
1362 return (1);
1363 }
1364
1365
1366 /*
1367 * gem_add_rxbuf:
1368 *
1369 * Add a receive buffer to the indicated descriptor.
1370 */
1371 int
1372 gem_add_rxbuf(struct gem_softc *sc, int idx)
1373 {
1374 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1375 struct mbuf *m;
1376 int error;
1377
1378 MGETHDR(m, M_DONTWAIT, MT_DATA);
1379 if (m == NULL)
1380 return (ENOBUFS);
1381
1382 MCLGET(m, M_DONTWAIT);
1383 if ((m->m_flags & M_EXT) == 0) {
1384 m_freem(m);
1385 return (ENOBUFS);
1386 }
1387
1388 #ifdef GEM_DEBUG
1389 /* bzero the packet to check dma */
1390 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1391 #endif
1392
1393 if (rxs->rxs_mbuf != NULL)
1394 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1395
1396 rxs->rxs_mbuf = m;
1397
1398 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1399 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1400 BUS_DMA_READ|BUS_DMA_NOWAIT);
1401 if (error) {
1402 printf("%s: can't load rx DMA map %d, error = %d\n",
1403 sc->sc_dev.dv_xname, idx, error);
1404 panic("gem_add_rxbuf"); /* XXX */
1405 }
1406
1407 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1408 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1409
1410 GEM_INIT_RXDESC(sc, idx);
1411
1412 return (0);
1413 }
1414
1415
1416 int
1417 gem_eint(sc, status)
1418 struct gem_softc *sc;
1419 u_int status;
1420 {
1421 char bits[128];
1422
1423 if ((status & GEM_INTR_MIF) != 0) {
1424 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1425 return (1);
1426 }
1427
1428 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1429 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1430 return (1);
1431 }
1432
1433
1434 int
1435 gem_intr(v)
1436 void *v;
1437 {
1438 struct gem_softc *sc = (struct gem_softc *)v;
1439 bus_space_tag_t t = sc->sc_bustag;
1440 bus_space_handle_t seb = sc->sc_h;
1441 u_int32_t status;
1442 int r = 0;
1443 #ifdef GEM_DEBUG
1444 char bits[128];
1445 #endif
1446
1447 status = bus_space_read_4(t, seb, GEM_STATUS);
1448 DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1449 sc->sc_dev.dv_xname, (status>>19),
1450 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1451
1452 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1453 r |= gem_eint(sc, status);
1454
1455 if ((status &
1456 (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME))
1457 != 0)
1458 r |= gem_tint(sc);
1459
1460 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1461 r |= gem_rint(sc);
1462
1463 /* We should eventually do more than just print out error stats. */
1464 if (status & GEM_INTR_TX_MAC) {
1465 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1466 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1467 printf("MAC tx fault, status %x\n", txstat);
1468 }
1469 if (status & GEM_INTR_RX_MAC) {
1470 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1471 if (rxstat & ~GEM_MAC_RX_DONE)
1472 printf("MAC rx fault, status %x\n", rxstat);
1473 }
1474 return (r);
1475 }
1476
1477
1478 void
1479 gem_watchdog(ifp)
1480 struct ifnet *ifp;
1481 {
1482 struct gem_softc *sc = ifp->if_softc;
1483
1484 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1485 "GEM_MAC_RX_CONFIG %x\n",
1486 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1487 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1488 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1489
1490 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1491 ++ifp->if_oerrors;
1492
1493 /* Try to get more packets going. */
1494 gem_start(ifp);
1495 }
1496
1497 /*
1498 * Initialize the MII Management Interface
1499 */
1500 void
1501 gem_mifinit(sc)
1502 struct gem_softc *sc;
1503 {
1504 bus_space_tag_t t = sc->sc_bustag;
1505 bus_space_handle_t mif = sc->sc_h;
1506
1507 /* Configure the MIF in frame mode */
1508 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1509 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1510 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1511 }
1512
1513 /*
1514 * MII interface
1515 *
1516 * The GEM MII interface supports at least three different operating modes:
1517 *
1518 * Bitbang mode is implemented using data, clock and output enable registers.
1519 *
1520 * Frame mode is implemented by loading a complete frame into the frame
1521 * register and polling the valid bit for completion.
1522 *
1523 * Polling mode uses the frame register but completion is indicated by
1524 * an interrupt.
1525 *
1526 */
1527 static int
1528 gem_mii_readreg(self, phy, reg)
1529 struct device *self;
1530 int phy, reg;
1531 {
1532 struct gem_softc *sc = (void *)self;
1533 bus_space_tag_t t = sc->sc_bustag;
1534 bus_space_handle_t mif = sc->sc_h;
1535 int n;
1536 u_int32_t v;
1537
1538 #ifdef GEM_DEBUG1
1539 if (sc->sc_debug)
1540 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1541 #endif
1542
1543 #if 0
1544 /* Select the desired PHY in the MIF configuration register */
1545 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1546 /* Clear PHY select bit */
1547 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1548 if (phy == GEM_PHYAD_EXTERNAL)
1549 /* Set PHY select bit to get at external device */
1550 v |= GEM_MIF_CONFIG_PHY_SEL;
1551 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1552 #endif
1553
1554 /* Construct the frame command */
1555 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1556 GEM_MIF_FRAME_READ;
1557
1558 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1559 for (n = 0; n < 100; n++) {
1560 DELAY(1);
1561 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1562 if (v & GEM_MIF_FRAME_TA0)
1563 return (v & GEM_MIF_FRAME_DATA);
1564 }
1565
1566 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1567 return (0);
1568 }
1569
1570 static void
1571 gem_mii_writereg(self, phy, reg, val)
1572 struct device *self;
1573 int phy, reg, val;
1574 {
1575 struct gem_softc *sc = (void *)self;
1576 bus_space_tag_t t = sc->sc_bustag;
1577 bus_space_handle_t mif = sc->sc_h;
1578 int n;
1579 u_int32_t v;
1580
1581 #ifdef GEM_DEBUG1
1582 if (sc->sc_debug)
1583 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1584 phy, reg, val);
1585 #endif
1586
1587 #if 0
1588 /* Select the desired PHY in the MIF configuration register */
1589 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1590 /* Clear PHY select bit */
1591 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1592 if (phy == GEM_PHYAD_EXTERNAL)
1593 /* Set PHY select bit to get at external device */
1594 v |= GEM_MIF_CONFIG_PHY_SEL;
1595 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1596 #endif
1597 /* Construct the frame command */
1598 v = GEM_MIF_FRAME_WRITE |
1599 (phy << GEM_MIF_PHY_SHIFT) |
1600 (reg << GEM_MIF_REG_SHIFT) |
1601 (val & GEM_MIF_FRAME_DATA);
1602
1603 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1604 for (n = 0; n < 100; n++) {
1605 DELAY(1);
1606 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1607 if (v & GEM_MIF_FRAME_TA0)
1608 return;
1609 }
1610
1611 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1612 }
1613
1614 static void
1615 gem_mii_statchg(dev)
1616 struct device *dev;
1617 {
1618 struct gem_softc *sc = (void *)dev;
1619 #ifdef GEM_DEBUG
1620 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1621 #endif
1622 bus_space_tag_t t = sc->sc_bustag;
1623 bus_space_handle_t mac = sc->sc_h;
1624 u_int32_t v;
1625
1626 #ifdef GEM_DEBUG
1627 if (sc->sc_debug)
1628 printf("gem_mii_statchg: status change: phy = %d\n",
1629 sc->sc_phys[instance];);
1630 #endif
1631
1632
1633 /* Set tx full duplex options */
1634 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1635 delay(10000); /* reg must be cleared and delay before changing. */
1636 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1637 GEM_MAC_TX_ENABLE;
1638 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1639 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1640 }
1641 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1642
1643 /* XIF Configuration */
1644 /* We should really calculate all this rather than rely on defaults */
1645 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1646 v = GEM_MAC_XIF_LINK_LED;
1647 v |= GEM_MAC_XIF_TX_MII_ENA;
1648 /* If an external transceiver is connected, enable its MII drivers */
1649 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1650 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1651 /* External MII needs echo disable if half duplex. */
1652 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1653 /* turn on full duplex LED */
1654 v |= GEM_MAC_XIF_FDPLX_LED;
1655 else
1656 /* half duplex -- disable echo */
1657 v |= GEM_MAC_XIF_ECHO_DISABL;
1658 } else
1659 /* Internal MII needs buf enable */
1660 v |= GEM_MAC_XIF_MII_BUF_ENA;
1661 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1662 }
1663
1664 int
1665 gem_mediachange(ifp)
1666 struct ifnet *ifp;
1667 {
1668 struct gem_softc *sc = ifp->if_softc;
1669
1670 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1671 return (EINVAL);
1672
1673 return (mii_mediachg(&sc->sc_mii));
1674 }
1675
1676 void
1677 gem_mediastatus(ifp, ifmr)
1678 struct ifnet *ifp;
1679 struct ifmediareq *ifmr;
1680 {
1681 struct gem_softc *sc = ifp->if_softc;
1682
1683 if ((ifp->if_flags & IFF_UP) == 0)
1684 return;
1685
1686 mii_pollstat(&sc->sc_mii);
1687 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1688 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1689 }
1690
1691 int gem_ioctldebug = 0;
1692 /*
1693 * Process an ioctl request.
1694 */
1695 int
1696 gem_ioctl(ifp, cmd, data)
1697 struct ifnet *ifp;
1698 u_long cmd;
1699 caddr_t data;
1700 {
1701 struct gem_softc *sc = ifp->if_softc;
1702 struct ifreq *ifr = (struct ifreq *)data;
1703 int s, error = 0;
1704
1705
1706 switch (cmd) {
1707 case SIOCGIFMEDIA:
1708 case SIOCSIFMEDIA:
1709 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1710 break;
1711
1712 default:
1713 error = ether_ioctl(ifp, cmd, data);
1714 if (error == ENETRESET) {
1715 /*
1716 * Multicast list has changed; set the hardware filter
1717 * accordingly.
1718 */
1719 if (gem_ioctldebug) printf("reset1\n");
1720 gem_init(ifp);
1721 delay(50000);
1722 error = 0;
1723 }
1724 break;
1725 }
1726
1727 /* Try to get things going again */
1728 if (ifp->if_flags & IFF_UP) {
1729 if (gem_ioctldebug) printf("start\n");
1730 gem_start(ifp);
1731 }
1732 splx(s);
1733 return (error);
1734 }
1735
1736
1737 void
1738 gem_shutdown(arg)
1739 void *arg;
1740 {
1741 struct gem_softc *sc = (struct gem_softc *)arg;
1742 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1743
1744 gem_stop(ifp, 1);
1745 }
1746
1747 /*
1748 * Set up the logical address filter.
1749 */
1750 void
1751 gem_setladrf(sc)
1752 struct gem_softc *sc;
1753 {
1754 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1755 struct ether_multi *enm;
1756 struct ether_multistep step;
1757 struct ethercom *ec = &sc->sc_ethercom;
1758 bus_space_tag_t t = sc->sc_bustag;
1759 bus_space_handle_t h = sc->sc_h;
1760 u_char *cp;
1761 u_int32_t crc;
1762 u_int32_t hash[16];
1763 u_int32_t v;
1764 int len;
1765
1766 /* Clear hash table */
1767 memset(hash, 0, sizeof(hash));
1768
1769 /* Get current RX configuration */
1770 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1771
1772 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1773 /* Turn on promiscuous mode; turn off the hash filter */
1774 v |= GEM_MAC_RX_PROMISCUOUS;
1775 v &= ~GEM_MAC_RX_HASH_FILTER;
1776 ifp->if_flags |= IFF_ALLMULTI;
1777 goto chipit;
1778 }
1779
1780 /* Turn off promiscuous mode; turn on the hash filter */
1781 v &= ~GEM_MAC_RX_PROMISCUOUS;
1782 v |= GEM_MAC_RX_HASH_FILTER;
1783
1784 /*
1785 * Set up multicast address filter by passing all multicast addresses
1786 * through a crc generator, and then using the high order 6 bits as an
1787 * index into the 256 bit logical address filter. The high order bit
1788 * selects the word, while the rest of the bits select the bit within
1789 * the word.
1790 */
1791
1792 ETHER_FIRST_MULTI(step, ec, enm);
1793 while (enm != NULL) {
1794 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1795 /*
1796 * We must listen to a range of multicast addresses.
1797 * For now, just accept all multicasts, rather than
1798 * trying to set only those filter bits needed to match
1799 * the range. (At this time, the only use of address
1800 * ranges is for IP multicast routing, for which the
1801 * range is big enough to require all bits set.)
1802 */
1803 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1804 ifp->if_flags |= IFF_ALLMULTI;
1805 goto chipit;
1806 }
1807
1808 cp = enm->enm_addrlo;
1809 crc = 0xffffffff;
1810 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1811 int octet = *cp++;
1812 int i;
1813
1814 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1815 for (i = 0; i < 8; i++) {
1816 if ((crc & 1) ^ (octet & 1)) {
1817 crc >>= 1;
1818 crc ^= MC_POLY_LE;
1819 } else {
1820 crc >>= 1;
1821 }
1822 octet >>= 1;
1823 }
1824 }
1825 /* Just want the 8 most significant bits. */
1826 crc >>= 24;
1827
1828 /* Set the corresponding bit in the filter. */
1829 hash[crc >> 4] |= 1 << (crc & 0xf);
1830
1831 ETHER_NEXT_MULTI(step, enm);
1832 }
1833
1834 ifp->if_flags &= ~IFF_ALLMULTI;
1835
1836 chipit:
1837 /* Now load the hash table into the chip */
1838 bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
1839 bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
1840 bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
1841 bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
1842 bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
1843 bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
1844 bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
1845 bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
1846 bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
1847 bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
1848 bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
1849 bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
1850 bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
1851 bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
1852 bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
1853 bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
1854
1855 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1856 }
1857
1858 #if notyet
1859
1860 /*
1861 * gem_power:
1862 *
1863 * Power management (suspend/resume) hook.
1864 */
1865 void
1866 gem_power(why, arg)
1867 int why;
1868 void *arg;
1869 {
1870 struct gem_softc *sc = arg;
1871 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1872 int s;
1873
1874 s = splnet();
1875 switch (why) {
1876 case PWR_SUSPEND:
1877 case PWR_STANDBY:
1878 gem_stop(ifp, 1);
1879 if (sc->sc_power != NULL)
1880 (*sc->sc_power)(sc, why);
1881 break;
1882 case PWR_RESUME:
1883 if (ifp->if_flags & IFF_UP) {
1884 if (sc->sc_power != NULL)
1885 (*sc->sc_power)(sc, why);
1886 gem_init(ifp);
1887 }
1888 break;
1889 case PWR_SOFTSUSPEND:
1890 case PWR_SOFTSTANDBY:
1891 case PWR_SOFTRESUME:
1892 break;
1893 }
1894 splx(s);
1895 }
1896 #endif
1897