Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.67
      1 /*	$NetBSD: gem.c,v 1.67 2007/12/31 21:43:57 dyoung Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * All rights reserved.
      7  *
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  */
     31 
     32 /*
     33  * Driver for Sun GEM ethernet controllers.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.67 2007/12/31 21:43:57 dyoung Exp $");
     38 
     39 #include "opt_inet.h"
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/syslog.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 
     54 #include <machine/endian.h>
     55 
     56 #include <uvm/uvm_extern.h>
     57 
     58 #include <net/if.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_ether.h>
     62 
     63 #ifdef INET
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 #include <netinet/tcp.h>
     69 #include <netinet/udp.h>
     70 #endif
     71 
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 #include <sys/bus.h>
     77 #include <sys/intr.h>
     78 
     79 #include <dev/mii/mii.h>
     80 #include <dev/mii/miivar.h>
     81 #include <dev/mii/mii_bitbang.h>
     82 
     83 #include <dev/ic/gemreg.h>
     84 #include <dev/ic/gemvar.h>
     85 
     86 #define TRIES	10000
     87 
     88 static void	gem_start(struct ifnet *);
     89 static void	gem_stop(struct ifnet *, int);
     90 int		gem_ioctl(struct ifnet *, u_long, void *);
     91 void		gem_tick(void *);
     92 void		gem_watchdog(struct ifnet *);
     93 void		gem_shutdown(void *);
     94 int		gem_init(struct ifnet *);
     95 void		gem_init_regs(struct gem_softc *sc);
     96 static int	gem_ringsize(int sz);
     97 static int	gem_meminit(struct gem_softc *);
     98 void		gem_mifinit(struct gem_softc *);
     99 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
    100 		    u_int32_t, u_int32_t);
    101 void		gem_reset(struct gem_softc *);
    102 int		gem_reset_rx(struct gem_softc *sc);
    103 int		gem_reset_tx(struct gem_softc *sc);
    104 int		gem_disable_rx(struct gem_softc *sc);
    105 int		gem_disable_tx(struct gem_softc *sc);
    106 static void	gem_rxdrain(struct gem_softc *sc);
    107 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    108 void		gem_setladrf(struct gem_softc *);
    109 
    110 /* MII methods & callbacks */
    111 static int	gem_mii_readreg(struct device *, int, int);
    112 static void	gem_mii_writereg(struct device *, int, int, int);
    113 static void	gem_mii_statchg(struct device *);
    114 
    115 int		gem_mediachange(struct ifnet *);
    116 void		gem_mediastatus(struct ifnet *, struct ifmediareq *);
    117 
    118 struct mbuf	*gem_get(struct gem_softc *, int, int);
    119 int		gem_put(struct gem_softc *, int, struct mbuf *);
    120 void		gem_read(struct gem_softc *, int, int);
    121 int		gem_eint(struct gem_softc *, u_int);
    122 int		gem_rint(struct gem_softc *);
    123 int		gem_tint(struct gem_softc *);
    124 void		gem_power(int, void *);
    125 
    126 #ifdef GEM_DEBUG
    127 static void gem_txsoft_print(const struct gem_softc *, int, int);
    128 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    129 				printf x
    130 #else
    131 #define	DPRINTF(sc, x)	/* nothing */
    132 #endif
    133 
    134 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    135 
    136 
    137 /*
    138  * gem_attach:
    139  *
    140  *	Attach a Gem interface to the system.
    141  */
    142 void
    143 gem_attach(sc, enaddr)
    144 	struct gem_softc *sc;
    145 	const uint8_t *enaddr;
    146 {
    147 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    148 	struct mii_data *mii = &sc->sc_mii;
    149 	struct mii_softc *child;
    150 	struct ifmedia_entry *ifm;
    151 	int i, error;
    152 	u_int32_t v;
    153 	char *nullbuf;
    154 
    155 	/* Make sure the chip is stopped. */
    156 	ifp->if_softc = sc;
    157 	gem_reset(sc);
    158 
    159 	/*
    160 	 * Allocate the control data structures, and create and load the
    161 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    162 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    163 	 */
    164 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    165 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    166 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    167 		aprint_error(
    168 		   "%s: unable to allocate control data, error = %d\n",
    169 		    sc->sc_dev.dv_xname, error);
    170 		goto fail_0;
    171 	}
    172 
    173 /* XXX should map this in with correct endianness */
    174 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    175 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
    176 	    BUS_DMA_COHERENT)) != 0) {
    177 		aprint_error("%s: unable to map control data, error = %d\n",
    178 		    sc->sc_dev.dv_xname, error);
    179 		goto fail_1;
    180 	}
    181 
    182 	nullbuf =
    183 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    184 
    185 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    186 	    sizeof(struct gem_control_data), 1,
    187 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    188 		aprint_error("%s: unable to create control data DMA map, "
    189 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    190 		goto fail_2;
    191 	}
    192 
    193 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    194 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    195 	    0)) != 0) {
    196 		aprint_error(
    197 		    "%s: unable to load control data DMA map, error = %d\n",
    198 		    sc->sc_dev.dv_xname, error);
    199 		goto fail_3;
    200 	}
    201 
    202 	memset(nullbuf, 0, ETHER_MIN_TX);
    203 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    204 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    205 		aprint_error("%s: unable to create padding DMA map, "
    206 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    207 		goto fail_4;
    208 	}
    209 
    210 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    211 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    212 		aprint_error(
    213 		    "%s: unable to load padding DMA map, error = %d\n",
    214 		    sc->sc_dev.dv_xname, error);
    215 		goto fail_5;
    216 	}
    217 
    218 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    219 	    BUS_DMASYNC_PREWRITE);
    220 
    221 	/*
    222 	 * Initialize the transmit job descriptors.
    223 	 */
    224 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    225 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    226 
    227 	/*
    228 	 * Create the transmit buffer DMA maps.
    229 	 */
    230 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    231 		struct gem_txsoft *txs;
    232 
    233 		txs = &sc->sc_txsoft[i];
    234 		txs->txs_mbuf = NULL;
    235 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    236 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    237 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    238 		    &txs->txs_dmamap)) != 0) {
    239 			aprint_error("%s: unable to create tx DMA map %d, "
    240 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    241 			goto fail_6;
    242 		}
    243 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    244 	}
    245 
    246 	/*
    247 	 * Create the receive buffer DMA maps.
    248 	 */
    249 	for (i = 0; i < GEM_NRXDESC; i++) {
    250 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    251 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    252 			aprint_error("%s: unable to create rx DMA map %d, "
    253 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    254 			goto fail_7;
    255 		}
    256 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    257 	}
    258 
    259 	/*
    260 	 * From this point forward, the attachment cannot fail.  A failure
    261 	 * before this point releases all resources that may have been
    262 	 * allocated.
    263 	 */
    264 
    265 	/* Announce ourselves. */
    266 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
    267 	    ether_sprintf(enaddr));
    268 
    269 	/* Get RX FIFO size */
    270 	sc->sc_rxfifosize = 64 *
    271 	    bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_FIFO_SIZE);
    272 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    273 
    274 	/* Get TX FIFO size */
    275 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_FIFO_SIZE);
    276 	aprint_normal(", %uKB TX fifo\n", v / 16);
    277 
    278 	/* Initialize ifnet structure. */
    279 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    280 	ifp->if_softc = sc;
    281 	ifp->if_flags =
    282 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    283 	sc->sc_if_flags = ifp->if_flags;
    284 	ifp->if_capabilities |=
    285 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    286 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    287 	ifp->if_start = gem_start;
    288 	ifp->if_ioctl = gem_ioctl;
    289 	ifp->if_watchdog = gem_watchdog;
    290 	ifp->if_stop = gem_stop;
    291 	ifp->if_init = gem_init;
    292 	IFQ_SET_READY(&ifp->if_snd);
    293 
    294 	/* Initialize ifmedia structures and MII info */
    295 	mii->mii_ifp = ifp;
    296 	mii->mii_readreg = gem_mii_readreg;
    297 	mii->mii_writereg = gem_mii_writereg;
    298 	mii->mii_statchg = gem_mii_statchg;
    299 
    300 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
    301 
    302 	gem_mifinit(sc);
    303 
    304 #if defined (PMAC_G5)
    305 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    306 			1, MII_OFFSET_ANY, MIIF_FORCEANEG);
    307 #else
    308 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    309 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    310 #endif
    311 
    312 	child = LIST_FIRST(&mii->mii_phys);
    313 	if (child == NULL) {
    314 		/* No PHY attached */
    315 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    316 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    317 	} else {
    318 		/*
    319 		 * Walk along the list of attached MII devices and
    320 		 * establish an `MII instance' to `phy number'
    321 		 * mapping. We'll use this mapping in media change
    322 		 * requests to determine which phy to use to program
    323 		 * the MIF configuration register.
    324 		 */
    325 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    326 			/*
    327 			 * Note: we support just two PHYs: the built-in
    328 			 * internal device and an external on the MII
    329 			 * connector.
    330 			 */
    331 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    332 				aprint_error(
    333 				    "%s: cannot accommodate MII device %s"
    334 				       " at phy %d, instance %d\n",
    335 				       sc->sc_dev.dv_xname,
    336 				       child->mii_dev.dv_xname,
    337 				       child->mii_phy, child->mii_inst);
    338 				continue;
    339 			}
    340 
    341 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    342 		}
    343 
    344 		/*
    345 		 * Now select and activate the PHY we will use.
    346 		 *
    347 		 * The order of preference is External (MDI1),
    348 		 * Internal (MDI0), Serial Link (no MII).
    349 		 */
    350 		if (sc->sc_phys[1]) {
    351 #ifdef GEM_DEBUG
    352 			aprint_debug("using external phy\n");
    353 #endif
    354 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    355 		} else {
    356 #ifdef GEM_DEBUG
    357 			aprint_debug("using internal phy\n");
    358 #endif
    359 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    360 		}
    361 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_MIF_CONFIG,
    362 			sc->sc_mif_config);
    363 
    364 		/*
    365 		 * XXX - we can really do the following ONLY if the
    366 		 * phy indeed has the auto negotiation capability!!
    367 		 */
    368 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    369 	}
    370 
    371 	/*
    372 	 * If we support GigE media, we support jumbo frames too.
    373 	 * Unless we are Apple.
    374 	 */
    375 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
    376 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    377 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    378 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    379 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    380 			if (sc->sc_variant != GEM_APPLE_GMAC)
    381 				sc->sc_ethercom.ec_capabilities
    382 				    |= ETHERCAP_JUMBO_MTU;
    383 
    384 			sc->sc_flags |= GEM_GIGABIT;
    385 			break;
    386 		}
    387 	}
    388 
    389 	/* claim 802.1q capability */
    390 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    391 
    392 	/* Attach the interface. */
    393 	if_attach(ifp);
    394 	ether_ifattach(ifp, enaddr);
    395 
    396 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    397 	if (sc->sc_sh == NULL)
    398 		panic("gem_config: can't establish shutdownhook");
    399 
    400 #if NRND > 0
    401 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    402 			  RND_TYPE_NET, 0);
    403 #endif
    404 
    405 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    406 	    NULL, sc->sc_dev.dv_xname, "interrupts");
    407 #ifdef GEM_COUNTERS
    408 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    409 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
    410 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    411 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
    412 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    413 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
    414 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    415 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
    416 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    417 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
    418 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    419 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
    420 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    421 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
    422 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    423 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
    424 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    425 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
    426 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    427 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
    428 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    429 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
    430 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    431 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
    432 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    433 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
    434 #endif
    435 
    436 #if notyet
    437 	/*
    438 	 * Add a suspend hook to make sure we come back up after a
    439 	 * resume.
    440 	 */
    441 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    442 	    gem_power, sc);
    443 	if (sc->sc_powerhook == NULL)
    444 		aprint_error("%s: WARNING: unable to establish power hook\n",
    445 		    sc->sc_dev.dv_xname);
    446 #endif
    447 
    448 	callout_init(&sc->sc_tick_ch, 0);
    449 	return;
    450 
    451 	/*
    452 	 * Free any resources we've allocated during the failed attach
    453 	 * attempt.  Do this in reverse order and fall through.
    454 	 */
    455  fail_7:
    456 	for (i = 0; i < GEM_NRXDESC; i++) {
    457 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    458 			bus_dmamap_destroy(sc->sc_dmatag,
    459 			    sc->sc_rxsoft[i].rxs_dmamap);
    460 	}
    461  fail_6:
    462 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    463 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    464 			bus_dmamap_destroy(sc->sc_dmatag,
    465 			    sc->sc_txsoft[i].txs_dmamap);
    466 	}
    467 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    468  fail_5:
    469 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    470  fail_4:
    471 	bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
    472  fail_3:
    473 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    474  fail_2:
    475 	bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
    476 	    sizeof(struct gem_control_data));
    477  fail_1:
    478 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    479  fail_0:
    480 	return;
    481 }
    482 
    483 
    484 void
    485 gem_tick(arg)
    486 	void *arg;
    487 {
    488 	struct gem_softc *sc = arg;
    489 	int s;
    490 
    491 	s = splnet();
    492 	mii_tick(&sc->sc_mii);
    493 	splx(s);
    494 
    495 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    496 
    497 }
    498 
    499 static int
    500 gem_bitwait(sc, h, r, clr, set)
    501 	struct gem_softc *sc;
    502 	bus_space_handle_t h;
    503 	int r;
    504 	u_int32_t clr;
    505 	u_int32_t set;
    506 {
    507 	int i;
    508 	u_int32_t reg;
    509 
    510 	for (i = TRIES; i--; DELAY(100)) {
    511 		reg = bus_space_read_4(sc->sc_bustag, h, r);
    512 		if ((reg & clr) == 0 && (reg & set) == set)
    513 			return (1);
    514 	}
    515 	return (0);
    516 }
    517 
    518 void
    519 gem_reset(sc)
    520 	struct gem_softc *sc;
    521 {
    522 	bus_space_tag_t t = sc->sc_bustag;
    523 	bus_space_handle_t h = sc->sc_h2;
    524 	int s;
    525 
    526 	s = splnet();
    527 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    528 	gem_reset_rx(sc);
    529 	gem_reset_tx(sc);
    530 
    531 	/* Do a full reset */
    532 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    533 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    534 		printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
    535 	splx(s);
    536 }
    537 
    538 
    539 /*
    540  * gem_rxdrain:
    541  *
    542  *	Drain the receive queue.
    543  */
    544 static void
    545 gem_rxdrain(struct gem_softc *sc)
    546 {
    547 	struct gem_rxsoft *rxs;
    548 	int i;
    549 
    550 	for (i = 0; i < GEM_NRXDESC; i++) {
    551 		rxs = &sc->sc_rxsoft[i];
    552 		if (rxs->rxs_mbuf != NULL) {
    553 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    554 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    555 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    556 			m_freem(rxs->rxs_mbuf);
    557 			rxs->rxs_mbuf = NULL;
    558 		}
    559 	}
    560 }
    561 
    562 /*
    563  * Reset the whole thing.
    564  */
    565 static void
    566 gem_stop(struct ifnet *ifp, int disable)
    567 {
    568 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    569 	struct gem_txsoft *txs;
    570 
    571 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    572 
    573 	callout_stop(&sc->sc_tick_ch);
    574 	mii_down(&sc->sc_mii);
    575 
    576 	/* XXX - Should we reset these instead? */
    577 	gem_disable_rx(sc);
    578 	gem_disable_tx(sc);
    579 
    580 	/*
    581 	 * Release any queued transmit buffers.
    582 	 */
    583 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    584 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    585 		if (txs->txs_mbuf != NULL) {
    586 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    587 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    588 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    589 			m_freem(txs->txs_mbuf);
    590 			txs->txs_mbuf = NULL;
    591 		}
    592 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    593 	}
    594 
    595 	if (disable) {
    596 		gem_rxdrain(sc);
    597 	}
    598 
    599 	/*
    600 	 * Mark the interface down and cancel the watchdog timer.
    601 	 */
    602 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    603 	sc->sc_if_flags = ifp->if_flags;
    604 	ifp->if_timer = 0;
    605 }
    606 
    607 
    608 /*
    609  * Reset the receiver
    610  */
    611 int
    612 gem_reset_rx(struct gem_softc *sc)
    613 {
    614 	bus_space_tag_t t = sc->sc_bustag;
    615 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    616 
    617 	/*
    618 	 * Resetting while DMA is in progress can cause a bus hang, so we
    619 	 * disable DMA first.
    620 	 */
    621 	gem_disable_rx(sc);
    622 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    623 	/* Wait till it finishes */
    624 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
    625 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    626 	/* Wait 5ms extra. */
    627 	delay(5000);
    628 
    629 	/* Finally, reset the ERX */
    630 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
    631 	/* Wait till it finishes */
    632 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
    633 		printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
    634 		return (1);
    635 	}
    636 	return (0);
    637 }
    638 
    639 
    640 /*
    641  * Reset the transmitter
    642  */
    643 int
    644 gem_reset_tx(struct gem_softc *sc)
    645 {
    646 	bus_space_tag_t t = sc->sc_bustag;
    647 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    648 
    649 	/*
    650 	 * Resetting while DMA is in progress can cause a bus hang, so we
    651 	 * disable DMA first.
    652 	 */
    653 	gem_disable_tx(sc);
    654 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    655 	/* Wait till it finishes */
    656 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
    657 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    658 	/* Wait 5ms extra. */
    659 	delay(5000);
    660 
    661 	/* Finally, reset the ETX */
    662 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
    663 	/* Wait till it finishes */
    664 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
    665 		printf("%s: cannot reset receiver\n",
    666 			sc->sc_dev.dv_xname);
    667 		return (1);
    668 	}
    669 	return (0);
    670 }
    671 
    672 /*
    673  * disable receiver.
    674  */
    675 int
    676 gem_disable_rx(struct gem_softc *sc)
    677 {
    678 	bus_space_tag_t t = sc->sc_bustag;
    679 	bus_space_handle_t h = sc->sc_h1;
    680 	u_int32_t cfg;
    681 
    682 	/* Flip the enable bit */
    683 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    684 	cfg &= ~GEM_MAC_RX_ENABLE;
    685 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    686 
    687 	/* Wait for it to finish */
    688 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    689 }
    690 
    691 /*
    692  * disable transmitter.
    693  */
    694 int
    695 gem_disable_tx(struct gem_softc *sc)
    696 {
    697 	bus_space_tag_t t = sc->sc_bustag;
    698 	bus_space_handle_t h = sc->sc_h1;
    699 	u_int32_t cfg;
    700 
    701 	/* Flip the enable bit */
    702 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    703 	cfg &= ~GEM_MAC_TX_ENABLE;
    704 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    705 
    706 	/* Wait for it to finish */
    707 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    708 }
    709 
    710 /*
    711  * Initialize interface.
    712  */
    713 int
    714 gem_meminit(struct gem_softc *sc)
    715 {
    716 	struct gem_rxsoft *rxs;
    717 	int i, error;
    718 
    719 	/*
    720 	 * Initialize the transmit descriptor ring.
    721 	 */
    722 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    723 	for (i = 0; i < GEM_NTXDESC; i++) {
    724 		sc->sc_txdescs[i].gd_flags = 0;
    725 		sc->sc_txdescs[i].gd_addr = 0;
    726 	}
    727 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    728 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    729 	sc->sc_txfree = GEM_NTXDESC-1;
    730 	sc->sc_txnext = 0;
    731 	sc->sc_txwin = 0;
    732 
    733 	/*
    734 	 * Initialize the receive descriptor and receive job
    735 	 * descriptor rings.
    736 	 */
    737 	for (i = 0; i < GEM_NRXDESC; i++) {
    738 		rxs = &sc->sc_rxsoft[i];
    739 		if (rxs->rxs_mbuf == NULL) {
    740 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    741 				printf("%s: unable to allocate or map rx "
    742 				    "buffer %d, error = %d\n",
    743 				    sc->sc_dev.dv_xname, i, error);
    744 				/*
    745 				 * XXX Should attempt to run with fewer receive
    746 				 * XXX buffers instead of just failing.
    747 				 */
    748 				gem_rxdrain(sc);
    749 				return (1);
    750 			}
    751 		} else
    752 			GEM_INIT_RXDESC(sc, i);
    753 	}
    754 	sc->sc_rxptr = 0;
    755 
    756 	return (0);
    757 }
    758 
    759 static int
    760 gem_ringsize(int sz)
    761 {
    762 	switch (sz) {
    763 	case 32:
    764 		return GEM_RING_SZ_32;
    765 	case 64:
    766 		return GEM_RING_SZ_64;
    767 	case 128:
    768 		return GEM_RING_SZ_128;
    769 	case 256:
    770 		return GEM_RING_SZ_256;
    771 	case 512:
    772 		return GEM_RING_SZ_512;
    773 	case 1024:
    774 		return GEM_RING_SZ_1024;
    775 	case 2048:
    776 		return GEM_RING_SZ_2048;
    777 	case 4096:
    778 		return GEM_RING_SZ_4096;
    779 	case 8192:
    780 		return GEM_RING_SZ_8192;
    781 	default:
    782 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    783 		return GEM_RING_SZ_32;
    784 	}
    785 }
    786 
    787 /*
    788  * Initialization of interface; set up initialization block
    789  * and transmit/receive descriptor rings.
    790  */
    791 int
    792 gem_init(struct ifnet *ifp)
    793 {
    794 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    795 	bus_space_tag_t t = sc->sc_bustag;
    796 	bus_space_handle_t h = sc->sc_h1;
    797 	int s;
    798 	u_int max_frame_size;
    799 	u_int32_t v;
    800 
    801 	s = splnet();
    802 
    803 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
    804 	/*
    805 	 * Initialization sequence. The numbered steps below correspond
    806 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    807 	 * Channel Engine manual (part of the PCIO manual).
    808 	 * See also the STP2002-STQ document from Sun Microsystems.
    809 	 */
    810 
    811 	/* step 1 & 2. Reset the Ethernet Channel */
    812 	gem_stop(ifp, 0);
    813 	gem_reset(sc);
    814 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
    815 
    816 	/* Re-initialize the MIF */
    817 	gem_mifinit(sc);
    818 
    819 	/* Call MI reset function if any */
    820 	if (sc->sc_hwreset)
    821 		(*sc->sc_hwreset)(sc);
    822 
    823 	/* step 3. Setup data structures in host memory */
    824 	gem_meminit(sc);
    825 
    826 	/* step 4. TX MAC registers & counters */
    827 	gem_init_regs(sc);
    828 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
    829 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
    830 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
    831 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
    832 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    833 	    max_frame_size|/* burst size */(0x2000<<16));
    834 
    835 	/* step 5. RX MAC registers & counters */
    836 	gem_setladrf(sc);
    837 
    838 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    839 	/* NOTE: we use only 32-bit DMA addresses here. */
    840 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
    841 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
    842 
    843 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    844 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    845 
    846 	/* step 8. Global Configuration & Interrupt Mask */
    847 	bus_space_write_4(t, h, GEM_INTMASK,
    848 		      ~(GEM_INTR_TX_INTME|
    849 			GEM_INTR_TX_EMPTY|
    850 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
    851 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
    852 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
    853 			GEM_INTR_BERR));
    854 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
    855 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
    856 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
    857 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
    858 
    859 	/* step 9. ETX Configuration: use mostly default values */
    860 
    861 	/* Enable DMA */
    862 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
    863 	bus_space_write_4(t, h, GEM_TX_CONFIG,
    864 		v|GEM_TX_CONFIG_TXDMA_EN|
    865 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
    866 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
    867 
    868 	/* step 10. ERX Configuration */
    869 
    870 	/* Encode Receive Descriptor ring size: four possible values */
    871 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    872 
    873 	/* Set receive h/w checksum offset */
    874 #ifdef INET
    875 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    876 	      ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    877 	        ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    878 #endif
    879 
    880 	/* Enable DMA */
    881 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    882 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
    883 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
    884 
    885 	/*
    886 	 * The following value is for an OFF Threshold of about 3/4 full
    887 	 * and an ON Threshold of 1/4 full.
    888 	 */
    889 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    890 	     (3 * sc->sc_rxfifosize / 256) |
    891 	     (   (sc->sc_rxfifosize / 256) << 12));
    892 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
    893 
    894 	/* step 11. Configure Media */
    895 	mii_mediachg(&sc->sc_mii);
    896 
    897 /* XXXX Serial link needs a whole different setup. */
    898 
    899 
    900 	/* step 12. RX_MAC Configuration Register */
    901 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    902 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
    903 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
    904 
    905 	/* step 14. Issue Transmit Pending command */
    906 
    907 	/* Call MI initialization function if any */
    908 	if (sc->sc_hwinit)
    909 		(*sc->sc_hwinit)(sc);
    910 
    911 
    912 	/* step 15.  Give the reciever a swift kick */
    913 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
    914 
    915 	/* Start the one second timer. */
    916 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    917 
    918 	ifp->if_flags |= IFF_RUNNING;
    919 	ifp->if_flags &= ~IFF_OACTIVE;
    920 	ifp->if_timer = 0;
    921 	sc->sc_if_flags = ifp->if_flags;
    922 	splx(s);
    923 
    924 	return (0);
    925 }
    926 
    927 void
    928 gem_init_regs(struct gem_softc *sc)
    929 {
    930 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    931 	bus_space_tag_t t = sc->sc_bustag;
    932 	bus_space_handle_t h = sc->sc_h1;
    933 	const u_char *laddr = CLLADDR(ifp->if_sadl);
    934 	u_int32_t v;
    935 
    936 	/* These regs are not cleared on reset */
    937 	if (!sc->sc_inited) {
    938 
    939 		/* Wooo.  Magic values. */
    940 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
    941 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
    942 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
    943 
    944 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
    945 		/* Max frame and max burst size */
    946 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    947 		     ETHER_MAX_LEN | (0x2000<<16));
    948 
    949 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
    950 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
    951 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
    952 		/* Dunno.... */
    953 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
    954 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
    955 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
    956 
    957 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
    958 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
    959 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
    960 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
    961 
    962 		/* MAC control addr set to 01:80:c2:00:00:01 */
    963 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
    964 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
    965 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
    966 
    967 		/* MAC filter addr set to 0:0:0:0:0:0 */
    968 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
    969 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
    970 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
    971 
    972 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
    973 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
    974 
    975 		sc->sc_inited = 1;
    976 	}
    977 
    978 	/* Counters need to be zeroed */
    979 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
    980 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
    981 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
    982 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
    983 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
    984 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
    985 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
    986 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
    987 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
    988 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
    989 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
    990 
    991 	/* Un-pause stuff */
    992 #if 0
    993 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
    994 #else
    995 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
    996 #endif
    997 
    998 	/*
    999 	 * Set the station address.
   1000 	 */
   1001 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1002 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1003 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1004 
   1005 #if 0
   1006 	if (sc->sc_variant != APPLE_GMAC)
   1007 		return;
   1008 #endif
   1009 
   1010 	/*
   1011 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1012 	 */
   1013 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1014 	v = GEM_MAC_XIF_TX_MII_ENA;
   1015 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1016 		v |= GEM_MAC_XIF_FDPLX_LED;
   1017 		if (sc->sc_flags & GEM_GIGABIT)
   1018 			v |= GEM_MAC_XIF_GMII_MODE;
   1019 	}
   1020 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1021 }
   1022 
   1023 #ifdef GEM_DEBUG
   1024 static void
   1025 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
   1026 {
   1027 	int i;
   1028 
   1029 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
   1030 		printf("descriptor %d:\t", i);
   1031 		printf("gd_flags:   0x%016" PRIx64 "\t",
   1032 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1033 		printf("gd_addr: 0x%016" PRIx64 "\n",
   1034 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1035 		if (i == lastdesc)
   1036 			break;
   1037 	}
   1038 }
   1039 #endif
   1040 
   1041 static void
   1042 gem_start(ifp)
   1043 	struct ifnet *ifp;
   1044 {
   1045 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1046 	struct mbuf *m0, *m;
   1047 	struct gem_txsoft *txs;
   1048 	bus_dmamap_t dmamap;
   1049 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
   1050 	uint64_t flags = 0;
   1051 
   1052 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1053 		return;
   1054 
   1055 	/*
   1056 	 * Remember the previous number of free descriptors and
   1057 	 * the first descriptor we'll use.
   1058 	 */
   1059 	ofree = sc->sc_txfree;
   1060 	firsttx = sc->sc_txnext;
   1061 
   1062 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1063 	    sc->sc_dev.dv_xname, ofree, firsttx));
   1064 
   1065 	/*
   1066 	 * Loop through the send queue, setting up transmit descriptors
   1067 	 * until we drain the queue, or use up all available transmit
   1068 	 * descriptors.
   1069 	 */
   1070 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1071 	       sc->sc_txfree != 0) {
   1072 		/*
   1073 		 * Grab a packet off the queue.
   1074 		 */
   1075 		IFQ_POLL(&ifp->if_snd, m0);
   1076 		if (m0 == NULL)
   1077 			break;
   1078 		m = NULL;
   1079 
   1080 		dmamap = txs->txs_dmamap;
   1081 
   1082 		/*
   1083 		 * Load the DMA map.  If this fails, the packet either
   1084 		 * didn't fit in the alloted number of segments, or we were
   1085 		 * short on resources.  In this case, we'll copy and try
   1086 		 * again.
   1087 		 */
   1088 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1089 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1090 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1091 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1092 			if (m0->m_pkthdr.len > MCLBYTES) {
   1093 				printf("%s: unable to allocate jumbo Tx "
   1094 				    "cluster\n", sc->sc_dev.dv_xname);
   1095 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1096 				m_freem(m0);
   1097 				continue;
   1098 			}
   1099 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1100 			if (m == NULL) {
   1101 				printf("%s: unable to allocate Tx mbuf\n",
   1102 				    sc->sc_dev.dv_xname);
   1103 				break;
   1104 			}
   1105 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1106 			if (m0->m_pkthdr.len > MHLEN) {
   1107 				MCLGET(m, M_DONTWAIT);
   1108 				if ((m->m_flags & M_EXT) == 0) {
   1109 					printf("%s: unable to allocate Tx "
   1110 					    "cluster\n", sc->sc_dev.dv_xname);
   1111 					m_freem(m);
   1112 					break;
   1113 				}
   1114 			}
   1115 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1116 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1117 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1118 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1119 			if (error) {
   1120 				printf("%s: unable to load Tx buffer, "
   1121 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1122 				break;
   1123 			}
   1124 		}
   1125 
   1126 		/*
   1127 		 * Ensure we have enough descriptors free to describe
   1128 		 * the packet.
   1129 		 */
   1130 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1131 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1132 			/*
   1133 			 * Not enough free descriptors to transmit this
   1134 			 * packet.  We haven't committed to anything yet,
   1135 			 * so just unload the DMA map, put the packet
   1136 			 * back on the queue, and punt.  Notify the upper
   1137 			 * layer that there are no more slots left.
   1138 			 *
   1139 			 * XXX We could allocate an mbuf and copy, but
   1140 			 * XXX it is worth it?
   1141 			 */
   1142 			ifp->if_flags |= IFF_OACTIVE;
   1143 			sc->sc_if_flags = ifp->if_flags;
   1144 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1145 			if (m != NULL)
   1146 				m_freem(m);
   1147 			break;
   1148 		}
   1149 
   1150 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1151 		if (m != NULL) {
   1152 			m_freem(m0);
   1153 			m0 = m;
   1154 		}
   1155 
   1156 		/*
   1157 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1158 		 */
   1159 
   1160 		/* Sync the DMA map. */
   1161 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1162 		    BUS_DMASYNC_PREWRITE);
   1163 
   1164 		/*
   1165 		 * Initialize the transmit descriptors.
   1166 		 */
   1167 		for (nexttx = sc->sc_txnext, seg = 0;
   1168 		     seg < dmamap->dm_nsegs;
   1169 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1170 
   1171 			/*
   1172 			 * If this is the first descriptor we're
   1173 			 * enqueueing, set the start of packet flag,
   1174 			 * and the checksum stuff if we want the hardware
   1175 			 * to do it.
   1176 			 */
   1177 			sc->sc_txdescs[nexttx].gd_addr =
   1178 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1179 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1180 			if (nexttx == firsttx) {
   1181 				flags |= GEM_TD_START_OF_PACKET;
   1182 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1183 					sc->sc_txwin = 0;
   1184 					flags |= GEM_TD_INTERRUPT_ME;
   1185 				}
   1186 
   1187 #ifdef INET
   1188 				/* h/w checksum */
   1189 				if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
   1190 				    M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
   1191 				    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1192 					struct ether_header *eh;
   1193 					uint16_t offset, start;
   1194 
   1195 					eh = mtod(m0, struct ether_header *);
   1196 					switch (ntohs(eh->ether_type)) {
   1197 					case ETHERTYPE_IP:
   1198 						start = ETHER_HDR_LEN;
   1199 						break;
   1200 					case ETHERTYPE_VLAN:
   1201 						start = ETHER_HDR_LEN +
   1202 							ETHER_VLAN_ENCAP_LEN;
   1203 						break;
   1204 					default:
   1205 						/* unsupported, drop it */
   1206 						m_free(m0);
   1207 						continue;
   1208 					}
   1209 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1210 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1211 					flags |= (start <<
   1212 						  GEM_TD_CXSUM_STARTSHFT) |
   1213 						 (offset <<
   1214 						  GEM_TD_CXSUM_STUFFSHFT) |
   1215 						 GEM_TD_CXSUM_ENABLE;
   1216 				}
   1217 #endif
   1218 			}
   1219 			if (seg == dmamap->dm_nsegs - 1) {
   1220 				flags |= GEM_TD_END_OF_PACKET;
   1221 			} else {
   1222 				/* last flag set outside of loop */
   1223 				sc->sc_txdescs[nexttx].gd_flags =
   1224 					GEM_DMA_WRITE(sc, flags);
   1225 			}
   1226 			lasttx = nexttx;
   1227 		}
   1228 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1229 			/* add padding buffer at end of chain */
   1230 			flags &= ~GEM_TD_END_OF_PACKET;
   1231 			sc->sc_txdescs[lasttx].gd_flags =
   1232 			    GEM_DMA_WRITE(sc, flags);
   1233 
   1234 			sc->sc_txdescs[nexttx].gd_addr =
   1235 			    GEM_DMA_WRITE(sc,
   1236 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1237 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1238 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1239 			lasttx = nexttx;
   1240 			nexttx = GEM_NEXTTX(nexttx);
   1241 			seg++;
   1242 		}
   1243 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1244 
   1245 		KASSERT(lasttx != -1);
   1246 
   1247 		/*
   1248 		 * Store a pointer to the packet so we can free it later,
   1249 		 * and remember what txdirty will be once the packet is
   1250 		 * done.
   1251 		 */
   1252 		txs->txs_mbuf = m0;
   1253 		txs->txs_firstdesc = sc->sc_txnext;
   1254 		txs->txs_lastdesc = lasttx;
   1255 		txs->txs_ndescs = seg;
   1256 
   1257 #ifdef GEM_DEBUG
   1258 		if (ifp->if_flags & IFF_DEBUG) {
   1259 			printf("     gem_start %p transmit chain:\n", txs);
   1260 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1261 			    txs->txs_lastdesc);
   1262 		}
   1263 #endif
   1264 
   1265 		/* Sync the descriptors we're using. */
   1266 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1267 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1268 
   1269 		/* Advance the tx pointer. */
   1270 		sc->sc_txfree -= txs->txs_ndescs;
   1271 		sc->sc_txnext = nexttx;
   1272 
   1273 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1274 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1275 
   1276 #if NBPFILTER > 0
   1277 		/*
   1278 		 * Pass the packet to any BPF listeners.
   1279 		 */
   1280 		if (ifp->if_bpf)
   1281 			bpf_mtap(ifp->if_bpf, m0);
   1282 #endif /* NBPFILTER > 0 */
   1283 	}
   1284 
   1285 	if (txs == NULL || sc->sc_txfree == 0) {
   1286 		/* No more slots left; notify upper layer. */
   1287 		ifp->if_flags |= IFF_OACTIVE;
   1288 		sc->sc_if_flags = ifp->if_flags;
   1289 	}
   1290 
   1291 	if (sc->sc_txfree != ofree) {
   1292 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1293 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1294 		/*
   1295 		 * The entire packet chain is set up.
   1296 		 * Kick the transmitter.
   1297 		 */
   1298 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1299 			sc->sc_dev.dv_xname, nexttx));
   1300 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
   1301 			sc->sc_txnext);
   1302 
   1303 		/* Set a watchdog timer in case the chip flakes out. */
   1304 		ifp->if_timer = 5;
   1305 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1306 			sc->sc_dev.dv_xname, ifp->if_timer));
   1307 	}
   1308 }
   1309 
   1310 /*
   1311  * Transmit interrupt.
   1312  */
   1313 int
   1314 gem_tint(sc)
   1315 	struct gem_softc *sc;
   1316 {
   1317 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1318 	bus_space_tag_t t = sc->sc_bustag;
   1319 	bus_space_handle_t mac = sc->sc_h1;
   1320 	struct gem_txsoft *txs;
   1321 	int txlast;
   1322 	int progress = 0;
   1323 
   1324 
   1325 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1326 
   1327 	/*
   1328 	 * Unload collision counters
   1329 	 */
   1330 	ifp->if_collisions +=
   1331 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1332 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
   1333 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1334 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1335 
   1336 	/*
   1337 	 * then clear the hardware counters.
   1338 	 */
   1339 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1340 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1341 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1342 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1343 
   1344 	/*
   1345 	 * Go through our Tx list and free mbufs for those
   1346 	 * frames that have been transmitted.
   1347 	 */
   1348 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1349 		/*
   1350 		 * In theory, we could harveast some descriptors before
   1351 		 * the ring is empty, but that's a bit complicated.
   1352 		 *
   1353 		 * GEM_TX_COMPLETION points to the last descriptor
   1354 		 * processed +1.
   1355 		 *
   1356 		 * Let's assume that the NIC writes back to the Tx
   1357 		 * descriptors before it updates the completion
   1358 		 * register.  If the NIC has posted writes to the
   1359 		 * Tx descriptors, PCI ordering requires that the
   1360 		 * posted writes flush to RAM before the register-read
   1361 		 * finishes.  So let's read the completion register,
   1362 		 * before syncing the descriptors, so that we
   1363 		 * examine Tx descriptors that are at least as
   1364 		 * current as the completion register.
   1365 		 */
   1366 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1367 		DPRINTF(sc,
   1368 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1369 				txs->txs_lastdesc, txlast));
   1370 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1371 			if (txlast >= txs->txs_firstdesc &&
   1372 			    txlast <= txs->txs_lastdesc)
   1373 				break;
   1374 		} else if (txlast >= txs->txs_firstdesc ||
   1375 		           txlast <= txs->txs_lastdesc)
   1376 			break;
   1377 
   1378 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1379 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1380 
   1381 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
   1382 		if (ifp->if_flags & IFF_DEBUG) {
   1383 			printf("    txsoft %p transmit chain:\n", txs);
   1384 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1385 			    txs->txs_lastdesc);
   1386 		}
   1387 #endif
   1388 
   1389 
   1390 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1391 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1392 
   1393 		sc->sc_txfree += txs->txs_ndescs;
   1394 
   1395 		if (txs->txs_mbuf == NULL) {
   1396 #ifdef DIAGNOSTIC
   1397 				panic("gem_txintr: null mbuf");
   1398 #endif
   1399 		}
   1400 
   1401 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1402 		    0, txs->txs_dmamap->dm_mapsize,
   1403 		    BUS_DMASYNC_POSTWRITE);
   1404 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1405 		m_freem(txs->txs_mbuf);
   1406 		txs->txs_mbuf = NULL;
   1407 
   1408 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1409 
   1410 		ifp->if_opackets++;
   1411 		progress = 1;
   1412 	}
   1413 
   1414 #if 0
   1415 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1416 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
   1417 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
   1418 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1419 			GEM_TX_DATA_PTR_HI) << 32) |
   1420 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1421 			GEM_TX_DATA_PTR_LO),
   1422 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
   1423 #endif
   1424 
   1425 	if (progress) {
   1426 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1427 			sc->sc_txwin = 0;
   1428 
   1429 		ifp->if_flags &= ~IFF_OACTIVE;
   1430 		sc->sc_if_flags = ifp->if_flags;
   1431 		gem_start(ifp);
   1432 
   1433 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
   1434 			ifp->if_timer = 0;
   1435 	}
   1436 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1437 		sc->sc_dev.dv_xname, ifp->if_timer));
   1438 
   1439 	return (1);
   1440 }
   1441 
   1442 /*
   1443  * Receive interrupt.
   1444  */
   1445 int
   1446 gem_rint(sc)
   1447 	struct gem_softc *sc;
   1448 {
   1449 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1450 	bus_space_tag_t t = sc->sc_bustag;
   1451 	bus_space_handle_t h = sc->sc_h1;
   1452 	struct gem_rxsoft *rxs;
   1453 	struct mbuf *m;
   1454 	u_int64_t rxstat;
   1455 	u_int32_t rxcomp;
   1456 	int i, len, progress = 0;
   1457 
   1458 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1459 
   1460 	/*
   1461 	 * Read the completion register once.  This limits
   1462 	 * how long the following loop can execute.
   1463 	 */
   1464 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1465 
   1466 	/*
   1467 	 * XXXX Read the lastrx only once at the top for speed.
   1468 	 */
   1469 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1470 		sc->sc_rxptr, rxcomp));
   1471 
   1472 	/*
   1473 	 * Go into the loop at least once.
   1474 	 */
   1475 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1476 	     i = GEM_NEXTRX(i)) {
   1477 		rxs = &sc->sc_rxsoft[i];
   1478 
   1479 		GEM_CDRXSYNC(sc, i,
   1480 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1481 
   1482 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1483 
   1484 		if (rxstat & GEM_RD_OWN) {
   1485 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1486 			/*
   1487 			 * We have processed all of the receive buffers.
   1488 			 */
   1489 			break;
   1490 		}
   1491 
   1492 		progress++;
   1493 		ifp->if_ipackets++;
   1494 
   1495 		if (rxstat & GEM_RD_BAD_CRC) {
   1496 			ifp->if_ierrors++;
   1497 			printf("%s: receive error: CRC error\n",
   1498 				sc->sc_dev.dv_xname);
   1499 			GEM_INIT_RXDESC(sc, i);
   1500 			continue;
   1501 		}
   1502 
   1503 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1504 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1505 #ifdef GEM_DEBUG
   1506 		if (ifp->if_flags & IFF_DEBUG) {
   1507 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1508 			printf("gd_flags: 0x%016llx\t", (long long)
   1509 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1510 			printf("gd_addr: 0x%016llx\n", (long long)
   1511 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1512 		}
   1513 #endif
   1514 
   1515 		/* No errors; receive the packet. */
   1516 		len = GEM_RD_BUFLEN(rxstat);
   1517 
   1518 		/*
   1519 		 * Allocate a new mbuf cluster.  If that fails, we are
   1520 		 * out of memory, and must drop the packet and recycle
   1521 		 * the buffer that's already attached to this descriptor.
   1522 		 */
   1523 		m = rxs->rxs_mbuf;
   1524 		if (gem_add_rxbuf(sc, i) != 0) {
   1525 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1526 			ifp->if_ierrors++;
   1527 			GEM_INIT_RXDESC(sc, i);
   1528 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1529 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1530 			continue;
   1531 		}
   1532 		m->m_data += 2; /* We're already off by two */
   1533 
   1534 		m->m_pkthdr.rcvif = ifp;
   1535 		m->m_pkthdr.len = m->m_len = len;
   1536 
   1537 #if NBPFILTER > 0
   1538 		/*
   1539 		 * Pass this up to any BPF listeners, but only
   1540 		 * pass it up the stack if it's for us.
   1541 		 */
   1542 		if (ifp->if_bpf)
   1543 			bpf_mtap(ifp->if_bpf, m);
   1544 #endif /* NBPFILTER > 0 */
   1545 
   1546 #ifdef INET
   1547 		/* hardware checksum */
   1548 		if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
   1549 			struct ether_header *eh;
   1550 			struct ip *ip;
   1551 			struct udphdr *uh;
   1552 			int32_t hlen, pktlen;
   1553 
   1554 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1555 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1556 					 ETHER_VLAN_ENCAP_LEN;
   1557 				eh = (struct ether_header *) mtod(m, void *) +
   1558 					ETHER_VLAN_ENCAP_LEN;
   1559 			} else {
   1560 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1561 				eh = mtod(m, struct ether_header *);
   1562 			}
   1563 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1564 				goto swcsum;
   1565 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
   1566 
   1567 			/* IPv4 only */
   1568 			if (ip->ip_v != IPVERSION)
   1569 				goto swcsum;
   1570 
   1571 			hlen = ip->ip_hl << 2;
   1572 			if (hlen < sizeof(struct ip))
   1573 				goto swcsum;
   1574 
   1575 			/*
   1576 			 * bail if too short, has random trailing garbage,
   1577 			 * truncated, fragment, or has ethernet pad.
   1578 			 */
   1579 			if ((ntohs(ip->ip_len) < hlen) ||
   1580 			    (ntohs(ip->ip_len) != pktlen) ||
   1581 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1582 				goto swcsum;
   1583 
   1584 			switch (ip->ip_p) {
   1585 			case IPPROTO_TCP:
   1586 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1587 					goto swcsum;
   1588 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1589 					goto swcsum;
   1590 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1591 				break;
   1592 			case IPPROTO_UDP:
   1593 				if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
   1594 					goto swcsum;
   1595 				if (pktlen < (hlen + sizeof(struct udphdr)))
   1596 					goto swcsum;
   1597 				uh = (struct udphdr *)((char *)ip + hlen);
   1598 				/* no checksum */
   1599 				if (uh->uh_sum == 0)
   1600 					goto swcsum;
   1601 				m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
   1602 				break;
   1603 			default:
   1604 				goto swcsum;
   1605 			}
   1606 
   1607 			/* the uncomplemented sum is expected */
   1608 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1609 
   1610 			/* if the pkt had ip options, we have to deduct them */
   1611 			if (hlen > sizeof(struct ip)) {
   1612 				uint16_t *opts;
   1613 				uint32_t optsum, temp;
   1614 
   1615 				optsum = 0;
   1616 				temp = hlen - sizeof(struct ip);
   1617 				opts = (uint16_t *) ((char *) ip +
   1618 					sizeof(struct ip));
   1619 
   1620 				while (temp > 1) {
   1621 					optsum += ntohs(*opts++);
   1622 					temp -= 2;
   1623 				}
   1624 				while (optsum >> 16)
   1625 					optsum = (optsum >> 16) +
   1626 						 (optsum & 0xffff);
   1627 
   1628 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1629 				m->m_pkthdr.csum_data =
   1630 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1631 
   1632 				while (m->m_pkthdr.csum_data >> 16)
   1633 					m->m_pkthdr.csum_data =
   1634 						(m->m_pkthdr.csum_data >> 16) +
   1635 						(m->m_pkthdr.csum_data &
   1636 						 0xffff);
   1637 			}
   1638 
   1639 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1640 						  M_CSUM_NO_PSEUDOHDR;
   1641 		} else
   1642 swcsum:
   1643 			m->m_pkthdr.csum_flags = 0;
   1644 #endif
   1645 		/* Pass it on. */
   1646 		(*ifp->if_input)(ifp, m);
   1647 	}
   1648 
   1649 	if (progress) {
   1650 		/* Update the receive pointer. */
   1651 		if (i == sc->sc_rxptr) {
   1652 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1653 #ifdef GEM_DEBUG
   1654 			if (ifp->if_flags & IFF_DEBUG)
   1655 				printf("%s: rint: ring wrap\n",
   1656 				    sc->sc_dev.dv_xname);
   1657 #endif
   1658 		}
   1659 		sc->sc_rxptr = i;
   1660 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1661 	}
   1662 #ifdef GEM_COUNTERS
   1663 	if (progress <= 4) {
   1664 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1665 	} else if (progress < 32) {
   1666 		if (progress < 16)
   1667 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1668 		else
   1669 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1670 
   1671 	} else {
   1672 		if (progress < 64)
   1673 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1674 		else
   1675 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1676 	}
   1677 #endif
   1678 
   1679 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1680 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1681 
   1682 	return (1);
   1683 }
   1684 
   1685 
   1686 /*
   1687  * gem_add_rxbuf:
   1688  *
   1689  *	Add a receive buffer to the indicated descriptor.
   1690  */
   1691 int
   1692 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1693 {
   1694 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1695 	struct mbuf *m;
   1696 	int error;
   1697 
   1698 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1699 	if (m == NULL)
   1700 		return (ENOBUFS);
   1701 
   1702 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1703 	MCLGET(m, M_DONTWAIT);
   1704 	if ((m->m_flags & M_EXT) == 0) {
   1705 		m_freem(m);
   1706 		return (ENOBUFS);
   1707 	}
   1708 
   1709 #ifdef GEM_DEBUG
   1710 /* bzero the packet to check DMA */
   1711 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1712 #endif
   1713 
   1714 	if (rxs->rxs_mbuf != NULL)
   1715 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1716 
   1717 	rxs->rxs_mbuf = m;
   1718 
   1719 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1720 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1721 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1722 	if (error) {
   1723 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1724 		    sc->sc_dev.dv_xname, idx, error);
   1725 		panic("gem_add_rxbuf");	/* XXX */
   1726 	}
   1727 
   1728 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1729 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1730 
   1731 	GEM_INIT_RXDESC(sc, idx);
   1732 
   1733 	return (0);
   1734 }
   1735 
   1736 
   1737 int
   1738 gem_eint(sc, status)
   1739 	struct gem_softc *sc;
   1740 	u_int status;
   1741 {
   1742 	char bits[128];
   1743 
   1744 	if ((status & GEM_INTR_MIF) != 0) {
   1745 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1746 		return (1);
   1747 	}
   1748 
   1749 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1750 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   1751 	return (1);
   1752 }
   1753 
   1754 
   1755 int
   1756 gem_intr(v)
   1757 	void *v;
   1758 {
   1759 	struct gem_softc *sc = (struct gem_softc *)v;
   1760 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1761 	bus_space_tag_t t = sc->sc_bustag;
   1762 	bus_space_handle_t seb = sc->sc_h1;
   1763 	u_int32_t status;
   1764 	int r = 0;
   1765 #ifdef GEM_DEBUG
   1766 	char bits[128];
   1767 #endif
   1768 
   1769 	sc->sc_ev_intr.ev_count++;
   1770 
   1771 	status = bus_space_read_4(t, seb, GEM_STATUS);
   1772 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   1773 		sc->sc_dev.dv_xname, (status >> 19),
   1774 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   1775 
   1776 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   1777 		r |= gem_eint(sc, status);
   1778 
   1779 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   1780 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   1781 		r |= gem_tint(sc);
   1782 	}
   1783 
   1784 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   1785 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   1786 		r |= gem_rint(sc);
   1787 	}
   1788 
   1789 	/* We should eventually do more than just print out error stats. */
   1790 	if (status & GEM_INTR_TX_MAC) {
   1791 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
   1792 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   1793 			printf("%s: MAC tx fault, status %x\n",
   1794 			    sc->sc_dev.dv_xname, txstat);
   1795 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   1796 			gem_init(ifp);
   1797 	}
   1798 	if (status & GEM_INTR_RX_MAC) {
   1799 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
   1800 		if (rxstat & ~GEM_MAC_RX_DONE)
   1801 			printf("%s: MAC rx fault, status %x\n",
   1802 			    sc->sc_dev.dv_xname, rxstat);
   1803 		/*
   1804 		 * On some chip revisions GEM_MAC_RX_OVERFLOW happen often
   1805 		 * due to a silicon bug so handle them silently.
   1806 		 */
   1807 		if (rxstat & GEM_MAC_RX_OVERFLOW)
   1808 			gem_init(ifp);
   1809 		else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   1810 			printf("%s: MAC rx fault, status %x\n",
   1811 			    sc->sc_dev.dv_xname, rxstat);
   1812 	}
   1813 #if NRND > 0
   1814 	rnd_add_uint32(&sc->rnd_source, status);
   1815 #endif
   1816 	return (r);
   1817 }
   1818 
   1819 
   1820 void
   1821 gem_watchdog(ifp)
   1822 	struct ifnet *ifp;
   1823 {
   1824 	struct gem_softc *sc = ifp->if_softc;
   1825 
   1826 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   1827 		"GEM_MAC_RX_CONFIG %x\n",
   1828 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
   1829 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
   1830 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
   1831 
   1832 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1833 	++ifp->if_oerrors;
   1834 
   1835 	/* Try to get more packets going. */
   1836 	gem_start(ifp);
   1837 }
   1838 
   1839 /*
   1840  * Initialize the MII Management Interface
   1841  */
   1842 void
   1843 gem_mifinit(sc)
   1844 	struct gem_softc *sc;
   1845 {
   1846 	bus_space_tag_t t = sc->sc_bustag;
   1847 	bus_space_handle_t mif = sc->sc_h1;
   1848 
   1849 	/* Configure the MIF in frame mode */
   1850 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1851 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   1852 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   1853 }
   1854 
   1855 /*
   1856  * MII interface
   1857  *
   1858  * The GEM MII interface supports at least three different operating modes:
   1859  *
   1860  * Bitbang mode is implemented using data, clock and output enable registers.
   1861  *
   1862  * Frame mode is implemented by loading a complete frame into the frame
   1863  * register and polling the valid bit for completion.
   1864  *
   1865  * Polling mode uses the frame register but completion is indicated by
   1866  * an interrupt.
   1867  *
   1868  */
   1869 static int
   1870 gem_mii_readreg(self, phy, reg)
   1871 	struct device *self;
   1872 	int phy, reg;
   1873 {
   1874 	struct gem_softc *sc = (void *)self;
   1875 	bus_space_tag_t t = sc->sc_bustag;
   1876 	bus_space_handle_t mif = sc->sc_h1;
   1877 	int n;
   1878 	u_int32_t v;
   1879 
   1880 #ifdef GEM_DEBUG1
   1881 	if (sc->sc_debug)
   1882 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
   1883 #endif
   1884 
   1885 #if 0
   1886 	/* Select the desired PHY in the MIF configuration register */
   1887 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1888 	/* Clear PHY select bit */
   1889 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1890 	if (phy == GEM_PHYAD_EXTERNAL)
   1891 		/* Set PHY select bit to get at external device */
   1892 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1893 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1894 #endif
   1895 
   1896 	/* Construct the frame command */
   1897 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   1898 		GEM_MIF_FRAME_READ;
   1899 
   1900 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1901 	for (n = 0; n < 100; n++) {
   1902 		DELAY(1);
   1903 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1904 		if (v & GEM_MIF_FRAME_TA0)
   1905 			return (v & GEM_MIF_FRAME_DATA);
   1906 	}
   1907 
   1908 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1909 	return (0);
   1910 }
   1911 
   1912 static void
   1913 gem_mii_writereg(self, phy, reg, val)
   1914 	struct device *self;
   1915 	int phy, reg, val;
   1916 {
   1917 	struct gem_softc *sc = (void *)self;
   1918 	bus_space_tag_t t = sc->sc_bustag;
   1919 	bus_space_handle_t mif = sc->sc_h1;
   1920 	int n;
   1921 	u_int32_t v;
   1922 
   1923 #ifdef GEM_DEBUG1
   1924 	if (sc->sc_debug)
   1925 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
   1926 			phy, reg, val);
   1927 #endif
   1928 
   1929 #if 0
   1930 	/* Select the desired PHY in the MIF configuration register */
   1931 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1932 	/* Clear PHY select bit */
   1933 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1934 	if (phy == GEM_PHYAD_EXTERNAL)
   1935 		/* Set PHY select bit to get at external device */
   1936 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1937 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1938 #endif
   1939 	/* Construct the frame command */
   1940 	v = GEM_MIF_FRAME_WRITE			|
   1941 	    (phy << GEM_MIF_PHY_SHIFT)		|
   1942 	    (reg << GEM_MIF_REG_SHIFT)		|
   1943 	    (val & GEM_MIF_FRAME_DATA);
   1944 
   1945 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1946 	for (n = 0; n < 100; n++) {
   1947 		DELAY(1);
   1948 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1949 		if (v & GEM_MIF_FRAME_TA0)
   1950 			return;
   1951 	}
   1952 
   1953 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1954 }
   1955 
   1956 static void
   1957 gem_mii_statchg(dev)
   1958 	struct device *dev;
   1959 {
   1960 	struct gem_softc *sc = (void *)dev;
   1961 #ifdef GEM_DEBUG
   1962 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1963 #endif
   1964 	bus_space_tag_t t = sc->sc_bustag;
   1965 	bus_space_handle_t mac = sc->sc_h1;
   1966 	u_int32_t v;
   1967 
   1968 #ifdef GEM_DEBUG
   1969 	if (sc->sc_debug)
   1970 		printf("gem_mii_statchg: status change: phy = %d\n",
   1971 			sc->sc_phys[instance]);
   1972 #endif
   1973 
   1974 
   1975 	/* Set tx full duplex options */
   1976 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   1977 	delay(10000); /* reg must be cleared and delay before changing. */
   1978 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
   1979 		GEM_MAC_TX_ENABLE;
   1980 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1981 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
   1982 	}
   1983 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
   1984 
   1985 	/* XIF Configuration */
   1986  /* We should really calculate all this rather than rely on defaults */
   1987 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
   1988 	v = GEM_MAC_XIF_LINK_LED;
   1989 	v |= GEM_MAC_XIF_TX_MII_ENA;
   1990 
   1991 	/* If an external transceiver is connected, enable its MII drivers */
   1992 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   1993 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   1994 		/* External MII needs echo disable if half duplex. */
   1995 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1996 			/* turn on full duplex LED */
   1997 			v |= GEM_MAC_XIF_FDPLX_LED;
   1998 		else
   1999 	 		/* half duplex -- disable echo */
   2000 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
   2001 
   2002 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2003 			v |= GEM_MAC_XIF_GMII_MODE;
   2004 		else
   2005 			v &= ~GEM_MAC_XIF_GMII_MODE;
   2006 	} else
   2007 		/* Internal MII needs buf enable */
   2008 		v |= GEM_MAC_XIF_MII_BUF_ENA;
   2009 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   2010 }
   2011 
   2012 int
   2013 gem_mediachange(ifp)
   2014 	struct ifnet *ifp;
   2015 {
   2016 	struct gem_softc *sc = ifp->if_softc;
   2017 
   2018 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   2019 		return (EINVAL);
   2020 
   2021 	return (mii_mediachg(&sc->sc_mii));
   2022 }
   2023 
   2024 void
   2025 gem_mediastatus(ifp, ifmr)
   2026 	struct ifnet *ifp;
   2027 	struct ifmediareq *ifmr;
   2028 {
   2029 	struct gem_softc *sc = ifp->if_softc;
   2030 
   2031 	if ((ifp->if_flags & IFF_UP) == 0)
   2032 		return;
   2033 
   2034 	mii_pollstat(&sc->sc_mii);
   2035 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2036 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2037 }
   2038 
   2039 /*
   2040  * Process an ioctl request.
   2041  */
   2042 int
   2043 gem_ioctl(ifp, cmd, data)
   2044 	struct ifnet *ifp;
   2045 	u_long cmd;
   2046 	void *data;
   2047 {
   2048 	struct gem_softc *sc = ifp->if_softc;
   2049 	struct ifreq *ifr = (struct ifreq *)data;
   2050 	int s, error = 0;
   2051 
   2052 	s = splnet();
   2053 
   2054 	switch (cmd) {
   2055 	case SIOCGIFMEDIA:
   2056 	case SIOCSIFMEDIA:
   2057 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   2058 		break;
   2059 	case SIOCSIFFLAGS:
   2060 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   2061 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   2062 		    == (IFF_UP|IFF_RUNNING))
   2063 		    && ((ifp->if_flags & (~RESETIGN))
   2064 		    == (sc->sc_if_flags & (~RESETIGN)))) {
   2065 			gem_setladrf(sc);
   2066 			break;
   2067 		}
   2068 #undef RESETIGN
   2069 		/*FALLTHROUGH*/
   2070 	default:
   2071 		error = ether_ioctl(ifp, cmd, data);
   2072 		if (error == ENETRESET) {
   2073 			/*
   2074 			 * Multicast list has changed; set the hardware filter
   2075 			 * accordingly.
   2076 			 */
   2077 			if (ifp->if_flags & IFF_RUNNING)
   2078 				gem_setladrf(sc);
   2079 			error = 0;
   2080 		}
   2081 		break;
   2082 	}
   2083 
   2084 	/* Try to get things going again */
   2085 	if (ifp->if_flags & IFF_UP)
   2086 		gem_start(ifp);
   2087 	splx(s);
   2088 	return (error);
   2089 }
   2090 
   2091 
   2092 void
   2093 gem_shutdown(arg)
   2094 	void *arg;
   2095 {
   2096 	struct gem_softc *sc = (struct gem_softc *)arg;
   2097 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2098 
   2099 	gem_stop(ifp, 1);
   2100 }
   2101 
   2102 /*
   2103  * Set up the logical address filter.
   2104  */
   2105 void
   2106 gem_setladrf(sc)
   2107 	struct gem_softc *sc;
   2108 {
   2109 	struct ethercom *ec = &sc->sc_ethercom;
   2110 	struct ifnet *ifp = &ec->ec_if;
   2111 	struct ether_multi *enm;
   2112 	struct ether_multistep step;
   2113 	bus_space_tag_t t = sc->sc_bustag;
   2114 	bus_space_handle_t h = sc->sc_h1;
   2115 	u_int32_t crc;
   2116 	u_int32_t hash[16];
   2117 	u_int32_t v;
   2118 	int i;
   2119 
   2120 	/* Get current RX configuration */
   2121 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2122 
   2123 	/*
   2124 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2125 	 * and hash filter.  Depending on the case, the right bit will be
   2126 	 * enabled.
   2127 	 */
   2128 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2129 	    GEM_MAC_RX_PROMISC_GRP);
   2130 
   2131 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2132 		/* Turn on promiscuous mode */
   2133 		v |= GEM_MAC_RX_PROMISCUOUS;
   2134 		ifp->if_flags |= IFF_ALLMULTI;
   2135 		goto chipit;
   2136 	}
   2137 
   2138 	/*
   2139 	 * Set up multicast address filter by passing all multicast addresses
   2140 	 * through a crc generator, and then using the high order 8 bits as an
   2141 	 * index into the 256 bit logical address filter.  The high order 4
   2142 	 * bits selects the word, while the other 4 bits select the bit within
   2143 	 * the word (where bit 0 is the MSB).
   2144 	 */
   2145 
   2146 	/* Clear hash table */
   2147 	memset(hash, 0, sizeof(hash));
   2148 
   2149 	ETHER_FIRST_MULTI(step, ec, enm);
   2150 	while (enm != NULL) {
   2151 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2152 			/*
   2153 			 * We must listen to a range of multicast addresses.
   2154 			 * For now, just accept all multicasts, rather than
   2155 			 * trying to set only those filter bits needed to match
   2156 			 * the range.  (At this time, the only use of address
   2157 			 * ranges is for IP multicast routing, for which the
   2158 			 * range is big enough to require all bits set.)
   2159 			 * XXX use the addr filter for this
   2160 			 */
   2161 			ifp->if_flags |= IFF_ALLMULTI;
   2162 			v |= GEM_MAC_RX_PROMISC_GRP;
   2163 			goto chipit;
   2164 		}
   2165 
   2166 		/* Get the LE CRC32 of the address */
   2167 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2168 
   2169 		/* Just want the 8 most significant bits. */
   2170 		crc >>= 24;
   2171 
   2172 		/* Set the corresponding bit in the filter. */
   2173 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2174 
   2175 		ETHER_NEXT_MULTI(step, enm);
   2176 	}
   2177 
   2178 	v |= GEM_MAC_RX_HASH_FILTER;
   2179 	ifp->if_flags &= ~IFF_ALLMULTI;
   2180 
   2181 	/* Now load the hash table into the chip (if we are using it) */
   2182 	for (i = 0; i < 16; i++) {
   2183 		bus_space_write_4(t, h,
   2184 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2185 		    hash[i]);
   2186 	}
   2187 
   2188 chipit:
   2189 	sc->sc_if_flags = ifp->if_flags;
   2190 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2191 }
   2192 
   2193 #if notyet
   2194 
   2195 /*
   2196  * gem_power:
   2197  *
   2198  *	Power management (suspend/resume) hook.
   2199  */
   2200 void
   2201 gem_power(why, arg)
   2202 	int why;
   2203 	void *arg;
   2204 {
   2205 	struct gem_softc *sc = arg;
   2206 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2207 	int s;
   2208 
   2209 	s = splnet();
   2210 	switch (why) {
   2211 	case PWR_SUSPEND:
   2212 	case PWR_STANDBY:
   2213 		gem_stop(ifp, 1);
   2214 		if (sc->sc_power != NULL)
   2215 			(*sc->sc_power)(sc, why);
   2216 		break;
   2217 	case PWR_RESUME:
   2218 		if (ifp->if_flags & IFF_UP) {
   2219 			if (sc->sc_power != NULL)
   2220 				(*sc->sc_power)(sc, why);
   2221 			gem_init(ifp);
   2222 		}
   2223 		break;
   2224 	case PWR_SOFTSUSPEND:
   2225 	case PWR_SOFTSTANDBY:
   2226 	case PWR_SOFTRESUME:
   2227 		break;
   2228 	}
   2229 	splx(s);
   2230 }
   2231 #endif
   2232