gem.c revision 1.68 1 /* $NetBSD: gem.c,v 1.68 2008/01/05 20:27:44 jdc Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.68 2008/01/05 20:27:44 jdc Exp $");
41
42 #include "opt_inet.h"
43 #include "bpfilter.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56
57 #include <machine/endian.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
78
79 #include <sys/bus.h>
80 #include <sys/intr.h>
81
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
85
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
88
89 #define TRIES 10000
90
91 static void gem_start(struct ifnet *);
92 static void gem_stop(struct ifnet *, int);
93 int gem_ioctl(struct ifnet *, u_long, void *);
94 void gem_tick(void *);
95 void gem_watchdog(struct ifnet *);
96 void gem_shutdown(void *);
97 void gem_pcs_start(struct gem_softc *sc);
98 void gem_pcs_stop(struct gem_softc *sc, int);
99 int gem_init(struct ifnet *);
100 void gem_init_regs(struct gem_softc *sc);
101 static int gem_ringsize(int sz);
102 static int gem_meminit(struct gem_softc *);
103 void gem_mifinit(struct gem_softc *);
104 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 u_int32_t, u_int32_t);
106 void gem_reset(struct gem_softc *);
107 int gem_reset_rx(struct gem_softc *sc);
108 static void gem_reset_rxdma(struct gem_softc *sc);
109 static void gem_rx_common(struct gem_softc *sc);
110 int gem_reset_tx(struct gem_softc *sc);
111 int gem_disable_rx(struct gem_softc *sc);
112 int gem_disable_tx(struct gem_softc *sc);
113 static void gem_rxdrain(struct gem_softc *sc);
114 int gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void gem_setladrf(struct gem_softc *);
116
117 /* MII methods & callbacks */
118 static int gem_mii_readreg(struct device *, int, int);
119 static void gem_mii_writereg(struct device *, int, int, int);
120 static void gem_mii_statchg(struct device *);
121
122 void gem_statuschange(struct gem_softc *);
123
124 int gem_mediachange(struct ifnet *);
125 void gem_mediastatus(struct ifnet *, struct ifmediareq *);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146
147 /*
148 * gem_attach:
149 *
150 * Attach a Gem interface to the system.
151 */
152 void
153 gem_attach(sc, enaddr)
154 struct gem_softc *sc;
155 const uint8_t *enaddr;
156 {
157 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
158 struct mii_data *mii = &sc->sc_mii;
159 bus_space_tag_t t = sc->sc_bustag;
160 bus_space_handle_t h = sc->sc_h1;
161 struct mii_softc *child;
162 struct ifmedia_entry *ifm;
163 int i, error;
164 u_int32_t v;
165 char *nullbuf;
166
167 /* Make sure the chip is stopped. */
168 ifp->if_softc = sc;
169 gem_reset(sc);
170
171 /*
172 * Allocate the control data structures, and create and load the
173 * DMA map for it. gem_control_data is 9216 bytes, we have space for
174 * the padding buffer in the bus_dmamem_alloc()'d memory.
175 */
176 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
177 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
178 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
179 aprint_error(
180 "%s: unable to allocate control data, error = %d\n",
181 sc->sc_dev.dv_xname, error);
182 goto fail_0;
183 }
184
185 /* XXX should map this in with correct endianness */
186 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
187 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
188 BUS_DMA_COHERENT)) != 0) {
189 aprint_error("%s: unable to map control data, error = %d\n",
190 sc->sc_dev.dv_xname, error);
191 goto fail_1;
192 }
193
194 nullbuf =
195 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
196
197 if ((error = bus_dmamap_create(sc->sc_dmatag,
198 sizeof(struct gem_control_data), 1,
199 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
200 aprint_error("%s: unable to create control data DMA map, "
201 "error = %d\n", sc->sc_dev.dv_xname, error);
202 goto fail_2;
203 }
204
205 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
206 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
207 0)) != 0) {
208 aprint_error(
209 "%s: unable to load control data DMA map, error = %d\n",
210 sc->sc_dev.dv_xname, error);
211 goto fail_3;
212 }
213
214 memset(nullbuf, 0, ETHER_MIN_TX);
215 if ((error = bus_dmamap_create(sc->sc_dmatag,
216 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
217 aprint_error("%s: unable to create padding DMA map, "
218 "error = %d\n", sc->sc_dev.dv_xname, error);
219 goto fail_4;
220 }
221
222 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
223 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
224 aprint_error(
225 "%s: unable to load padding DMA map, error = %d\n",
226 sc->sc_dev.dv_xname, error);
227 goto fail_5;
228 }
229
230 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
231 BUS_DMASYNC_PREWRITE);
232
233 /*
234 * Initialize the transmit job descriptors.
235 */
236 SIMPLEQ_INIT(&sc->sc_txfreeq);
237 SIMPLEQ_INIT(&sc->sc_txdirtyq);
238
239 /*
240 * Create the transmit buffer DMA maps.
241 */
242 for (i = 0; i < GEM_TXQUEUELEN; i++) {
243 struct gem_txsoft *txs;
244
245 txs = &sc->sc_txsoft[i];
246 txs->txs_mbuf = NULL;
247 if ((error = bus_dmamap_create(sc->sc_dmatag,
248 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
249 ETHER_MAX_LEN_JUMBO, 0, 0,
250 &txs->txs_dmamap)) != 0) {
251 aprint_error("%s: unable to create tx DMA map %d, "
252 "error = %d\n", sc->sc_dev.dv_xname, i, error);
253 goto fail_6;
254 }
255 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
256 }
257
258 /*
259 * Create the receive buffer DMA maps.
260 */
261 for (i = 0; i < GEM_NRXDESC; i++) {
262 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
263 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
264 aprint_error("%s: unable to create rx DMA map %d, "
265 "error = %d\n", sc->sc_dev.dv_xname, i, error);
266 goto fail_7;
267 }
268 sc->sc_rxsoft[i].rxs_mbuf = NULL;
269 }
270
271 /* Initialize ifmedia structures and MII info */
272 mii->mii_ifp = ifp;
273 mii->mii_readreg = gem_mii_readreg;
274 mii->mii_writereg = gem_mii_writereg;
275 mii->mii_statchg = gem_mii_statchg;
276
277 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
278
279 /*
280 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
281 * Section 3.2.1 `Initialization Sequence'.
282 * However, we can't assume SERDES or Serialink if neither
283 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
284 * being set, as both are set on Sun X1141A (with SERDES). So,
285 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
286 */
287 gem_mifinit(sc);
288
289 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
290 mii_attach(&sc->sc_dev, mii, 0xffffffff,
291 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
292 child = LIST_FIRST(&mii->mii_phys);
293 if (child == NULL) {
294 /* No PHY attached */
295 aprint_error("%s: PHY probe failed\n",
296 sc->sc_dev.dv_xname);
297 goto fail_7;
298 } else {
299 /*
300 * Walk along the list of attached MII devices and
301 * establish an `MII instance' to `PHY number'
302 * mapping.
303 */
304 for (; child != NULL;
305 child = LIST_NEXT(child, mii_list)) {
306 /*
307 * Note: we support just one PHY: the internal
308 * or external MII is already selected for us
309 * by the GEM_MIF_CONFIG register.
310 */
311 if (child->mii_phy > 1 || child->mii_inst > 0) {
312 aprint_error(
313 "%s: cannot accommodate MII device"
314 " %s at PHY %d, instance %d\n",
315 sc->sc_dev.dv_xname,
316 child->mii_dev.dv_xname,
317 child->mii_phy, child->mii_inst);
318 continue;
319 }
320 sc->sc_phys[child->mii_inst] = child->mii_phy;
321 }
322
323 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
324 #ifdef GEM_DEBUG
325 aprint_debug("%s: using PHY at MDIO_0\n",
326 sc->sc_dev.dv_xname);
327 #endif
328 } else {
329 #ifdef GEM_DEBUG
330 aprint_debug("%s: using PHY at MDIO_1\n",
331 sc->sc_dev.dv_xname);
332 #endif
333 }
334 if (sc->sc_variant != GEM_SUN_ERI)
335 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
336 GEM_MII_DATAPATH_MII);
337
338 /*
339 * XXX - we can really do the following ONLY if the
340 * PHY indeed has the auto negotiation capability!!
341 */
342 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
343 }
344 } else {
345 /* SERDES or Serialink */
346 if (sc->sc_flags & GEM_SERDES) {
347 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
348 GEM_MII_DATAPATH_SERDES);
349 } else {
350 sc->sc_flags |= GEM_SERIAL;
351 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
352 GEM_MII_DATAPATH_SERIAL);
353 }
354
355 aprint_normal("%s: using external PCS %s: ",
356 sc->sc_dev.dv_xname,
357 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
358
359 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
360 /* Check for FDX and HDX capabilities */
361 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
362 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
363 ifmedia_add(&sc->sc_media,
364 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
365 aprint_normal("1000baseSX-FDX, ");
366 }
367 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
368 ifmedia_add(&sc->sc_media,
369 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
370 aprint_normal("1000baseSX-HDX, ");
371 }
372 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
373 sc->sc_mii_media = IFM_AUTO;
374 aprint_normal("auto\n");
375
376 gem_pcs_stop(sc, 1);
377 }
378
379 /*
380 * From this point forward, the attachment cannot fail. A failure
381 * before this point releases all resources that may have been
382 * allocated.
383 */
384
385 /* Announce ourselves. */
386 aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
387 ether_sprintf(enaddr));
388
389 /* Get RX FIFO size */
390 sc->sc_rxfifosize = 64 *
391 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
392 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
393
394 /* Get TX FIFO size */
395 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
396 aprint_normal(", %uKB TX fifo\n", v / 16);
397
398 /* Initialize ifnet structure. */
399 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
400 ifp->if_softc = sc;
401 ifp->if_flags =
402 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
403 sc->sc_if_flags = ifp->if_flags;
404 /* The GEM hardware supports basic TCP checksum offloading only. */
405 ifp->if_capabilities |=
406 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
407 ifp->if_start = gem_start;
408 ifp->if_ioctl = gem_ioctl;
409 ifp->if_watchdog = gem_watchdog;
410 ifp->if_stop = gem_stop;
411 ifp->if_init = gem_init;
412 IFQ_SET_READY(&ifp->if_snd);
413
414 /*
415 * If we support GigE media, we support jumbo frames too.
416 * Unless we are Apple.
417 */
418 TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
419 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
420 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
421 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
422 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
423 if (sc->sc_variant != GEM_APPLE_GMAC)
424 sc->sc_ethercom.ec_capabilities
425 |= ETHERCAP_JUMBO_MTU;
426
427 sc->sc_flags |= GEM_GIGABIT;
428 break;
429 }
430 }
431
432 /* claim 802.1q capability */
433 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
434
435 /* Attach the interface. */
436 if_attach(ifp);
437 ether_ifattach(ifp, enaddr);
438
439 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
440 if (sc->sc_sh == NULL)
441 panic("gem_config: can't establish shutdownhook");
442
443 #if NRND > 0
444 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
445 RND_TYPE_NET, 0);
446 #endif
447
448 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
449 NULL, sc->sc_dev.dv_xname, "interrupts");
450 #ifdef GEM_COUNTERS
451 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
452 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
453 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
454 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
455 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
456 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
457 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
458 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
459 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
460 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
461 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
462 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
463 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
464 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
465 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
466 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
467 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
468 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
469 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
470 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
471 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
472 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
473 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
474 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
475 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
476 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
477 #endif
478
479 #if notyet
480 /*
481 * Add a suspend hook to make sure we come back up after a
482 * resume.
483 */
484 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
485 gem_power, sc);
486 if (sc->sc_powerhook == NULL)
487 aprint_error("%s: WARNING: unable to establish power hook\n",
488 sc->sc_dev.dv_xname);
489 #endif
490
491 callout_init(&sc->sc_tick_ch, 0);
492 return;
493
494 /*
495 * Free any resources we've allocated during the failed attach
496 * attempt. Do this in reverse order and fall through.
497 */
498 fail_7:
499 for (i = 0; i < GEM_NRXDESC; i++) {
500 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
501 bus_dmamap_destroy(sc->sc_dmatag,
502 sc->sc_rxsoft[i].rxs_dmamap);
503 }
504 fail_6:
505 for (i = 0; i < GEM_TXQUEUELEN; i++) {
506 if (sc->sc_txsoft[i].txs_dmamap != NULL)
507 bus_dmamap_destroy(sc->sc_dmatag,
508 sc->sc_txsoft[i].txs_dmamap);
509 }
510 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
511 fail_5:
512 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
513 fail_4:
514 bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
515 fail_3:
516 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
517 fail_2:
518 bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
519 sizeof(struct gem_control_data));
520 fail_1:
521 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
522 fail_0:
523 return;
524 }
525
526
527 void
528 gem_tick(arg)
529 void *arg;
530 {
531 struct gem_softc *sc = arg;
532 int s;
533
534 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
535 /*
536 * We have to reset everything if we failed to get a
537 * PCS interrupt. Restarting the callout is handled
538 * in gem_pcs_start().
539 */
540 gem_init(&sc->sc_ethercom.ec_if);
541 } else {
542 s = splnet();
543 mii_tick(&sc->sc_mii);
544 splx(s);
545 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
546 }
547 }
548
549 static int
550 gem_bitwait(sc, h, r, clr, set)
551 struct gem_softc *sc;
552 bus_space_handle_t h;
553 int r;
554 u_int32_t clr;
555 u_int32_t set;
556 {
557 int i;
558 u_int32_t reg;
559
560 for (i = TRIES; i--; DELAY(100)) {
561 reg = bus_space_read_4(sc->sc_bustag, h, r);
562 if ((reg & clr) == 0 && (reg & set) == set)
563 return (1);
564 }
565 return (0);
566 }
567
568 void
569 gem_reset(sc)
570 struct gem_softc *sc;
571 {
572 bus_space_tag_t t = sc->sc_bustag;
573 bus_space_handle_t h = sc->sc_h2;
574 int s;
575
576 s = splnet();
577 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
578 gem_reset_rx(sc);
579 gem_reset_tx(sc);
580
581 /* Do a full reset */
582 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
583 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
584 printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
585 splx(s);
586 }
587
588
589 /*
590 * gem_rxdrain:
591 *
592 * Drain the receive queue.
593 */
594 static void
595 gem_rxdrain(struct gem_softc *sc)
596 {
597 struct gem_rxsoft *rxs;
598 int i;
599
600 for (i = 0; i < GEM_NRXDESC; i++) {
601 rxs = &sc->sc_rxsoft[i];
602 if (rxs->rxs_mbuf != NULL) {
603 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
604 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
605 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
606 m_freem(rxs->rxs_mbuf);
607 rxs->rxs_mbuf = NULL;
608 }
609 }
610 }
611
612 /*
613 * Reset the whole thing.
614 */
615 static void
616 gem_stop(struct ifnet *ifp, int disable)
617 {
618 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
619 struct gem_txsoft *txs;
620
621 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
622
623 callout_stop(&sc->sc_tick_ch);
624 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
625 gem_pcs_stop(sc, disable);
626 else
627 mii_down(&sc->sc_mii);
628
629 /* XXX - Should we reset these instead? */
630 gem_disable_tx(sc);
631 gem_disable_rx(sc);
632
633 /*
634 * Release any queued transmit buffers.
635 */
636 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
637 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
638 if (txs->txs_mbuf != NULL) {
639 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
640 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
641 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
642 m_freem(txs->txs_mbuf);
643 txs->txs_mbuf = NULL;
644 }
645 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
646 }
647
648 if (disable) {
649 gem_rxdrain(sc);
650 }
651
652 /*
653 * Mark the interface down and cancel the watchdog timer.
654 */
655 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
656 sc->sc_if_flags = ifp->if_flags;
657 ifp->if_timer = 0;
658 }
659
660
661 /*
662 * Reset the receiver
663 */
664 int
665 gem_reset_rx(struct gem_softc *sc)
666 {
667 bus_space_tag_t t = sc->sc_bustag;
668 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
669
670 /*
671 * Resetting while DMA is in progress can cause a bus hang, so we
672 * disable DMA first.
673 */
674 gem_disable_rx(sc);
675 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
676 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
677 /* Wait till it finishes */
678 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
679 printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
680
681 /* Finally, reset the ERX */
682 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
683 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
684 /* Wait till it finishes */
685 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
686 printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
687 return (1);
688 }
689 return (0);
690 }
691
692
693 /*
694 * Reset the receiver DMA engine.
695 *
696 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
697 * etc in order to reset the receiver DMA engine only and not do a full
698 * reset which amongst others also downs the link and clears the FIFOs.
699 */
700 static void
701 gem_reset_rxdma(struct gem_softc *sc)
702 {
703 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 bus_space_tag_t t = sc->sc_bustag;
705 bus_space_handle_t h = sc->sc_h1;
706 int i;
707
708 if (gem_reset_rx(sc) != 0) {
709 gem_init(ifp);
710 return;
711 }
712 for (i = 0; i < GEM_NRXDESC; i++)
713 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
714 GEM_UPDATE_RXDESC(sc, i);
715 sc->sc_rxptr = 0;
716 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
717 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
718
719 /* Reprogram Descriptor Ring Base Addresses */
720 /* NOTE: we use only 32-bit DMA addresses here. */
721 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
722 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
723
724 /* Redo ERX Configuration */
725 gem_rx_common(sc);
726
727 /* Give the reciever a swift kick */
728 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
729 }
730
731 /*
732 * Common RX configuration for gem_init() and gem_reset_rxdma().
733 */
734 static void
735 gem_rx_common(struct gem_softc *sc)
736 {
737 bus_space_tag_t t = sc->sc_bustag;
738 bus_space_handle_t h = sc->sc_h1;
739 u_int32_t v;
740
741 /* Encode Receive Descriptor ring size: four possible values */
742 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
743
744 /* Set receive h/w checksum offset */
745 #ifdef INET
746 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
747 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
748 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
749 #endif
750
751 /* Enable RX DMA */
752 bus_space_write_4(t, h, GEM_RX_CONFIG,
753 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
754 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
755
756 /*
757 * The following value is for an OFF Threshold of about 3/4 full
758 * and an ON Threshold of 1/4 full.
759 */
760 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
761 (3 * sc->sc_rxfifosize / 256) |
762 ((sc->sc_rxfifosize / 256) << 12));
763 bus_space_write_4(t, h, GEM_RX_BLANKING,
764 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
765 }
766
767 /*
768 * Reset the transmitter
769 */
770 int
771 gem_reset_tx(struct gem_softc *sc)
772 {
773 bus_space_tag_t t = sc->sc_bustag;
774 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
775
776 /*
777 * Resetting while DMA is in progress can cause a bus hang, so we
778 * disable DMA first.
779 */
780 gem_disable_tx(sc);
781 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
782 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
783 /* Wait till it finishes */
784 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
785 printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
786 /* Wait 5ms extra. */
787 delay(5000);
788
789 /* Finally, reset the ETX */
790 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
791 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
792 /* Wait till it finishes */
793 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
794 printf("%s: cannot reset receiver\n",
795 sc->sc_dev.dv_xname);
796 return (1);
797 }
798 return (0);
799 }
800
801 /*
802 * disable receiver.
803 */
804 int
805 gem_disable_rx(struct gem_softc *sc)
806 {
807 bus_space_tag_t t = sc->sc_bustag;
808 bus_space_handle_t h = sc->sc_h1;
809 u_int32_t cfg;
810
811 /* Flip the enable bit */
812 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
813 cfg &= ~GEM_MAC_RX_ENABLE;
814 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
815 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
816 /* Wait for it to finish */
817 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
818 }
819
820 /*
821 * disable transmitter.
822 */
823 int
824 gem_disable_tx(struct gem_softc *sc)
825 {
826 bus_space_tag_t t = sc->sc_bustag;
827 bus_space_handle_t h = sc->sc_h1;
828 u_int32_t cfg;
829
830 /* Flip the enable bit */
831 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
832 cfg &= ~GEM_MAC_TX_ENABLE;
833 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
834 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
835 /* Wait for it to finish */
836 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
837 }
838
839 /*
840 * Initialize interface.
841 */
842 int
843 gem_meminit(struct gem_softc *sc)
844 {
845 struct gem_rxsoft *rxs;
846 int i, error;
847
848 /*
849 * Initialize the transmit descriptor ring.
850 */
851 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
852 for (i = 0; i < GEM_NTXDESC; i++) {
853 sc->sc_txdescs[i].gd_flags = 0;
854 sc->sc_txdescs[i].gd_addr = 0;
855 }
856 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
857 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
858 sc->sc_txfree = GEM_NTXDESC-1;
859 sc->sc_txnext = 0;
860 sc->sc_txwin = 0;
861
862 /*
863 * Initialize the receive descriptor and receive job
864 * descriptor rings.
865 */
866 for (i = 0; i < GEM_NRXDESC; i++) {
867 rxs = &sc->sc_rxsoft[i];
868 if (rxs->rxs_mbuf == NULL) {
869 if ((error = gem_add_rxbuf(sc, i)) != 0) {
870 printf("%s: unable to allocate or map rx "
871 "buffer %d, error = %d\n",
872 sc->sc_dev.dv_xname, i, error);
873 /*
874 * XXX Should attempt to run with fewer receive
875 * XXX buffers instead of just failing.
876 */
877 gem_rxdrain(sc);
878 return (1);
879 }
880 } else
881 GEM_INIT_RXDESC(sc, i);
882 }
883 sc->sc_rxptr = 0;
884 sc->sc_meminited = 1;
885 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
886 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
887
888 return (0);
889 }
890
891 static int
892 gem_ringsize(int sz)
893 {
894 switch (sz) {
895 case 32:
896 return GEM_RING_SZ_32;
897 case 64:
898 return GEM_RING_SZ_64;
899 case 128:
900 return GEM_RING_SZ_128;
901 case 256:
902 return GEM_RING_SZ_256;
903 case 512:
904 return GEM_RING_SZ_512;
905 case 1024:
906 return GEM_RING_SZ_1024;
907 case 2048:
908 return GEM_RING_SZ_2048;
909 case 4096:
910 return GEM_RING_SZ_4096;
911 case 8192:
912 return GEM_RING_SZ_8192;
913 default:
914 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
915 return GEM_RING_SZ_32;
916 }
917 }
918
919
920 /*
921 * Start PCS
922 */
923 void
924 gem_pcs_start(struct gem_softc *sc)
925 {
926 bus_space_tag_t t = sc->sc_bustag;
927 bus_space_handle_t h = sc->sc_h1;
928 uint32_t v;
929
930 #ifdef GEM_DEBUG
931 aprint_debug("%s: gem_pcs_start()\n", sc->sc_dev.dv_xname);
932 #endif
933
934 /*
935 * Set up. We must disable the MII before modifying the
936 * GEM_MII_ANAR register
937 */
938 if (sc->sc_flags & GEM_SERDES) {
939 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
940 GEM_MII_DATAPATH_SERDES);
941 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
942 GEM_MII_SLINK_LOOPBACK);
943 } else {
944 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
945 GEM_MII_DATAPATH_SERIAL);
946 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
947 }
948 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
949 v = bus_space_read_4(t, h, GEM_MII_ANAR);
950 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
951 if (sc->sc_mii_media == IFM_AUTO)
952 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
953 else if (sc->sc_mii_media == IFM_FDX) {
954 v |= GEM_MII_ANEG_FUL_DUPLX;
955 v &= ~GEM_MII_ANEG_HLF_DUPLX;
956 } else if (sc->sc_mii_media == IFM_HDX) {
957 v &= ~GEM_MII_ANEG_FUL_DUPLX;
958 v |= GEM_MII_ANEG_HLF_DUPLX;
959 }
960
961 /* Configure link. */
962 bus_space_write_4(t, h, GEM_MII_ANAR, v);
963 bus_space_write_4(t, h, GEM_MII_CONTROL,
964 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
965 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
966 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
967
968 /* Start the 10 second timer */
969 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
970 }
971
972 /*
973 * Stop PCS
974 */
975 void
976 gem_pcs_stop(struct gem_softc *sc, int disable)
977 {
978 bus_space_tag_t t = sc->sc_bustag;
979 bus_space_handle_t h = sc->sc_h1;
980
981 #ifdef GEM_DEBUG
982 aprint_debug("%s: gem_pcs_stop()\n", sc->sc_dev.dv_xname);
983 #endif
984
985 /* Tell link partner that we're going away */
986 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
987
988 /*
989 * Disable PCS MII. The documentation suggests that setting
990 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
991 * negotiation will shut down the link. However, it appears
992 * that we also need to unset the datapath mode.
993 */
994 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
995 bus_space_write_4(t, h, GEM_MII_CONTROL,
996 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
997 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
998 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
999
1000 if (disable) {
1001 if (sc->sc_flags & GEM_SERDES)
1002 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1003 GEM_MII_SLINK_POWER_OFF);
1004 else
1005 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1006 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1007 }
1008
1009 sc->sc_flags &= ~GEM_LINK;
1010 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1011 sc->sc_mii.mii_media_status = IFM_AVALID;
1012 }
1013
1014
1015 /*
1016 * Initialization of interface; set up initialization block
1017 * and transmit/receive descriptor rings.
1018 */
1019 int
1020 gem_init(struct ifnet *ifp)
1021 {
1022 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1023 bus_space_tag_t t = sc->sc_bustag;
1024 bus_space_handle_t h = sc->sc_h1;
1025 int s;
1026 u_int max_frame_size;
1027 u_int32_t v;
1028
1029 s = splnet();
1030
1031 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
1032 /*
1033 * Initialization sequence. The numbered steps below correspond
1034 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1035 * Channel Engine manual (part of the PCIO manual).
1036 * See also the STP2002-STQ document from Sun Microsystems.
1037 */
1038
1039 /* step 1 & 2. Reset the Ethernet Channel */
1040 gem_stop(ifp, 0);
1041 gem_reset(sc);
1042 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
1043
1044 /* Re-initialize the MIF */
1045 gem_mifinit(sc);
1046
1047 /* Set up correct datapath for non-SERDES/Serialink */
1048 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1049 sc->sc_variant != GEM_SUN_ERI)
1050 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1051 GEM_MII_DATAPATH_MII);
1052
1053 /* Call MI reset function if any */
1054 if (sc->sc_hwreset)
1055 (*sc->sc_hwreset)(sc);
1056
1057 /* step 3. Setup data structures in host memory */
1058 if (gem_meminit(sc) != 0)
1059 return 1;
1060
1061 /* step 4. TX MAC registers & counters */
1062 gem_init_regs(sc);
1063 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1064 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1065 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1066 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1067 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1068 max_frame_size|/* burst size */(0x2000<<16));
1069
1070 /* step 5. RX MAC registers & counters */
1071 gem_setladrf(sc);
1072
1073 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1074 /* NOTE: we use only 32-bit DMA addresses here. */
1075 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1076 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1077
1078 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1079 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1080
1081 /* step 8. Global Configuration & Interrupt Mask */
1082 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1083 v = GEM_INTR_PCS;
1084 else
1085 v = GEM_INTR_MIF;
1086 bus_space_write_4(t, h, GEM_INTMASK,
1087 ~(GEM_INTR_TX_INTME |
1088 GEM_INTR_TX_EMPTY |
1089 GEM_INTR_TX_MAC |
1090 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
1091 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
1092 GEM_INTR_BERR | v));
1093 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1094 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1095 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1096 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1097 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1098
1099 /* step 9. ETX Configuration: use mostly default values */
1100
1101 /* Enable TX DMA */
1102 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1103 bus_space_write_4(t, h, GEM_TX_CONFIG,
1104 v|GEM_TX_CONFIG_TXDMA_EN|
1105 ((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
1106 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1107
1108 /* step 10. ERX Configuration */
1109 gem_rx_common(sc);
1110
1111 /* step 11. Configure Media */
1112 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
1113 mii_mediachg(&sc->sc_mii);
1114
1115 /* step 12. RX_MAC Configuration Register */
1116 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1117 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1118 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1119
1120 /* step 14. Issue Transmit Pending command */
1121
1122 /* Call MI initialization function if any */
1123 if (sc->sc_hwinit)
1124 (*sc->sc_hwinit)(sc);
1125
1126
1127 /* step 15. Give the reciever a swift kick */
1128 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1129
1130 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1131 /* Configure PCS */
1132 gem_pcs_start(sc);
1133 else
1134 /* Start the one second timer. */
1135 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1136
1137 sc->sc_flags &= ~GEM_LINK;
1138 ifp->if_flags |= IFF_RUNNING;
1139 ifp->if_flags &= ~IFF_OACTIVE;
1140 ifp->if_timer = 0;
1141 sc->sc_if_flags = ifp->if_flags;
1142
1143 splx(s);
1144
1145 return (0);
1146 }
1147
1148 void
1149 gem_init_regs(struct gem_softc *sc)
1150 {
1151 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1152 bus_space_tag_t t = sc->sc_bustag;
1153 bus_space_handle_t h = sc->sc_h1;
1154 const u_char *laddr = CLLADDR(ifp->if_sadl);
1155 u_int32_t v;
1156
1157 /* These regs are not cleared on reset */
1158 if (!sc->sc_inited) {
1159
1160 /* Load recommended values */
1161 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1162 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1163 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1164
1165 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1166 /* Max frame and max burst size */
1167 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1168 ETHER_MAX_LEN | (0x2000<<16));
1169
1170 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1171 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1172 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1173 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1174 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1175 ((laddr[5]<<8)|laddr[4])&0x3ff);
1176
1177 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1178 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1179 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1180 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1181
1182 /* MAC control addr set to 01:80:c2:00:00:01 */
1183 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1184 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1185 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1186
1187 /* MAC filter addr set to 0:0:0:0:0:0 */
1188 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1189 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1190 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1191
1192 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1193 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1194
1195 sc->sc_inited = 1;
1196 }
1197
1198 /* Counters need to be zeroed */
1199 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1200 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1201 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1202 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1203 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1204 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1205 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1206 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1207 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1208 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1209 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1210
1211 /* Set XOFF PAUSE time. */
1212 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1213
1214 /*
1215 * Set the internal arbitration to "infinite" bursts of the
1216 * maximum length of 31 * 64 bytes so DMA transfers aren't
1217 * split up in cache line size chunks. This greatly improves
1218 * especially RX performance.
1219 * Enable silicon bug workarounds for the Apple variants.
1220 */
1221 bus_space_write_4(t, h, GEM_CONFIG,
1222 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1223 GEM_CONFIG_BURST_INF | (GEM_IS_APPLE(sc) ?
1224 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1225
1226 /*
1227 * Set the station address.
1228 */
1229 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1230 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1231 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1232
1233 /*
1234 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1235 */
1236 v = GEM_MAC_XIF_TX_MII_ENA;
1237 if (sc->sc_flags & GEM_GIGABIT)
1238 v |= GEM_MAC_XIF_GMII_MODE;
1239 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1240 }
1241
1242 #ifdef GEM_DEBUG
1243 static void
1244 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1245 {
1246 int i;
1247
1248 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1249 printf("descriptor %d:\t", i);
1250 printf("gd_flags: 0x%016" PRIx64 "\t",
1251 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1252 printf("gd_addr: 0x%016" PRIx64 "\n",
1253 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1254 if (i == lastdesc)
1255 break;
1256 }
1257 }
1258 #endif
1259
1260 static void
1261 gem_start(ifp)
1262 struct ifnet *ifp;
1263 {
1264 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1265 struct mbuf *m0, *m;
1266 struct gem_txsoft *txs;
1267 bus_dmamap_t dmamap;
1268 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1269 uint64_t flags = 0;
1270
1271 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1272 return;
1273
1274 /*
1275 * Remember the previous number of free descriptors and
1276 * the first descriptor we'll use.
1277 */
1278 ofree = sc->sc_txfree;
1279 firsttx = sc->sc_txnext;
1280
1281 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1282 sc->sc_dev.dv_xname, ofree, firsttx));
1283
1284 /*
1285 * Loop through the send queue, setting up transmit descriptors
1286 * until we drain the queue, or use up all available transmit
1287 * descriptors.
1288 */
1289 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1290 sc->sc_txfree != 0) {
1291 /*
1292 * Grab a packet off the queue.
1293 */
1294 IFQ_POLL(&ifp->if_snd, m0);
1295 if (m0 == NULL)
1296 break;
1297 m = NULL;
1298
1299 dmamap = txs->txs_dmamap;
1300
1301 /*
1302 * Load the DMA map. If this fails, the packet either
1303 * didn't fit in the alloted number of segments, or we were
1304 * short on resources. In this case, we'll copy and try
1305 * again.
1306 */
1307 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1308 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1309 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1310 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1311 if (m0->m_pkthdr.len > MCLBYTES) {
1312 printf("%s: unable to allocate jumbo Tx "
1313 "cluster\n", sc->sc_dev.dv_xname);
1314 IFQ_DEQUEUE(&ifp->if_snd, m0);
1315 m_freem(m0);
1316 continue;
1317 }
1318 MGETHDR(m, M_DONTWAIT, MT_DATA);
1319 if (m == NULL) {
1320 printf("%s: unable to allocate Tx mbuf\n",
1321 sc->sc_dev.dv_xname);
1322 break;
1323 }
1324 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1325 if (m0->m_pkthdr.len > MHLEN) {
1326 MCLGET(m, M_DONTWAIT);
1327 if ((m->m_flags & M_EXT) == 0) {
1328 printf("%s: unable to allocate Tx "
1329 "cluster\n", sc->sc_dev.dv_xname);
1330 m_freem(m);
1331 break;
1332 }
1333 }
1334 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1335 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1336 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1337 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1338 if (error) {
1339 printf("%s: unable to load Tx buffer, "
1340 "error = %d\n", sc->sc_dev.dv_xname, error);
1341 break;
1342 }
1343 }
1344
1345 /*
1346 * Ensure we have enough descriptors free to describe
1347 * the packet.
1348 */
1349 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1350 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1351 /*
1352 * Not enough free descriptors to transmit this
1353 * packet. We haven't committed to anything yet,
1354 * so just unload the DMA map, put the packet
1355 * back on the queue, and punt. Notify the upper
1356 * layer that there are no more slots left.
1357 *
1358 * XXX We could allocate an mbuf and copy, but
1359 * XXX it is worth it?
1360 */
1361 ifp->if_flags |= IFF_OACTIVE;
1362 sc->sc_if_flags = ifp->if_flags;
1363 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1364 if (m != NULL)
1365 m_freem(m);
1366 break;
1367 }
1368
1369 IFQ_DEQUEUE(&ifp->if_snd, m0);
1370 if (m != NULL) {
1371 m_freem(m0);
1372 m0 = m;
1373 }
1374
1375 /*
1376 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1377 */
1378
1379 /* Sync the DMA map. */
1380 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1381 BUS_DMASYNC_PREWRITE);
1382
1383 /*
1384 * Initialize the transmit descriptors.
1385 */
1386 for (nexttx = sc->sc_txnext, seg = 0;
1387 seg < dmamap->dm_nsegs;
1388 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1389
1390 /*
1391 * If this is the first descriptor we're
1392 * enqueueing, set the start of packet flag,
1393 * and the checksum stuff if we want the hardware
1394 * to do it.
1395 */
1396 sc->sc_txdescs[nexttx].gd_addr =
1397 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1398 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1399 if (nexttx == firsttx) {
1400 flags |= GEM_TD_START_OF_PACKET;
1401 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1402 sc->sc_txwin = 0;
1403 flags |= GEM_TD_INTERRUPT_ME;
1404 }
1405
1406 #ifdef INET
1407 /* h/w checksum */
1408 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1409 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1410 struct ether_header *eh;
1411 uint16_t offset, start;
1412
1413 eh = mtod(m0, struct ether_header *);
1414 switch (ntohs(eh->ether_type)) {
1415 case ETHERTYPE_IP:
1416 start = ETHER_HDR_LEN;
1417 break;
1418 case ETHERTYPE_VLAN:
1419 start = ETHER_HDR_LEN +
1420 ETHER_VLAN_ENCAP_LEN;
1421 break;
1422 default:
1423 /* unsupported, drop it */
1424 m_free(m0);
1425 continue;
1426 }
1427 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1428 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1429 flags |= (start <<
1430 GEM_TD_CXSUM_STARTSHFT) |
1431 (offset <<
1432 GEM_TD_CXSUM_STUFFSHFT) |
1433 GEM_TD_CXSUM_ENABLE;
1434 }
1435 #endif
1436 }
1437 if (seg == dmamap->dm_nsegs - 1) {
1438 flags |= GEM_TD_END_OF_PACKET;
1439 } else {
1440 /* last flag set outside of loop */
1441 sc->sc_txdescs[nexttx].gd_flags =
1442 GEM_DMA_WRITE(sc, flags);
1443 }
1444 lasttx = nexttx;
1445 }
1446 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1447 /* add padding buffer at end of chain */
1448 flags &= ~GEM_TD_END_OF_PACKET;
1449 sc->sc_txdescs[lasttx].gd_flags =
1450 GEM_DMA_WRITE(sc, flags);
1451
1452 sc->sc_txdescs[nexttx].gd_addr =
1453 GEM_DMA_WRITE(sc,
1454 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1455 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1456 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1457 lasttx = nexttx;
1458 nexttx = GEM_NEXTTX(nexttx);
1459 seg++;
1460 }
1461 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1462
1463 KASSERT(lasttx != -1);
1464
1465 /*
1466 * Store a pointer to the packet so we can free it later,
1467 * and remember what txdirty will be once the packet is
1468 * done.
1469 */
1470 txs->txs_mbuf = m0;
1471 txs->txs_firstdesc = sc->sc_txnext;
1472 txs->txs_lastdesc = lasttx;
1473 txs->txs_ndescs = seg;
1474
1475 #ifdef GEM_DEBUG
1476 if (ifp->if_flags & IFF_DEBUG) {
1477 printf(" gem_start %p transmit chain:\n", txs);
1478 gem_txsoft_print(sc, txs->txs_firstdesc,
1479 txs->txs_lastdesc);
1480 }
1481 #endif
1482
1483 /* Sync the descriptors we're using. */
1484 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1485 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1486
1487 /* Advance the tx pointer. */
1488 sc->sc_txfree -= txs->txs_ndescs;
1489 sc->sc_txnext = nexttx;
1490
1491 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1492 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1493
1494 #if NBPFILTER > 0
1495 /*
1496 * Pass the packet to any BPF listeners.
1497 */
1498 if (ifp->if_bpf)
1499 bpf_mtap(ifp->if_bpf, m0);
1500 #endif /* NBPFILTER > 0 */
1501 }
1502
1503 if (txs == NULL || sc->sc_txfree == 0) {
1504 /* No more slots left; notify upper layer. */
1505 ifp->if_flags |= IFF_OACTIVE;
1506 sc->sc_if_flags = ifp->if_flags;
1507 }
1508
1509 if (sc->sc_txfree != ofree) {
1510 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1511 sc->sc_dev.dv_xname, lasttx, firsttx));
1512 /*
1513 * The entire packet chain is set up.
1514 * Kick the transmitter.
1515 */
1516 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1517 sc->sc_dev.dv_xname, nexttx));
1518 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1519 sc->sc_txnext);
1520
1521 /* Set a watchdog timer in case the chip flakes out. */
1522 ifp->if_timer = 5;
1523 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1524 sc->sc_dev.dv_xname, ifp->if_timer));
1525 }
1526 }
1527
1528 /*
1529 * Transmit interrupt.
1530 */
1531 int
1532 gem_tint(sc)
1533 struct gem_softc *sc;
1534 {
1535 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1536 bus_space_tag_t t = sc->sc_bustag;
1537 bus_space_handle_t mac = sc->sc_h1;
1538 struct gem_txsoft *txs;
1539 int txlast;
1540 int progress = 0;
1541
1542 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1543
1544 /*
1545 * Unload collision counters
1546 */
1547 ifp->if_collisions +=
1548 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1549 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1550 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1551 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1552
1553 /*
1554 * then clear the hardware counters.
1555 */
1556 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1557 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1558 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1559 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1560
1561 /*
1562 * Go through our Tx list and free mbufs for those
1563 * frames that have been transmitted.
1564 */
1565 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1566 /*
1567 * In theory, we could harvest some descriptors before
1568 * the ring is empty, but that's a bit complicated.
1569 *
1570 * GEM_TX_COMPLETION points to the last descriptor
1571 * processed +1.
1572 *
1573 * Let's assume that the NIC writes back to the Tx
1574 * descriptors before it updates the completion
1575 * register. If the NIC has posted writes to the
1576 * Tx descriptors, PCI ordering requires that the
1577 * posted writes flush to RAM before the register-read
1578 * finishes. So let's read the completion register,
1579 * before syncing the descriptors, so that we
1580 * examine Tx descriptors that are at least as
1581 * current as the completion register.
1582 */
1583 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1584 DPRINTF(sc,
1585 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1586 txs->txs_lastdesc, txlast));
1587 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1588 if (txlast >= txs->txs_firstdesc &&
1589 txlast <= txs->txs_lastdesc)
1590 break;
1591 } else if (txlast >= txs->txs_firstdesc ||
1592 txlast <= txs->txs_lastdesc)
1593 break;
1594
1595 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1596 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1597
1598 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1599 if (ifp->if_flags & IFF_DEBUG) {
1600 printf(" txsoft %p transmit chain:\n", txs);
1601 gem_txsoft_print(sc, txs->txs_firstdesc,
1602 txs->txs_lastdesc);
1603 }
1604 #endif
1605
1606
1607 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1608 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1609
1610 sc->sc_txfree += txs->txs_ndescs;
1611
1612 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1613 0, txs->txs_dmamap->dm_mapsize,
1614 BUS_DMASYNC_POSTWRITE);
1615 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1616 if (txs->txs_mbuf != NULL) {
1617 m_freem(txs->txs_mbuf);
1618 txs->txs_mbuf = NULL;
1619 }
1620
1621 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1622
1623 ifp->if_opackets++;
1624 progress = 1;
1625 }
1626
1627 #if 0
1628 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1629 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1630 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1631 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1632 GEM_TX_DATA_PTR_HI) << 32) |
1633 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1634 GEM_TX_DATA_PTR_LO),
1635 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1636 #endif
1637
1638 if (progress) {
1639 if (sc->sc_txfree == GEM_NTXDESC - 1)
1640 sc->sc_txwin = 0;
1641
1642 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1643 ifp->if_flags &= ~IFF_OACTIVE;
1644 sc->sc_if_flags = ifp->if_flags;
1645 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1646 gem_start(ifp);
1647 }
1648 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1649 sc->sc_dev.dv_xname, ifp->if_timer));
1650
1651 return (1);
1652 }
1653
1654 /*
1655 * Receive interrupt.
1656 */
1657 int
1658 gem_rint(sc)
1659 struct gem_softc *sc;
1660 {
1661 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1662 bus_space_tag_t t = sc->sc_bustag;
1663 bus_space_handle_t h = sc->sc_h1;
1664 struct gem_rxsoft *rxs;
1665 struct mbuf *m;
1666 u_int64_t rxstat;
1667 u_int32_t rxcomp;
1668 int i, len, progress = 0;
1669
1670 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1671
1672 /*
1673 * Ignore spurious interrupt that sometimes occurs before
1674 * we are set up when we network boot.
1675 */
1676 if (!sc->sc_meminited)
1677 return 1;
1678
1679 /*
1680 * Read the completion register once. This limits
1681 * how long the following loop can execute.
1682 */
1683 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1684
1685 /*
1686 * XXX Read the lastrx only once at the top for speed.
1687 */
1688 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1689 sc->sc_rxptr, rxcomp));
1690
1691 /*
1692 * Go into the loop at least once.
1693 */
1694 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1695 i = GEM_NEXTRX(i)) {
1696 rxs = &sc->sc_rxsoft[i];
1697
1698 GEM_CDRXSYNC(sc, i,
1699 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1700
1701 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1702
1703 if (rxstat & GEM_RD_OWN) {
1704 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1705 /*
1706 * We have processed all of the receive buffers.
1707 */
1708 break;
1709 }
1710
1711 progress++;
1712 ifp->if_ipackets++;
1713
1714 if (rxstat & GEM_RD_BAD_CRC) {
1715 ifp->if_ierrors++;
1716 printf("%s: receive error: CRC error\n",
1717 sc->sc_dev.dv_xname);
1718 GEM_INIT_RXDESC(sc, i);
1719 continue;
1720 }
1721
1722 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1723 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1724 #ifdef GEM_DEBUG
1725 if (ifp->if_flags & IFF_DEBUG) {
1726 printf(" rxsoft %p descriptor %d: ", rxs, i);
1727 printf("gd_flags: 0x%016llx\t", (long long)
1728 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1729 printf("gd_addr: 0x%016llx\n", (long long)
1730 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1731 }
1732 #endif
1733
1734 /* No errors; receive the packet. */
1735 len = GEM_RD_BUFLEN(rxstat);
1736
1737 /*
1738 * Allocate a new mbuf cluster. If that fails, we are
1739 * out of memory, and must drop the packet and recycle
1740 * the buffer that's already attached to this descriptor.
1741 */
1742 m = rxs->rxs_mbuf;
1743 if (gem_add_rxbuf(sc, i) != 0) {
1744 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1745 ifp->if_ierrors++;
1746 GEM_INIT_RXDESC(sc, i);
1747 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1748 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1749 continue;
1750 }
1751 m->m_data += 2; /* We're already off by two */
1752
1753 m->m_pkthdr.rcvif = ifp;
1754 m->m_pkthdr.len = m->m_len = len;
1755
1756 #if NBPFILTER > 0
1757 /*
1758 * Pass this up to any BPF listeners, but only
1759 * pass it up the stack if it's for us.
1760 */
1761 if (ifp->if_bpf)
1762 bpf_mtap(ifp->if_bpf, m);
1763 #endif /* NBPFILTER > 0 */
1764
1765 #ifdef INET
1766 /* hardware checksum */
1767 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1768 struct ether_header *eh;
1769 struct ip *ip;
1770 int32_t hlen, pktlen;
1771
1772 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1773 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1774 ETHER_VLAN_ENCAP_LEN;
1775 eh = (struct ether_header *) mtod(m, void *) +
1776 ETHER_VLAN_ENCAP_LEN;
1777 } else {
1778 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1779 eh = mtod(m, struct ether_header *);
1780 }
1781 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1782 goto swcsum;
1783 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1784
1785 /* IPv4 only */
1786 if (ip->ip_v != IPVERSION)
1787 goto swcsum;
1788
1789 hlen = ip->ip_hl << 2;
1790 if (hlen < sizeof(struct ip))
1791 goto swcsum;
1792
1793 /*
1794 * bail if too short, has random trailing garbage,
1795 * truncated, fragment, or has ethernet pad.
1796 */
1797 if ((ntohs(ip->ip_len) < hlen) ||
1798 (ntohs(ip->ip_len) != pktlen) ||
1799 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1800 goto swcsum;
1801
1802 switch (ip->ip_p) {
1803 case IPPROTO_TCP:
1804 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1805 goto swcsum;
1806 if (pktlen < (hlen + sizeof(struct tcphdr)))
1807 goto swcsum;
1808 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1809 break;
1810 case IPPROTO_UDP:
1811 /* FALLTHROUGH */
1812 default:
1813 goto swcsum;
1814 }
1815
1816 /* the uncomplemented sum is expected */
1817 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1818
1819 /* if the pkt had ip options, we have to deduct them */
1820 if (hlen > sizeof(struct ip)) {
1821 uint16_t *opts;
1822 uint32_t optsum, temp;
1823
1824 optsum = 0;
1825 temp = hlen - sizeof(struct ip);
1826 opts = (uint16_t *) ((char *) ip +
1827 sizeof(struct ip));
1828
1829 while (temp > 1) {
1830 optsum += ntohs(*opts++);
1831 temp -= 2;
1832 }
1833 while (optsum >> 16)
1834 optsum = (optsum >> 16) +
1835 (optsum & 0xffff);
1836
1837 /* Deduct ip opts sum from hwsum (rfc 1624). */
1838 m->m_pkthdr.csum_data =
1839 ~((~m->m_pkthdr.csum_data) - ~optsum);
1840
1841 while (m->m_pkthdr.csum_data >> 16)
1842 m->m_pkthdr.csum_data =
1843 (m->m_pkthdr.csum_data >> 16) +
1844 (m->m_pkthdr.csum_data &
1845 0xffff);
1846 }
1847
1848 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1849 M_CSUM_NO_PSEUDOHDR;
1850 } else
1851 swcsum:
1852 m->m_pkthdr.csum_flags = 0;
1853 #endif
1854 /* Pass it on. */
1855 (*ifp->if_input)(ifp, m);
1856 }
1857
1858 if (progress) {
1859 /* Update the receive pointer. */
1860 if (i == sc->sc_rxptr) {
1861 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1862 #ifdef GEM_DEBUG
1863 if (ifp->if_flags & IFF_DEBUG)
1864 printf("%s: rint: ring wrap\n",
1865 sc->sc_dev.dv_xname);
1866 #endif
1867 }
1868 sc->sc_rxptr = i;
1869 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1870 }
1871 #ifdef GEM_COUNTERS
1872 if (progress <= 4) {
1873 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1874 } else if (progress < 32) {
1875 if (progress < 16)
1876 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1877 else
1878 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1879
1880 } else {
1881 if (progress < 64)
1882 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1883 else
1884 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1885 }
1886 #endif
1887
1888 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1889 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1890
1891 return (1);
1892 }
1893
1894
1895 /*
1896 * gem_add_rxbuf:
1897 *
1898 * Add a receive buffer to the indicated descriptor.
1899 */
1900 int
1901 gem_add_rxbuf(struct gem_softc *sc, int idx)
1902 {
1903 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1904 struct mbuf *m;
1905 int error;
1906
1907 MGETHDR(m, M_DONTWAIT, MT_DATA);
1908 if (m == NULL)
1909 return (ENOBUFS);
1910
1911 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1912 MCLGET(m, M_DONTWAIT);
1913 if ((m->m_flags & M_EXT) == 0) {
1914 m_freem(m);
1915 return (ENOBUFS);
1916 }
1917
1918 #ifdef GEM_DEBUG
1919 /* bzero the packet to check DMA */
1920 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1921 #endif
1922
1923 if (rxs->rxs_mbuf != NULL)
1924 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1925
1926 rxs->rxs_mbuf = m;
1927
1928 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1929 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1930 BUS_DMA_READ|BUS_DMA_NOWAIT);
1931 if (error) {
1932 printf("%s: can't load rx DMA map %d, error = %d\n",
1933 sc->sc_dev.dv_xname, idx, error);
1934 panic("gem_add_rxbuf"); /* XXX */
1935 }
1936
1937 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1938 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1939
1940 GEM_INIT_RXDESC(sc, idx);
1941
1942 return (0);
1943 }
1944
1945
1946 int
1947 gem_eint(struct gem_softc *sc, u_int status)
1948 {
1949 char bits[128];
1950 u_int32_t v;
1951
1952 if ((status & GEM_INTR_MIF) != 0) {
1953 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1954 return (1);
1955 }
1956
1957 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
1958 gem_reset_rxdma(sc);
1959 return (1);
1960 }
1961
1962 if (status & GEM_INTR_BERR) {
1963 bus_space_read_4(sc->sc_bustag, sc->sc_h2, GEM_ERROR_STATUS);
1964 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2,
1965 GEM_ERROR_STATUS);
1966 printf("%s: bus error interrupt: 0x%02x\n",
1967 sc->sc_dev.dv_xname, v);
1968 return (1);
1969 }
1970
1971 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1972 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1973 return (1);
1974 }
1975
1976
1977 /*
1978 * PCS interrupts.
1979 * We should receive these when the link status changes, but sometimes
1980 * we don't receive them for link up. We compensate for this in the
1981 * gem_tick() callout.
1982 */
1983 int
1984 gem_pint(struct gem_softc *sc)
1985 {
1986 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1987 bus_space_tag_t t = sc->sc_bustag;
1988 bus_space_handle_t h = sc->sc_h1;
1989 u_int32_t v, v2;
1990
1991 /*
1992 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
1993 * latched, so we have to read it twice. There is only one bit in
1994 * use, so the value is meaningless.
1995 */
1996 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
1997 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
1998
1999 if ((ifp->if_flags & IFF_UP) == 0)
2000 return 1;
2001
2002 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2003 return 1;
2004
2005 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2006 /* If we see remote fault, our link partner is probably going away */
2007 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2008 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2009 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2010 /* Otherwise, we may need to wait after auto-negotiation completes */
2011 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2012 GEM_MII_STATUS_ANEG_CPT) {
2013 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2014 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2015 }
2016 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2017 if (sc->sc_flags & GEM_LINK) {
2018 return 1;
2019 }
2020 callout_stop(&sc->sc_tick_ch);
2021 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2022 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2023 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2024 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2025 v &= v2;
2026 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2027 sc->sc_mii.mii_media_active |= IFM_FDX;
2028 #ifdef GEM_DEBUG
2029 aprint_debug("%s: link up: full duplex\n",
2030 sc->sc_dev.dv_xname);
2031 #endif
2032 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2033 sc->sc_mii.mii_media_active |= IFM_HDX;
2034 #ifdef GEM_DEBUG
2035 aprint_debug("%s: link up: half duplex\n",
2036 sc->sc_dev.dv_xname);
2037 #endif
2038 } else {
2039 #ifdef GEM_DEBUG
2040 aprint_debug("%s: duplex mismatch\n",
2041 sc->sc_dev.dv_xname);
2042 #endif
2043 }
2044 gem_statuschange(sc);
2045 } else {
2046 if ((sc->sc_flags & GEM_LINK) == 0) {
2047 return 1;
2048 }
2049 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2050 sc->sc_mii.mii_media_status = IFM_AVALID;
2051 #ifdef GEM_DEBUG
2052 aprint_debug("%s: link down\n",
2053 sc->sc_dev.dv_xname);
2054 #endif
2055 gem_statuschange(sc);
2056
2057 /* Start the 10 second timer */
2058 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2059 }
2060 return 1;
2061 }
2062
2063
2064
2065 int
2066 gem_intr(v)
2067 void *v;
2068 {
2069 struct gem_softc *sc = (struct gem_softc *)v;
2070 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2071 bus_space_tag_t t = sc->sc_bustag;
2072 bus_space_handle_t h = sc->sc_h1;
2073 u_int32_t status;
2074 int r = 0;
2075 #ifdef GEM_DEBUG
2076 char bits[128];
2077 #endif
2078
2079 /* XXX We should probably mask out interrupts until we're done */
2080
2081 sc->sc_ev_intr.ev_count++;
2082
2083 status = bus_space_read_4(t, h, GEM_STATUS);
2084 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2085 sc->sc_dev.dv_xname, (status >> 19),
2086 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
2087
2088 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2089 r |= gem_eint(sc, status);
2090
2091 /* We don't bother with GEM_INTR_TX_DONE */
2092 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2093 GEM_COUNTER_INCR(sc, sc_ev_txint);
2094 r |= gem_tint(sc);
2095 }
2096
2097 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2098 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2099 r |= gem_rint(sc);
2100 }
2101
2102 /* We should eventually do more than just print out error stats. */
2103 if (status & GEM_INTR_TX_MAC) {
2104 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2105 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2106 printf("%s: MAC tx fault, status %x\n",
2107 sc->sc_dev.dv_xname, txstat);
2108 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2109 gem_init(ifp);
2110 }
2111 if (status & GEM_INTR_RX_MAC) {
2112 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2113 if (rxstat & ~GEM_MAC_RX_DONE)
2114 printf("%s: MAC rx fault, status %x\n",
2115 sc->sc_dev.dv_xname, rxstat);
2116 /*
2117 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2118 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2119 * silicon bug so handle them silently. Moreover, it's
2120 * likely that the receiver has hung so we reset it.
2121 */
2122 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2123 ifp->if_ierrors++;
2124 gem_reset_rxdma(sc);
2125 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2126 printf("%s: MAC rx fault, status %x\n",
2127 sc->sc_dev.dv_xname, rxstat);
2128 }
2129 if (status & GEM_INTR_PCS) {
2130 r |= gem_pint(sc);
2131 }
2132
2133 /* Do we need to do anything with these?
2134 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2135 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2136 if ((status2 & GEM_MAC_PAUSED) != 0)
2137 aprintf_debug("%s: PAUSE received (%d slots)\n",
2138 GEM_MAC_PAUSE_TIME(status2), sc->sc_dev.dv_xname);
2139 if ((status2 & GEM_MAC_PAUSE) != 0)
2140 aprintf_debug("%s: transited to PAUSE state\n",
2141 sc->sc_dev.dv_xname);
2142 if ((status2 & GEM_MAC_RESUME) != 0)
2143 aprintf_debug("%s: transited to non-PAUSE state\n",
2144 sc->sc_dev.dv_xname);
2145 }
2146 if ((status & GEM_INTR_MIF) != 0)
2147 aprintf_debug("%s: MIF interrupt\n", sc->sc_dev.dv_xname);
2148 */
2149 #if NRND > 0
2150 rnd_add_uint32(&sc->rnd_source, status);
2151 #endif
2152 return (r);
2153 }
2154
2155
2156 void
2157 gem_watchdog(ifp)
2158 struct ifnet *ifp;
2159 {
2160 struct gem_softc *sc = ifp->if_softc;
2161
2162 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2163 "GEM_MAC_RX_CONFIG %x\n",
2164 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2165 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2166 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2167
2168 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
2169 ++ifp->if_oerrors;
2170
2171 /* Try to get more packets going. */
2172 gem_start(ifp);
2173 }
2174
2175 /*
2176 * Initialize the MII Management Interface
2177 */
2178 void
2179 gem_mifinit(sc)
2180 struct gem_softc *sc;
2181 {
2182 bus_space_tag_t t = sc->sc_bustag;
2183 bus_space_handle_t mif = sc->sc_h1;
2184
2185 /* Configure the MIF in frame mode */
2186 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2187 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2188 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2189 }
2190
2191 /*
2192 * MII interface
2193 *
2194 * The GEM MII interface supports at least three different operating modes:
2195 *
2196 * Bitbang mode is implemented using data, clock and output enable registers.
2197 *
2198 * Frame mode is implemented by loading a complete frame into the frame
2199 * register and polling the valid bit for completion.
2200 *
2201 * Polling mode uses the frame register but completion is indicated by
2202 * an interrupt.
2203 *
2204 */
2205 static int
2206 gem_mii_readreg(self, phy, reg)
2207 struct device *self;
2208 int phy, reg;
2209 {
2210 struct gem_softc *sc = (void *)self;
2211 bus_space_tag_t t = sc->sc_bustag;
2212 bus_space_handle_t mif = sc->sc_h1;
2213 int n;
2214 u_int32_t v;
2215
2216 #ifdef GEM_DEBUG1
2217 if (sc->sc_debug)
2218 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2219 #endif
2220
2221 /* Construct the frame command */
2222 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2223 GEM_MIF_FRAME_READ;
2224
2225 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2226 for (n = 0; n < 100; n++) {
2227 DELAY(1);
2228 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2229 if (v & GEM_MIF_FRAME_TA0)
2230 return (v & GEM_MIF_FRAME_DATA);
2231 }
2232
2233 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
2234 return (0);
2235 }
2236
2237 static void
2238 gem_mii_writereg(self, phy, reg, val)
2239 struct device *self;
2240 int phy, reg, val;
2241 {
2242 struct gem_softc *sc = (void *)self;
2243 bus_space_tag_t t = sc->sc_bustag;
2244 bus_space_handle_t mif = sc->sc_h1;
2245 int n;
2246 u_int32_t v;
2247
2248 #ifdef GEM_DEBUG1
2249 if (sc->sc_debug)
2250 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2251 phy, reg, val);
2252 #endif
2253
2254 /* Construct the frame command */
2255 v = GEM_MIF_FRAME_WRITE |
2256 (phy << GEM_MIF_PHY_SHIFT) |
2257 (reg << GEM_MIF_REG_SHIFT) |
2258 (val & GEM_MIF_FRAME_DATA);
2259
2260 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2261 for (n = 0; n < 100; n++) {
2262 DELAY(1);
2263 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2264 if (v & GEM_MIF_FRAME_TA0)
2265 return;
2266 }
2267
2268 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
2269 }
2270
2271 static void
2272 gem_mii_statchg(dev)
2273 struct device *dev;
2274 {
2275 struct gem_softc *sc = (void *)dev;
2276 #ifdef GEM_DEBUG
2277 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2278 #endif
2279
2280 #ifdef GEM_DEBUG
2281 if (sc->sc_debug)
2282 printf("gem_mii_statchg: status change: phy = %d\n",
2283 sc->sc_phys[instance]);
2284 #endif
2285 gem_statuschange(sc);
2286 }
2287
2288 /*
2289 * Common status change for gem_mii_statchg() and gem_pint()
2290 */
2291 void
2292 gem_statuschange(struct gem_softc* sc)
2293 {
2294 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2295 bus_space_tag_t t = sc->sc_bustag;
2296 bus_space_handle_t mac = sc->sc_h1;
2297 int gigabit;
2298 u_int32_t rxcfg, txcfg, v;
2299
2300 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2301 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2302 sc->sc_flags |= GEM_LINK;
2303 else
2304 sc->sc_flags &= ~GEM_LINK;
2305
2306 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
2307 case IFM_1000_SX:
2308 case IFM_1000_LX:
2309 case IFM_1000_CX:
2310 case IFM_1000_T:
2311 gigabit = 1;
2312 break;
2313 default:
2314 gigabit = 0;
2315 }
2316
2317 /*
2318 * The configuration done here corresponds to the steps F) and
2319 * G) and as far as enabling of RX and TX MAC goes also step H)
2320 * of the initialization sequence outlined in section 3.2.1 of
2321 * the GEM Gigabit Ethernet ASIC Specification.
2322 */
2323
2324 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2325 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2326 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2327 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2328 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2329 else if (gigabit) {
2330 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2331 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2332 }
2333 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2334 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2335 BUS_SPACE_BARRIER_WRITE);
2336 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2337 aprint_normal("%s: cannot disable TX MAC\n",
2338 sc->sc_dev.dv_xname);
2339 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2340 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2341 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2342 BUS_SPACE_BARRIER_WRITE);
2343 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2344 aprint_normal("%s: cannot disable RX MAC\n",
2345 sc->sc_dev.dv_xname);
2346 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2347
2348 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2349 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2350 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2351
2352 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2353 gigabit != 0)
2354 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2355 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2356 else
2357 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2358 GEM_MAC_SLOT_TIME_NORMAL);
2359
2360 /* XIF Configuration */
2361 if (sc->sc_flags & GEM_LINK)
2362 v = GEM_MAC_XIF_LINK_LED;
2363 else
2364 v = 0;
2365 v |= GEM_MAC_XIF_TX_MII_ENA;
2366 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0) {
2367 /* MII/GMII needs echo disable if half duplex. */
2368 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0)
2369 v |= GEM_MAC_XIF_ECHO_DISABL;
2370 v &= ~GEM_MAC_XIF_FDPLX_LED;
2371 } else {
2372 v |= GEM_MAC_XIF_MII_BUF_ENA;
2373 v |= GEM_MAC_XIF_FDPLX_LED;
2374 }
2375 if (gigabit != 0)
2376 v |= GEM_MAC_XIF_GMII_MODE;
2377 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2378 (sc->sc_flags & GEM_LINK) != 0) {
2379 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2380 txcfg | GEM_MAC_TX_ENABLE);
2381 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2382 rxcfg | GEM_MAC_RX_ENABLE);
2383 }
2384 }
2385
2386 int
2387 gem_mediachange(ifp)
2388 struct ifnet *ifp;
2389 {
2390 struct gem_softc *sc = ifp->if_softc;
2391 u_int s, t;
2392
2393 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2394 return EINVAL;
2395
2396 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
2397 s = IFM_SUBTYPE(sc->sc_media.ifm_media);
2398 if (s == IFM_AUTO) {
2399 if (sc->sc_mii_media != s) {
2400 #ifdef GEM_DEBUG
2401 aprint_debug("%s: setting media to auto\n",
2402 sc->sc_dev.dv_xname);
2403 #endif
2404 sc->sc_mii_media = s;
2405 if (ifp->if_flags & IFF_UP) {
2406 gem_pcs_stop(sc, 0);
2407 gem_pcs_start(sc);
2408 }
2409 }
2410 return 0;
2411 }
2412 if (s == IFM_1000_SX) {
2413 t = IFM_OPTIONS(sc->sc_media.ifm_media);
2414 if (t == IFM_FDX || t == IFM_HDX) {
2415 if (sc->sc_mii_media != t) {
2416 sc->sc_mii_media = t;
2417 #ifdef GEM_DEBUG
2418 aprint_debug("%s:"
2419 " setting media to 1000baseSX-%s\n",
2420 sc->sc_dev.dv_xname,
2421 t == IFM_FDX ? "FDX" : "HDX");
2422 #endif
2423 if (ifp->if_flags & IFF_UP) {
2424 gem_pcs_stop(sc, 0);
2425 gem_pcs_start(sc);
2426 }
2427 }
2428 return 0;
2429 }
2430 }
2431 return EINVAL;
2432 } else
2433 return (mii_mediachg(&sc->sc_mii));
2434 }
2435
2436 void
2437 gem_mediastatus(ifp, ifmr)
2438 struct ifnet *ifp;
2439 struct ifmediareq *ifmr;
2440 {
2441 struct gem_softc *sc = ifp->if_softc;
2442
2443 if ((ifp->if_flags & IFF_UP) == 0)
2444 return;
2445
2446 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2447 mii_pollstat(&sc->sc_mii);
2448 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2449 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2450 }
2451
2452 /*
2453 * Process an ioctl request.
2454 */
2455 int
2456 gem_ioctl(ifp, cmd, data)
2457 struct ifnet *ifp;
2458 u_long cmd;
2459 void *data;
2460 {
2461 struct gem_softc *sc = ifp->if_softc;
2462 struct ifreq *ifr = (struct ifreq *)data;
2463 int s, error = 0;
2464
2465 s = splnet();
2466
2467 switch (cmd) {
2468 case SIOCGIFMEDIA:
2469 case SIOCSIFMEDIA:
2470 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
2471 break;
2472 case SIOCSIFFLAGS:
2473 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
2474 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
2475 == (IFF_UP|IFF_RUNNING))
2476 && ((ifp->if_flags & (~RESETIGN))
2477 == (sc->sc_if_flags & (~RESETIGN)))) {
2478 gem_setladrf(sc);
2479 break;
2480 }
2481 #undef RESETIGN
2482 /*FALLTHROUGH*/
2483 default:
2484 error = ether_ioctl(ifp, cmd, data);
2485 if (error == ENETRESET) {
2486 /*
2487 * Multicast list has changed; set the hardware filter
2488 * accordingly.
2489 */
2490 if (ifp->if_flags & IFF_RUNNING)
2491 gem_setladrf(sc);
2492 error = 0;
2493 }
2494 break;
2495 }
2496
2497 /* Try to get things going again */
2498 if (ifp->if_flags & IFF_UP)
2499 gem_start(ifp);
2500 splx(s);
2501 return (error);
2502 }
2503
2504
2505 void
2506 gem_shutdown(arg)
2507 void *arg;
2508 {
2509 struct gem_softc *sc = (struct gem_softc *)arg;
2510 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2511
2512 gem_stop(ifp, 1);
2513 }
2514
2515 /*
2516 * Set up the logical address filter.
2517 */
2518 void
2519 gem_setladrf(sc)
2520 struct gem_softc *sc;
2521 {
2522 struct ethercom *ec = &sc->sc_ethercom;
2523 struct ifnet *ifp = &ec->ec_if;
2524 struct ether_multi *enm;
2525 struct ether_multistep step;
2526 bus_space_tag_t t = sc->sc_bustag;
2527 bus_space_handle_t h = sc->sc_h1;
2528 u_int32_t crc;
2529 u_int32_t hash[16];
2530 u_int32_t v;
2531 int i;
2532
2533 /* Get current RX configuration */
2534 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2535
2536 /*
2537 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2538 * and hash filter. Depending on the case, the right bit will be
2539 * enabled.
2540 */
2541 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2542 GEM_MAC_RX_PROMISC_GRP);
2543
2544 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2545 /* Turn on promiscuous mode */
2546 v |= GEM_MAC_RX_PROMISCUOUS;
2547 ifp->if_flags |= IFF_ALLMULTI;
2548 goto chipit;
2549 }
2550
2551 /*
2552 * Set up multicast address filter by passing all multicast addresses
2553 * through a crc generator, and then using the high order 8 bits as an
2554 * index into the 256 bit logical address filter. The high order 4
2555 * bits selects the word, while the other 4 bits select the bit within
2556 * the word (where bit 0 is the MSB).
2557 */
2558
2559 /* Clear hash table */
2560 memset(hash, 0, sizeof(hash));
2561
2562 ETHER_FIRST_MULTI(step, ec, enm);
2563 while (enm != NULL) {
2564 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2565 /*
2566 * We must listen to a range of multicast addresses.
2567 * For now, just accept all multicasts, rather than
2568 * trying to set only those filter bits needed to match
2569 * the range. (At this time, the only use of address
2570 * ranges is for IP multicast routing, for which the
2571 * range is big enough to require all bits set.)
2572 * XXX should use the address filters for this
2573 */
2574 ifp->if_flags |= IFF_ALLMULTI;
2575 v |= GEM_MAC_RX_PROMISC_GRP;
2576 goto chipit;
2577 }
2578
2579 /* Get the LE CRC32 of the address */
2580 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2581
2582 /* Just want the 8 most significant bits. */
2583 crc >>= 24;
2584
2585 /* Set the corresponding bit in the filter. */
2586 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2587
2588 ETHER_NEXT_MULTI(step, enm);
2589 }
2590
2591 v |= GEM_MAC_RX_HASH_FILTER;
2592 ifp->if_flags &= ~IFF_ALLMULTI;
2593
2594 /* Now load the hash table into the chip (if we are using it) */
2595 for (i = 0; i < 16; i++) {
2596 bus_space_write_4(t, h,
2597 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2598 hash[i]);
2599 }
2600
2601 chipit:
2602 sc->sc_if_flags = ifp->if_flags;
2603 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2604 }
2605
2606 #if notyet
2607
2608 /*
2609 * gem_power:
2610 *
2611 * Power management (suspend/resume) hook.
2612 */
2613 void
2614 gem_power(why, arg)
2615 int why;
2616 void *arg;
2617 {
2618 struct gem_softc *sc = arg;
2619 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2620 int s;
2621
2622 s = splnet();
2623 switch (why) {
2624 case PWR_SUSPEND:
2625 case PWR_STANDBY:
2626 gem_stop(ifp, 1);
2627 if (sc->sc_power != NULL)
2628 (*sc->sc_power)(sc, why);
2629 break;
2630 case PWR_RESUME:
2631 if (ifp->if_flags & IFF_UP) {
2632 if (sc->sc_power != NULL)
2633 (*sc->sc_power)(sc, why);
2634 gem_init(ifp);
2635 }
2636 break;
2637 case PWR_SOFTSUSPEND:
2638 case PWR_SOFTSTANDBY:
2639 case PWR_SOFTRESUME:
2640 break;
2641 }
2642 splx(s);
2643 }
2644 #endif
2645