Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.69
      1 /*	$NetBSD: gem.c,v 1.69 2008/01/19 22:10:16 dyoung Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * Copyright (c) 2001-2003 Thomas Moestl
      7  * All rights reserved.
      8  *
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 /*
     34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
     35  * See `GEM Gigabit Ethernet ASIC Specification'
     36  *   http://www.sun.com/processors/manuals/ge.pdf
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.69 2008/01/19 22:10:16 dyoung Exp $");
     41 
     42 #include "opt_inet.h"
     43 #include "bpfilter.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/callout.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/malloc.h>
     51 #include <sys/kernel.h>
     52 #include <sys/socket.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #include <sys/device.h>
     56 
     57 #include <machine/endian.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 #include <net/if.h>
     62 #include <net/if_dl.h>
     63 #include <net/if_media.h>
     64 #include <net/if_ether.h>
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/in_var.h>
     70 #include <netinet/ip.h>
     71 #include <netinet/tcp.h>
     72 #include <netinet/udp.h>
     73 #endif
     74 
     75 #if NBPFILTER > 0
     76 #include <net/bpf.h>
     77 #endif
     78 
     79 #include <sys/bus.h>
     80 #include <sys/intr.h>
     81 
     82 #include <dev/mii/mii.h>
     83 #include <dev/mii/miivar.h>
     84 #include <dev/mii/mii_bitbang.h>
     85 
     86 #include <dev/ic/gemreg.h>
     87 #include <dev/ic/gemvar.h>
     88 
     89 #define TRIES	10000
     90 
     91 static void	gem_start(struct ifnet *);
     92 static void	gem_stop(struct ifnet *, int);
     93 int		gem_ioctl(struct ifnet *, u_long, void *);
     94 void		gem_tick(void *);
     95 void		gem_watchdog(struct ifnet *);
     96 void		gem_shutdown(void *);
     97 void		gem_pcs_start(struct gem_softc *sc);
     98 void		gem_pcs_stop(struct gem_softc *sc, int);
     99 int		gem_init(struct ifnet *);
    100 void		gem_init_regs(struct gem_softc *sc);
    101 static int	gem_ringsize(int sz);
    102 static int	gem_meminit(struct gem_softc *);
    103 void		gem_mifinit(struct gem_softc *);
    104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
    105 		    u_int32_t, u_int32_t);
    106 void		gem_reset(struct gem_softc *);
    107 int		gem_reset_rx(struct gem_softc *sc);
    108 static void	gem_reset_rxdma(struct gem_softc *sc);
    109 static void	gem_rx_common(struct gem_softc *sc);
    110 int		gem_reset_tx(struct gem_softc *sc);
    111 int		gem_disable_rx(struct gem_softc *sc);
    112 int		gem_disable_tx(struct gem_softc *sc);
    113 static void	gem_rxdrain(struct gem_softc *sc);
    114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    115 void		gem_setladrf(struct gem_softc *);
    116 
    117 /* MII methods & callbacks */
    118 static int	gem_mii_readreg(struct device *, int, int);
    119 static void	gem_mii_writereg(struct device *, int, int, int);
    120 static void	gem_mii_statchg(struct device *);
    121 
    122 void		gem_statuschange(struct gem_softc *);
    123 
    124 int		gem_ser_mediachange(struct ifnet *);
    125 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
    126 
    127 struct mbuf	*gem_get(struct gem_softc *, int, int);
    128 int		gem_put(struct gem_softc *, int, struct mbuf *);
    129 void		gem_read(struct gem_softc *, int, int);
    130 int		gem_pint(struct gem_softc *);
    131 int		gem_eint(struct gem_softc *, u_int);
    132 int		gem_rint(struct gem_softc *);
    133 int		gem_tint(struct gem_softc *);
    134 void		gem_power(int, void *);
    135 
    136 #ifdef GEM_DEBUG
    137 static void gem_txsoft_print(const struct gem_softc *, int, int);
    138 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    139 				printf x
    140 #else
    141 #define	DPRINTF(sc, x)	/* nothing */
    142 #endif
    143 
    144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    145 
    146 
    147 /*
    148  * gem_attach:
    149  *
    150  *	Attach a Gem interface to the system.
    151  */
    152 void
    153 gem_attach(sc, enaddr)
    154 	struct gem_softc *sc;
    155 	const uint8_t *enaddr;
    156 {
    157 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    158 	struct mii_data *mii = &sc->sc_mii;
    159 	bus_space_tag_t t = sc->sc_bustag;
    160 	bus_space_handle_t h = sc->sc_h1;
    161 	struct ifmedia_entry *ifm;
    162 	int i, error;
    163 	u_int32_t v;
    164 	char *nullbuf;
    165 
    166 	/* Make sure the chip is stopped. */
    167 	ifp->if_softc = sc;
    168 	gem_reset(sc);
    169 
    170 	/*
    171 	 * Allocate the control data structures, and create and load the
    172 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    173 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    174 	 */
    175 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    176 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    177 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    178 		aprint_error(
    179 		   "%s: unable to allocate control data, error = %d\n",
    180 		    sc->sc_dev.dv_xname, error);
    181 		goto fail_0;
    182 	}
    183 
    184 	/* XXX should map this in with correct endianness */
    185 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    186 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
    187 	    BUS_DMA_COHERENT)) != 0) {
    188 		aprint_error("%s: unable to map control data, error = %d\n",
    189 		    sc->sc_dev.dv_xname, error);
    190 		goto fail_1;
    191 	}
    192 
    193 	nullbuf =
    194 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    195 
    196 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    197 	    sizeof(struct gem_control_data), 1,
    198 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    199 		aprint_error("%s: unable to create control data DMA map, "
    200 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    201 		goto fail_2;
    202 	}
    203 
    204 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    205 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    206 	    0)) != 0) {
    207 		aprint_error(
    208 		    "%s: unable to load control data DMA map, error = %d\n",
    209 		    sc->sc_dev.dv_xname, error);
    210 		goto fail_3;
    211 	}
    212 
    213 	memset(nullbuf, 0, ETHER_MIN_TX);
    214 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    215 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    216 		aprint_error("%s: unable to create padding DMA map, "
    217 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    218 		goto fail_4;
    219 	}
    220 
    221 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    222 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    223 		aprint_error(
    224 		    "%s: unable to load padding DMA map, error = %d\n",
    225 		    sc->sc_dev.dv_xname, error);
    226 		goto fail_5;
    227 	}
    228 
    229 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    230 	    BUS_DMASYNC_PREWRITE);
    231 
    232 	/*
    233 	 * Initialize the transmit job descriptors.
    234 	 */
    235 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    236 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    237 
    238 	/*
    239 	 * Create the transmit buffer DMA maps.
    240 	 */
    241 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    242 		struct gem_txsoft *txs;
    243 
    244 		txs = &sc->sc_txsoft[i];
    245 		txs->txs_mbuf = NULL;
    246 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    247 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    248 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    249 		    &txs->txs_dmamap)) != 0) {
    250 			aprint_error("%s: unable to create tx DMA map %d, "
    251 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    252 			goto fail_6;
    253 		}
    254 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    255 	}
    256 
    257 	/*
    258 	 * Create the receive buffer DMA maps.
    259 	 */
    260 	for (i = 0; i < GEM_NRXDESC; i++) {
    261 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    262 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    263 			aprint_error("%s: unable to create rx DMA map %d, "
    264 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    265 			goto fail_7;
    266 		}
    267 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    268 	}
    269 
    270 	/* Initialize ifmedia structures and MII info */
    271 	mii->mii_ifp = ifp;
    272 	mii->mii_readreg = gem_mii_readreg;
    273 	mii->mii_writereg = gem_mii_writereg;
    274 	mii->mii_statchg = gem_mii_statchg;
    275 
    276 	sc->sc_ethercom.ec_mii = mii;
    277 
    278 	/*
    279 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
    280 	 * Section 3.2.1 `Initialization Sequence'.
    281 	 * However, we can't assume SERDES or Serialink if neither
    282 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
    283 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
    284 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
    285 	 */
    286 	gem_mifinit(sc);
    287 
    288 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
    289 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    290 		    ether_mediastatus);
    291 		mii_attach(&sc->sc_dev, mii, 0xffffffff,
    292 		    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    293 		if (LIST_EMPTY(&mii->mii_phys)) {
    294 				/* No PHY attached */
    295 				aprint_error("%s: PHY probe failed\n",
    296 				    sc->sc_dev.dv_xname);
    297 				goto fail_7;
    298 		} else {
    299 			struct mii_softc *child;
    300 
    301 			/*
    302 			 * Walk along the list of attached MII devices and
    303 			 * establish an `MII instance' to `PHY number'
    304 			 * mapping.
    305 			 */
    306 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
    307 				/*
    308 				 * Note: we support just one PHY: the internal
    309 				 * or external MII is already selected for us
    310 				 * by the GEM_MIF_CONFIG  register.
    311 				 */
    312 				if (child->mii_phy > 1 || child->mii_inst > 0) {
    313 					aprint_error(
    314 					    "%s: cannot accommodate MII device"
    315 					    " %s at PHY %d, instance %d\n",
    316 					       sc->sc_dev.dv_xname,
    317 					       child->mii_dev.dv_xname,
    318 					       child->mii_phy, child->mii_inst);
    319 					continue;
    320 				}
    321 				sc->sc_phys[child->mii_inst] = child->mii_phy;
    322 			}
    323 
    324 			if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
    325 #ifdef GEM_DEBUG
    326 				aprint_debug("%s: using PHY at MDIO_0\n",
    327 				    sc->sc_dev.dv_xname);
    328 #endif
    329 			} else {
    330 #ifdef GEM_DEBUG
    331 				aprint_debug("%s: using PHY at MDIO_1\n",
    332 				    sc->sc_dev.dv_xname);
    333 #endif
    334 			}
    335 			if (sc->sc_variant != GEM_SUN_ERI)
    336 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    337 				    GEM_MII_DATAPATH_MII);
    338 
    339 			/*
    340 			 * XXX - we can really do the following ONLY if the
    341 			 * PHY indeed has the auto negotiation capability!!
    342 			 */
    343 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    344 		}
    345 	} else {
    346 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
    347 		    gem_ser_mediastatus);
    348 		/* SERDES or Serialink */
    349 		if (sc->sc_flags & GEM_SERDES) {
    350 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    351 			    GEM_MII_DATAPATH_SERDES);
    352 		} else {
    353 			sc->sc_flags |= GEM_SERIAL;
    354 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    355 			    GEM_MII_DATAPATH_SERIAL);
    356 		}
    357 
    358 		aprint_normal("%s: using external PCS %s: ",
    359 		    sc->sc_dev.dv_xname,
    360 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
    361 
    362 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    363 		/* Check for FDX and HDX capabilities */
    364 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
    365 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
    366 			ifmedia_add(&sc->sc_mii.mii_media,
    367 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
    368 			aprint_normal("1000baseSX-FDX, ");
    369 		}
    370 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
    371 			ifmedia_add(&sc->sc_mii.mii_media,
    372 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
    373 			aprint_normal("1000baseSX-HDX, ");
    374 		}
    375 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    376 		sc->sc_mii_media = IFM_AUTO;
    377 		aprint_normal("auto\n");
    378 
    379 		gem_pcs_stop(sc, 1);
    380 	}
    381 
    382 	/*
    383 	 * From this point forward, the attachment cannot fail.  A failure
    384 	 * before this point releases all resources that may have been
    385 	 * allocated.
    386 	 */
    387 
    388 	/* Announce ourselves. */
    389 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
    390 	    ether_sprintf(enaddr));
    391 
    392 	/* Get RX FIFO size */
    393 	sc->sc_rxfifosize = 64 *
    394 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
    395 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    396 
    397 	/* Get TX FIFO size */
    398 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
    399 	aprint_normal(", %uKB TX fifo\n", v / 16);
    400 
    401 	/* Initialize ifnet structure. */
    402 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    403 	ifp->if_softc = sc;
    404 	ifp->if_flags =
    405 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    406 	sc->sc_if_flags = ifp->if_flags;
    407 	/* The GEM hardware supports basic TCP checksum offloading only. */
    408 	ifp->if_capabilities |=
    409 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    410 	ifp->if_start = gem_start;
    411 	ifp->if_ioctl = gem_ioctl;
    412 	ifp->if_watchdog = gem_watchdog;
    413 	ifp->if_stop = gem_stop;
    414 	ifp->if_init = gem_init;
    415 	IFQ_SET_READY(&ifp->if_snd);
    416 
    417 	/*
    418 	 * If we support GigE media, we support jumbo frames too.
    419 	 * Unless we are Apple.
    420 	 */
    421 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
    422 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    423 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    424 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    425 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    426 			if (sc->sc_variant != GEM_APPLE_GMAC)
    427 				sc->sc_ethercom.ec_capabilities
    428 				    |= ETHERCAP_JUMBO_MTU;
    429 
    430 			sc->sc_flags |= GEM_GIGABIT;
    431 			break;
    432 		}
    433 	}
    434 
    435 	/* claim 802.1q capability */
    436 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    437 
    438 	/* Attach the interface. */
    439 	if_attach(ifp);
    440 	ether_ifattach(ifp, enaddr);
    441 
    442 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    443 	if (sc->sc_sh == NULL)
    444 		panic("gem_config: can't establish shutdownhook");
    445 
    446 #if NRND > 0
    447 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    448 			  RND_TYPE_NET, 0);
    449 #endif
    450 
    451 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    452 	    NULL, sc->sc_dev.dv_xname, "interrupts");
    453 #ifdef GEM_COUNTERS
    454 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    455 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
    456 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    457 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
    458 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    459 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
    460 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    461 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
    462 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    463 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
    464 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    465 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
    466 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    467 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
    468 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    469 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
    470 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    471 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
    472 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    473 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
    474 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    475 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
    476 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    477 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
    478 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    479 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
    480 #endif
    481 
    482 #if notyet
    483 	/*
    484 	 * Add a suspend hook to make sure we come back up after a
    485 	 * resume.
    486 	 */
    487 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    488 	    gem_power, sc);
    489 	if (sc->sc_powerhook == NULL)
    490 		aprint_error("%s: WARNING: unable to establish power hook\n",
    491 		    sc->sc_dev.dv_xname);
    492 #endif
    493 
    494 	callout_init(&sc->sc_tick_ch, 0);
    495 	return;
    496 
    497 	/*
    498 	 * Free any resources we've allocated during the failed attach
    499 	 * attempt.  Do this in reverse order and fall through.
    500 	 */
    501  fail_7:
    502 	for (i = 0; i < GEM_NRXDESC; i++) {
    503 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    504 			bus_dmamap_destroy(sc->sc_dmatag,
    505 			    sc->sc_rxsoft[i].rxs_dmamap);
    506 	}
    507  fail_6:
    508 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    509 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    510 			bus_dmamap_destroy(sc->sc_dmatag,
    511 			    sc->sc_txsoft[i].txs_dmamap);
    512 	}
    513 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    514  fail_5:
    515 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    516  fail_4:
    517 	bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
    518  fail_3:
    519 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    520  fail_2:
    521 	bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
    522 	    sizeof(struct gem_control_data));
    523  fail_1:
    524 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    525  fail_0:
    526 	return;
    527 }
    528 
    529 
    530 void
    531 gem_tick(arg)
    532 	void *arg;
    533 {
    534 	struct gem_softc *sc = arg;
    535 	int s;
    536 
    537 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
    538 		/*
    539 		 * We have to reset everything if we failed to get a
    540 		 * PCS interrupt.  Restarting the callout is handled
    541 		 * in gem_pcs_start().
    542 		 */
    543 		gem_init(&sc->sc_ethercom.ec_if);
    544 	} else {
    545 		s = splnet();
    546 		mii_tick(&sc->sc_mii);
    547 		splx(s);
    548 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    549 	}
    550 }
    551 
    552 static int
    553 gem_bitwait(sc, h, r, clr, set)
    554 	struct gem_softc *sc;
    555 	bus_space_handle_t h;
    556 	int r;
    557 	u_int32_t clr;
    558 	u_int32_t set;
    559 {
    560 	int i;
    561 	u_int32_t reg;
    562 
    563 	for (i = TRIES; i--; DELAY(100)) {
    564 		reg = bus_space_read_4(sc->sc_bustag, h, r);
    565 		if ((reg & clr) == 0 && (reg & set) == set)
    566 			return (1);
    567 	}
    568 	return (0);
    569 }
    570 
    571 void
    572 gem_reset(sc)
    573 	struct gem_softc *sc;
    574 {
    575 	bus_space_tag_t t = sc->sc_bustag;
    576 	bus_space_handle_t h = sc->sc_h2;
    577 	int s;
    578 
    579 	s = splnet();
    580 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    581 	gem_reset_rx(sc);
    582 	gem_reset_tx(sc);
    583 
    584 	/* Do a full reset */
    585 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    586 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    587 		printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
    588 	splx(s);
    589 }
    590 
    591 
    592 /*
    593  * gem_rxdrain:
    594  *
    595  *	Drain the receive queue.
    596  */
    597 static void
    598 gem_rxdrain(struct gem_softc *sc)
    599 {
    600 	struct gem_rxsoft *rxs;
    601 	int i;
    602 
    603 	for (i = 0; i < GEM_NRXDESC; i++) {
    604 		rxs = &sc->sc_rxsoft[i];
    605 		if (rxs->rxs_mbuf != NULL) {
    606 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    607 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    608 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    609 			m_freem(rxs->rxs_mbuf);
    610 			rxs->rxs_mbuf = NULL;
    611 		}
    612 	}
    613 }
    614 
    615 /*
    616  * Reset the whole thing.
    617  */
    618 static void
    619 gem_stop(struct ifnet *ifp, int disable)
    620 {
    621 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    622 	struct gem_txsoft *txs;
    623 
    624 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    625 
    626 	callout_stop(&sc->sc_tick_ch);
    627 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
    628 		gem_pcs_stop(sc, disable);
    629 	else
    630 		mii_down(&sc->sc_mii);
    631 
    632 	/* XXX - Should we reset these instead? */
    633 	gem_disable_tx(sc);
    634 	gem_disable_rx(sc);
    635 
    636 	/*
    637 	 * Release any queued transmit buffers.
    638 	 */
    639 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    640 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    641 		if (txs->txs_mbuf != NULL) {
    642 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    643 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    644 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    645 			m_freem(txs->txs_mbuf);
    646 			txs->txs_mbuf = NULL;
    647 		}
    648 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    649 	}
    650 
    651 	if (disable) {
    652 		gem_rxdrain(sc);
    653 	}
    654 
    655 	/*
    656 	 * Mark the interface down and cancel the watchdog timer.
    657 	 */
    658 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    659 	sc->sc_if_flags = ifp->if_flags;
    660 	ifp->if_timer = 0;
    661 }
    662 
    663 
    664 /*
    665  * Reset the receiver
    666  */
    667 int
    668 gem_reset_rx(struct gem_softc *sc)
    669 {
    670 	bus_space_tag_t t = sc->sc_bustag;
    671 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    672 
    673 	/*
    674 	 * Resetting while DMA is in progress can cause a bus hang, so we
    675 	 * disable DMA first.
    676 	 */
    677 	gem_disable_rx(sc);
    678 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    679 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    680 	/* Wait till it finishes */
    681 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
    682 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    683 
    684 	/* Finally, reset the ERX */
    685 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
    686 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    687 	/* Wait till it finishes */
    688 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
    689 		printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
    690 		return (1);
    691 	}
    692 	return (0);
    693 }
    694 
    695 
    696 /*
    697  * Reset the receiver DMA engine.
    698  *
    699  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
    700  * etc in order to reset the receiver DMA engine only and not do a full
    701  * reset which amongst others also downs the link and clears the FIFOs.
    702  */
    703 static void
    704 gem_reset_rxdma(struct gem_softc *sc)
    705 {
    706 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    707 	bus_space_tag_t t = sc->sc_bustag;
    708 	bus_space_handle_t h = sc->sc_h1;
    709 	int i;
    710 
    711 	if (gem_reset_rx(sc) != 0) {
    712 		gem_init(ifp);
    713 		return;
    714 	}
    715 	for (i = 0; i < GEM_NRXDESC; i++)
    716 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
    717 			GEM_UPDATE_RXDESC(sc, i);
    718 	sc->sc_rxptr = 0;
    719 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    720 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    721 
    722 	/* Reprogram Descriptor Ring Base Addresses */
    723 	/* NOTE: we use only 32-bit DMA addresses here. */
    724 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    725 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    726 
    727 	/* Redo ERX Configuration */
    728 	gem_rx_common(sc);
    729 
    730 	/* Give the reciever a swift kick */
    731 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
    732 }
    733 
    734 /*
    735  * Common RX configuration for gem_init() and gem_reset_rxdma().
    736  */
    737 static void
    738 gem_rx_common(struct gem_softc *sc)
    739 {
    740 	bus_space_tag_t t = sc->sc_bustag;
    741 	bus_space_handle_t h = sc->sc_h1;
    742 	u_int32_t v;
    743 
    744 	/* Encode Receive Descriptor ring size: four possible values */
    745 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    746 
    747 	/* Set receive h/w checksum offset */
    748 #ifdef INET
    749 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    750 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    751 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    752 #endif
    753 
    754 	/* Enable RX DMA */
    755 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    756 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
    757 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
    758 
    759 	/*
    760 	 * The following value is for an OFF Threshold of about 3/4 full
    761 	 * and an ON Threshold of 1/4 full.
    762 	 */
    763 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    764 	    (3 * sc->sc_rxfifosize / 256) |
    765 	    ((sc->sc_rxfifosize / 256) << 12));
    766 	bus_space_write_4(t, h, GEM_RX_BLANKING,
    767 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
    768 }
    769 
    770 /*
    771  * Reset the transmitter
    772  */
    773 int
    774 gem_reset_tx(struct gem_softc *sc)
    775 {
    776 	bus_space_tag_t t = sc->sc_bustag;
    777 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    778 
    779 	/*
    780 	 * Resetting while DMA is in progress can cause a bus hang, so we
    781 	 * disable DMA first.
    782 	 */
    783 	gem_disable_tx(sc);
    784 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    785 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    786 	/* Wait till it finishes */
    787 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
    788 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    789 	/* Wait 5ms extra. */
    790 	delay(5000);
    791 
    792 	/* Finally, reset the ETX */
    793 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
    794 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    795 	/* Wait till it finishes */
    796 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
    797 		printf("%s: cannot reset receiver\n",
    798 			sc->sc_dev.dv_xname);
    799 		return (1);
    800 	}
    801 	return (0);
    802 }
    803 
    804 /*
    805  * disable receiver.
    806  */
    807 int
    808 gem_disable_rx(struct gem_softc *sc)
    809 {
    810 	bus_space_tag_t t = sc->sc_bustag;
    811 	bus_space_handle_t h = sc->sc_h1;
    812 	u_int32_t cfg;
    813 
    814 	/* Flip the enable bit */
    815 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    816 	cfg &= ~GEM_MAC_RX_ENABLE;
    817 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    818 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    819 	/* Wait for it to finish */
    820 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    821 }
    822 
    823 /*
    824  * disable transmitter.
    825  */
    826 int
    827 gem_disable_tx(struct gem_softc *sc)
    828 {
    829 	bus_space_tag_t t = sc->sc_bustag;
    830 	bus_space_handle_t h = sc->sc_h1;
    831 	u_int32_t cfg;
    832 
    833 	/* Flip the enable bit */
    834 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    835 	cfg &= ~GEM_MAC_TX_ENABLE;
    836 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    837 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    838 	/* Wait for it to finish */
    839 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    840 }
    841 
    842 /*
    843  * Initialize interface.
    844  */
    845 int
    846 gem_meminit(struct gem_softc *sc)
    847 {
    848 	struct gem_rxsoft *rxs;
    849 	int i, error;
    850 
    851 	/*
    852 	 * Initialize the transmit descriptor ring.
    853 	 */
    854 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    855 	for (i = 0; i < GEM_NTXDESC; i++) {
    856 		sc->sc_txdescs[i].gd_flags = 0;
    857 		sc->sc_txdescs[i].gd_addr = 0;
    858 	}
    859 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    860 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    861 	sc->sc_txfree = GEM_NTXDESC-1;
    862 	sc->sc_txnext = 0;
    863 	sc->sc_txwin = 0;
    864 
    865 	/*
    866 	 * Initialize the receive descriptor and receive job
    867 	 * descriptor rings.
    868 	 */
    869 	for (i = 0; i < GEM_NRXDESC; i++) {
    870 		rxs = &sc->sc_rxsoft[i];
    871 		if (rxs->rxs_mbuf == NULL) {
    872 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    873 				printf("%s: unable to allocate or map rx "
    874 				    "buffer %d, error = %d\n",
    875 				    sc->sc_dev.dv_xname, i, error);
    876 				/*
    877 				 * XXX Should attempt to run with fewer receive
    878 				 * XXX buffers instead of just failing.
    879 				 */
    880 				gem_rxdrain(sc);
    881 				return (1);
    882 			}
    883 		} else
    884 			GEM_INIT_RXDESC(sc, i);
    885 	}
    886 	sc->sc_rxptr = 0;
    887 	sc->sc_meminited = 1;
    888 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    889 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    890 
    891 	return (0);
    892 }
    893 
    894 static int
    895 gem_ringsize(int sz)
    896 {
    897 	switch (sz) {
    898 	case 32:
    899 		return GEM_RING_SZ_32;
    900 	case 64:
    901 		return GEM_RING_SZ_64;
    902 	case 128:
    903 		return GEM_RING_SZ_128;
    904 	case 256:
    905 		return GEM_RING_SZ_256;
    906 	case 512:
    907 		return GEM_RING_SZ_512;
    908 	case 1024:
    909 		return GEM_RING_SZ_1024;
    910 	case 2048:
    911 		return GEM_RING_SZ_2048;
    912 	case 4096:
    913 		return GEM_RING_SZ_4096;
    914 	case 8192:
    915 		return GEM_RING_SZ_8192;
    916 	default:
    917 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    918 		return GEM_RING_SZ_32;
    919 	}
    920 }
    921 
    922 
    923 /*
    924  * Start PCS
    925  */
    926 void
    927 gem_pcs_start(struct gem_softc *sc)
    928 {
    929 	bus_space_tag_t t = sc->sc_bustag;
    930 	bus_space_handle_t h = sc->sc_h1;
    931 	uint32_t v;
    932 
    933 #ifdef GEM_DEBUG
    934 	aprint_debug("%s: gem_pcs_start()\n", sc->sc_dev.dv_xname);
    935 #endif
    936 
    937 	/*
    938 	 * Set up.  We must disable the MII before modifying the
    939 	 * GEM_MII_ANAR register
    940 	 */
    941 	if (sc->sc_flags & GEM_SERDES) {
    942 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    943 		    GEM_MII_DATAPATH_SERDES);
    944 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
    945 		    GEM_MII_SLINK_LOOPBACK);
    946 	} else {
    947 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    948 		    GEM_MII_DATAPATH_SERIAL);
    949 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
    950 	}
    951 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
    952 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
    953 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
    954 	if (sc->sc_mii_media == IFM_AUTO)
    955 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
    956 	else if (sc->sc_mii_media == IFM_FDX) {
    957 		v |= GEM_MII_ANEG_FUL_DUPLX;
    958 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
    959 	} else if (sc->sc_mii_media == IFM_HDX) {
    960 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
    961 		v |= GEM_MII_ANEG_HLF_DUPLX;
    962 	}
    963 
    964 	/* Configure link. */
    965 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
    966 	bus_space_write_4(t, h, GEM_MII_CONTROL,
    967 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
    968 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
    969 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
    970 
    971 	/* Start the 10 second timer */
    972 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
    973 }
    974 
    975 /*
    976  * Stop PCS
    977  */
    978 void
    979 gem_pcs_stop(struct gem_softc *sc, int disable)
    980 {
    981 	bus_space_tag_t t = sc->sc_bustag;
    982 	bus_space_handle_t h = sc->sc_h1;
    983 
    984 #ifdef GEM_DEBUG
    985 	aprint_debug("%s: gem_pcs_stop()\n", sc->sc_dev.dv_xname);
    986 #endif
    987 
    988 	/* Tell link partner that we're going away */
    989 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
    990 
    991 	/*
    992 	 * Disable PCS MII.  The documentation suggests that setting
    993 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
    994 	 * negotiation will shut down the link.  However, it appears
    995 	 * that we also need to unset the datapath mode.
    996 	 */
    997 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
    998 	bus_space_write_4(t, h, GEM_MII_CONTROL,
    999 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1000 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
   1001 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1002 
   1003 	if (disable) {
   1004 		if (sc->sc_flags & GEM_SERDES)
   1005 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1006 				GEM_MII_SLINK_POWER_OFF);
   1007 		else
   1008 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1009 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
   1010 	}
   1011 
   1012 	sc->sc_flags &= ~GEM_LINK;
   1013 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   1014 	sc->sc_mii.mii_media_status = IFM_AVALID;
   1015 }
   1016 
   1017 
   1018 /*
   1019  * Initialization of interface; set up initialization block
   1020  * and transmit/receive descriptor rings.
   1021  */
   1022 int
   1023 gem_init(struct ifnet *ifp)
   1024 {
   1025 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1026 	bus_space_tag_t t = sc->sc_bustag;
   1027 	bus_space_handle_t h = sc->sc_h1;
   1028 	int rc = 0, s;
   1029 	u_int max_frame_size;
   1030 	u_int32_t v;
   1031 
   1032 	s = splnet();
   1033 
   1034 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
   1035 	/*
   1036 	 * Initialization sequence. The numbered steps below correspond
   1037 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
   1038 	 * Channel Engine manual (part of the PCIO manual).
   1039 	 * See also the STP2002-STQ document from Sun Microsystems.
   1040 	 */
   1041 
   1042 	/* step 1 & 2. Reset the Ethernet Channel */
   1043 	gem_stop(ifp, 0);
   1044 	gem_reset(sc);
   1045 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
   1046 
   1047 	/* Re-initialize the MIF */
   1048 	gem_mifinit(sc);
   1049 
   1050 	/* Set up correct datapath for non-SERDES/Serialink */
   1051 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1052 	    sc->sc_variant != GEM_SUN_ERI)
   1053 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1054 		    GEM_MII_DATAPATH_MII);
   1055 
   1056 	/* Call MI reset function if any */
   1057 	if (sc->sc_hwreset)
   1058 		(*sc->sc_hwreset)(sc);
   1059 
   1060 	/* step 3. Setup data structures in host memory */
   1061 	if (gem_meminit(sc) != 0)
   1062 		return 1;
   1063 
   1064 	/* step 4. TX MAC registers & counters */
   1065 	gem_init_regs(sc);
   1066 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
   1067 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
   1068 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1069 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
   1070 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1071 	    max_frame_size|/* burst size */(0x2000<<16));
   1072 
   1073 	/* step 5. RX MAC registers & counters */
   1074 	gem_setladrf(sc);
   1075 
   1076 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
   1077 	/* NOTE: we use only 32-bit DMA addresses here. */
   1078 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
   1079 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
   1080 
   1081 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
   1082 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
   1083 
   1084 	/* step 8. Global Configuration & Interrupt Mask */
   1085 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1086 		v = GEM_INTR_PCS;
   1087 	else
   1088 		v = GEM_INTR_MIF;
   1089 	bus_space_write_4(t, h, GEM_INTMASK,
   1090 		      ~(GEM_INTR_TX_INTME |
   1091 			GEM_INTR_TX_EMPTY |
   1092 			GEM_INTR_TX_MAC |
   1093 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
   1094 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
   1095 			GEM_INTR_BERR | v));
   1096 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
   1097 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
   1098 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
   1099 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
   1100 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
   1101 
   1102 	/* step 9. ETX Configuration: use mostly default values */
   1103 
   1104 	/* Enable TX DMA */
   1105 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
   1106 	bus_space_write_4(t, h, GEM_TX_CONFIG,
   1107 		v|GEM_TX_CONFIG_TXDMA_EN|
   1108 		((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
   1109 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
   1110 
   1111 	/* step 10. ERX Configuration */
   1112 	gem_rx_common(sc);
   1113 
   1114 	/* step 11. Configure Media */
   1115 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1116 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1117 		goto out;
   1118 
   1119 	/* step 12. RX_MAC Configuration Register */
   1120 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1121 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
   1122 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1123 
   1124 	/* step 14. Issue Transmit Pending command */
   1125 
   1126 	/* Call MI initialization function if any */
   1127 	if (sc->sc_hwinit)
   1128 		(*sc->sc_hwinit)(sc);
   1129 
   1130 
   1131 	/* step 15.  Give the reciever a swift kick */
   1132 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
   1133 
   1134 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1135 		/* Configure PCS */
   1136 		gem_pcs_start(sc);
   1137 	else
   1138 		/* Start the one second timer. */
   1139 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
   1140 
   1141 	sc->sc_flags &= ~GEM_LINK;
   1142 	ifp->if_flags |= IFF_RUNNING;
   1143 	ifp->if_flags &= ~IFF_OACTIVE;
   1144 	ifp->if_timer = 0;
   1145 	sc->sc_if_flags = ifp->if_flags;
   1146 out:
   1147 	splx(s);
   1148 
   1149 	return (0);
   1150 }
   1151 
   1152 void
   1153 gem_init_regs(struct gem_softc *sc)
   1154 {
   1155 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1156 	bus_space_tag_t t = sc->sc_bustag;
   1157 	bus_space_handle_t h = sc->sc_h1;
   1158 	const u_char *laddr = CLLADDR(ifp->if_sadl);
   1159 	u_int32_t v;
   1160 
   1161 	/* These regs are not cleared on reset */
   1162 	if (!sc->sc_inited) {
   1163 
   1164 		/* Load recommended values */
   1165 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
   1166 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
   1167 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
   1168 
   1169 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
   1170 		/* Max frame and max burst size */
   1171 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1172 		    ETHER_MAX_LEN | (0x2000<<16));
   1173 
   1174 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
   1175 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
   1176 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
   1177 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
   1178 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
   1179 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
   1180 
   1181 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
   1182 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
   1183 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
   1184 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
   1185 
   1186 		/* MAC control addr set to 01:80:c2:00:00:01 */
   1187 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
   1188 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
   1189 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
   1190 
   1191 		/* MAC filter addr set to 0:0:0:0:0:0 */
   1192 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
   1193 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
   1194 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
   1195 
   1196 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
   1197 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
   1198 
   1199 		sc->sc_inited = 1;
   1200 	}
   1201 
   1202 	/* Counters need to be zeroed */
   1203 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
   1204 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
   1205 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
   1206 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
   1207 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
   1208 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
   1209 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
   1210 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1211 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1212 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1213 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1214 
   1215 	/* Set XOFF PAUSE time. */
   1216 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
   1217 
   1218 	/*
   1219 	 * Set the internal arbitration to "infinite" bursts of the
   1220 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
   1221 	 * split up in cache line size chunks. This greatly improves
   1222 	 * especially RX performance.
   1223 	 * Enable silicon bug workarounds for the Apple variants.
   1224 	 */
   1225 	bus_space_write_4(t, h, GEM_CONFIG,
   1226 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
   1227 	    GEM_CONFIG_BURST_INF | (GEM_IS_APPLE(sc) ?
   1228 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
   1229 
   1230 	/*
   1231 	 * Set the station address.
   1232 	 */
   1233 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1234 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1235 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1236 
   1237 	/*
   1238 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1239 	 */
   1240 	v = GEM_MAC_XIF_TX_MII_ENA;
   1241 	if (sc->sc_flags & GEM_GIGABIT)
   1242 		v |= GEM_MAC_XIF_GMII_MODE;
   1243 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1244 }
   1245 
   1246 #ifdef GEM_DEBUG
   1247 static void
   1248 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
   1249 {
   1250 	int i;
   1251 
   1252 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
   1253 		printf("descriptor %d:\t", i);
   1254 		printf("gd_flags:   0x%016" PRIx64 "\t",
   1255 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1256 		printf("gd_addr: 0x%016" PRIx64 "\n",
   1257 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1258 		if (i == lastdesc)
   1259 			break;
   1260 	}
   1261 }
   1262 #endif
   1263 
   1264 static void
   1265 gem_start(ifp)
   1266 	struct ifnet *ifp;
   1267 {
   1268 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1269 	struct mbuf *m0, *m;
   1270 	struct gem_txsoft *txs;
   1271 	bus_dmamap_t dmamap;
   1272 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
   1273 	uint64_t flags = 0;
   1274 
   1275 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1276 		return;
   1277 
   1278 	/*
   1279 	 * Remember the previous number of free descriptors and
   1280 	 * the first descriptor we'll use.
   1281 	 */
   1282 	ofree = sc->sc_txfree;
   1283 	firsttx = sc->sc_txnext;
   1284 
   1285 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1286 	    sc->sc_dev.dv_xname, ofree, firsttx));
   1287 
   1288 	/*
   1289 	 * Loop through the send queue, setting up transmit descriptors
   1290 	 * until we drain the queue, or use up all available transmit
   1291 	 * descriptors.
   1292 	 */
   1293 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1294 	    sc->sc_txfree != 0) {
   1295 		/*
   1296 		 * Grab a packet off the queue.
   1297 		 */
   1298 		IFQ_POLL(&ifp->if_snd, m0);
   1299 		if (m0 == NULL)
   1300 			break;
   1301 		m = NULL;
   1302 
   1303 		dmamap = txs->txs_dmamap;
   1304 
   1305 		/*
   1306 		 * Load the DMA map.  If this fails, the packet either
   1307 		 * didn't fit in the alloted number of segments, or we were
   1308 		 * short on resources.  In this case, we'll copy and try
   1309 		 * again.
   1310 		 */
   1311 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1312 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1313 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1314 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1315 			if (m0->m_pkthdr.len > MCLBYTES) {
   1316 				printf("%s: unable to allocate jumbo Tx "
   1317 				    "cluster\n", sc->sc_dev.dv_xname);
   1318 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1319 				m_freem(m0);
   1320 				continue;
   1321 			}
   1322 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1323 			if (m == NULL) {
   1324 				printf("%s: unable to allocate Tx mbuf\n",
   1325 				    sc->sc_dev.dv_xname);
   1326 				break;
   1327 			}
   1328 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1329 			if (m0->m_pkthdr.len > MHLEN) {
   1330 				MCLGET(m, M_DONTWAIT);
   1331 				if ((m->m_flags & M_EXT) == 0) {
   1332 					printf("%s: unable to allocate Tx "
   1333 					    "cluster\n", sc->sc_dev.dv_xname);
   1334 					m_freem(m);
   1335 					break;
   1336 				}
   1337 			}
   1338 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1339 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1340 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1341 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1342 			if (error) {
   1343 				printf("%s: unable to load Tx buffer, "
   1344 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1345 				break;
   1346 			}
   1347 		}
   1348 
   1349 		/*
   1350 		 * Ensure we have enough descriptors free to describe
   1351 		 * the packet.
   1352 		 */
   1353 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1354 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1355 			/*
   1356 			 * Not enough free descriptors to transmit this
   1357 			 * packet.  We haven't committed to anything yet,
   1358 			 * so just unload the DMA map, put the packet
   1359 			 * back on the queue, and punt.  Notify the upper
   1360 			 * layer that there are no more slots left.
   1361 			 *
   1362 			 * XXX We could allocate an mbuf and copy, but
   1363 			 * XXX it is worth it?
   1364 			 */
   1365 			ifp->if_flags |= IFF_OACTIVE;
   1366 			sc->sc_if_flags = ifp->if_flags;
   1367 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1368 			if (m != NULL)
   1369 				m_freem(m);
   1370 			break;
   1371 		}
   1372 
   1373 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1374 		if (m != NULL) {
   1375 			m_freem(m0);
   1376 			m0 = m;
   1377 		}
   1378 
   1379 		/*
   1380 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1381 		 */
   1382 
   1383 		/* Sync the DMA map. */
   1384 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1385 		    BUS_DMASYNC_PREWRITE);
   1386 
   1387 		/*
   1388 		 * Initialize the transmit descriptors.
   1389 		 */
   1390 		for (nexttx = sc->sc_txnext, seg = 0;
   1391 		     seg < dmamap->dm_nsegs;
   1392 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1393 
   1394 			/*
   1395 			 * If this is the first descriptor we're
   1396 			 * enqueueing, set the start of packet flag,
   1397 			 * and the checksum stuff if we want the hardware
   1398 			 * to do it.
   1399 			 */
   1400 			sc->sc_txdescs[nexttx].gd_addr =
   1401 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1402 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1403 			if (nexttx == firsttx) {
   1404 				flags |= GEM_TD_START_OF_PACKET;
   1405 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1406 					sc->sc_txwin = 0;
   1407 					flags |= GEM_TD_INTERRUPT_ME;
   1408 				}
   1409 
   1410 #ifdef INET
   1411 				/* h/w checksum */
   1412 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
   1413 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1414 					struct ether_header *eh;
   1415 					uint16_t offset, start;
   1416 
   1417 					eh = mtod(m0, struct ether_header *);
   1418 					switch (ntohs(eh->ether_type)) {
   1419 					case ETHERTYPE_IP:
   1420 						start = ETHER_HDR_LEN;
   1421 						break;
   1422 					case ETHERTYPE_VLAN:
   1423 						start = ETHER_HDR_LEN +
   1424 							ETHER_VLAN_ENCAP_LEN;
   1425 						break;
   1426 					default:
   1427 						/* unsupported, drop it */
   1428 						m_free(m0);
   1429 						continue;
   1430 					}
   1431 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1432 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1433 					flags |= (start <<
   1434 						  GEM_TD_CXSUM_STARTSHFT) |
   1435 						 (offset <<
   1436 						  GEM_TD_CXSUM_STUFFSHFT) |
   1437 						 GEM_TD_CXSUM_ENABLE;
   1438 				}
   1439 #endif
   1440 			}
   1441 			if (seg == dmamap->dm_nsegs - 1) {
   1442 				flags |= GEM_TD_END_OF_PACKET;
   1443 			} else {
   1444 				/* last flag set outside of loop */
   1445 				sc->sc_txdescs[nexttx].gd_flags =
   1446 					GEM_DMA_WRITE(sc, flags);
   1447 			}
   1448 			lasttx = nexttx;
   1449 		}
   1450 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1451 			/* add padding buffer at end of chain */
   1452 			flags &= ~GEM_TD_END_OF_PACKET;
   1453 			sc->sc_txdescs[lasttx].gd_flags =
   1454 			    GEM_DMA_WRITE(sc, flags);
   1455 
   1456 			sc->sc_txdescs[nexttx].gd_addr =
   1457 			    GEM_DMA_WRITE(sc,
   1458 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1459 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1460 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1461 			lasttx = nexttx;
   1462 			nexttx = GEM_NEXTTX(nexttx);
   1463 			seg++;
   1464 		}
   1465 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1466 
   1467 		KASSERT(lasttx != -1);
   1468 
   1469 		/*
   1470 		 * Store a pointer to the packet so we can free it later,
   1471 		 * and remember what txdirty will be once the packet is
   1472 		 * done.
   1473 		 */
   1474 		txs->txs_mbuf = m0;
   1475 		txs->txs_firstdesc = sc->sc_txnext;
   1476 		txs->txs_lastdesc = lasttx;
   1477 		txs->txs_ndescs = seg;
   1478 
   1479 #ifdef GEM_DEBUG
   1480 		if (ifp->if_flags & IFF_DEBUG) {
   1481 			printf("     gem_start %p transmit chain:\n", txs);
   1482 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1483 			    txs->txs_lastdesc);
   1484 		}
   1485 #endif
   1486 
   1487 		/* Sync the descriptors we're using. */
   1488 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1489 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1490 
   1491 		/* Advance the tx pointer. */
   1492 		sc->sc_txfree -= txs->txs_ndescs;
   1493 		sc->sc_txnext = nexttx;
   1494 
   1495 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1496 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1497 
   1498 #if NBPFILTER > 0
   1499 		/*
   1500 		 * Pass the packet to any BPF listeners.
   1501 		 */
   1502 		if (ifp->if_bpf)
   1503 			bpf_mtap(ifp->if_bpf, m0);
   1504 #endif /* NBPFILTER > 0 */
   1505 	}
   1506 
   1507 	if (txs == NULL || sc->sc_txfree == 0) {
   1508 		/* No more slots left; notify upper layer. */
   1509 		ifp->if_flags |= IFF_OACTIVE;
   1510 		sc->sc_if_flags = ifp->if_flags;
   1511 	}
   1512 
   1513 	if (sc->sc_txfree != ofree) {
   1514 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1515 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1516 		/*
   1517 		 * The entire packet chain is set up.
   1518 		 * Kick the transmitter.
   1519 		 */
   1520 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1521 			sc->sc_dev.dv_xname, nexttx));
   1522 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
   1523 			sc->sc_txnext);
   1524 
   1525 		/* Set a watchdog timer in case the chip flakes out. */
   1526 		ifp->if_timer = 5;
   1527 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1528 			sc->sc_dev.dv_xname, ifp->if_timer));
   1529 	}
   1530 }
   1531 
   1532 /*
   1533  * Transmit interrupt.
   1534  */
   1535 int
   1536 gem_tint(sc)
   1537 	struct gem_softc *sc;
   1538 {
   1539 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1540 	bus_space_tag_t t = sc->sc_bustag;
   1541 	bus_space_handle_t mac = sc->sc_h1;
   1542 	struct gem_txsoft *txs;
   1543 	int txlast;
   1544 	int progress = 0;
   1545 
   1546 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1547 
   1548 	/*
   1549 	 * Unload collision counters
   1550 	 */
   1551 	ifp->if_collisions +=
   1552 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1553 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
   1554 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1555 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1556 
   1557 	/*
   1558 	 * then clear the hardware counters.
   1559 	 */
   1560 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1561 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1562 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1563 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1564 
   1565 	/*
   1566 	 * Go through our Tx list and free mbufs for those
   1567 	 * frames that have been transmitted.
   1568 	 */
   1569 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1570 		/*
   1571 		 * In theory, we could harvest some descriptors before
   1572 		 * the ring is empty, but that's a bit complicated.
   1573 		 *
   1574 		 * GEM_TX_COMPLETION points to the last descriptor
   1575 		 * processed +1.
   1576 		 *
   1577 		 * Let's assume that the NIC writes back to the Tx
   1578 		 * descriptors before it updates the completion
   1579 		 * register.  If the NIC has posted writes to the
   1580 		 * Tx descriptors, PCI ordering requires that the
   1581 		 * posted writes flush to RAM before the register-read
   1582 		 * finishes.  So let's read the completion register,
   1583 		 * before syncing the descriptors, so that we
   1584 		 * examine Tx descriptors that are at least as
   1585 		 * current as the completion register.
   1586 		 */
   1587 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1588 		DPRINTF(sc,
   1589 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1590 				txs->txs_lastdesc, txlast));
   1591 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1592 			if (txlast >= txs->txs_firstdesc &&
   1593 			    txlast <= txs->txs_lastdesc)
   1594 				break;
   1595 		} else if (txlast >= txs->txs_firstdesc ||
   1596 			   txlast <= txs->txs_lastdesc)
   1597 			break;
   1598 
   1599 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1600 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1601 
   1602 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
   1603 		if (ifp->if_flags & IFF_DEBUG) {
   1604 			printf("    txsoft %p transmit chain:\n", txs);
   1605 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1606 			    txs->txs_lastdesc);
   1607 		}
   1608 #endif
   1609 
   1610 
   1611 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1612 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1613 
   1614 		sc->sc_txfree += txs->txs_ndescs;
   1615 
   1616 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1617 		    0, txs->txs_dmamap->dm_mapsize,
   1618 		    BUS_DMASYNC_POSTWRITE);
   1619 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1620 		if (txs->txs_mbuf != NULL) {
   1621 			m_freem(txs->txs_mbuf);
   1622 			txs->txs_mbuf = NULL;
   1623 		}
   1624 
   1625 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1626 
   1627 		ifp->if_opackets++;
   1628 		progress = 1;
   1629 	}
   1630 
   1631 #if 0
   1632 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1633 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
   1634 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
   1635 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1636 			GEM_TX_DATA_PTR_HI) << 32) |
   1637 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1638 			GEM_TX_DATA_PTR_LO),
   1639 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
   1640 #endif
   1641 
   1642 	if (progress) {
   1643 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1644 			sc->sc_txwin = 0;
   1645 
   1646 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
   1647 		ifp->if_flags &= ~IFF_OACTIVE;
   1648 		sc->sc_if_flags = ifp->if_flags;
   1649 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
   1650 		gem_start(ifp);
   1651 	}
   1652 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1653 		sc->sc_dev.dv_xname, ifp->if_timer));
   1654 
   1655 	return (1);
   1656 }
   1657 
   1658 /*
   1659  * Receive interrupt.
   1660  */
   1661 int
   1662 gem_rint(sc)
   1663 	struct gem_softc *sc;
   1664 {
   1665 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1666 	bus_space_tag_t t = sc->sc_bustag;
   1667 	bus_space_handle_t h = sc->sc_h1;
   1668 	struct gem_rxsoft *rxs;
   1669 	struct mbuf *m;
   1670 	u_int64_t rxstat;
   1671 	u_int32_t rxcomp;
   1672 	int i, len, progress = 0;
   1673 
   1674 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1675 
   1676 	/*
   1677 	 * Ignore spurious interrupt that sometimes occurs before
   1678 	 * we are set up when we network boot.
   1679 	 */
   1680 	if (!sc->sc_meminited)
   1681 		return 1;
   1682 
   1683 	/*
   1684 	 * Read the completion register once.  This limits
   1685 	 * how long the following loop can execute.
   1686 	 */
   1687 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1688 
   1689 	/*
   1690 	 * XXX Read the lastrx only once at the top for speed.
   1691 	 */
   1692 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1693 		sc->sc_rxptr, rxcomp));
   1694 
   1695 	/*
   1696 	 * Go into the loop at least once.
   1697 	 */
   1698 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1699 	     i = GEM_NEXTRX(i)) {
   1700 		rxs = &sc->sc_rxsoft[i];
   1701 
   1702 		GEM_CDRXSYNC(sc, i,
   1703 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1704 
   1705 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1706 
   1707 		if (rxstat & GEM_RD_OWN) {
   1708 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1709 			/*
   1710 			 * We have processed all of the receive buffers.
   1711 			 */
   1712 			break;
   1713 		}
   1714 
   1715 		progress++;
   1716 		ifp->if_ipackets++;
   1717 
   1718 		if (rxstat & GEM_RD_BAD_CRC) {
   1719 			ifp->if_ierrors++;
   1720 			printf("%s: receive error: CRC error\n",
   1721 				sc->sc_dev.dv_xname);
   1722 			GEM_INIT_RXDESC(sc, i);
   1723 			continue;
   1724 		}
   1725 
   1726 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1727 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1728 #ifdef GEM_DEBUG
   1729 		if (ifp->if_flags & IFF_DEBUG) {
   1730 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1731 			printf("gd_flags: 0x%016llx\t", (long long)
   1732 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1733 			printf("gd_addr: 0x%016llx\n", (long long)
   1734 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1735 		}
   1736 #endif
   1737 
   1738 		/* No errors; receive the packet. */
   1739 		len = GEM_RD_BUFLEN(rxstat);
   1740 
   1741 		/*
   1742 		 * Allocate a new mbuf cluster.  If that fails, we are
   1743 		 * out of memory, and must drop the packet and recycle
   1744 		 * the buffer that's already attached to this descriptor.
   1745 		 */
   1746 		m = rxs->rxs_mbuf;
   1747 		if (gem_add_rxbuf(sc, i) != 0) {
   1748 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1749 			ifp->if_ierrors++;
   1750 			GEM_INIT_RXDESC(sc, i);
   1751 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1752 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1753 			continue;
   1754 		}
   1755 		m->m_data += 2; /* We're already off by two */
   1756 
   1757 		m->m_pkthdr.rcvif = ifp;
   1758 		m->m_pkthdr.len = m->m_len = len;
   1759 
   1760 #if NBPFILTER > 0
   1761 		/*
   1762 		 * Pass this up to any BPF listeners, but only
   1763 		 * pass it up the stack if it's for us.
   1764 		 */
   1765 		if (ifp->if_bpf)
   1766 			bpf_mtap(ifp->if_bpf, m);
   1767 #endif /* NBPFILTER > 0 */
   1768 
   1769 #ifdef INET
   1770 		/* hardware checksum */
   1771 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1772 			struct ether_header *eh;
   1773 			struct ip *ip;
   1774 			int32_t hlen, pktlen;
   1775 
   1776 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1777 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1778 					 ETHER_VLAN_ENCAP_LEN;
   1779 				eh = (struct ether_header *) mtod(m, void *) +
   1780 					ETHER_VLAN_ENCAP_LEN;
   1781 			} else {
   1782 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1783 				eh = mtod(m, struct ether_header *);
   1784 			}
   1785 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1786 				goto swcsum;
   1787 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
   1788 
   1789 			/* IPv4 only */
   1790 			if (ip->ip_v != IPVERSION)
   1791 				goto swcsum;
   1792 
   1793 			hlen = ip->ip_hl << 2;
   1794 			if (hlen < sizeof(struct ip))
   1795 				goto swcsum;
   1796 
   1797 			/*
   1798 			 * bail if too short, has random trailing garbage,
   1799 			 * truncated, fragment, or has ethernet pad.
   1800 			 */
   1801 			if ((ntohs(ip->ip_len) < hlen) ||
   1802 			    (ntohs(ip->ip_len) != pktlen) ||
   1803 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1804 				goto swcsum;
   1805 
   1806 			switch (ip->ip_p) {
   1807 			case IPPROTO_TCP:
   1808 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1809 					goto swcsum;
   1810 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1811 					goto swcsum;
   1812 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1813 				break;
   1814 			case IPPROTO_UDP:
   1815 				/* FALLTHROUGH */
   1816 			default:
   1817 				goto swcsum;
   1818 			}
   1819 
   1820 			/* the uncomplemented sum is expected */
   1821 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1822 
   1823 			/* if the pkt had ip options, we have to deduct them */
   1824 			if (hlen > sizeof(struct ip)) {
   1825 				uint16_t *opts;
   1826 				uint32_t optsum, temp;
   1827 
   1828 				optsum = 0;
   1829 				temp = hlen - sizeof(struct ip);
   1830 				opts = (uint16_t *) ((char *) ip +
   1831 					sizeof(struct ip));
   1832 
   1833 				while (temp > 1) {
   1834 					optsum += ntohs(*opts++);
   1835 					temp -= 2;
   1836 				}
   1837 				while (optsum >> 16)
   1838 					optsum = (optsum >> 16) +
   1839 						 (optsum & 0xffff);
   1840 
   1841 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1842 				m->m_pkthdr.csum_data =
   1843 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1844 
   1845 				while (m->m_pkthdr.csum_data >> 16)
   1846 					m->m_pkthdr.csum_data =
   1847 						(m->m_pkthdr.csum_data >> 16) +
   1848 						(m->m_pkthdr.csum_data &
   1849 						 0xffff);
   1850 			}
   1851 
   1852 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1853 						  M_CSUM_NO_PSEUDOHDR;
   1854 		} else
   1855 swcsum:
   1856 			m->m_pkthdr.csum_flags = 0;
   1857 #endif
   1858 		/* Pass it on. */
   1859 		(*ifp->if_input)(ifp, m);
   1860 	}
   1861 
   1862 	if (progress) {
   1863 		/* Update the receive pointer. */
   1864 		if (i == sc->sc_rxptr) {
   1865 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1866 #ifdef GEM_DEBUG
   1867 			if (ifp->if_flags & IFF_DEBUG)
   1868 				printf("%s: rint: ring wrap\n",
   1869 				    sc->sc_dev.dv_xname);
   1870 #endif
   1871 		}
   1872 		sc->sc_rxptr = i;
   1873 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1874 	}
   1875 #ifdef GEM_COUNTERS
   1876 	if (progress <= 4) {
   1877 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1878 	} else if (progress < 32) {
   1879 		if (progress < 16)
   1880 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1881 		else
   1882 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1883 
   1884 	} else {
   1885 		if (progress < 64)
   1886 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1887 		else
   1888 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1889 	}
   1890 #endif
   1891 
   1892 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1893 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1894 
   1895 	return (1);
   1896 }
   1897 
   1898 
   1899 /*
   1900  * gem_add_rxbuf:
   1901  *
   1902  *	Add a receive buffer to the indicated descriptor.
   1903  */
   1904 int
   1905 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1906 {
   1907 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1908 	struct mbuf *m;
   1909 	int error;
   1910 
   1911 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1912 	if (m == NULL)
   1913 		return (ENOBUFS);
   1914 
   1915 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1916 	MCLGET(m, M_DONTWAIT);
   1917 	if ((m->m_flags & M_EXT) == 0) {
   1918 		m_freem(m);
   1919 		return (ENOBUFS);
   1920 	}
   1921 
   1922 #ifdef GEM_DEBUG
   1923 /* bzero the packet to check DMA */
   1924 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1925 #endif
   1926 
   1927 	if (rxs->rxs_mbuf != NULL)
   1928 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1929 
   1930 	rxs->rxs_mbuf = m;
   1931 
   1932 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1933 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1934 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1935 	if (error) {
   1936 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1937 		    sc->sc_dev.dv_xname, idx, error);
   1938 		panic("gem_add_rxbuf");	/* XXX */
   1939 	}
   1940 
   1941 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1942 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1943 
   1944 	GEM_INIT_RXDESC(sc, idx);
   1945 
   1946 	return (0);
   1947 }
   1948 
   1949 
   1950 int
   1951 gem_eint(struct gem_softc *sc, u_int status)
   1952 {
   1953 	char bits[128];
   1954 	u_int32_t v;
   1955 
   1956 	if ((status & GEM_INTR_MIF) != 0) {
   1957 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1958 		return (1);
   1959 	}
   1960 
   1961 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
   1962 		gem_reset_rxdma(sc);
   1963 		return (1);
   1964 	}
   1965 
   1966 	if (status & GEM_INTR_BERR) {
   1967 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, GEM_ERROR_STATUS);
   1968 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2,
   1969 		    GEM_ERROR_STATUS);
   1970 		printf("%s: bus error interrupt: 0x%02x\n",
   1971 		    sc->sc_dev.dv_xname, v);
   1972 		return (1);
   1973 	}
   1974 
   1975 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1976 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   1977 	return (1);
   1978 }
   1979 
   1980 
   1981 /*
   1982  * PCS interrupts.
   1983  * We should receive these when the link status changes, but sometimes
   1984  * we don't receive them for link up.  We compensate for this in the
   1985  * gem_tick() callout.
   1986  */
   1987 int
   1988 gem_pint(struct gem_softc *sc)
   1989 {
   1990 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1991 	bus_space_tag_t t = sc->sc_bustag;
   1992 	bus_space_handle_t h = sc->sc_h1;
   1993 	u_int32_t v, v2;
   1994 
   1995 	/*
   1996 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
   1997 	 * latched, so we have to read it twice.  There is only one bit in
   1998 	 * use, so the value is meaningless.
   1999 	 */
   2000 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2001 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2002 
   2003 	if ((ifp->if_flags & IFF_UP) == 0)
   2004 		return 1;
   2005 
   2006 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
   2007 		return 1;
   2008 
   2009 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2010 	/* If we see remote fault, our link partner is probably going away */
   2011 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
   2012 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
   2013 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2014 	/* Otherwise, we may need to wait after auto-negotiation completes */
   2015 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
   2016 	    GEM_MII_STATUS_ANEG_CPT) {
   2017 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
   2018 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2019 	}
   2020 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
   2021 		if (sc->sc_flags & GEM_LINK) {
   2022 			return 1;
   2023 		}
   2024 		callout_stop(&sc->sc_tick_ch);
   2025 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
   2026 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
   2027 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
   2028 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
   2029 		v &= v2;
   2030 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
   2031 			sc->sc_mii.mii_media_active |= IFM_FDX;
   2032 #ifdef GEM_DEBUG
   2033 			aprint_debug("%s: link up: full duplex\n",
   2034 			    sc->sc_dev.dv_xname);
   2035 #endif
   2036 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
   2037 			sc->sc_mii.mii_media_active |= IFM_HDX;
   2038 #ifdef GEM_DEBUG
   2039 			aprint_debug("%s: link up: half duplex\n",
   2040 			    sc->sc_dev.dv_xname);
   2041 #endif
   2042 		} else {
   2043 #ifdef GEM_DEBUG
   2044 			aprint_debug("%s: duplex mismatch\n",
   2045 			    sc->sc_dev.dv_xname);
   2046 #endif
   2047 		}
   2048 		gem_statuschange(sc);
   2049 	} else {
   2050 		if ((sc->sc_flags & GEM_LINK) == 0) {
   2051 			return 1;
   2052 		}
   2053 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   2054 		sc->sc_mii.mii_media_status = IFM_AVALID;
   2055 #ifdef GEM_DEBUG
   2056 			aprint_debug("%s: link down\n",
   2057 			    sc->sc_dev.dv_xname);
   2058 #endif
   2059 		gem_statuschange(sc);
   2060 
   2061 		/* Start the 10 second timer */
   2062 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   2063 	}
   2064 	return 1;
   2065 }
   2066 
   2067 
   2068 
   2069 int
   2070 gem_intr(v)
   2071 	void *v;
   2072 {
   2073 	struct gem_softc *sc = (struct gem_softc *)v;
   2074 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2075 	bus_space_tag_t t = sc->sc_bustag;
   2076 	bus_space_handle_t h = sc->sc_h1;
   2077 	u_int32_t status;
   2078 	int r = 0;
   2079 #ifdef GEM_DEBUG
   2080 	char bits[128];
   2081 #endif
   2082 
   2083 	/* XXX We should probably mask out interrupts until we're done */
   2084 
   2085 	sc->sc_ev_intr.ev_count++;
   2086 
   2087 	status = bus_space_read_4(t, h, GEM_STATUS);
   2088 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   2089 		sc->sc_dev.dv_xname, (status >> 19),
   2090 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   2091 
   2092 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   2093 		r |= gem_eint(sc, status);
   2094 
   2095 	/* We don't bother with GEM_INTR_TX_DONE */
   2096 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   2097 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   2098 		r |= gem_tint(sc);
   2099 	}
   2100 
   2101 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   2102 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   2103 		r |= gem_rint(sc);
   2104 	}
   2105 
   2106 	/* We should eventually do more than just print out error stats. */
   2107 	if (status & GEM_INTR_TX_MAC) {
   2108 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
   2109 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   2110 			printf("%s: MAC tx fault, status %x\n",
   2111 			    sc->sc_dev.dv_xname, txstat);
   2112 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   2113 			gem_init(ifp);
   2114 	}
   2115 	if (status & GEM_INTR_RX_MAC) {
   2116 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
   2117 		if (rxstat & ~GEM_MAC_RX_DONE)
   2118 			printf("%s: MAC rx fault, status %x\n",
   2119 			    sc->sc_dev.dv_xname, rxstat);
   2120 		/*
   2121 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
   2122 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
   2123 		 * silicon bug so handle them silently. Moreover, it's
   2124 		 * likely that the receiver has hung so we reset it.
   2125 		 */
   2126 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
   2127 			ifp->if_ierrors++;
   2128 			gem_reset_rxdma(sc);
   2129 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   2130 			printf("%s: MAC rx fault, status %x\n",
   2131 			    sc->sc_dev.dv_xname, rxstat);
   2132 	}
   2133 	if (status & GEM_INTR_PCS) {
   2134 		r |= gem_pint(sc);
   2135 	}
   2136 
   2137 /* Do we need to do anything with these?
   2138 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
   2139 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
   2140 		if ((status2 & GEM_MAC_PAUSED) != 0)
   2141 			aprintf_debug("%s: PAUSE received (%d slots)\n",
   2142 			    GEM_MAC_PAUSE_TIME(status2), sc->sc_dev.dv_xname);
   2143 		if ((status2 & GEM_MAC_PAUSE) != 0)
   2144 			aprintf_debug("%s: transited to PAUSE state\n",
   2145 			    sc->sc_dev.dv_xname);
   2146 		if ((status2 & GEM_MAC_RESUME) != 0)
   2147 			aprintf_debug("%s: transited to non-PAUSE state\n",
   2148 			    sc->sc_dev.dv_xname);
   2149 	}
   2150 	if ((status & GEM_INTR_MIF) != 0)
   2151 		aprintf_debug("%s: MIF interrupt\n", sc->sc_dev.dv_xname);
   2152 */
   2153 #if NRND > 0
   2154 	rnd_add_uint32(&sc->rnd_source, status);
   2155 #endif
   2156 	return (r);
   2157 }
   2158 
   2159 
   2160 void
   2161 gem_watchdog(ifp)
   2162 	struct ifnet *ifp;
   2163 {
   2164 	struct gem_softc *sc = ifp->if_softc;
   2165 
   2166 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   2167 		"GEM_MAC_RX_CONFIG %x\n",
   2168 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
   2169 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
   2170 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
   2171 
   2172 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   2173 	++ifp->if_oerrors;
   2174 
   2175 	/* Try to get more packets going. */
   2176 	gem_start(ifp);
   2177 }
   2178 
   2179 /*
   2180  * Initialize the MII Management Interface
   2181  */
   2182 void
   2183 gem_mifinit(sc)
   2184 	struct gem_softc *sc;
   2185 {
   2186 	bus_space_tag_t t = sc->sc_bustag;
   2187 	bus_space_handle_t mif = sc->sc_h1;
   2188 
   2189 	/* Configure the MIF in frame mode */
   2190 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   2191 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   2192 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   2193 }
   2194 
   2195 /*
   2196  * MII interface
   2197  *
   2198  * The GEM MII interface supports at least three different operating modes:
   2199  *
   2200  * Bitbang mode is implemented using data, clock and output enable registers.
   2201  *
   2202  * Frame mode is implemented by loading a complete frame into the frame
   2203  * register and polling the valid bit for completion.
   2204  *
   2205  * Polling mode uses the frame register but completion is indicated by
   2206  * an interrupt.
   2207  *
   2208  */
   2209 static int
   2210 gem_mii_readreg(self, phy, reg)
   2211 	struct device *self;
   2212 	int phy, reg;
   2213 {
   2214 	struct gem_softc *sc = (void *)self;
   2215 	bus_space_tag_t t = sc->sc_bustag;
   2216 	bus_space_handle_t mif = sc->sc_h1;
   2217 	int n;
   2218 	u_int32_t v;
   2219 
   2220 #ifdef GEM_DEBUG1
   2221 	if (sc->sc_debug)
   2222 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
   2223 #endif
   2224 
   2225 	/* Construct the frame command */
   2226 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   2227 		GEM_MIF_FRAME_READ;
   2228 
   2229 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2230 	for (n = 0; n < 100; n++) {
   2231 		DELAY(1);
   2232 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2233 		if (v & GEM_MIF_FRAME_TA0)
   2234 			return (v & GEM_MIF_FRAME_DATA);
   2235 	}
   2236 
   2237 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   2238 	return (0);
   2239 }
   2240 
   2241 static void
   2242 gem_mii_writereg(self, phy, reg, val)
   2243 	struct device *self;
   2244 	int phy, reg, val;
   2245 {
   2246 	struct gem_softc *sc = (void *)self;
   2247 	bus_space_tag_t t = sc->sc_bustag;
   2248 	bus_space_handle_t mif = sc->sc_h1;
   2249 	int n;
   2250 	u_int32_t v;
   2251 
   2252 #ifdef GEM_DEBUG1
   2253 	if (sc->sc_debug)
   2254 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
   2255 			phy, reg, val);
   2256 #endif
   2257 
   2258 	/* Construct the frame command */
   2259 	v = GEM_MIF_FRAME_WRITE			|
   2260 	    (phy << GEM_MIF_PHY_SHIFT)		|
   2261 	    (reg << GEM_MIF_REG_SHIFT)		|
   2262 	    (val & GEM_MIF_FRAME_DATA);
   2263 
   2264 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2265 	for (n = 0; n < 100; n++) {
   2266 		DELAY(1);
   2267 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2268 		if (v & GEM_MIF_FRAME_TA0)
   2269 			return;
   2270 	}
   2271 
   2272 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   2273 }
   2274 
   2275 static void
   2276 gem_mii_statchg(dev)
   2277 	struct device *dev;
   2278 {
   2279 	struct gem_softc *sc = (void *)dev;
   2280 #ifdef GEM_DEBUG
   2281 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   2282 #endif
   2283 
   2284 #ifdef GEM_DEBUG
   2285 	if (sc->sc_debug)
   2286 		printf("gem_mii_statchg: status change: phy = %d\n",
   2287 			sc->sc_phys[instance]);
   2288 #endif
   2289 	gem_statuschange(sc);
   2290 }
   2291 
   2292 /*
   2293  * Common status change for gem_mii_statchg() and gem_pint()
   2294  */
   2295 void
   2296 gem_statuschange(struct gem_softc* sc)
   2297 {
   2298 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2299 	bus_space_tag_t t = sc->sc_bustag;
   2300 	bus_space_handle_t mac = sc->sc_h1;
   2301 	int gigabit;
   2302 	u_int32_t rxcfg, txcfg, v;
   2303 
   2304 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
   2305 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
   2306 		sc->sc_flags |= GEM_LINK;
   2307 	else
   2308 		sc->sc_flags &= ~GEM_LINK;
   2309 
   2310 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
   2311 	case IFM_1000_SX:
   2312 	case IFM_1000_LX:
   2313 	case IFM_1000_CX:
   2314 	case IFM_1000_T:
   2315 		gigabit = 1;
   2316 		break;
   2317 	default:
   2318 		gigabit = 0;
   2319 	}
   2320 
   2321 	/*
   2322 	 * The configuration done here corresponds to the steps F) and
   2323 	 * G) and as far as enabling of RX and TX MAC goes also step H)
   2324 	 * of the initialization sequence outlined in section 3.2.1 of
   2325 	 * the GEM Gigabit Ethernet ASIC Specification.
   2326 	 */
   2327 
   2328 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
   2329 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
   2330 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
   2331 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2332 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
   2333 	else if (gigabit) {
   2334 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
   2335 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
   2336 	}
   2337 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   2338 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
   2339 	    BUS_SPACE_BARRIER_WRITE);
   2340 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
   2341 		aprint_normal("%s: cannot disable TX MAC\n",
   2342 		    sc->sc_dev.dv_xname);
   2343 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
   2344 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
   2345 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
   2346 	    BUS_SPACE_BARRIER_WRITE);
   2347 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
   2348 		aprint_normal("%s: cannot disable RX MAC\n",
   2349 		    sc->sc_dev.dv_xname);
   2350 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
   2351 
   2352 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
   2353 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
   2354 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
   2355 
   2356 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
   2357 	    gigabit != 0)
   2358 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2359 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
   2360 	else
   2361 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2362 		    GEM_MAC_SLOT_TIME_NORMAL);
   2363 
   2364 	/* XIF Configuration */
   2365 	if (sc->sc_flags & GEM_LINK)
   2366 		v = GEM_MAC_XIF_LINK_LED;
   2367 	else
   2368 		v = 0;
   2369 	v |= GEM_MAC_XIF_TX_MII_ENA;
   2370 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0) {
   2371 		/* MII/GMII needs echo disable if half duplex. */
   2372 		if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0)
   2373 			v |= GEM_MAC_XIF_ECHO_DISABL;
   2374 		v &= ~GEM_MAC_XIF_FDPLX_LED;
   2375 	} else {
   2376 		v |= GEM_MAC_XIF_MII_BUF_ENA;
   2377 		v |= GEM_MAC_XIF_FDPLX_LED;
   2378 	}
   2379 	if (gigabit != 0)
   2380 		v |= GEM_MAC_XIF_GMII_MODE;
   2381 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2382 	    (sc->sc_flags & GEM_LINK) != 0) {
   2383 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
   2384 		    txcfg | GEM_MAC_TX_ENABLE);
   2385 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
   2386 		    rxcfg | GEM_MAC_RX_ENABLE);
   2387 	}
   2388 }
   2389 
   2390 int
   2391 gem_ser_mediachange(struct ifnet *ifp)
   2392 {
   2393 	struct gem_softc *sc = ifp->if_softc;
   2394 	u_int s, t;
   2395 
   2396 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
   2397 		return EINVAL;
   2398 
   2399 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
   2400 	if (s == IFM_AUTO) {
   2401 		if (sc->sc_mii_media != s) {
   2402 #ifdef GEM_DEBUG
   2403 			aprint_debug("%s: setting media to auto\n",
   2404 			    sc->sc_dev.dv_xname);
   2405 #endif
   2406 			sc->sc_mii_media = s;
   2407 			if (ifp->if_flags & IFF_UP) {
   2408 				gem_pcs_stop(sc, 0);
   2409 				gem_pcs_start(sc);
   2410 			}
   2411 		}
   2412 		return 0;
   2413 	}
   2414 	if (s == IFM_1000_SX) {
   2415 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
   2416 		if (t == IFM_FDX || t == IFM_HDX) {
   2417 			if (sc->sc_mii_media != t) {
   2418 				sc->sc_mii_media = t;
   2419 #ifdef GEM_DEBUG
   2420 				aprint_debug("%s:"
   2421 				    " setting media to 1000baseSX-%s\n",
   2422 				    sc->sc_dev.dv_xname,
   2423 				    t == IFM_FDX ? "FDX" : "HDX");
   2424 #endif
   2425 				if (ifp->if_flags & IFF_UP) {
   2426 					gem_pcs_stop(sc, 0);
   2427 					gem_pcs_start(sc);
   2428 				}
   2429 			}
   2430 			return 0;
   2431 		}
   2432 	}
   2433 	return EINVAL;
   2434 }
   2435 
   2436 void
   2437 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2438 {
   2439 	struct gem_softc *sc = ifp->if_softc;
   2440 
   2441 	if ((ifp->if_flags & IFF_UP) == 0)
   2442 		return;
   2443 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2444 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2445 }
   2446 
   2447 /*
   2448  * Process an ioctl request.
   2449  */
   2450 int
   2451 gem_ioctl(ifp, cmd, data)
   2452 	struct ifnet *ifp;
   2453 	u_long cmd;
   2454 	void *data;
   2455 {
   2456 	struct gem_softc *sc = ifp->if_softc;
   2457 	int s, error = 0;
   2458 
   2459 	s = splnet();
   2460 
   2461 	switch (cmd) {
   2462 	case SIOCSIFFLAGS:
   2463 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   2464 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   2465 		    == (IFF_UP|IFF_RUNNING))
   2466 		    && ((ifp->if_flags & (~RESETIGN))
   2467 		    == (sc->sc_if_flags & (~RESETIGN)))) {
   2468 			gem_setladrf(sc);
   2469 			break;
   2470 		}
   2471 #undef RESETIGN
   2472 		/*FALLTHROUGH*/
   2473 	default:
   2474 		error = ether_ioctl(ifp, cmd, data);
   2475 		if (error == ENETRESET) {
   2476 			/*
   2477 			 * Multicast list has changed; set the hardware filter
   2478 			 * accordingly.
   2479 			 */
   2480 			if (ifp->if_flags & IFF_RUNNING)
   2481 				gem_setladrf(sc);
   2482 			error = 0;
   2483 		}
   2484 		break;
   2485 	}
   2486 
   2487 	/* Try to get things going again */
   2488 	if (ifp->if_flags & IFF_UP)
   2489 		gem_start(ifp);
   2490 	splx(s);
   2491 	return (error);
   2492 }
   2493 
   2494 
   2495 void
   2496 gem_shutdown(arg)
   2497 	void *arg;
   2498 {
   2499 	struct gem_softc *sc = (struct gem_softc *)arg;
   2500 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2501 
   2502 	gem_stop(ifp, 1);
   2503 }
   2504 
   2505 /*
   2506  * Set up the logical address filter.
   2507  */
   2508 void
   2509 gem_setladrf(sc)
   2510 	struct gem_softc *sc;
   2511 {
   2512 	struct ethercom *ec = &sc->sc_ethercom;
   2513 	struct ifnet *ifp = &ec->ec_if;
   2514 	struct ether_multi *enm;
   2515 	struct ether_multistep step;
   2516 	bus_space_tag_t t = sc->sc_bustag;
   2517 	bus_space_handle_t h = sc->sc_h1;
   2518 	u_int32_t crc;
   2519 	u_int32_t hash[16];
   2520 	u_int32_t v;
   2521 	int i;
   2522 
   2523 	/* Get current RX configuration */
   2524 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2525 
   2526 	/*
   2527 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2528 	 * and hash filter.  Depending on the case, the right bit will be
   2529 	 * enabled.
   2530 	 */
   2531 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2532 	    GEM_MAC_RX_PROMISC_GRP);
   2533 
   2534 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2535 		/* Turn on promiscuous mode */
   2536 		v |= GEM_MAC_RX_PROMISCUOUS;
   2537 		ifp->if_flags |= IFF_ALLMULTI;
   2538 		goto chipit;
   2539 	}
   2540 
   2541 	/*
   2542 	 * Set up multicast address filter by passing all multicast addresses
   2543 	 * through a crc generator, and then using the high order 8 bits as an
   2544 	 * index into the 256 bit logical address filter.  The high order 4
   2545 	 * bits selects the word, while the other 4 bits select the bit within
   2546 	 * the word (where bit 0 is the MSB).
   2547 	 */
   2548 
   2549 	/* Clear hash table */
   2550 	memset(hash, 0, sizeof(hash));
   2551 
   2552 	ETHER_FIRST_MULTI(step, ec, enm);
   2553 	while (enm != NULL) {
   2554 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2555 			/*
   2556 			 * We must listen to a range of multicast addresses.
   2557 			 * For now, just accept all multicasts, rather than
   2558 			 * trying to set only those filter bits needed to match
   2559 			 * the range.  (At this time, the only use of address
   2560 			 * ranges is for IP multicast routing, for which the
   2561 			 * range is big enough to require all bits set.)
   2562 			 * XXX should use the address filters for this
   2563 			 */
   2564 			ifp->if_flags |= IFF_ALLMULTI;
   2565 			v |= GEM_MAC_RX_PROMISC_GRP;
   2566 			goto chipit;
   2567 		}
   2568 
   2569 		/* Get the LE CRC32 of the address */
   2570 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2571 
   2572 		/* Just want the 8 most significant bits. */
   2573 		crc >>= 24;
   2574 
   2575 		/* Set the corresponding bit in the filter. */
   2576 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2577 
   2578 		ETHER_NEXT_MULTI(step, enm);
   2579 	}
   2580 
   2581 	v |= GEM_MAC_RX_HASH_FILTER;
   2582 	ifp->if_flags &= ~IFF_ALLMULTI;
   2583 
   2584 	/* Now load the hash table into the chip (if we are using it) */
   2585 	for (i = 0; i < 16; i++) {
   2586 		bus_space_write_4(t, h,
   2587 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2588 		    hash[i]);
   2589 	}
   2590 
   2591 chipit:
   2592 	sc->sc_if_flags = ifp->if_flags;
   2593 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2594 }
   2595 
   2596 #if notyet
   2597 
   2598 /*
   2599  * gem_power:
   2600  *
   2601  *	Power management (suspend/resume) hook.
   2602  */
   2603 void
   2604 gem_power(why, arg)
   2605 	int why;
   2606 	void *arg;
   2607 {
   2608 	struct gem_softc *sc = arg;
   2609 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2610 	int s;
   2611 
   2612 	s = splnet();
   2613 	switch (why) {
   2614 	case PWR_SUSPEND:
   2615 	case PWR_STANDBY:
   2616 		gem_stop(ifp, 1);
   2617 		if (sc->sc_power != NULL)
   2618 			(*sc->sc_power)(sc, why);
   2619 		break;
   2620 	case PWR_RESUME:
   2621 		if (ifp->if_flags & IFF_UP) {
   2622 			if (sc->sc_power != NULL)
   2623 				(*sc->sc_power)(sc, why);
   2624 			gem_init(ifp);
   2625 		}
   2626 		break;
   2627 	case PWR_SOFTSUSPEND:
   2628 	case PWR_SOFTSTANDBY:
   2629 	case PWR_SOFTRESUME:
   2630 		break;
   2631 	}
   2632 	splx(s);
   2633 }
   2634 #endif
   2635