Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.71
      1 /*	$NetBSD: gem.c,v 1.71 2008/01/22 09:42:06 jdc Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * Copyright (c) 2001-2003 Thomas Moestl
      7  * All rights reserved.
      8  *
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 /*
     34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
     35  * See `GEM Gigabit Ethernet ASIC Specification'
     36  *   http://www.sun.com/processors/manuals/ge.pdf
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.71 2008/01/22 09:42:06 jdc Exp $");
     41 
     42 #include "opt_inet.h"
     43 #include "bpfilter.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/callout.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/malloc.h>
     51 #include <sys/kernel.h>
     52 #include <sys/socket.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #include <sys/device.h>
     56 
     57 #include <machine/endian.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 #include <net/if.h>
     62 #include <net/if_dl.h>
     63 #include <net/if_media.h>
     64 #include <net/if_ether.h>
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/in_var.h>
     70 #include <netinet/ip.h>
     71 #include <netinet/tcp.h>
     72 #include <netinet/udp.h>
     73 #endif
     74 
     75 #if NBPFILTER > 0
     76 #include <net/bpf.h>
     77 #endif
     78 
     79 #include <sys/bus.h>
     80 #include <sys/intr.h>
     81 
     82 #include <dev/mii/mii.h>
     83 #include <dev/mii/miivar.h>
     84 #include <dev/mii/mii_bitbang.h>
     85 
     86 #include <dev/ic/gemreg.h>
     87 #include <dev/ic/gemvar.h>
     88 
     89 #define TRIES	10000
     90 
     91 static void	gem_start(struct ifnet *);
     92 static void	gem_stop(struct ifnet *, int);
     93 int		gem_ioctl(struct ifnet *, u_long, void *);
     94 void		gem_tick(void *);
     95 void		gem_watchdog(struct ifnet *);
     96 void		gem_shutdown(void *);
     97 void		gem_pcs_start(struct gem_softc *sc);
     98 void		gem_pcs_stop(struct gem_softc *sc, int);
     99 int		gem_init(struct ifnet *);
    100 void		gem_init_regs(struct gem_softc *sc);
    101 static int	gem_ringsize(int sz);
    102 static int	gem_meminit(struct gem_softc *);
    103 void		gem_mifinit(struct gem_softc *);
    104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
    105 		    u_int32_t, u_int32_t);
    106 void		gem_reset(struct gem_softc *);
    107 int		gem_reset_rx(struct gem_softc *sc);
    108 static void	gem_reset_rxdma(struct gem_softc *sc);
    109 static void	gem_rx_common(struct gem_softc *sc);
    110 int		gem_reset_tx(struct gem_softc *sc);
    111 int		gem_disable_rx(struct gem_softc *sc);
    112 int		gem_disable_tx(struct gem_softc *sc);
    113 static void	gem_rxdrain(struct gem_softc *sc);
    114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    115 void		gem_setladrf(struct gem_softc *);
    116 
    117 /* MII methods & callbacks */
    118 static int	gem_mii_readreg(struct device *, int, int);
    119 static void	gem_mii_writereg(struct device *, int, int, int);
    120 static void	gem_mii_statchg(struct device *);
    121 
    122 void		gem_statuschange(struct gem_softc *);
    123 
    124 int		gem_ser_mediachange(struct ifnet *);
    125 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
    126 
    127 struct mbuf	*gem_get(struct gem_softc *, int, int);
    128 int		gem_put(struct gem_softc *, int, struct mbuf *);
    129 void		gem_read(struct gem_softc *, int, int);
    130 int		gem_pint(struct gem_softc *);
    131 int		gem_eint(struct gem_softc *, u_int);
    132 int		gem_rint(struct gem_softc *);
    133 int		gem_tint(struct gem_softc *);
    134 void		gem_power(int, void *);
    135 
    136 #ifdef GEM_DEBUG
    137 static void gem_txsoft_print(const struct gem_softc *, int, int);
    138 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    139 				printf x
    140 #else
    141 #define	DPRINTF(sc, x)	/* nothing */
    142 #endif
    143 
    144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    145 
    146 
    147 /*
    148  * gem_attach:
    149  *
    150  *	Attach a Gem interface to the system.
    151  */
    152 void
    153 gem_attach(sc, enaddr)
    154 	struct gem_softc *sc;
    155 	const uint8_t *enaddr;
    156 {
    157 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    158 	struct mii_data *mii = &sc->sc_mii;
    159 	bus_space_tag_t t = sc->sc_bustag;
    160 	bus_space_handle_t h = sc->sc_h1;
    161 	struct ifmedia_entry *ifm;
    162 	int i, error;
    163 	u_int32_t v;
    164 	char *nullbuf;
    165 
    166 	/* Make sure the chip is stopped. */
    167 	ifp->if_softc = sc;
    168 	gem_reset(sc);
    169 
    170 	/*
    171 	 * Allocate the control data structures, and create and load the
    172 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    173 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    174 	 */
    175 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    176 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    177 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    178 		aprint_error(
    179 		   "%s: unable to allocate control data, error = %d\n",
    180 		    sc->sc_dev.dv_xname, error);
    181 		goto fail_0;
    182 	}
    183 
    184 	/* XXX should map this in with correct endianness */
    185 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    186 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
    187 	    BUS_DMA_COHERENT)) != 0) {
    188 		aprint_error("%s: unable to map control data, error = %d\n",
    189 		    sc->sc_dev.dv_xname, error);
    190 		goto fail_1;
    191 	}
    192 
    193 	nullbuf =
    194 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    195 
    196 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    197 	    sizeof(struct gem_control_data), 1,
    198 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    199 		aprint_error("%s: unable to create control data DMA map, "
    200 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    201 		goto fail_2;
    202 	}
    203 
    204 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    205 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    206 	    0)) != 0) {
    207 		aprint_error(
    208 		    "%s: unable to load control data DMA map, error = %d\n",
    209 		    sc->sc_dev.dv_xname, error);
    210 		goto fail_3;
    211 	}
    212 
    213 	memset(nullbuf, 0, ETHER_MIN_TX);
    214 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    215 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    216 		aprint_error("%s: unable to create padding DMA map, "
    217 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    218 		goto fail_4;
    219 	}
    220 
    221 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    222 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    223 		aprint_error(
    224 		    "%s: unable to load padding DMA map, error = %d\n",
    225 		    sc->sc_dev.dv_xname, error);
    226 		goto fail_5;
    227 	}
    228 
    229 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    230 	    BUS_DMASYNC_PREWRITE);
    231 
    232 	/*
    233 	 * Initialize the transmit job descriptors.
    234 	 */
    235 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    236 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    237 
    238 	/*
    239 	 * Create the transmit buffer DMA maps.
    240 	 */
    241 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    242 		struct gem_txsoft *txs;
    243 
    244 		txs = &sc->sc_txsoft[i];
    245 		txs->txs_mbuf = NULL;
    246 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    247 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    248 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    249 		    &txs->txs_dmamap)) != 0) {
    250 			aprint_error("%s: unable to create tx DMA map %d, "
    251 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    252 			goto fail_6;
    253 		}
    254 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    255 	}
    256 
    257 	/*
    258 	 * Create the receive buffer DMA maps.
    259 	 */
    260 	for (i = 0; i < GEM_NRXDESC; i++) {
    261 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    262 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    263 			aprint_error("%s: unable to create rx DMA map %d, "
    264 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    265 			goto fail_7;
    266 		}
    267 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    268 	}
    269 
    270 	/* Initialize ifmedia structures and MII info */
    271 	mii->mii_ifp = ifp;
    272 	mii->mii_readreg = gem_mii_readreg;
    273 	mii->mii_writereg = gem_mii_writereg;
    274 	mii->mii_statchg = gem_mii_statchg;
    275 
    276 	sc->sc_ethercom.ec_mii = mii;
    277 
    278 	/*
    279 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
    280 	 * Section 3.2.1 `Initialization Sequence'.
    281 	 * However, we can't assume SERDES or Serialink if neither
    282 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
    283 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
    284 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
    285 	 * Also, for Apple variants with 2 PHY's, we prefer the external
    286 	 * PHY over the internal PHY.
    287 	 */
    288 	gem_mifinit(sc);
    289 
    290 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
    291 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    292 		    ether_mediastatus);
    293 		mii_attach(&sc->sc_dev, mii, 0xffffffff,
    294 		    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    295 		if (LIST_EMPTY(&mii->mii_phys)) {
    296 				/* No PHY attached */
    297 				aprint_error("%s: PHY probe failed\n",
    298 				    sc->sc_dev.dv_xname);
    299 				goto fail_7;
    300 		} else {
    301 			struct mii_softc *child;
    302 
    303 			/*
    304 			 * Walk along the list of attached MII devices and
    305 			 * establish an `MII instance' to `PHY number'
    306 			 * mapping.
    307 			 */
    308 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
    309 				/*
    310 				 * Note: we support just one PHY: the internal
    311 				 * or external MII is already selected for us
    312 				 * by the GEM_MIF_CONFIG  register.
    313 				 */
    314 				if (child->mii_phy > 1 || child->mii_inst > 0) {
    315 					aprint_error(
    316 					    "%s: cannot accommodate MII device"
    317 					    " %s at PHY %d, instance %d\n",
    318 					       sc->sc_dev.dv_xname,
    319 					       child->mii_dev.dv_xname,
    320 					       child->mii_phy, child->mii_inst);
    321 					continue;
    322 				}
    323 				sc->sc_phys[child->mii_inst] = child->mii_phy;
    324 			}
    325 
    326 			/*
    327 			 * Now select and activate the PHY we will use.
    328 			 *
    329 			 * The order of preference is External (MDI1),
    330 			 * then Internal (MDI0),
    331 			 */
    332 			if (sc->sc_phys[1]) {
    333 #ifdef GEM_DEBUG
    334 				aprint_debug("%s: using external PHY\n",
    335 				    sc->sc_dev.dv_xname);
    336 #endif
    337 				sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    338 			} else {
    339 #ifdef GEM_DEBUG
    340 				aprint_debug("%s: using internal PHY\n",
    341 				    sc->sc_dev.dv_xname);
    342 				sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    343 #endif
    344 			}
    345 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    346 			    sc->sc_mif_config);
    347 			if (sc->sc_variant != GEM_SUN_ERI)
    348 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    349 				    GEM_MII_DATAPATH_MII);
    350 
    351 			/*
    352 			 * XXX - we can really do the following ONLY if the
    353 			 * PHY indeed has the auto negotiation capability!!
    354 			 */
    355 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    356 		}
    357 	} else {
    358 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
    359 		    gem_ser_mediastatus);
    360 		/* SERDES or Serialink */
    361 		if (sc->sc_flags & GEM_SERDES) {
    362 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    363 			    GEM_MII_DATAPATH_SERDES);
    364 		} else {
    365 			sc->sc_flags |= GEM_SERIAL;
    366 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    367 			    GEM_MII_DATAPATH_SERIAL);
    368 		}
    369 
    370 		aprint_normal("%s: using external PCS %s: ",
    371 		    sc->sc_dev.dv_xname,
    372 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
    373 
    374 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    375 		/* Check for FDX and HDX capabilities */
    376 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
    377 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
    378 			ifmedia_add(&sc->sc_mii.mii_media,
    379 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
    380 			aprint_normal("1000baseSX-FDX, ");
    381 		}
    382 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
    383 			ifmedia_add(&sc->sc_mii.mii_media,
    384 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
    385 			aprint_normal("1000baseSX-HDX, ");
    386 		}
    387 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    388 		sc->sc_mii_media = IFM_AUTO;
    389 		aprint_normal("auto\n");
    390 
    391 		gem_pcs_stop(sc, 1);
    392 	}
    393 
    394 	/*
    395 	 * From this point forward, the attachment cannot fail.  A failure
    396 	 * before this point releases all resources that may have been
    397 	 * allocated.
    398 	 */
    399 
    400 	/* Announce ourselves. */
    401 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
    402 	    ether_sprintf(enaddr));
    403 
    404 	/* Get RX FIFO size */
    405 	sc->sc_rxfifosize = 64 *
    406 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
    407 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    408 
    409 	/* Get TX FIFO size */
    410 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
    411 	aprint_normal(", %uKB TX fifo\n", v / 16);
    412 
    413 	/* Initialize ifnet structure. */
    414 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    415 	ifp->if_softc = sc;
    416 	ifp->if_flags =
    417 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    418 	sc->sc_if_flags = ifp->if_flags;
    419 	/* The GEM hardware supports basic TCP checksum offloading only. */
    420 	ifp->if_capabilities |=
    421 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
    422 	ifp->if_start = gem_start;
    423 	ifp->if_ioctl = gem_ioctl;
    424 	ifp->if_watchdog = gem_watchdog;
    425 	ifp->if_stop = gem_stop;
    426 	ifp->if_init = gem_init;
    427 	IFQ_SET_READY(&ifp->if_snd);
    428 
    429 	/*
    430 	 * If we support GigE media, we support jumbo frames too.
    431 	 * Unless we are Apple.
    432 	 */
    433 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
    434 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    435 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    436 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    437 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    438 			if (!GEM_IS_APPLE(sc))
    439 				sc->sc_ethercom.ec_capabilities
    440 				    |= ETHERCAP_JUMBO_MTU;
    441 			sc->sc_flags |= GEM_GIGABIT;
    442 			break;
    443 		}
    444 	}
    445 
    446 	/* claim 802.1q capability */
    447 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    448 
    449 	/* Attach the interface. */
    450 	if_attach(ifp);
    451 	ether_ifattach(ifp, enaddr);
    452 
    453 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    454 	if (sc->sc_sh == NULL)
    455 		panic("gem_config: can't establish shutdownhook");
    456 
    457 #if NRND > 0
    458 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    459 			  RND_TYPE_NET, 0);
    460 #endif
    461 
    462 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    463 	    NULL, sc->sc_dev.dv_xname, "interrupts");
    464 #ifdef GEM_COUNTERS
    465 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    466 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
    467 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    468 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
    469 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    470 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
    471 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    472 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
    473 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    474 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
    475 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    476 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
    477 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    478 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
    479 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    480 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
    481 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    482 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
    483 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    484 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
    485 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    486 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
    487 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    488 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
    489 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    490 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
    491 #endif
    492 
    493 #if notyet
    494 	/*
    495 	 * Add a suspend hook to make sure we come back up after a
    496 	 * resume.
    497 	 */
    498 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    499 	    gem_power, sc);
    500 	if (sc->sc_powerhook == NULL)
    501 		aprint_error("%s: WARNING: unable to establish power hook\n",
    502 		    sc->sc_dev.dv_xname);
    503 #endif
    504 
    505 	callout_init(&sc->sc_tick_ch, 0);
    506 	return;
    507 
    508 	/*
    509 	 * Free any resources we've allocated during the failed attach
    510 	 * attempt.  Do this in reverse order and fall through.
    511 	 */
    512  fail_7:
    513 	for (i = 0; i < GEM_NRXDESC; i++) {
    514 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    515 			bus_dmamap_destroy(sc->sc_dmatag,
    516 			    sc->sc_rxsoft[i].rxs_dmamap);
    517 	}
    518  fail_6:
    519 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    520 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    521 			bus_dmamap_destroy(sc->sc_dmatag,
    522 			    sc->sc_txsoft[i].txs_dmamap);
    523 	}
    524 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    525  fail_5:
    526 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    527  fail_4:
    528 	bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
    529  fail_3:
    530 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    531  fail_2:
    532 	bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
    533 	    sizeof(struct gem_control_data));
    534  fail_1:
    535 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    536  fail_0:
    537 	return;
    538 }
    539 
    540 
    541 void
    542 gem_tick(arg)
    543 	void *arg;
    544 {
    545 	struct gem_softc *sc = arg;
    546 	int s;
    547 
    548 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
    549 		/*
    550 		 * We have to reset everything if we failed to get a
    551 		 * PCS interrupt.  Restarting the callout is handled
    552 		 * in gem_pcs_start().
    553 		 */
    554 		gem_init(&sc->sc_ethercom.ec_if);
    555 	} else {
    556 		s = splnet();
    557 		mii_tick(&sc->sc_mii);
    558 		splx(s);
    559 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    560 	}
    561 }
    562 
    563 static int
    564 gem_bitwait(sc, h, r, clr, set)
    565 	struct gem_softc *sc;
    566 	bus_space_handle_t h;
    567 	int r;
    568 	u_int32_t clr;
    569 	u_int32_t set;
    570 {
    571 	int i;
    572 	u_int32_t reg;
    573 
    574 	for (i = TRIES; i--; DELAY(100)) {
    575 		reg = bus_space_read_4(sc->sc_bustag, h, r);
    576 		if ((reg & clr) == 0 && (reg & set) == set)
    577 			return (1);
    578 	}
    579 	return (0);
    580 }
    581 
    582 void
    583 gem_reset(sc)
    584 	struct gem_softc *sc;
    585 {
    586 	bus_space_tag_t t = sc->sc_bustag;
    587 	bus_space_handle_t h = sc->sc_h2;
    588 	int s;
    589 
    590 	s = splnet();
    591 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    592 	gem_reset_rx(sc);
    593 	gem_reset_tx(sc);
    594 
    595 	/* Do a full reset */
    596 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    597 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    598 		printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
    599 	splx(s);
    600 }
    601 
    602 
    603 /*
    604  * gem_rxdrain:
    605  *
    606  *	Drain the receive queue.
    607  */
    608 static void
    609 gem_rxdrain(struct gem_softc *sc)
    610 {
    611 	struct gem_rxsoft *rxs;
    612 	int i;
    613 
    614 	for (i = 0; i < GEM_NRXDESC; i++) {
    615 		rxs = &sc->sc_rxsoft[i];
    616 		if (rxs->rxs_mbuf != NULL) {
    617 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    618 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    619 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    620 			m_freem(rxs->rxs_mbuf);
    621 			rxs->rxs_mbuf = NULL;
    622 		}
    623 	}
    624 }
    625 
    626 /*
    627  * Reset the whole thing.
    628  */
    629 static void
    630 gem_stop(struct ifnet *ifp, int disable)
    631 {
    632 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    633 	struct gem_txsoft *txs;
    634 
    635 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    636 
    637 	callout_stop(&sc->sc_tick_ch);
    638 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
    639 		gem_pcs_stop(sc, disable);
    640 	else
    641 		mii_down(&sc->sc_mii);
    642 
    643 	/* XXX - Should we reset these instead? */
    644 	gem_disable_tx(sc);
    645 	gem_disable_rx(sc);
    646 
    647 	/*
    648 	 * Release any queued transmit buffers.
    649 	 */
    650 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    651 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    652 		if (txs->txs_mbuf != NULL) {
    653 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    654 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    655 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    656 			m_freem(txs->txs_mbuf);
    657 			txs->txs_mbuf = NULL;
    658 		}
    659 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    660 	}
    661 
    662 	if (disable) {
    663 		gem_rxdrain(sc);
    664 	}
    665 
    666 	/*
    667 	 * Mark the interface down and cancel the watchdog timer.
    668 	 */
    669 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    670 	sc->sc_if_flags = ifp->if_flags;
    671 	ifp->if_timer = 0;
    672 }
    673 
    674 
    675 /*
    676  * Reset the receiver
    677  */
    678 int
    679 gem_reset_rx(struct gem_softc *sc)
    680 {
    681 	bus_space_tag_t t = sc->sc_bustag;
    682 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    683 
    684 	/*
    685 	 * Resetting while DMA is in progress can cause a bus hang, so we
    686 	 * disable DMA first.
    687 	 */
    688 	gem_disable_rx(sc);
    689 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    690 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    691 	/* Wait till it finishes */
    692 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
    693 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    694 
    695 	/* Finally, reset the ERX */
    696 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
    697 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    698 	/* Wait till it finishes */
    699 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
    700 		printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
    701 		return (1);
    702 	}
    703 	return (0);
    704 }
    705 
    706 
    707 /*
    708  * Reset the receiver DMA engine.
    709  *
    710  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
    711  * etc in order to reset the receiver DMA engine only and not do a full
    712  * reset which amongst others also downs the link and clears the FIFOs.
    713  */
    714 static void
    715 gem_reset_rxdma(struct gem_softc *sc)
    716 {
    717 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    718 	bus_space_tag_t t = sc->sc_bustag;
    719 	bus_space_handle_t h = sc->sc_h1;
    720 	int i;
    721 
    722 	if (gem_reset_rx(sc) != 0) {
    723 		gem_init(ifp);
    724 		return;
    725 	}
    726 	for (i = 0; i < GEM_NRXDESC; i++)
    727 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
    728 			GEM_UPDATE_RXDESC(sc, i);
    729 	sc->sc_rxptr = 0;
    730 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    731 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    732 
    733 	/* Reprogram Descriptor Ring Base Addresses */
    734 	/* NOTE: we use only 32-bit DMA addresses here. */
    735 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    736 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    737 
    738 	/* Redo ERX Configuration */
    739 	gem_rx_common(sc);
    740 
    741 	/* Give the reciever a swift kick */
    742 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
    743 }
    744 
    745 /*
    746  * Common RX configuration for gem_init() and gem_reset_rxdma().
    747  */
    748 static void
    749 gem_rx_common(struct gem_softc *sc)
    750 {
    751 	bus_space_tag_t t = sc->sc_bustag;
    752 	bus_space_handle_t h = sc->sc_h1;
    753 	u_int32_t v;
    754 
    755 	/* Encode Receive Descriptor ring size: four possible values */
    756 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    757 
    758 	/* Set receive h/w checksum offset */
    759 #ifdef INET
    760 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    761 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    762 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    763 #endif
    764 
    765 	/* Enable RX DMA */
    766 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    767 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
    768 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
    769 
    770 	/*
    771 	 * The following value is for an OFF Threshold of about 3/4 full
    772 	 * and an ON Threshold of 1/4 full.
    773 	 */
    774 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    775 	    (3 * sc->sc_rxfifosize / 256) |
    776 	    ((sc->sc_rxfifosize / 256) << 12));
    777 	bus_space_write_4(t, h, GEM_RX_BLANKING,
    778 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
    779 }
    780 
    781 /*
    782  * Reset the transmitter
    783  */
    784 int
    785 gem_reset_tx(struct gem_softc *sc)
    786 {
    787 	bus_space_tag_t t = sc->sc_bustag;
    788 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    789 
    790 	/*
    791 	 * Resetting while DMA is in progress can cause a bus hang, so we
    792 	 * disable DMA first.
    793 	 */
    794 	gem_disable_tx(sc);
    795 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    796 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    797 	/* Wait till it finishes */
    798 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
    799 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    800 	/* Wait 5ms extra. */
    801 	delay(5000);
    802 
    803 	/* Finally, reset the ETX */
    804 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
    805 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    806 	/* Wait till it finishes */
    807 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
    808 		printf("%s: cannot reset receiver\n",
    809 			sc->sc_dev.dv_xname);
    810 		return (1);
    811 	}
    812 	return (0);
    813 }
    814 
    815 /*
    816  * disable receiver.
    817  */
    818 int
    819 gem_disable_rx(struct gem_softc *sc)
    820 {
    821 	bus_space_tag_t t = sc->sc_bustag;
    822 	bus_space_handle_t h = sc->sc_h1;
    823 	u_int32_t cfg;
    824 
    825 	/* Flip the enable bit */
    826 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    827 	cfg &= ~GEM_MAC_RX_ENABLE;
    828 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    829 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    830 	/* Wait for it to finish */
    831 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    832 }
    833 
    834 /*
    835  * disable transmitter.
    836  */
    837 int
    838 gem_disable_tx(struct gem_softc *sc)
    839 {
    840 	bus_space_tag_t t = sc->sc_bustag;
    841 	bus_space_handle_t h = sc->sc_h1;
    842 	u_int32_t cfg;
    843 
    844 	/* Flip the enable bit */
    845 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    846 	cfg &= ~GEM_MAC_TX_ENABLE;
    847 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    848 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    849 	/* Wait for it to finish */
    850 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    851 }
    852 
    853 /*
    854  * Initialize interface.
    855  */
    856 int
    857 gem_meminit(struct gem_softc *sc)
    858 {
    859 	struct gem_rxsoft *rxs;
    860 	int i, error;
    861 
    862 	/*
    863 	 * Initialize the transmit descriptor ring.
    864 	 */
    865 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    866 	for (i = 0; i < GEM_NTXDESC; i++) {
    867 		sc->sc_txdescs[i].gd_flags = 0;
    868 		sc->sc_txdescs[i].gd_addr = 0;
    869 	}
    870 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    871 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    872 	sc->sc_txfree = GEM_NTXDESC-1;
    873 	sc->sc_txnext = 0;
    874 	sc->sc_txwin = 0;
    875 
    876 	/*
    877 	 * Initialize the receive descriptor and receive job
    878 	 * descriptor rings.
    879 	 */
    880 	for (i = 0; i < GEM_NRXDESC; i++) {
    881 		rxs = &sc->sc_rxsoft[i];
    882 		if (rxs->rxs_mbuf == NULL) {
    883 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    884 				printf("%s: unable to allocate or map rx "
    885 				    "buffer %d, error = %d\n",
    886 				    sc->sc_dev.dv_xname, i, error);
    887 				/*
    888 				 * XXX Should attempt to run with fewer receive
    889 				 * XXX buffers instead of just failing.
    890 				 */
    891 				gem_rxdrain(sc);
    892 				return (1);
    893 			}
    894 		} else
    895 			GEM_INIT_RXDESC(sc, i);
    896 	}
    897 	sc->sc_rxptr = 0;
    898 	sc->sc_meminited = 1;
    899 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    900 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    901 
    902 	return (0);
    903 }
    904 
    905 static int
    906 gem_ringsize(int sz)
    907 {
    908 	switch (sz) {
    909 	case 32:
    910 		return GEM_RING_SZ_32;
    911 	case 64:
    912 		return GEM_RING_SZ_64;
    913 	case 128:
    914 		return GEM_RING_SZ_128;
    915 	case 256:
    916 		return GEM_RING_SZ_256;
    917 	case 512:
    918 		return GEM_RING_SZ_512;
    919 	case 1024:
    920 		return GEM_RING_SZ_1024;
    921 	case 2048:
    922 		return GEM_RING_SZ_2048;
    923 	case 4096:
    924 		return GEM_RING_SZ_4096;
    925 	case 8192:
    926 		return GEM_RING_SZ_8192;
    927 	default:
    928 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    929 		return GEM_RING_SZ_32;
    930 	}
    931 }
    932 
    933 
    934 /*
    935  * Start PCS
    936  */
    937 void
    938 gem_pcs_start(struct gem_softc *sc)
    939 {
    940 	bus_space_tag_t t = sc->sc_bustag;
    941 	bus_space_handle_t h = sc->sc_h1;
    942 	uint32_t v;
    943 
    944 #ifdef GEM_DEBUG
    945 	aprint_debug("%s: gem_pcs_start()\n", sc->sc_dev.dv_xname);
    946 #endif
    947 
    948 	/*
    949 	 * Set up.  We must disable the MII before modifying the
    950 	 * GEM_MII_ANAR register
    951 	 */
    952 	if (sc->sc_flags & GEM_SERDES) {
    953 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    954 		    GEM_MII_DATAPATH_SERDES);
    955 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
    956 		    GEM_MII_SLINK_LOOPBACK);
    957 	} else {
    958 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    959 		    GEM_MII_DATAPATH_SERIAL);
    960 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
    961 	}
    962 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
    963 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
    964 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
    965 	if (sc->sc_mii_media == IFM_AUTO)
    966 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
    967 	else if (sc->sc_mii_media == IFM_FDX) {
    968 		v |= GEM_MII_ANEG_FUL_DUPLX;
    969 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
    970 	} else if (sc->sc_mii_media == IFM_HDX) {
    971 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
    972 		v |= GEM_MII_ANEG_HLF_DUPLX;
    973 	}
    974 
    975 	/* Configure link. */
    976 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
    977 	bus_space_write_4(t, h, GEM_MII_CONTROL,
    978 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
    979 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
    980 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
    981 
    982 	/* Start the 10 second timer */
    983 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
    984 }
    985 
    986 /*
    987  * Stop PCS
    988  */
    989 void
    990 gem_pcs_stop(struct gem_softc *sc, int disable)
    991 {
    992 	bus_space_tag_t t = sc->sc_bustag;
    993 	bus_space_handle_t h = sc->sc_h1;
    994 
    995 #ifdef GEM_DEBUG
    996 	aprint_debug("%s: gem_pcs_stop()\n", sc->sc_dev.dv_xname);
    997 #endif
    998 
    999 	/* Tell link partner that we're going away */
   1000 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
   1001 
   1002 	/*
   1003 	 * Disable PCS MII.  The documentation suggests that setting
   1004 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
   1005 	 * negotiation will shut down the link.  However, it appears
   1006 	 * that we also need to unset the datapath mode.
   1007 	 */
   1008 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1009 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1010 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1011 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
   1012 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1013 
   1014 	if (disable) {
   1015 		if (sc->sc_flags & GEM_SERDES)
   1016 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1017 				GEM_MII_SLINK_POWER_OFF);
   1018 		else
   1019 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1020 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
   1021 	}
   1022 
   1023 	sc->sc_flags &= ~GEM_LINK;
   1024 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   1025 	sc->sc_mii.mii_media_status = IFM_AVALID;
   1026 }
   1027 
   1028 
   1029 /*
   1030  * Initialization of interface; set up initialization block
   1031  * and transmit/receive descriptor rings.
   1032  */
   1033 int
   1034 gem_init(struct ifnet *ifp)
   1035 {
   1036 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1037 	bus_space_tag_t t = sc->sc_bustag;
   1038 	bus_space_handle_t h = sc->sc_h1;
   1039 	int rc = 0, s;
   1040 	u_int max_frame_size;
   1041 	u_int32_t v;
   1042 
   1043 	s = splnet();
   1044 
   1045 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
   1046 	/*
   1047 	 * Initialization sequence. The numbered steps below correspond
   1048 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
   1049 	 * Channel Engine manual (part of the PCIO manual).
   1050 	 * See also the STP2002-STQ document from Sun Microsystems.
   1051 	 */
   1052 
   1053 	/* step 1 & 2. Reset the Ethernet Channel */
   1054 	gem_stop(ifp, 0);
   1055 	gem_reset(sc);
   1056 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
   1057 
   1058 	/* Re-initialize the MIF */
   1059 	gem_mifinit(sc);
   1060 
   1061 	/* Set up correct datapath for non-SERDES/Serialink */
   1062 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1063 	    sc->sc_variant != GEM_SUN_ERI)
   1064 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1065 		    GEM_MII_DATAPATH_MII);
   1066 
   1067 	/* Call MI reset function if any */
   1068 	if (sc->sc_hwreset)
   1069 		(*sc->sc_hwreset)(sc);
   1070 
   1071 	/* step 3. Setup data structures in host memory */
   1072 	if (gem_meminit(sc) != 0)
   1073 		return 1;
   1074 
   1075 	/* step 4. TX MAC registers & counters */
   1076 	gem_init_regs(sc);
   1077 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
   1078 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
   1079 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1080 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
   1081 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1082 	    max_frame_size|/* burst size */(0x2000<<16));
   1083 
   1084 	/* step 5. RX MAC registers & counters */
   1085 	gem_setladrf(sc);
   1086 
   1087 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
   1088 	/* NOTE: we use only 32-bit DMA addresses here. */
   1089 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
   1090 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
   1091 
   1092 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
   1093 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
   1094 
   1095 	/* step 8. Global Configuration & Interrupt Mask */
   1096 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1097 		v = GEM_INTR_PCS;
   1098 	else
   1099 		v = GEM_INTR_MIF;
   1100 	bus_space_write_4(t, h, GEM_INTMASK,
   1101 		      ~(GEM_INTR_TX_INTME |
   1102 			GEM_INTR_TX_EMPTY |
   1103 			GEM_INTR_TX_MAC |
   1104 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
   1105 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
   1106 			GEM_INTR_BERR | v));
   1107 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
   1108 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
   1109 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
   1110 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
   1111 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
   1112 
   1113 	/* step 9. ETX Configuration: use mostly default values */
   1114 
   1115 	/* Enable TX DMA */
   1116 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
   1117 	bus_space_write_4(t, h, GEM_TX_CONFIG,
   1118 		v|GEM_TX_CONFIG_TXDMA_EN|
   1119 		((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
   1120 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
   1121 
   1122 	/* step 10. ERX Configuration */
   1123 	gem_rx_common(sc);
   1124 
   1125 	/* step 11. Configure Media */
   1126 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1127 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1128 		goto out;
   1129 
   1130 	/* step 12. RX_MAC Configuration Register */
   1131 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1132 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
   1133 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1134 
   1135 	/* step 14. Issue Transmit Pending command */
   1136 
   1137 	/* Call MI initialization function if any */
   1138 	if (sc->sc_hwinit)
   1139 		(*sc->sc_hwinit)(sc);
   1140 
   1141 
   1142 	/* step 15.  Give the reciever a swift kick */
   1143 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
   1144 
   1145 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1146 		/* Configure PCS */
   1147 		gem_pcs_start(sc);
   1148 	else
   1149 		/* Start the one second timer. */
   1150 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
   1151 
   1152 	sc->sc_flags &= ~GEM_LINK;
   1153 	ifp->if_flags |= IFF_RUNNING;
   1154 	ifp->if_flags &= ~IFF_OACTIVE;
   1155 	ifp->if_timer = 0;
   1156 	sc->sc_if_flags = ifp->if_flags;
   1157 out:
   1158 	splx(s);
   1159 
   1160 	return (0);
   1161 }
   1162 
   1163 void
   1164 gem_init_regs(struct gem_softc *sc)
   1165 {
   1166 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1167 	bus_space_tag_t t = sc->sc_bustag;
   1168 	bus_space_handle_t h = sc->sc_h1;
   1169 	const u_char *laddr = CLLADDR(ifp->if_sadl);
   1170 	u_int32_t v;
   1171 
   1172 	/* These regs are not cleared on reset */
   1173 	if (!sc->sc_inited) {
   1174 
   1175 		/* Load recommended values */
   1176 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
   1177 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
   1178 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
   1179 
   1180 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
   1181 		/* Max frame and max burst size */
   1182 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1183 		    ETHER_MAX_LEN | (0x2000<<16));
   1184 
   1185 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
   1186 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
   1187 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
   1188 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
   1189 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
   1190 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
   1191 
   1192 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
   1193 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
   1194 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
   1195 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
   1196 
   1197 		/* MAC control addr set to 01:80:c2:00:00:01 */
   1198 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
   1199 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
   1200 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
   1201 
   1202 		/* MAC filter addr set to 0:0:0:0:0:0 */
   1203 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
   1204 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
   1205 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
   1206 
   1207 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
   1208 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
   1209 
   1210 		sc->sc_inited = 1;
   1211 	}
   1212 
   1213 	/* Counters need to be zeroed */
   1214 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
   1215 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
   1216 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
   1217 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
   1218 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
   1219 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
   1220 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
   1221 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1222 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1223 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1224 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1225 
   1226 	/* Set XOFF PAUSE time. */
   1227 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
   1228 
   1229 	/*
   1230 	 * Set the internal arbitration to "infinite" bursts of the
   1231 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
   1232 	 * split up in cache line size chunks. This greatly improves
   1233 	 * especially RX performance.
   1234 	 * Enable silicon bug workarounds for the Apple variants.
   1235 	 */
   1236 	bus_space_write_4(t, h, GEM_CONFIG,
   1237 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
   1238 	    GEM_CONFIG_BURST_INF | (GEM_IS_APPLE(sc) ?
   1239 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
   1240 
   1241 	/*
   1242 	 * Set the station address.
   1243 	 */
   1244 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1245 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1246 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1247 
   1248 	/*
   1249 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1250 	 */
   1251 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1252 	v = GEM_MAC_XIF_TX_MII_ENA;
   1253 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
   1254 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1255 			v |= GEM_MAC_XIF_FDPLX_LED;
   1256 				if (sc->sc_flags & GEM_GIGABIT)
   1257 					v |= GEM_MAC_XIF_GMII_MODE;
   1258 		}
   1259 	} else {
   1260 		v |= GEM_MAC_XIF_GMII_MODE;
   1261 	}
   1262 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1263 }
   1264 
   1265 #ifdef GEM_DEBUG
   1266 static void
   1267 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
   1268 {
   1269 	int i;
   1270 
   1271 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
   1272 		printf("descriptor %d:\t", i);
   1273 		printf("gd_flags:   0x%016" PRIx64 "\t",
   1274 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1275 		printf("gd_addr: 0x%016" PRIx64 "\n",
   1276 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1277 		if (i == lastdesc)
   1278 			break;
   1279 	}
   1280 }
   1281 #endif
   1282 
   1283 static void
   1284 gem_start(ifp)
   1285 	struct ifnet *ifp;
   1286 {
   1287 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1288 	struct mbuf *m0, *m;
   1289 	struct gem_txsoft *txs;
   1290 	bus_dmamap_t dmamap;
   1291 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
   1292 	uint64_t flags = 0;
   1293 
   1294 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1295 		return;
   1296 
   1297 	/*
   1298 	 * Remember the previous number of free descriptors and
   1299 	 * the first descriptor we'll use.
   1300 	 */
   1301 	ofree = sc->sc_txfree;
   1302 	firsttx = sc->sc_txnext;
   1303 
   1304 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1305 	    sc->sc_dev.dv_xname, ofree, firsttx));
   1306 
   1307 	/*
   1308 	 * Loop through the send queue, setting up transmit descriptors
   1309 	 * until we drain the queue, or use up all available transmit
   1310 	 * descriptors.
   1311 	 */
   1312 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1313 	    sc->sc_txfree != 0) {
   1314 		/*
   1315 		 * Grab a packet off the queue.
   1316 		 */
   1317 		IFQ_POLL(&ifp->if_snd, m0);
   1318 		if (m0 == NULL)
   1319 			break;
   1320 		m = NULL;
   1321 
   1322 		dmamap = txs->txs_dmamap;
   1323 
   1324 		/*
   1325 		 * Load the DMA map.  If this fails, the packet either
   1326 		 * didn't fit in the alloted number of segments, or we were
   1327 		 * short on resources.  In this case, we'll copy and try
   1328 		 * again.
   1329 		 */
   1330 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1331 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1332 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1333 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1334 			if (m0->m_pkthdr.len > MCLBYTES) {
   1335 				printf("%s: unable to allocate jumbo Tx "
   1336 				    "cluster\n", sc->sc_dev.dv_xname);
   1337 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1338 				m_freem(m0);
   1339 				continue;
   1340 			}
   1341 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1342 			if (m == NULL) {
   1343 				printf("%s: unable to allocate Tx mbuf\n",
   1344 				    sc->sc_dev.dv_xname);
   1345 				break;
   1346 			}
   1347 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1348 			if (m0->m_pkthdr.len > MHLEN) {
   1349 				MCLGET(m, M_DONTWAIT);
   1350 				if ((m->m_flags & M_EXT) == 0) {
   1351 					printf("%s: unable to allocate Tx "
   1352 					    "cluster\n", sc->sc_dev.dv_xname);
   1353 					m_freem(m);
   1354 					break;
   1355 				}
   1356 			}
   1357 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1358 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1359 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1360 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1361 			if (error) {
   1362 				printf("%s: unable to load Tx buffer, "
   1363 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1364 				break;
   1365 			}
   1366 		}
   1367 
   1368 		/*
   1369 		 * Ensure we have enough descriptors free to describe
   1370 		 * the packet.
   1371 		 */
   1372 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1373 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1374 			/*
   1375 			 * Not enough free descriptors to transmit this
   1376 			 * packet.  We haven't committed to anything yet,
   1377 			 * so just unload the DMA map, put the packet
   1378 			 * back on the queue, and punt.  Notify the upper
   1379 			 * layer that there are no more slots left.
   1380 			 *
   1381 			 * XXX We could allocate an mbuf and copy, but
   1382 			 * XXX it is worth it?
   1383 			 */
   1384 			ifp->if_flags |= IFF_OACTIVE;
   1385 			sc->sc_if_flags = ifp->if_flags;
   1386 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1387 			if (m != NULL)
   1388 				m_freem(m);
   1389 			break;
   1390 		}
   1391 
   1392 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1393 		if (m != NULL) {
   1394 			m_freem(m0);
   1395 			m0 = m;
   1396 		}
   1397 
   1398 		/*
   1399 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1400 		 */
   1401 
   1402 		/* Sync the DMA map. */
   1403 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1404 		    BUS_DMASYNC_PREWRITE);
   1405 
   1406 		/*
   1407 		 * Initialize the transmit descriptors.
   1408 		 */
   1409 		for (nexttx = sc->sc_txnext, seg = 0;
   1410 		     seg < dmamap->dm_nsegs;
   1411 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1412 
   1413 			/*
   1414 			 * If this is the first descriptor we're
   1415 			 * enqueueing, set the start of packet flag,
   1416 			 * and the checksum stuff if we want the hardware
   1417 			 * to do it.
   1418 			 */
   1419 			sc->sc_txdescs[nexttx].gd_addr =
   1420 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1421 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1422 			if (nexttx == firsttx) {
   1423 				flags |= GEM_TD_START_OF_PACKET;
   1424 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1425 					sc->sc_txwin = 0;
   1426 					flags |= GEM_TD_INTERRUPT_ME;
   1427 				}
   1428 
   1429 #ifdef INET
   1430 				/* h/w checksum */
   1431 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
   1432 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1433 					struct ether_header *eh;
   1434 					uint16_t offset, start;
   1435 
   1436 					eh = mtod(m0, struct ether_header *);
   1437 					switch (ntohs(eh->ether_type)) {
   1438 					case ETHERTYPE_IP:
   1439 						start = ETHER_HDR_LEN;
   1440 						break;
   1441 					case ETHERTYPE_VLAN:
   1442 						start = ETHER_HDR_LEN +
   1443 							ETHER_VLAN_ENCAP_LEN;
   1444 						break;
   1445 					default:
   1446 						/* unsupported, drop it */
   1447 						m_free(m0);
   1448 						continue;
   1449 					}
   1450 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1451 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1452 					flags |= (start <<
   1453 						  GEM_TD_CXSUM_STARTSHFT) |
   1454 						 (offset <<
   1455 						  GEM_TD_CXSUM_STUFFSHFT) |
   1456 						 GEM_TD_CXSUM_ENABLE;
   1457 				}
   1458 #endif
   1459 			}
   1460 			if (seg == dmamap->dm_nsegs - 1) {
   1461 				flags |= GEM_TD_END_OF_PACKET;
   1462 			} else {
   1463 				/* last flag set outside of loop */
   1464 				sc->sc_txdescs[nexttx].gd_flags =
   1465 					GEM_DMA_WRITE(sc, flags);
   1466 			}
   1467 			lasttx = nexttx;
   1468 		}
   1469 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1470 			/* add padding buffer at end of chain */
   1471 			flags &= ~GEM_TD_END_OF_PACKET;
   1472 			sc->sc_txdescs[lasttx].gd_flags =
   1473 			    GEM_DMA_WRITE(sc, flags);
   1474 
   1475 			sc->sc_txdescs[nexttx].gd_addr =
   1476 			    GEM_DMA_WRITE(sc,
   1477 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1478 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1479 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1480 			lasttx = nexttx;
   1481 			nexttx = GEM_NEXTTX(nexttx);
   1482 			seg++;
   1483 		}
   1484 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1485 
   1486 		KASSERT(lasttx != -1);
   1487 
   1488 		/*
   1489 		 * Store a pointer to the packet so we can free it later,
   1490 		 * and remember what txdirty will be once the packet is
   1491 		 * done.
   1492 		 */
   1493 		txs->txs_mbuf = m0;
   1494 		txs->txs_firstdesc = sc->sc_txnext;
   1495 		txs->txs_lastdesc = lasttx;
   1496 		txs->txs_ndescs = seg;
   1497 
   1498 #ifdef GEM_DEBUG
   1499 		if (ifp->if_flags & IFF_DEBUG) {
   1500 			printf("     gem_start %p transmit chain:\n", txs);
   1501 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1502 			    txs->txs_lastdesc);
   1503 		}
   1504 #endif
   1505 
   1506 		/* Sync the descriptors we're using. */
   1507 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1508 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1509 
   1510 		/* Advance the tx pointer. */
   1511 		sc->sc_txfree -= txs->txs_ndescs;
   1512 		sc->sc_txnext = nexttx;
   1513 
   1514 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1515 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1516 
   1517 #if NBPFILTER > 0
   1518 		/*
   1519 		 * Pass the packet to any BPF listeners.
   1520 		 */
   1521 		if (ifp->if_bpf)
   1522 			bpf_mtap(ifp->if_bpf, m0);
   1523 #endif /* NBPFILTER > 0 */
   1524 	}
   1525 
   1526 	if (txs == NULL || sc->sc_txfree == 0) {
   1527 		/* No more slots left; notify upper layer. */
   1528 		ifp->if_flags |= IFF_OACTIVE;
   1529 		sc->sc_if_flags = ifp->if_flags;
   1530 	}
   1531 
   1532 	if (sc->sc_txfree != ofree) {
   1533 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1534 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1535 		/*
   1536 		 * The entire packet chain is set up.
   1537 		 * Kick the transmitter.
   1538 		 */
   1539 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1540 			sc->sc_dev.dv_xname, nexttx));
   1541 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
   1542 			sc->sc_txnext);
   1543 
   1544 		/* Set a watchdog timer in case the chip flakes out. */
   1545 		ifp->if_timer = 5;
   1546 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1547 			sc->sc_dev.dv_xname, ifp->if_timer));
   1548 	}
   1549 }
   1550 
   1551 /*
   1552  * Transmit interrupt.
   1553  */
   1554 int
   1555 gem_tint(sc)
   1556 	struct gem_softc *sc;
   1557 {
   1558 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1559 	bus_space_tag_t t = sc->sc_bustag;
   1560 	bus_space_handle_t mac = sc->sc_h1;
   1561 	struct gem_txsoft *txs;
   1562 	int txlast;
   1563 	int progress = 0;
   1564 	u_int32_t v;
   1565 
   1566 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1567 
   1568 	/* Unload collision counters ... */
   1569 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1570 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1571 	ifp->if_collisions += v +
   1572 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1573 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
   1574 	ifp->if_oerrors += v;
   1575 
   1576 	/* ... then clear the hardware counters. */
   1577 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1578 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1579 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1580 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1581 
   1582 	/*
   1583 	 * Go through our Tx list and free mbufs for those
   1584 	 * frames that have been transmitted.
   1585 	 */
   1586 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1587 		/*
   1588 		 * In theory, we could harvest some descriptors before
   1589 		 * the ring is empty, but that's a bit complicated.
   1590 		 *
   1591 		 * GEM_TX_COMPLETION points to the last descriptor
   1592 		 * processed +1.
   1593 		 *
   1594 		 * Let's assume that the NIC writes back to the Tx
   1595 		 * descriptors before it updates the completion
   1596 		 * register.  If the NIC has posted writes to the
   1597 		 * Tx descriptors, PCI ordering requires that the
   1598 		 * posted writes flush to RAM before the register-read
   1599 		 * finishes.  So let's read the completion register,
   1600 		 * before syncing the descriptors, so that we
   1601 		 * examine Tx descriptors that are at least as
   1602 		 * current as the completion register.
   1603 		 */
   1604 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1605 		DPRINTF(sc,
   1606 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1607 				txs->txs_lastdesc, txlast));
   1608 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1609 			if (txlast >= txs->txs_firstdesc &&
   1610 			    txlast <= txs->txs_lastdesc)
   1611 				break;
   1612 		} else if (txlast >= txs->txs_firstdesc ||
   1613 			   txlast <= txs->txs_lastdesc)
   1614 			break;
   1615 
   1616 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1617 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1618 
   1619 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
   1620 		if (ifp->if_flags & IFF_DEBUG) {
   1621 			printf("    txsoft %p transmit chain:\n", txs);
   1622 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1623 			    txs->txs_lastdesc);
   1624 		}
   1625 #endif
   1626 
   1627 
   1628 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1629 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1630 
   1631 		sc->sc_txfree += txs->txs_ndescs;
   1632 
   1633 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1634 		    0, txs->txs_dmamap->dm_mapsize,
   1635 		    BUS_DMASYNC_POSTWRITE);
   1636 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1637 		if (txs->txs_mbuf != NULL) {
   1638 			m_freem(txs->txs_mbuf);
   1639 			txs->txs_mbuf = NULL;
   1640 		}
   1641 
   1642 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1643 
   1644 		ifp->if_opackets++;
   1645 		progress = 1;
   1646 	}
   1647 
   1648 #if 0
   1649 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1650 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
   1651 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
   1652 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1653 			GEM_TX_DATA_PTR_HI) << 32) |
   1654 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1655 			GEM_TX_DATA_PTR_LO),
   1656 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
   1657 #endif
   1658 
   1659 	if (progress) {
   1660 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1661 			sc->sc_txwin = 0;
   1662 
   1663 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
   1664 		ifp->if_flags &= ~IFF_OACTIVE;
   1665 		sc->sc_if_flags = ifp->if_flags;
   1666 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
   1667 		gem_start(ifp);
   1668 	}
   1669 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1670 		sc->sc_dev.dv_xname, ifp->if_timer));
   1671 
   1672 	return (1);
   1673 }
   1674 
   1675 /*
   1676  * Receive interrupt.
   1677  */
   1678 int
   1679 gem_rint(sc)
   1680 	struct gem_softc *sc;
   1681 {
   1682 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1683 	bus_space_tag_t t = sc->sc_bustag;
   1684 	bus_space_handle_t h = sc->sc_h1;
   1685 	struct gem_rxsoft *rxs;
   1686 	struct mbuf *m;
   1687 	u_int64_t rxstat;
   1688 	u_int32_t rxcomp;
   1689 	int i, len, progress = 0;
   1690 
   1691 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1692 
   1693 	/*
   1694 	 * Ignore spurious interrupt that sometimes occurs before
   1695 	 * we are set up when we network boot.
   1696 	 */
   1697 	if (!sc->sc_meminited)
   1698 		return 1;
   1699 
   1700 	/*
   1701 	 * Read the completion register once.  This limits
   1702 	 * how long the following loop can execute.
   1703 	 */
   1704 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1705 
   1706 	/*
   1707 	 * XXX Read the lastrx only once at the top for speed.
   1708 	 */
   1709 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1710 		sc->sc_rxptr, rxcomp));
   1711 
   1712 	/*
   1713 	 * Go into the loop at least once.
   1714 	 */
   1715 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1716 	     i = GEM_NEXTRX(i)) {
   1717 		rxs = &sc->sc_rxsoft[i];
   1718 
   1719 		GEM_CDRXSYNC(sc, i,
   1720 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1721 
   1722 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1723 
   1724 		if (rxstat & GEM_RD_OWN) {
   1725 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1726 			/*
   1727 			 * We have processed all of the receive buffers.
   1728 			 */
   1729 			break;
   1730 		}
   1731 
   1732 		progress++;
   1733 		ifp->if_ipackets++;
   1734 
   1735 		if (rxstat & GEM_RD_BAD_CRC) {
   1736 			ifp->if_ierrors++;
   1737 			printf("%s: receive error: CRC error\n",
   1738 				sc->sc_dev.dv_xname);
   1739 			GEM_INIT_RXDESC(sc, i);
   1740 			continue;
   1741 		}
   1742 
   1743 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1744 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1745 #ifdef GEM_DEBUG
   1746 		if (ifp->if_flags & IFF_DEBUG) {
   1747 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1748 			printf("gd_flags: 0x%016llx\t", (long long)
   1749 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1750 			printf("gd_addr: 0x%016llx\n", (long long)
   1751 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1752 		}
   1753 #endif
   1754 
   1755 		/* No errors; receive the packet. */
   1756 		len = GEM_RD_BUFLEN(rxstat);
   1757 
   1758 		/*
   1759 		 * Allocate a new mbuf cluster.  If that fails, we are
   1760 		 * out of memory, and must drop the packet and recycle
   1761 		 * the buffer that's already attached to this descriptor.
   1762 		 */
   1763 		m = rxs->rxs_mbuf;
   1764 		if (gem_add_rxbuf(sc, i) != 0) {
   1765 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1766 			ifp->if_ierrors++;
   1767 			GEM_INIT_RXDESC(sc, i);
   1768 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1769 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1770 			continue;
   1771 		}
   1772 		m->m_data += 2; /* We're already off by two */
   1773 
   1774 		m->m_pkthdr.rcvif = ifp;
   1775 		m->m_pkthdr.len = m->m_len = len;
   1776 
   1777 #if NBPFILTER > 0
   1778 		/*
   1779 		 * Pass this up to any BPF listeners, but only
   1780 		 * pass it up the stack if it's for us.
   1781 		 */
   1782 		if (ifp->if_bpf)
   1783 			bpf_mtap(ifp->if_bpf, m);
   1784 #endif /* NBPFILTER > 0 */
   1785 
   1786 #ifdef INET
   1787 		/* hardware checksum */
   1788 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1789 			struct ether_header *eh;
   1790 			struct ip *ip;
   1791 			int32_t hlen, pktlen;
   1792 
   1793 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1794 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1795 					 ETHER_VLAN_ENCAP_LEN;
   1796 				eh = (struct ether_header *) mtod(m, void *) +
   1797 					ETHER_VLAN_ENCAP_LEN;
   1798 			} else {
   1799 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1800 				eh = mtod(m, struct ether_header *);
   1801 			}
   1802 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1803 				goto swcsum;
   1804 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
   1805 
   1806 			/* IPv4 only */
   1807 			if (ip->ip_v != IPVERSION)
   1808 				goto swcsum;
   1809 
   1810 			hlen = ip->ip_hl << 2;
   1811 			if (hlen < sizeof(struct ip))
   1812 				goto swcsum;
   1813 
   1814 			/*
   1815 			 * bail if too short, has random trailing garbage,
   1816 			 * truncated, fragment, or has ethernet pad.
   1817 			 */
   1818 			if ((ntohs(ip->ip_len) < hlen) ||
   1819 			    (ntohs(ip->ip_len) != pktlen) ||
   1820 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1821 				goto swcsum;
   1822 
   1823 			switch (ip->ip_p) {
   1824 			case IPPROTO_TCP:
   1825 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1826 					goto swcsum;
   1827 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1828 					goto swcsum;
   1829 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1830 				break;
   1831 			case IPPROTO_UDP:
   1832 				/* FALLTHROUGH */
   1833 			default:
   1834 				goto swcsum;
   1835 			}
   1836 
   1837 			/* the uncomplemented sum is expected */
   1838 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1839 
   1840 			/* if the pkt had ip options, we have to deduct them */
   1841 			if (hlen > sizeof(struct ip)) {
   1842 				uint16_t *opts;
   1843 				uint32_t optsum, temp;
   1844 
   1845 				optsum = 0;
   1846 				temp = hlen - sizeof(struct ip);
   1847 				opts = (uint16_t *) ((char *) ip +
   1848 					sizeof(struct ip));
   1849 
   1850 				while (temp > 1) {
   1851 					optsum += ntohs(*opts++);
   1852 					temp -= 2;
   1853 				}
   1854 				while (optsum >> 16)
   1855 					optsum = (optsum >> 16) +
   1856 						 (optsum & 0xffff);
   1857 
   1858 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1859 				m->m_pkthdr.csum_data =
   1860 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1861 
   1862 				while (m->m_pkthdr.csum_data >> 16)
   1863 					m->m_pkthdr.csum_data =
   1864 						(m->m_pkthdr.csum_data >> 16) +
   1865 						(m->m_pkthdr.csum_data &
   1866 						 0xffff);
   1867 			}
   1868 
   1869 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1870 						  M_CSUM_NO_PSEUDOHDR;
   1871 		} else
   1872 swcsum:
   1873 			m->m_pkthdr.csum_flags = 0;
   1874 #endif
   1875 		/* Pass it on. */
   1876 		(*ifp->if_input)(ifp, m);
   1877 	}
   1878 
   1879 	if (progress) {
   1880 		/* Update the receive pointer. */
   1881 		if (i == sc->sc_rxptr) {
   1882 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1883 #ifdef GEM_DEBUG
   1884 			if (ifp->if_flags & IFF_DEBUG)
   1885 				printf("%s: rint: ring wrap\n",
   1886 				    sc->sc_dev.dv_xname);
   1887 #endif
   1888 		}
   1889 		sc->sc_rxptr = i;
   1890 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1891 	}
   1892 #ifdef GEM_COUNTERS
   1893 	if (progress <= 4) {
   1894 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1895 	} else if (progress < 32) {
   1896 		if (progress < 16)
   1897 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1898 		else
   1899 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1900 
   1901 	} else {
   1902 		if (progress < 64)
   1903 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1904 		else
   1905 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1906 	}
   1907 #endif
   1908 
   1909 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1910 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1911 
   1912 	/* Read error counters ... */
   1913 	ifp->if_ierrors +=
   1914 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
   1915 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
   1916 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
   1917 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
   1918 
   1919 	/* ... then clear the hardware counters. */
   1920 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1921 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1922 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1923 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1924 
   1925 	return (1);
   1926 }
   1927 
   1928 
   1929 /*
   1930  * gem_add_rxbuf:
   1931  *
   1932  *	Add a receive buffer to the indicated descriptor.
   1933  */
   1934 int
   1935 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1936 {
   1937 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1938 	struct mbuf *m;
   1939 	int error;
   1940 
   1941 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1942 	if (m == NULL)
   1943 		return (ENOBUFS);
   1944 
   1945 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1946 	MCLGET(m, M_DONTWAIT);
   1947 	if ((m->m_flags & M_EXT) == 0) {
   1948 		m_freem(m);
   1949 		return (ENOBUFS);
   1950 	}
   1951 
   1952 #ifdef GEM_DEBUG
   1953 /* bzero the packet to check DMA */
   1954 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1955 #endif
   1956 
   1957 	if (rxs->rxs_mbuf != NULL)
   1958 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1959 
   1960 	rxs->rxs_mbuf = m;
   1961 
   1962 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1963 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1964 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1965 	if (error) {
   1966 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1967 		    sc->sc_dev.dv_xname, idx, error);
   1968 		panic("gem_add_rxbuf");	/* XXX */
   1969 	}
   1970 
   1971 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1972 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1973 
   1974 	GEM_INIT_RXDESC(sc, idx);
   1975 
   1976 	return (0);
   1977 }
   1978 
   1979 
   1980 int
   1981 gem_eint(struct gem_softc *sc, u_int status)
   1982 {
   1983 	char bits[128];
   1984 	u_int32_t v;
   1985 
   1986 	if ((status & GEM_INTR_MIF) != 0) {
   1987 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1988 		return (1);
   1989 	}
   1990 
   1991 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
   1992 		gem_reset_rxdma(sc);
   1993 		return (1);
   1994 	}
   1995 
   1996 	if (status & GEM_INTR_BERR) {
   1997 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, GEM_ERROR_STATUS);
   1998 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2,
   1999 		    GEM_ERROR_STATUS);
   2000 		printf("%s: bus error interrupt: 0x%02x\n",
   2001 		    sc->sc_dev.dv_xname, v);
   2002 		return (1);
   2003 	}
   2004 
   2005 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   2006 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   2007 	return (1);
   2008 }
   2009 
   2010 
   2011 /*
   2012  * PCS interrupts.
   2013  * We should receive these when the link status changes, but sometimes
   2014  * we don't receive them for link up.  We compensate for this in the
   2015  * gem_tick() callout.
   2016  */
   2017 int
   2018 gem_pint(struct gem_softc *sc)
   2019 {
   2020 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2021 	bus_space_tag_t t = sc->sc_bustag;
   2022 	bus_space_handle_t h = sc->sc_h1;
   2023 	u_int32_t v, v2;
   2024 
   2025 	/*
   2026 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
   2027 	 * latched, so we have to read it twice.  There is only one bit in
   2028 	 * use, so the value is meaningless.
   2029 	 */
   2030 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2031 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2032 
   2033 	if ((ifp->if_flags & IFF_UP) == 0)
   2034 		return 1;
   2035 
   2036 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
   2037 		return 1;
   2038 
   2039 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2040 	/* If we see remote fault, our link partner is probably going away */
   2041 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
   2042 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
   2043 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2044 	/* Otherwise, we may need to wait after auto-negotiation completes */
   2045 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
   2046 	    GEM_MII_STATUS_ANEG_CPT) {
   2047 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
   2048 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2049 	}
   2050 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
   2051 		if (sc->sc_flags & GEM_LINK) {
   2052 			return 1;
   2053 		}
   2054 		callout_stop(&sc->sc_tick_ch);
   2055 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
   2056 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
   2057 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
   2058 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
   2059 		v &= v2;
   2060 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
   2061 			sc->sc_mii.mii_media_active |= IFM_FDX;
   2062 #ifdef GEM_DEBUG
   2063 			aprint_debug("%s: link up: full duplex\n",
   2064 			    sc->sc_dev.dv_xname);
   2065 #endif
   2066 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
   2067 			sc->sc_mii.mii_media_active |= IFM_HDX;
   2068 #ifdef GEM_DEBUG
   2069 			aprint_debug("%s: link up: half duplex\n",
   2070 			    sc->sc_dev.dv_xname);
   2071 #endif
   2072 		} else {
   2073 #ifdef GEM_DEBUG
   2074 			aprint_debug("%s: duplex mismatch\n",
   2075 			    sc->sc_dev.dv_xname);
   2076 #endif
   2077 		}
   2078 		gem_statuschange(sc);
   2079 	} else {
   2080 		if ((sc->sc_flags & GEM_LINK) == 0) {
   2081 			return 1;
   2082 		}
   2083 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   2084 		sc->sc_mii.mii_media_status = IFM_AVALID;
   2085 #ifdef GEM_DEBUG
   2086 			aprint_debug("%s: link down\n",
   2087 			    sc->sc_dev.dv_xname);
   2088 #endif
   2089 		gem_statuschange(sc);
   2090 
   2091 		/* Start the 10 second timer */
   2092 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   2093 	}
   2094 	return 1;
   2095 }
   2096 
   2097 
   2098 
   2099 int
   2100 gem_intr(v)
   2101 	void *v;
   2102 {
   2103 	struct gem_softc *sc = (struct gem_softc *)v;
   2104 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2105 	bus_space_tag_t t = sc->sc_bustag;
   2106 	bus_space_handle_t h = sc->sc_h1;
   2107 	u_int32_t status;
   2108 	int r = 0;
   2109 #ifdef GEM_DEBUG
   2110 	char bits[128];
   2111 #endif
   2112 
   2113 	/* XXX We should probably mask out interrupts until we're done */
   2114 
   2115 	sc->sc_ev_intr.ev_count++;
   2116 
   2117 	status = bus_space_read_4(t, h, GEM_STATUS);
   2118 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   2119 		sc->sc_dev.dv_xname, (status >> 19),
   2120 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   2121 
   2122 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   2123 		r |= gem_eint(sc, status);
   2124 
   2125 	/* We don't bother with GEM_INTR_TX_DONE */
   2126 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   2127 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   2128 		r |= gem_tint(sc);
   2129 	}
   2130 
   2131 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   2132 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   2133 		r |= gem_rint(sc);
   2134 	}
   2135 
   2136 	/* We should eventually do more than just print out error stats. */
   2137 	if (status & GEM_INTR_TX_MAC) {
   2138 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
   2139 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   2140 			printf("%s: MAC tx fault, status %x\n",
   2141 			    sc->sc_dev.dv_xname, txstat);
   2142 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   2143 			gem_init(ifp);
   2144 	}
   2145 	if (status & GEM_INTR_RX_MAC) {
   2146 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
   2147 		if (rxstat & ~GEM_MAC_RX_DONE)
   2148 			printf("%s: MAC rx fault, status %x\n",
   2149 			    sc->sc_dev.dv_xname, rxstat);
   2150 		/*
   2151 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
   2152 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
   2153 		 * silicon bug so handle them silently. Moreover, it's
   2154 		 * likely that the receiver has hung so we reset it.
   2155 		 */
   2156 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
   2157 			ifp->if_ierrors++;
   2158 			gem_reset_rxdma(sc);
   2159 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   2160 			printf("%s: MAC rx fault, status %x\n",
   2161 			    sc->sc_dev.dv_xname, rxstat);
   2162 	}
   2163 	if (status & GEM_INTR_PCS) {
   2164 		r |= gem_pint(sc);
   2165 	}
   2166 
   2167 /* Do we need to do anything with these?
   2168 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
   2169 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
   2170 		if ((status2 & GEM_MAC_PAUSED) != 0)
   2171 			aprintf_debug("%s: PAUSE received (%d slots)\n",
   2172 			    GEM_MAC_PAUSE_TIME(status2), sc->sc_dev.dv_xname);
   2173 		if ((status2 & GEM_MAC_PAUSE) != 0)
   2174 			aprintf_debug("%s: transited to PAUSE state\n",
   2175 			    sc->sc_dev.dv_xname);
   2176 		if ((status2 & GEM_MAC_RESUME) != 0)
   2177 			aprintf_debug("%s: transited to non-PAUSE state\n",
   2178 			    sc->sc_dev.dv_xname);
   2179 	}
   2180 	if ((status & GEM_INTR_MIF) != 0)
   2181 		aprintf_debug("%s: MIF interrupt\n", sc->sc_dev.dv_xname);
   2182 */
   2183 #if NRND > 0
   2184 	rnd_add_uint32(&sc->rnd_source, status);
   2185 #endif
   2186 	return (r);
   2187 }
   2188 
   2189 
   2190 void
   2191 gem_watchdog(ifp)
   2192 	struct ifnet *ifp;
   2193 {
   2194 	struct gem_softc *sc = ifp->if_softc;
   2195 
   2196 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   2197 		"GEM_MAC_RX_CONFIG %x\n",
   2198 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
   2199 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
   2200 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
   2201 
   2202 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   2203 	++ifp->if_oerrors;
   2204 
   2205 	/* Try to get more packets going. */
   2206 	gem_start(ifp);
   2207 }
   2208 
   2209 /*
   2210  * Initialize the MII Management Interface
   2211  */
   2212 void
   2213 gem_mifinit(sc)
   2214 	struct gem_softc *sc;
   2215 {
   2216 	bus_space_tag_t t = sc->sc_bustag;
   2217 	bus_space_handle_t mif = sc->sc_h1;
   2218 
   2219 	/* Configure the MIF in frame mode */
   2220 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   2221 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   2222 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   2223 }
   2224 
   2225 /*
   2226  * MII interface
   2227  *
   2228  * The GEM MII interface supports at least three different operating modes:
   2229  *
   2230  * Bitbang mode is implemented using data, clock and output enable registers.
   2231  *
   2232  * Frame mode is implemented by loading a complete frame into the frame
   2233  * register and polling the valid bit for completion.
   2234  *
   2235  * Polling mode uses the frame register but completion is indicated by
   2236  * an interrupt.
   2237  *
   2238  */
   2239 static int
   2240 gem_mii_readreg(self, phy, reg)
   2241 	struct device *self;
   2242 	int phy, reg;
   2243 {
   2244 	struct gem_softc *sc = (void *)self;
   2245 	bus_space_tag_t t = sc->sc_bustag;
   2246 	bus_space_handle_t mif = sc->sc_h1;
   2247 	int n;
   2248 	u_int32_t v;
   2249 
   2250 #ifdef GEM_DEBUG1
   2251 	if (sc->sc_debug)
   2252 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
   2253 #endif
   2254 
   2255 	/* Construct the frame command */
   2256 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   2257 		GEM_MIF_FRAME_READ;
   2258 
   2259 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2260 	for (n = 0; n < 100; n++) {
   2261 		DELAY(1);
   2262 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2263 		if (v & GEM_MIF_FRAME_TA0)
   2264 			return (v & GEM_MIF_FRAME_DATA);
   2265 	}
   2266 
   2267 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   2268 	return (0);
   2269 }
   2270 
   2271 static void
   2272 gem_mii_writereg(self, phy, reg, val)
   2273 	struct device *self;
   2274 	int phy, reg, val;
   2275 {
   2276 	struct gem_softc *sc = (void *)self;
   2277 	bus_space_tag_t t = sc->sc_bustag;
   2278 	bus_space_handle_t mif = sc->sc_h1;
   2279 	int n;
   2280 	u_int32_t v;
   2281 
   2282 #ifdef GEM_DEBUG1
   2283 	if (sc->sc_debug)
   2284 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
   2285 			phy, reg, val);
   2286 #endif
   2287 
   2288 	/* Construct the frame command */
   2289 	v = GEM_MIF_FRAME_WRITE			|
   2290 	    (phy << GEM_MIF_PHY_SHIFT)		|
   2291 	    (reg << GEM_MIF_REG_SHIFT)		|
   2292 	    (val & GEM_MIF_FRAME_DATA);
   2293 
   2294 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2295 	for (n = 0; n < 100; n++) {
   2296 		DELAY(1);
   2297 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2298 		if (v & GEM_MIF_FRAME_TA0)
   2299 			return;
   2300 	}
   2301 
   2302 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   2303 }
   2304 
   2305 static void
   2306 gem_mii_statchg(dev)
   2307 	struct device *dev;
   2308 {
   2309 	struct gem_softc *sc = (void *)dev;
   2310 #ifdef GEM_DEBUG
   2311 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   2312 #endif
   2313 
   2314 #ifdef GEM_DEBUG
   2315 	if (sc->sc_debug)
   2316 		printf("gem_mii_statchg: status change: phy = %d\n",
   2317 			sc->sc_phys[instance]);
   2318 #endif
   2319 	gem_statuschange(sc);
   2320 }
   2321 
   2322 /*
   2323  * Common status change for gem_mii_statchg() and gem_pint()
   2324  */
   2325 void
   2326 gem_statuschange(struct gem_softc* sc)
   2327 {
   2328 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2329 	bus_space_tag_t t = sc->sc_bustag;
   2330 	bus_space_handle_t mac = sc->sc_h1;
   2331 	int gigabit;
   2332 	u_int32_t rxcfg, txcfg, v;
   2333 
   2334 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
   2335 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
   2336 		sc->sc_flags |= GEM_LINK;
   2337 	else
   2338 		sc->sc_flags &= ~GEM_LINK;
   2339 
   2340 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2341 		gigabit = 1;
   2342 	else
   2343 		gigabit = 0;
   2344 
   2345 	/*
   2346 	 * The configuration done here corresponds to the steps F) and
   2347 	 * G) and as far as enabling of RX and TX MAC goes also step H)
   2348 	 * of the initialization sequence outlined in section 3.2.1 of
   2349 	 * the GEM Gigabit Ethernet ASIC Specification.
   2350 	 */
   2351 
   2352 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
   2353 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
   2354 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
   2355 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2356 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
   2357 	else if (gigabit) {
   2358 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
   2359 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
   2360 	}
   2361 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   2362 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
   2363 	    BUS_SPACE_BARRIER_WRITE);
   2364 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
   2365 		aprint_normal("%s: cannot disable TX MAC\n",
   2366 		    sc->sc_dev.dv_xname);
   2367 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
   2368 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
   2369 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
   2370 	    BUS_SPACE_BARRIER_WRITE);
   2371 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
   2372 		aprint_normal("%s: cannot disable RX MAC\n",
   2373 		    sc->sc_dev.dv_xname);
   2374 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
   2375 
   2376 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
   2377 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
   2378 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
   2379 
   2380 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
   2381 	    gigabit != 0)
   2382 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2383 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
   2384 	else
   2385 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2386 		    GEM_MAC_SLOT_TIME_NORMAL);
   2387 
   2388 	/* XIF Configuration */
   2389 	if (sc->sc_flags & GEM_LINK)
   2390 		v = GEM_MAC_XIF_LINK_LED;
   2391 	else
   2392 		v = 0;
   2393 	v |= GEM_MAC_XIF_TX_MII_ENA;
   2394 
   2395 	/* If an external transceiver is connected, enable its MII drivers */
   2396 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   2397 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
   2398 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   2399 			/* External MII needs echo disable if half duplex. */
   2400 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
   2401 			    IFM_FDX) != 0)
   2402 				/* turn on full duplex LED */
   2403 				v |= GEM_MAC_XIF_FDPLX_LED;
   2404 			else
   2405 				/* half duplex -- disable echo */
   2406 				v |= GEM_MAC_XIF_ECHO_DISABL;
   2407 			if (gigabit)
   2408 				v |= GEM_MAC_XIF_GMII_MODE;
   2409 			else
   2410 				v &= ~GEM_MAC_XIF_GMII_MODE;
   2411 		} else
   2412 			/* Internal MII needs buf enable */
   2413 			v |= GEM_MAC_XIF_MII_BUF_ENA;
   2414 	} else {
   2415 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2416 			v |= GEM_MAC_XIF_FDPLX_LED;
   2417 		v |= GEM_MAC_XIF_GMII_MODE;
   2418 	}
   2419 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   2420 
   2421 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2422 	    (sc->sc_flags & GEM_LINK) != 0) {
   2423 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
   2424 		    txcfg | GEM_MAC_TX_ENABLE);
   2425 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
   2426 		    rxcfg | GEM_MAC_RX_ENABLE);
   2427 	}
   2428 }
   2429 
   2430 int
   2431 gem_ser_mediachange(struct ifnet *ifp)
   2432 {
   2433 	struct gem_softc *sc = ifp->if_softc;
   2434 	u_int s, t;
   2435 
   2436 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
   2437 		return EINVAL;
   2438 
   2439 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
   2440 	if (s == IFM_AUTO) {
   2441 		if (sc->sc_mii_media != s) {
   2442 #ifdef GEM_DEBUG
   2443 			aprint_debug("%s: setting media to auto\n",
   2444 			    sc->sc_dev.dv_xname);
   2445 #endif
   2446 			sc->sc_mii_media = s;
   2447 			if (ifp->if_flags & IFF_UP) {
   2448 				gem_pcs_stop(sc, 0);
   2449 				gem_pcs_start(sc);
   2450 			}
   2451 		}
   2452 		return 0;
   2453 	}
   2454 	if (s == IFM_1000_SX) {
   2455 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
   2456 		if (t == IFM_FDX || t == IFM_HDX) {
   2457 			if (sc->sc_mii_media != t) {
   2458 				sc->sc_mii_media = t;
   2459 #ifdef GEM_DEBUG
   2460 				aprint_debug("%s:"
   2461 				    " setting media to 1000baseSX-%s\n",
   2462 				    sc->sc_dev.dv_xname,
   2463 				    t == IFM_FDX ? "FDX" : "HDX");
   2464 #endif
   2465 				if (ifp->if_flags & IFF_UP) {
   2466 					gem_pcs_stop(sc, 0);
   2467 					gem_pcs_start(sc);
   2468 				}
   2469 			}
   2470 			return 0;
   2471 		}
   2472 	}
   2473 	return EINVAL;
   2474 }
   2475 
   2476 void
   2477 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2478 {
   2479 	struct gem_softc *sc = ifp->if_softc;
   2480 
   2481 	if ((ifp->if_flags & IFF_UP) == 0)
   2482 		return;
   2483 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2484 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2485 }
   2486 
   2487 /*
   2488  * Process an ioctl request.
   2489  */
   2490 int
   2491 gem_ioctl(ifp, cmd, data)
   2492 	struct ifnet *ifp;
   2493 	u_long cmd;
   2494 	void *data;
   2495 {
   2496 	struct gem_softc *sc = ifp->if_softc;
   2497 	int s, error = 0;
   2498 
   2499 	s = splnet();
   2500 
   2501 	switch (cmd) {
   2502 	case SIOCSIFFLAGS:
   2503 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   2504 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   2505 		    == (IFF_UP|IFF_RUNNING))
   2506 		    && ((ifp->if_flags & (~RESETIGN))
   2507 		    == (sc->sc_if_flags & (~RESETIGN)))) {
   2508 			gem_setladrf(sc);
   2509 			break;
   2510 		}
   2511 #undef RESETIGN
   2512 		/*FALLTHROUGH*/
   2513 	default:
   2514 		error = ether_ioctl(ifp, cmd, data);
   2515 		if (error == ENETRESET) {
   2516 			/*
   2517 			 * Multicast list has changed; set the hardware filter
   2518 			 * accordingly.
   2519 			 */
   2520 			if (ifp->if_flags & IFF_RUNNING)
   2521 				gem_setladrf(sc);
   2522 			error = 0;
   2523 		}
   2524 		break;
   2525 	}
   2526 
   2527 	/* Try to get things going again */
   2528 	if (ifp->if_flags & IFF_UP)
   2529 		gem_start(ifp);
   2530 	splx(s);
   2531 	return (error);
   2532 }
   2533 
   2534 
   2535 void
   2536 gem_shutdown(arg)
   2537 	void *arg;
   2538 {
   2539 	struct gem_softc *sc = (struct gem_softc *)arg;
   2540 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2541 
   2542 	gem_stop(ifp, 1);
   2543 }
   2544 
   2545 /*
   2546  * Set up the logical address filter.
   2547  */
   2548 void
   2549 gem_setladrf(sc)
   2550 	struct gem_softc *sc;
   2551 {
   2552 	struct ethercom *ec = &sc->sc_ethercom;
   2553 	struct ifnet *ifp = &ec->ec_if;
   2554 	struct ether_multi *enm;
   2555 	struct ether_multistep step;
   2556 	bus_space_tag_t t = sc->sc_bustag;
   2557 	bus_space_handle_t h = sc->sc_h1;
   2558 	u_int32_t crc;
   2559 	u_int32_t hash[16];
   2560 	u_int32_t v;
   2561 	int i;
   2562 
   2563 	/* Get current RX configuration */
   2564 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2565 
   2566 	/*
   2567 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2568 	 * and hash filter.  Depending on the case, the right bit will be
   2569 	 * enabled.
   2570 	 */
   2571 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2572 	    GEM_MAC_RX_PROMISC_GRP);
   2573 
   2574 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2575 		/* Turn on promiscuous mode */
   2576 		v |= GEM_MAC_RX_PROMISCUOUS;
   2577 		ifp->if_flags |= IFF_ALLMULTI;
   2578 		goto chipit;
   2579 	}
   2580 
   2581 	/*
   2582 	 * Set up multicast address filter by passing all multicast addresses
   2583 	 * through a crc generator, and then using the high order 8 bits as an
   2584 	 * index into the 256 bit logical address filter.  The high order 4
   2585 	 * bits selects the word, while the other 4 bits select the bit within
   2586 	 * the word (where bit 0 is the MSB).
   2587 	 */
   2588 
   2589 	/* Clear hash table */
   2590 	memset(hash, 0, sizeof(hash));
   2591 
   2592 	ETHER_FIRST_MULTI(step, ec, enm);
   2593 	while (enm != NULL) {
   2594 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2595 			/*
   2596 			 * We must listen to a range of multicast addresses.
   2597 			 * For now, just accept all multicasts, rather than
   2598 			 * trying to set only those filter bits needed to match
   2599 			 * the range.  (At this time, the only use of address
   2600 			 * ranges is for IP multicast routing, for which the
   2601 			 * range is big enough to require all bits set.)
   2602 			 * XXX should use the address filters for this
   2603 			 */
   2604 			ifp->if_flags |= IFF_ALLMULTI;
   2605 			v |= GEM_MAC_RX_PROMISC_GRP;
   2606 			goto chipit;
   2607 		}
   2608 
   2609 		/* Get the LE CRC32 of the address */
   2610 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2611 
   2612 		/* Just want the 8 most significant bits. */
   2613 		crc >>= 24;
   2614 
   2615 		/* Set the corresponding bit in the filter. */
   2616 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2617 
   2618 		ETHER_NEXT_MULTI(step, enm);
   2619 	}
   2620 
   2621 	v |= GEM_MAC_RX_HASH_FILTER;
   2622 	ifp->if_flags &= ~IFF_ALLMULTI;
   2623 
   2624 	/* Now load the hash table into the chip (if we are using it) */
   2625 	for (i = 0; i < 16; i++) {
   2626 		bus_space_write_4(t, h,
   2627 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2628 		    hash[i]);
   2629 	}
   2630 
   2631 chipit:
   2632 	sc->sc_if_flags = ifp->if_flags;
   2633 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2634 }
   2635 
   2636 #if notyet
   2637 
   2638 /*
   2639  * gem_power:
   2640  *
   2641  *	Power management (suspend/resume) hook.
   2642  */
   2643 void
   2644 gem_power(why, arg)
   2645 	int why;
   2646 	void *arg;
   2647 {
   2648 	struct gem_softc *sc = arg;
   2649 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2650 	int s;
   2651 
   2652 	s = splnet();
   2653 	switch (why) {
   2654 	case PWR_SUSPEND:
   2655 	case PWR_STANDBY:
   2656 		gem_stop(ifp, 1);
   2657 		if (sc->sc_power != NULL)
   2658 			(*sc->sc_power)(sc, why);
   2659 		break;
   2660 	case PWR_RESUME:
   2661 		if (ifp->if_flags & IFF_UP) {
   2662 			if (sc->sc_power != NULL)
   2663 				(*sc->sc_power)(sc, why);
   2664 			gem_init(ifp);
   2665 		}
   2666 		break;
   2667 	case PWR_SOFTSUSPEND:
   2668 	case PWR_SOFTSTANDBY:
   2669 	case PWR_SOFTRESUME:
   2670 		break;
   2671 	}
   2672 	splx(s);
   2673 }
   2674 #endif
   2675