gem.c revision 1.73 1 /* $NetBSD: gem.c,v 1.73 2008/02/01 11:03:19 jdc Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.73 2008/02/01 11:03:19 jdc Exp $");
41
42 #include "opt_inet.h"
43 #include "bpfilter.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56
57 #include <machine/endian.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
78
79 #include <sys/bus.h>
80 #include <sys/intr.h>
81
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
85
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
88
89 #define TRIES 10000
90
91 static void gem_start(struct ifnet *);
92 static void gem_stop(struct ifnet *, int);
93 int gem_ioctl(struct ifnet *, u_long, void *);
94 void gem_tick(void *);
95 void gem_watchdog(struct ifnet *);
96 void gem_shutdown(void *);
97 void gem_pcs_start(struct gem_softc *sc);
98 void gem_pcs_stop(struct gem_softc *sc, int);
99 int gem_init(struct ifnet *);
100 void gem_init_regs(struct gem_softc *sc);
101 static int gem_ringsize(int sz);
102 static int gem_meminit(struct gem_softc *);
103 void gem_mifinit(struct gem_softc *);
104 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 u_int32_t, u_int32_t);
106 void gem_reset(struct gem_softc *);
107 int gem_reset_rx(struct gem_softc *sc);
108 static void gem_reset_rxdma(struct gem_softc *sc);
109 static void gem_rx_common(struct gem_softc *sc);
110 int gem_reset_tx(struct gem_softc *sc);
111 int gem_disable_rx(struct gem_softc *sc);
112 int gem_disable_tx(struct gem_softc *sc);
113 static void gem_rxdrain(struct gem_softc *sc);
114 int gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void gem_setladrf(struct gem_softc *);
116
117 /* MII methods & callbacks */
118 static int gem_mii_readreg(struct device *, int, int);
119 static void gem_mii_writereg(struct device *, int, int, int);
120 static void gem_mii_statchg(struct device *);
121
122 void gem_statuschange(struct gem_softc *);
123
124 int gem_ser_mediachange(struct ifnet *);
125 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146
147 /*
148 * gem_attach:
149 *
150 * Attach a Gem interface to the system.
151 */
152 void
153 gem_attach(sc, enaddr)
154 struct gem_softc *sc;
155 const uint8_t *enaddr;
156 {
157 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
158 struct mii_data *mii = &sc->sc_mii;
159 bus_space_tag_t t = sc->sc_bustag;
160 bus_space_handle_t h = sc->sc_h1;
161 struct ifmedia_entry *ifm;
162 int i, error;
163 u_int32_t v;
164 char *nullbuf;
165
166 /* Make sure the chip is stopped. */
167 ifp->if_softc = sc;
168 gem_reset(sc);
169
170 /*
171 * Allocate the control data structures, and create and load the
172 * DMA map for it. gem_control_data is 9216 bytes, we have space for
173 * the padding buffer in the bus_dmamem_alloc()'d memory.
174 */
175 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
176 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
177 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
178 aprint_error(
179 "%s: unable to allocate control data, error = %d\n",
180 sc->sc_dev.dv_xname, error);
181 goto fail_0;
182 }
183
184 /* XXX should map this in with correct endianness */
185 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
186 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
187 BUS_DMA_COHERENT)) != 0) {
188 aprint_error("%s: unable to map control data, error = %d\n",
189 sc->sc_dev.dv_xname, error);
190 goto fail_1;
191 }
192
193 nullbuf =
194 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
195
196 if ((error = bus_dmamap_create(sc->sc_dmatag,
197 sizeof(struct gem_control_data), 1,
198 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
199 aprint_error("%s: unable to create control data DMA map, "
200 "error = %d\n", sc->sc_dev.dv_xname, error);
201 goto fail_2;
202 }
203
204 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
205 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
206 0)) != 0) {
207 aprint_error(
208 "%s: unable to load control data DMA map, error = %d\n",
209 sc->sc_dev.dv_xname, error);
210 goto fail_3;
211 }
212
213 memset(nullbuf, 0, ETHER_MIN_TX);
214 if ((error = bus_dmamap_create(sc->sc_dmatag,
215 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
216 aprint_error("%s: unable to create padding DMA map, "
217 "error = %d\n", sc->sc_dev.dv_xname, error);
218 goto fail_4;
219 }
220
221 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
222 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
223 aprint_error(
224 "%s: unable to load padding DMA map, error = %d\n",
225 sc->sc_dev.dv_xname, error);
226 goto fail_5;
227 }
228
229 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
230 BUS_DMASYNC_PREWRITE);
231
232 /*
233 * Initialize the transmit job descriptors.
234 */
235 SIMPLEQ_INIT(&sc->sc_txfreeq);
236 SIMPLEQ_INIT(&sc->sc_txdirtyq);
237
238 /*
239 * Create the transmit buffer DMA maps.
240 */
241 for (i = 0; i < GEM_TXQUEUELEN; i++) {
242 struct gem_txsoft *txs;
243
244 txs = &sc->sc_txsoft[i];
245 txs->txs_mbuf = NULL;
246 if ((error = bus_dmamap_create(sc->sc_dmatag,
247 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
248 ETHER_MAX_LEN_JUMBO, 0, 0,
249 &txs->txs_dmamap)) != 0) {
250 aprint_error("%s: unable to create tx DMA map %d, "
251 "error = %d\n", sc->sc_dev.dv_xname, i, error);
252 goto fail_6;
253 }
254 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
255 }
256
257 /*
258 * Create the receive buffer DMA maps.
259 */
260 for (i = 0; i < GEM_NRXDESC; i++) {
261 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
262 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
263 aprint_error("%s: unable to create rx DMA map %d, "
264 "error = %d\n", sc->sc_dev.dv_xname, i, error);
265 goto fail_7;
266 }
267 sc->sc_rxsoft[i].rxs_mbuf = NULL;
268 }
269
270 /* Initialize ifmedia structures and MII info */
271 mii->mii_ifp = ifp;
272 mii->mii_readreg = gem_mii_readreg;
273 mii->mii_writereg = gem_mii_writereg;
274 mii->mii_statchg = gem_mii_statchg;
275
276 sc->sc_ethercom.ec_mii = mii;
277
278 /*
279 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
280 * Section 3.2.1 `Initialization Sequence'.
281 * However, we can't assume SERDES or Serialink if neither
282 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
283 * being set, as both are set on Sun X1141A (with SERDES). So,
284 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
285 * Also, for Apple variants with 2 PHY's, we prefer the external
286 * PHY over the internal PHY.
287 */
288 gem_mifinit(sc);
289
290 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
291 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
292 ether_mediastatus);
293 mii_attach(&sc->sc_dev, mii, 0xffffffff,
294 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
295 if (LIST_EMPTY(&mii->mii_phys)) {
296 /* No PHY attached */
297 aprint_error("%s: PHY probe failed\n",
298 sc->sc_dev.dv_xname);
299 goto fail_7;
300 } else {
301 struct mii_softc *child;
302
303 /*
304 * Walk along the list of attached MII devices and
305 * establish an `MII instance' to `PHY number'
306 * mapping.
307 */
308 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
309 /*
310 * Note: we support just one PHY: the internal
311 * or external MII is already selected for us
312 * by the GEM_MIF_CONFIG register.
313 */
314 if (child->mii_phy > 1 || child->mii_inst > 0) {
315 aprint_error(
316 "%s: cannot accommodate MII device"
317 " %s at PHY %d, instance %d\n",
318 sc->sc_dev.dv_xname,
319 child->mii_dev.dv_xname,
320 child->mii_phy, child->mii_inst);
321 continue;
322 }
323 sc->sc_phys[child->mii_inst] = child->mii_phy;
324 }
325
326 /*
327 * Now select and activate the PHY we will use.
328 *
329 * The order of preference is External (MDI1),
330 * then Internal (MDI0),
331 */
332 if (sc->sc_phys[1]) {
333 #ifdef GEM_DEBUG
334 aprint_debug("%s: using external PHY\n",
335 sc->sc_dev.dv_xname);
336 #endif
337 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
338 } else {
339 #ifdef GEM_DEBUG
340 aprint_debug("%s: using internal PHY\n",
341 sc->sc_dev.dv_xname);
342 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
343 #endif
344 }
345 bus_space_write_4(t, h, GEM_MIF_CONFIG,
346 sc->sc_mif_config);
347 if (sc->sc_variant != GEM_SUN_ERI)
348 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
349 GEM_MII_DATAPATH_MII);
350
351 /*
352 * XXX - we can really do the following ONLY if the
353 * PHY indeed has the auto negotiation capability!!
354 */
355 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
356 }
357 } else {
358 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
359 gem_ser_mediastatus);
360 /* SERDES or Serialink */
361 if (sc->sc_flags & GEM_SERDES) {
362 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
363 GEM_MII_DATAPATH_SERDES);
364 } else {
365 sc->sc_flags |= GEM_SERIAL;
366 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
367 GEM_MII_DATAPATH_SERIAL);
368 }
369
370 aprint_normal("%s: using external PCS %s: ",
371 sc->sc_dev.dv_xname,
372 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
373
374 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
375 /* Check for FDX and HDX capabilities */
376 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
377 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
378 ifmedia_add(&sc->sc_mii.mii_media,
379 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
380 aprint_normal("1000baseSX-FDX, ");
381 }
382 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
383 ifmedia_add(&sc->sc_mii.mii_media,
384 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
385 aprint_normal("1000baseSX-HDX, ");
386 }
387 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
388 sc->sc_mii_media = IFM_AUTO;
389 aprint_normal("auto\n");
390
391 gem_pcs_stop(sc, 1);
392 }
393
394 /*
395 * From this point forward, the attachment cannot fail. A failure
396 * before this point releases all resources that may have been
397 * allocated.
398 */
399
400 /* Announce ourselves. */
401 aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
402 ether_sprintf(enaddr));
403
404 /* Get RX FIFO size */
405 sc->sc_rxfifosize = 64 *
406 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
407 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
408
409 /* Get TX FIFO size */
410 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
411 aprint_normal(", %uKB TX fifo\n", v / 16);
412
413 /* Initialize ifnet structure. */
414 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
415 ifp->if_softc = sc;
416 ifp->if_flags =
417 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
418 sc->sc_if_flags = ifp->if_flags;
419 /*
420 * The GEM hardware supports basic TCP checksum offloading only.
421 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
422 * have bugs in the receive checksum, so don't enable it for now.
423 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
424 (GEM_IS_APPLE(sc) &&
425 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
426 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
427 */
428 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
429 ifp->if_start = gem_start;
430 ifp->if_ioctl = gem_ioctl;
431 ifp->if_watchdog = gem_watchdog;
432 ifp->if_stop = gem_stop;
433 ifp->if_init = gem_init;
434 IFQ_SET_READY(&ifp->if_snd);
435
436 /*
437 * If we support GigE media, we support jumbo frames too.
438 * Unless we are Apple.
439 */
440 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
441 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
442 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
443 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
444 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
445 if (!GEM_IS_APPLE(sc))
446 sc->sc_ethercom.ec_capabilities
447 |= ETHERCAP_JUMBO_MTU;
448 sc->sc_flags |= GEM_GIGABIT;
449 break;
450 }
451 }
452
453 /* claim 802.1q capability */
454 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
455
456 /* Attach the interface. */
457 if_attach(ifp);
458 ether_ifattach(ifp, enaddr);
459
460 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
461 if (sc->sc_sh == NULL)
462 panic("gem_config: can't establish shutdownhook");
463
464 #if NRND > 0
465 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
466 RND_TYPE_NET, 0);
467 #endif
468
469 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
470 NULL, sc->sc_dev.dv_xname, "interrupts");
471 #ifdef GEM_COUNTERS
472 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
473 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
474 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
475 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
476 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
477 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
478 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
479 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
480 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
481 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
482 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
483 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
484 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
485 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
486 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
487 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
488 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
489 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
490 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
491 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
492 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
493 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
494 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
495 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
496 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
497 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
498 #endif
499
500 #if notyet
501 /*
502 * Add a suspend hook to make sure we come back up after a
503 * resume.
504 */
505 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
506 gem_power, sc);
507 if (sc->sc_powerhook == NULL)
508 aprint_error("%s: WARNING: unable to establish power hook\n",
509 sc->sc_dev.dv_xname);
510 #endif
511
512 callout_init(&sc->sc_tick_ch, 0);
513 return;
514
515 /*
516 * Free any resources we've allocated during the failed attach
517 * attempt. Do this in reverse order and fall through.
518 */
519 fail_7:
520 for (i = 0; i < GEM_NRXDESC; i++) {
521 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
522 bus_dmamap_destroy(sc->sc_dmatag,
523 sc->sc_rxsoft[i].rxs_dmamap);
524 }
525 fail_6:
526 for (i = 0; i < GEM_TXQUEUELEN; i++) {
527 if (sc->sc_txsoft[i].txs_dmamap != NULL)
528 bus_dmamap_destroy(sc->sc_dmatag,
529 sc->sc_txsoft[i].txs_dmamap);
530 }
531 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
532 fail_5:
533 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
534 fail_4:
535 bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
536 fail_3:
537 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
538 fail_2:
539 bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
540 sizeof(struct gem_control_data));
541 fail_1:
542 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
543 fail_0:
544 return;
545 }
546
547
548 void
549 gem_tick(arg)
550 void *arg;
551 {
552 struct gem_softc *sc = arg;
553 int s;
554
555 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
556 /*
557 * We have to reset everything if we failed to get a
558 * PCS interrupt. Restarting the callout is handled
559 * in gem_pcs_start().
560 */
561 gem_init(&sc->sc_ethercom.ec_if);
562 } else {
563 s = splnet();
564 mii_tick(&sc->sc_mii);
565 splx(s);
566 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
567 }
568 }
569
570 static int
571 gem_bitwait(sc, h, r, clr, set)
572 struct gem_softc *sc;
573 bus_space_handle_t h;
574 int r;
575 u_int32_t clr;
576 u_int32_t set;
577 {
578 int i;
579 u_int32_t reg;
580
581 for (i = TRIES; i--; DELAY(100)) {
582 reg = bus_space_read_4(sc->sc_bustag, h, r);
583 if ((reg & clr) == 0 && (reg & set) == set)
584 return (1);
585 }
586 return (0);
587 }
588
589 void
590 gem_reset(sc)
591 struct gem_softc *sc;
592 {
593 bus_space_tag_t t = sc->sc_bustag;
594 bus_space_handle_t h = sc->sc_h2;
595 int s;
596
597 s = splnet();
598 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
599 gem_reset_rx(sc);
600 gem_reset_tx(sc);
601
602 /* Do a full reset */
603 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
604 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
605 printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
606 splx(s);
607 }
608
609
610 /*
611 * gem_rxdrain:
612 *
613 * Drain the receive queue.
614 */
615 static void
616 gem_rxdrain(struct gem_softc *sc)
617 {
618 struct gem_rxsoft *rxs;
619 int i;
620
621 for (i = 0; i < GEM_NRXDESC; i++) {
622 rxs = &sc->sc_rxsoft[i];
623 if (rxs->rxs_mbuf != NULL) {
624 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
625 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
626 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
627 m_freem(rxs->rxs_mbuf);
628 rxs->rxs_mbuf = NULL;
629 }
630 }
631 }
632
633 /*
634 * Reset the whole thing.
635 */
636 static void
637 gem_stop(struct ifnet *ifp, int disable)
638 {
639 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
640 struct gem_txsoft *txs;
641
642 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
643
644 callout_stop(&sc->sc_tick_ch);
645 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
646 gem_pcs_stop(sc, disable);
647 else
648 mii_down(&sc->sc_mii);
649
650 /* XXX - Should we reset these instead? */
651 gem_disable_tx(sc);
652 gem_disable_rx(sc);
653
654 /*
655 * Release any queued transmit buffers.
656 */
657 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
658 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
659 if (txs->txs_mbuf != NULL) {
660 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
661 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
662 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
663 m_freem(txs->txs_mbuf);
664 txs->txs_mbuf = NULL;
665 }
666 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
667 }
668
669 if (disable) {
670 gem_rxdrain(sc);
671 }
672
673 /*
674 * Mark the interface down and cancel the watchdog timer.
675 */
676 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
677 sc->sc_if_flags = ifp->if_flags;
678 ifp->if_timer = 0;
679 }
680
681
682 /*
683 * Reset the receiver
684 */
685 int
686 gem_reset_rx(struct gem_softc *sc)
687 {
688 bus_space_tag_t t = sc->sc_bustag;
689 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
690
691 /*
692 * Resetting while DMA is in progress can cause a bus hang, so we
693 * disable DMA first.
694 */
695 gem_disable_rx(sc);
696 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
697 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
698 /* Wait till it finishes */
699 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
700 printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
701
702 /* Finally, reset the ERX */
703 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
704 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
705 /* Wait till it finishes */
706 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
707 printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
708 return (1);
709 }
710 return (0);
711 }
712
713
714 /*
715 * Reset the receiver DMA engine.
716 *
717 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
718 * etc in order to reset the receiver DMA engine only and not do a full
719 * reset which amongst others also downs the link and clears the FIFOs.
720 */
721 static void
722 gem_reset_rxdma(struct gem_softc *sc)
723 {
724 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
725 bus_space_tag_t t = sc->sc_bustag;
726 bus_space_handle_t h = sc->sc_h1;
727 int i;
728
729 if (gem_reset_rx(sc) != 0) {
730 gem_init(ifp);
731 return;
732 }
733 for (i = 0; i < GEM_NRXDESC; i++)
734 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
735 GEM_UPDATE_RXDESC(sc, i);
736 sc->sc_rxptr = 0;
737 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
738 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
739
740 /* Reprogram Descriptor Ring Base Addresses */
741 /* NOTE: we use only 32-bit DMA addresses here. */
742 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
743 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
744
745 /* Redo ERX Configuration */
746 gem_rx_common(sc);
747
748 /* Give the reciever a swift kick */
749 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
750 }
751
752 /*
753 * Common RX configuration for gem_init() and gem_reset_rxdma().
754 */
755 static void
756 gem_rx_common(struct gem_softc *sc)
757 {
758 bus_space_tag_t t = sc->sc_bustag;
759 bus_space_handle_t h = sc->sc_h1;
760 u_int32_t v;
761
762 /* Encode Receive Descriptor ring size: four possible values */
763 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
764
765 /* Set receive h/w checksum offset */
766 #ifdef INET
767 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
768 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
769 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
770 #endif
771
772 /* Enable RX DMA */
773 bus_space_write_4(t, h, GEM_RX_CONFIG,
774 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
775 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
776
777 /*
778 * The following value is for an OFF Threshold of about 3/4 full
779 * and an ON Threshold of 1/4 full.
780 */
781 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
782 (3 * sc->sc_rxfifosize / 256) |
783 ((sc->sc_rxfifosize / 256) << 12));
784 bus_space_write_4(t, h, GEM_RX_BLANKING,
785 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
786 }
787
788 /*
789 * Reset the transmitter
790 */
791 int
792 gem_reset_tx(struct gem_softc *sc)
793 {
794 bus_space_tag_t t = sc->sc_bustag;
795 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
796
797 /*
798 * Resetting while DMA is in progress can cause a bus hang, so we
799 * disable DMA first.
800 */
801 gem_disable_tx(sc);
802 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
803 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
804 /* Wait till it finishes */
805 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
806 printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
807 /* Wait 5ms extra. */
808 delay(5000);
809
810 /* Finally, reset the ETX */
811 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
812 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
813 /* Wait till it finishes */
814 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
815 printf("%s: cannot reset receiver\n",
816 sc->sc_dev.dv_xname);
817 return (1);
818 }
819 return (0);
820 }
821
822 /*
823 * disable receiver.
824 */
825 int
826 gem_disable_rx(struct gem_softc *sc)
827 {
828 bus_space_tag_t t = sc->sc_bustag;
829 bus_space_handle_t h = sc->sc_h1;
830 u_int32_t cfg;
831
832 /* Flip the enable bit */
833 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
834 cfg &= ~GEM_MAC_RX_ENABLE;
835 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
836 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
837 /* Wait for it to finish */
838 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
839 }
840
841 /*
842 * disable transmitter.
843 */
844 int
845 gem_disable_tx(struct gem_softc *sc)
846 {
847 bus_space_tag_t t = sc->sc_bustag;
848 bus_space_handle_t h = sc->sc_h1;
849 u_int32_t cfg;
850
851 /* Flip the enable bit */
852 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
853 cfg &= ~GEM_MAC_TX_ENABLE;
854 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
855 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
856 /* Wait for it to finish */
857 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
858 }
859
860 /*
861 * Initialize interface.
862 */
863 int
864 gem_meminit(struct gem_softc *sc)
865 {
866 struct gem_rxsoft *rxs;
867 int i, error;
868
869 /*
870 * Initialize the transmit descriptor ring.
871 */
872 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
873 for (i = 0; i < GEM_NTXDESC; i++) {
874 sc->sc_txdescs[i].gd_flags = 0;
875 sc->sc_txdescs[i].gd_addr = 0;
876 }
877 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
878 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
879 sc->sc_txfree = GEM_NTXDESC-1;
880 sc->sc_txnext = 0;
881 sc->sc_txwin = 0;
882
883 /*
884 * Initialize the receive descriptor and receive job
885 * descriptor rings.
886 */
887 for (i = 0; i < GEM_NRXDESC; i++) {
888 rxs = &sc->sc_rxsoft[i];
889 if (rxs->rxs_mbuf == NULL) {
890 if ((error = gem_add_rxbuf(sc, i)) != 0) {
891 printf("%s: unable to allocate or map rx "
892 "buffer %d, error = %d\n",
893 sc->sc_dev.dv_xname, i, error);
894 /*
895 * XXX Should attempt to run with fewer receive
896 * XXX buffers instead of just failing.
897 */
898 gem_rxdrain(sc);
899 return (1);
900 }
901 } else
902 GEM_INIT_RXDESC(sc, i);
903 }
904 sc->sc_rxptr = 0;
905 sc->sc_meminited = 1;
906 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
907 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
908
909 return (0);
910 }
911
912 static int
913 gem_ringsize(int sz)
914 {
915 switch (sz) {
916 case 32:
917 return GEM_RING_SZ_32;
918 case 64:
919 return GEM_RING_SZ_64;
920 case 128:
921 return GEM_RING_SZ_128;
922 case 256:
923 return GEM_RING_SZ_256;
924 case 512:
925 return GEM_RING_SZ_512;
926 case 1024:
927 return GEM_RING_SZ_1024;
928 case 2048:
929 return GEM_RING_SZ_2048;
930 case 4096:
931 return GEM_RING_SZ_4096;
932 case 8192:
933 return GEM_RING_SZ_8192;
934 default:
935 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
936 return GEM_RING_SZ_32;
937 }
938 }
939
940
941 /*
942 * Start PCS
943 */
944 void
945 gem_pcs_start(struct gem_softc *sc)
946 {
947 bus_space_tag_t t = sc->sc_bustag;
948 bus_space_handle_t h = sc->sc_h1;
949 uint32_t v;
950
951 #ifdef GEM_DEBUG
952 aprint_debug("%s: gem_pcs_start()\n", sc->sc_dev.dv_xname);
953 #endif
954
955 /*
956 * Set up. We must disable the MII before modifying the
957 * GEM_MII_ANAR register
958 */
959 if (sc->sc_flags & GEM_SERDES) {
960 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
961 GEM_MII_DATAPATH_SERDES);
962 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
963 GEM_MII_SLINK_LOOPBACK);
964 } else {
965 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
966 GEM_MII_DATAPATH_SERIAL);
967 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
968 }
969 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
970 v = bus_space_read_4(t, h, GEM_MII_ANAR);
971 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
972 if (sc->sc_mii_media == IFM_AUTO)
973 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
974 else if (sc->sc_mii_media == IFM_FDX) {
975 v |= GEM_MII_ANEG_FUL_DUPLX;
976 v &= ~GEM_MII_ANEG_HLF_DUPLX;
977 } else if (sc->sc_mii_media == IFM_HDX) {
978 v &= ~GEM_MII_ANEG_FUL_DUPLX;
979 v |= GEM_MII_ANEG_HLF_DUPLX;
980 }
981
982 /* Configure link. */
983 bus_space_write_4(t, h, GEM_MII_ANAR, v);
984 bus_space_write_4(t, h, GEM_MII_CONTROL,
985 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
986 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
987 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
988
989 /* Start the 10 second timer */
990 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
991 }
992
993 /*
994 * Stop PCS
995 */
996 void
997 gem_pcs_stop(struct gem_softc *sc, int disable)
998 {
999 bus_space_tag_t t = sc->sc_bustag;
1000 bus_space_handle_t h = sc->sc_h1;
1001
1002 #ifdef GEM_DEBUG
1003 aprint_debug("%s: gem_pcs_stop()\n", sc->sc_dev.dv_xname);
1004 #endif
1005
1006 /* Tell link partner that we're going away */
1007 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1008
1009 /*
1010 * Disable PCS MII. The documentation suggests that setting
1011 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1012 * negotiation will shut down the link. However, it appears
1013 * that we also need to unset the datapath mode.
1014 */
1015 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1016 bus_space_write_4(t, h, GEM_MII_CONTROL,
1017 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1018 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1019 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1020
1021 if (disable) {
1022 if (sc->sc_flags & GEM_SERDES)
1023 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1024 GEM_MII_SLINK_POWER_OFF);
1025 else
1026 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1027 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1028 }
1029
1030 sc->sc_flags &= ~GEM_LINK;
1031 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1032 sc->sc_mii.mii_media_status = IFM_AVALID;
1033 }
1034
1035
1036 /*
1037 * Initialization of interface; set up initialization block
1038 * and transmit/receive descriptor rings.
1039 */
1040 int
1041 gem_init(struct ifnet *ifp)
1042 {
1043 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1044 bus_space_tag_t t = sc->sc_bustag;
1045 bus_space_handle_t h = sc->sc_h1;
1046 int rc = 0, s;
1047 u_int max_frame_size;
1048 u_int32_t v;
1049
1050 s = splnet();
1051
1052 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
1053 /*
1054 * Initialization sequence. The numbered steps below correspond
1055 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1056 * Channel Engine manual (part of the PCIO manual).
1057 * See also the STP2002-STQ document from Sun Microsystems.
1058 */
1059
1060 /* step 1 & 2. Reset the Ethernet Channel */
1061 gem_stop(ifp, 0);
1062 gem_reset(sc);
1063 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
1064
1065 /* Re-initialize the MIF */
1066 gem_mifinit(sc);
1067
1068 /* Set up correct datapath for non-SERDES/Serialink */
1069 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1070 sc->sc_variant != GEM_SUN_ERI)
1071 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1072 GEM_MII_DATAPATH_MII);
1073
1074 /* Call MI reset function if any */
1075 if (sc->sc_hwreset)
1076 (*sc->sc_hwreset)(sc);
1077
1078 /* step 3. Setup data structures in host memory */
1079 if (gem_meminit(sc) != 0)
1080 return 1;
1081
1082 /* step 4. TX MAC registers & counters */
1083 gem_init_regs(sc);
1084 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1085 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1086 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1087 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1088 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1089 max_frame_size|/* burst size */(0x2000<<16));
1090
1091 /* step 5. RX MAC registers & counters */
1092 gem_setladrf(sc);
1093
1094 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1095 /* NOTE: we use only 32-bit DMA addresses here. */
1096 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1097 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1098
1099 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1100 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1101
1102 /* step 8. Global Configuration & Interrupt Mask */
1103 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1104 v = GEM_INTR_PCS;
1105 else
1106 v = GEM_INTR_MIF;
1107 bus_space_write_4(t, h, GEM_INTMASK,
1108 ~(GEM_INTR_TX_INTME |
1109 GEM_INTR_TX_EMPTY |
1110 GEM_INTR_TX_MAC |
1111 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
1112 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
1113 GEM_INTR_BERR | v));
1114 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1115 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1116 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1117 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1118 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1119
1120 /* step 9. ETX Configuration: use mostly default values */
1121
1122 /* Enable TX DMA */
1123 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1124 bus_space_write_4(t, h, GEM_TX_CONFIG,
1125 v|GEM_TX_CONFIG_TXDMA_EN|
1126 ((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
1127 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1128
1129 /* step 10. ERX Configuration */
1130 gem_rx_common(sc);
1131
1132 /* step 11. Configure Media */
1133 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1134 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1135 goto out;
1136
1137 /* step 12. RX_MAC Configuration Register */
1138 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1139 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1140 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1141
1142 /* step 14. Issue Transmit Pending command */
1143
1144 /* Call MI initialization function if any */
1145 if (sc->sc_hwinit)
1146 (*sc->sc_hwinit)(sc);
1147
1148
1149 /* step 15. Give the reciever a swift kick */
1150 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1151
1152 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1153 /* Configure PCS */
1154 gem_pcs_start(sc);
1155 else
1156 /* Start the one second timer. */
1157 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1158
1159 sc->sc_flags &= ~GEM_LINK;
1160 ifp->if_flags |= IFF_RUNNING;
1161 ifp->if_flags &= ~IFF_OACTIVE;
1162 ifp->if_timer = 0;
1163 sc->sc_if_flags = ifp->if_flags;
1164 out:
1165 splx(s);
1166
1167 return (0);
1168 }
1169
1170 void
1171 gem_init_regs(struct gem_softc *sc)
1172 {
1173 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1174 bus_space_tag_t t = sc->sc_bustag;
1175 bus_space_handle_t h = sc->sc_h1;
1176 const u_char *laddr = CLLADDR(ifp->if_sadl);
1177 u_int32_t v;
1178
1179 /* These regs are not cleared on reset */
1180 if (!sc->sc_inited) {
1181
1182 /* Load recommended values */
1183 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1184 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1185 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1186
1187 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1188 /* Max frame and max burst size */
1189 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1190 ETHER_MAX_LEN | (0x2000<<16));
1191
1192 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1193 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1194 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1195 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1196 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1197 ((laddr[5]<<8)|laddr[4])&0x3ff);
1198
1199 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1200 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1201 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1202 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1203
1204 /* MAC control addr set to 01:80:c2:00:00:01 */
1205 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1206 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1207 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1208
1209 /* MAC filter addr set to 0:0:0:0:0:0 */
1210 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1211 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1212 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1213
1214 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1215 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1216
1217 sc->sc_inited = 1;
1218 }
1219
1220 /* Counters need to be zeroed */
1221 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1222 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1223 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1224 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1225 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1226 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1227 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1228 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1229 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1230 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1231 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1232
1233 /* Set XOFF PAUSE time. */
1234 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1235
1236 /*
1237 * Set the internal arbitration to "infinite" bursts of the
1238 * maximum length of 31 * 64 bytes so DMA transfers aren't
1239 * split up in cache line size chunks. This greatly improves
1240 * especially RX performance.
1241 * Enable silicon bug workarounds for the Apple variants.
1242 */
1243 bus_space_write_4(t, h, GEM_CONFIG,
1244 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1245 GEM_CONFIG_BURST_INF | (GEM_IS_APPLE(sc) ?
1246 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1247
1248 /*
1249 * Set the station address.
1250 */
1251 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1252 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1253 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1254
1255 /*
1256 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1257 */
1258 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1259 v = GEM_MAC_XIF_TX_MII_ENA;
1260 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1261 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1262 v |= GEM_MAC_XIF_FDPLX_LED;
1263 if (sc->sc_flags & GEM_GIGABIT)
1264 v |= GEM_MAC_XIF_GMII_MODE;
1265 }
1266 } else {
1267 v |= GEM_MAC_XIF_GMII_MODE;
1268 }
1269 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1270 }
1271
1272 #ifdef GEM_DEBUG
1273 static void
1274 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1275 {
1276 int i;
1277
1278 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1279 printf("descriptor %d:\t", i);
1280 printf("gd_flags: 0x%016" PRIx64 "\t",
1281 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1282 printf("gd_addr: 0x%016" PRIx64 "\n",
1283 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1284 if (i == lastdesc)
1285 break;
1286 }
1287 }
1288 #endif
1289
1290 static void
1291 gem_start(ifp)
1292 struct ifnet *ifp;
1293 {
1294 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1295 struct mbuf *m0, *m;
1296 struct gem_txsoft *txs;
1297 bus_dmamap_t dmamap;
1298 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1299 uint64_t flags = 0;
1300
1301 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1302 return;
1303
1304 /*
1305 * Remember the previous number of free descriptors and
1306 * the first descriptor we'll use.
1307 */
1308 ofree = sc->sc_txfree;
1309 firsttx = sc->sc_txnext;
1310
1311 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1312 sc->sc_dev.dv_xname, ofree, firsttx));
1313
1314 /*
1315 * Loop through the send queue, setting up transmit descriptors
1316 * until we drain the queue, or use up all available transmit
1317 * descriptors.
1318 */
1319 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1320 sc->sc_txfree != 0) {
1321 /*
1322 * Grab a packet off the queue.
1323 */
1324 IFQ_POLL(&ifp->if_snd, m0);
1325 if (m0 == NULL)
1326 break;
1327 m = NULL;
1328
1329 dmamap = txs->txs_dmamap;
1330
1331 /*
1332 * Load the DMA map. If this fails, the packet either
1333 * didn't fit in the alloted number of segments, or we were
1334 * short on resources. In this case, we'll copy and try
1335 * again.
1336 */
1337 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1338 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1339 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1340 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1341 if (m0->m_pkthdr.len > MCLBYTES) {
1342 printf("%s: unable to allocate jumbo Tx "
1343 "cluster\n", sc->sc_dev.dv_xname);
1344 IFQ_DEQUEUE(&ifp->if_snd, m0);
1345 m_freem(m0);
1346 continue;
1347 }
1348 MGETHDR(m, M_DONTWAIT, MT_DATA);
1349 if (m == NULL) {
1350 printf("%s: unable to allocate Tx mbuf\n",
1351 sc->sc_dev.dv_xname);
1352 break;
1353 }
1354 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1355 if (m0->m_pkthdr.len > MHLEN) {
1356 MCLGET(m, M_DONTWAIT);
1357 if ((m->m_flags & M_EXT) == 0) {
1358 printf("%s: unable to allocate Tx "
1359 "cluster\n", sc->sc_dev.dv_xname);
1360 m_freem(m);
1361 break;
1362 }
1363 }
1364 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1365 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1366 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1367 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1368 if (error) {
1369 printf("%s: unable to load Tx buffer, "
1370 "error = %d\n", sc->sc_dev.dv_xname, error);
1371 break;
1372 }
1373 }
1374
1375 /*
1376 * Ensure we have enough descriptors free to describe
1377 * the packet.
1378 */
1379 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1380 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1381 /*
1382 * Not enough free descriptors to transmit this
1383 * packet. We haven't committed to anything yet,
1384 * so just unload the DMA map, put the packet
1385 * back on the queue, and punt. Notify the upper
1386 * layer that there are no more slots left.
1387 *
1388 * XXX We could allocate an mbuf and copy, but
1389 * XXX it is worth it?
1390 */
1391 ifp->if_flags |= IFF_OACTIVE;
1392 sc->sc_if_flags = ifp->if_flags;
1393 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1394 if (m != NULL)
1395 m_freem(m);
1396 break;
1397 }
1398
1399 IFQ_DEQUEUE(&ifp->if_snd, m0);
1400 if (m != NULL) {
1401 m_freem(m0);
1402 m0 = m;
1403 }
1404
1405 /*
1406 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1407 */
1408
1409 /* Sync the DMA map. */
1410 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1411 BUS_DMASYNC_PREWRITE);
1412
1413 /*
1414 * Initialize the transmit descriptors.
1415 */
1416 for (nexttx = sc->sc_txnext, seg = 0;
1417 seg < dmamap->dm_nsegs;
1418 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1419
1420 /*
1421 * If this is the first descriptor we're
1422 * enqueueing, set the start of packet flag,
1423 * and the checksum stuff if we want the hardware
1424 * to do it.
1425 */
1426 sc->sc_txdescs[nexttx].gd_addr =
1427 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1428 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1429 if (nexttx == firsttx) {
1430 flags |= GEM_TD_START_OF_PACKET;
1431 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1432 sc->sc_txwin = 0;
1433 flags |= GEM_TD_INTERRUPT_ME;
1434 }
1435
1436 #ifdef INET
1437 /* h/w checksum */
1438 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1439 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1440 struct ether_header *eh;
1441 uint16_t offset, start;
1442
1443 eh = mtod(m0, struct ether_header *);
1444 switch (ntohs(eh->ether_type)) {
1445 case ETHERTYPE_IP:
1446 start = ETHER_HDR_LEN;
1447 break;
1448 case ETHERTYPE_VLAN:
1449 start = ETHER_HDR_LEN +
1450 ETHER_VLAN_ENCAP_LEN;
1451 break;
1452 default:
1453 /* unsupported, drop it */
1454 m_free(m0);
1455 continue;
1456 }
1457 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1458 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1459 flags |= (start <<
1460 GEM_TD_CXSUM_STARTSHFT) |
1461 (offset <<
1462 GEM_TD_CXSUM_STUFFSHFT) |
1463 GEM_TD_CXSUM_ENABLE;
1464 }
1465 #endif
1466 }
1467 if (seg == dmamap->dm_nsegs - 1) {
1468 flags |= GEM_TD_END_OF_PACKET;
1469 } else {
1470 /* last flag set outside of loop */
1471 sc->sc_txdescs[nexttx].gd_flags =
1472 GEM_DMA_WRITE(sc, flags);
1473 }
1474 lasttx = nexttx;
1475 }
1476 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1477 /* add padding buffer at end of chain */
1478 flags &= ~GEM_TD_END_OF_PACKET;
1479 sc->sc_txdescs[lasttx].gd_flags =
1480 GEM_DMA_WRITE(sc, flags);
1481
1482 sc->sc_txdescs[nexttx].gd_addr =
1483 GEM_DMA_WRITE(sc,
1484 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1485 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1486 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1487 lasttx = nexttx;
1488 nexttx = GEM_NEXTTX(nexttx);
1489 seg++;
1490 }
1491 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1492
1493 KASSERT(lasttx != -1);
1494
1495 /*
1496 * Store a pointer to the packet so we can free it later,
1497 * and remember what txdirty will be once the packet is
1498 * done.
1499 */
1500 txs->txs_mbuf = m0;
1501 txs->txs_firstdesc = sc->sc_txnext;
1502 txs->txs_lastdesc = lasttx;
1503 txs->txs_ndescs = seg;
1504
1505 #ifdef GEM_DEBUG
1506 if (ifp->if_flags & IFF_DEBUG) {
1507 printf(" gem_start %p transmit chain:\n", txs);
1508 gem_txsoft_print(sc, txs->txs_firstdesc,
1509 txs->txs_lastdesc);
1510 }
1511 #endif
1512
1513 /* Sync the descriptors we're using. */
1514 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1515 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1516
1517 /* Advance the tx pointer. */
1518 sc->sc_txfree -= txs->txs_ndescs;
1519 sc->sc_txnext = nexttx;
1520
1521 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1522 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1523
1524 #if NBPFILTER > 0
1525 /*
1526 * Pass the packet to any BPF listeners.
1527 */
1528 if (ifp->if_bpf)
1529 bpf_mtap(ifp->if_bpf, m0);
1530 #endif /* NBPFILTER > 0 */
1531 }
1532
1533 if (txs == NULL || sc->sc_txfree == 0) {
1534 /* No more slots left; notify upper layer. */
1535 ifp->if_flags |= IFF_OACTIVE;
1536 sc->sc_if_flags = ifp->if_flags;
1537 }
1538
1539 if (sc->sc_txfree != ofree) {
1540 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1541 sc->sc_dev.dv_xname, lasttx, firsttx));
1542 /*
1543 * The entire packet chain is set up.
1544 * Kick the transmitter.
1545 */
1546 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1547 sc->sc_dev.dv_xname, nexttx));
1548 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1549 sc->sc_txnext);
1550
1551 /* Set a watchdog timer in case the chip flakes out. */
1552 ifp->if_timer = 5;
1553 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1554 sc->sc_dev.dv_xname, ifp->if_timer));
1555 }
1556 }
1557
1558 /*
1559 * Transmit interrupt.
1560 */
1561 int
1562 gem_tint(sc)
1563 struct gem_softc *sc;
1564 {
1565 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1566 bus_space_tag_t t = sc->sc_bustag;
1567 bus_space_handle_t mac = sc->sc_h1;
1568 struct gem_txsoft *txs;
1569 int txlast;
1570 int progress = 0;
1571 u_int32_t v;
1572
1573 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1574
1575 /* Unload collision counters ... */
1576 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1577 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1578 ifp->if_collisions += v +
1579 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1580 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1581 ifp->if_oerrors += v;
1582
1583 /* ... then clear the hardware counters. */
1584 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1585 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1586 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1587 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1588
1589 /*
1590 * Go through our Tx list and free mbufs for those
1591 * frames that have been transmitted.
1592 */
1593 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1594 /*
1595 * In theory, we could harvest some descriptors before
1596 * the ring is empty, but that's a bit complicated.
1597 *
1598 * GEM_TX_COMPLETION points to the last descriptor
1599 * processed +1.
1600 *
1601 * Let's assume that the NIC writes back to the Tx
1602 * descriptors before it updates the completion
1603 * register. If the NIC has posted writes to the
1604 * Tx descriptors, PCI ordering requires that the
1605 * posted writes flush to RAM before the register-read
1606 * finishes. So let's read the completion register,
1607 * before syncing the descriptors, so that we
1608 * examine Tx descriptors that are at least as
1609 * current as the completion register.
1610 */
1611 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1612 DPRINTF(sc,
1613 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1614 txs->txs_lastdesc, txlast));
1615 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1616 if (txlast >= txs->txs_firstdesc &&
1617 txlast <= txs->txs_lastdesc)
1618 break;
1619 } else if (txlast >= txs->txs_firstdesc ||
1620 txlast <= txs->txs_lastdesc)
1621 break;
1622
1623 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1624 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1625
1626 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1627 if (ifp->if_flags & IFF_DEBUG) {
1628 printf(" txsoft %p transmit chain:\n", txs);
1629 gem_txsoft_print(sc, txs->txs_firstdesc,
1630 txs->txs_lastdesc);
1631 }
1632 #endif
1633
1634
1635 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1636 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1637
1638 sc->sc_txfree += txs->txs_ndescs;
1639
1640 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1641 0, txs->txs_dmamap->dm_mapsize,
1642 BUS_DMASYNC_POSTWRITE);
1643 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1644 if (txs->txs_mbuf != NULL) {
1645 m_freem(txs->txs_mbuf);
1646 txs->txs_mbuf = NULL;
1647 }
1648
1649 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1650
1651 ifp->if_opackets++;
1652 progress = 1;
1653 }
1654
1655 #if 0
1656 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1657 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1658 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1659 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1660 GEM_TX_DATA_PTR_HI) << 32) |
1661 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1662 GEM_TX_DATA_PTR_LO),
1663 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1664 #endif
1665
1666 if (progress) {
1667 if (sc->sc_txfree == GEM_NTXDESC - 1)
1668 sc->sc_txwin = 0;
1669
1670 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1671 ifp->if_flags &= ~IFF_OACTIVE;
1672 sc->sc_if_flags = ifp->if_flags;
1673 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1674 gem_start(ifp);
1675 }
1676 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1677 sc->sc_dev.dv_xname, ifp->if_timer));
1678
1679 return (1);
1680 }
1681
1682 /*
1683 * Receive interrupt.
1684 */
1685 int
1686 gem_rint(sc)
1687 struct gem_softc *sc;
1688 {
1689 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1690 bus_space_tag_t t = sc->sc_bustag;
1691 bus_space_handle_t h = sc->sc_h1;
1692 struct gem_rxsoft *rxs;
1693 struct mbuf *m;
1694 u_int64_t rxstat;
1695 u_int32_t rxcomp;
1696 int i, len, progress = 0;
1697
1698 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1699
1700 /*
1701 * Ignore spurious interrupt that sometimes occurs before
1702 * we are set up when we network boot.
1703 */
1704 if (!sc->sc_meminited)
1705 return 1;
1706
1707 /*
1708 * Read the completion register once. This limits
1709 * how long the following loop can execute.
1710 */
1711 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1712
1713 /*
1714 * XXX Read the lastrx only once at the top for speed.
1715 */
1716 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1717 sc->sc_rxptr, rxcomp));
1718
1719 /*
1720 * Go into the loop at least once.
1721 */
1722 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1723 i = GEM_NEXTRX(i)) {
1724 rxs = &sc->sc_rxsoft[i];
1725
1726 GEM_CDRXSYNC(sc, i,
1727 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1728
1729 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1730
1731 if (rxstat & GEM_RD_OWN) {
1732 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1733 /*
1734 * We have processed all of the receive buffers.
1735 */
1736 break;
1737 }
1738
1739 progress++;
1740 ifp->if_ipackets++;
1741
1742 if (rxstat & GEM_RD_BAD_CRC) {
1743 ifp->if_ierrors++;
1744 printf("%s: receive error: CRC error\n",
1745 sc->sc_dev.dv_xname);
1746 GEM_INIT_RXDESC(sc, i);
1747 continue;
1748 }
1749
1750 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1751 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1752 #ifdef GEM_DEBUG
1753 if (ifp->if_flags & IFF_DEBUG) {
1754 printf(" rxsoft %p descriptor %d: ", rxs, i);
1755 printf("gd_flags: 0x%016llx\t", (long long)
1756 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1757 printf("gd_addr: 0x%016llx\n", (long long)
1758 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1759 }
1760 #endif
1761
1762 /* No errors; receive the packet. */
1763 len = GEM_RD_BUFLEN(rxstat);
1764
1765 /*
1766 * Allocate a new mbuf cluster. If that fails, we are
1767 * out of memory, and must drop the packet and recycle
1768 * the buffer that's already attached to this descriptor.
1769 */
1770 m = rxs->rxs_mbuf;
1771 if (gem_add_rxbuf(sc, i) != 0) {
1772 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1773 ifp->if_ierrors++;
1774 GEM_INIT_RXDESC(sc, i);
1775 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1776 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1777 continue;
1778 }
1779 m->m_data += 2; /* We're already off by two */
1780
1781 m->m_pkthdr.rcvif = ifp;
1782 m->m_pkthdr.len = m->m_len = len;
1783
1784 #if NBPFILTER > 0
1785 /*
1786 * Pass this up to any BPF listeners, but only
1787 * pass it up the stack if it's for us.
1788 */
1789 if (ifp->if_bpf)
1790 bpf_mtap(ifp->if_bpf, m);
1791 #endif /* NBPFILTER > 0 */
1792
1793 #ifdef INET
1794 /* hardware checksum */
1795 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1796 struct ether_header *eh;
1797 struct ip *ip;
1798 int32_t hlen, pktlen;
1799
1800 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1801 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1802 ETHER_VLAN_ENCAP_LEN;
1803 eh = (struct ether_header *) (mtod(m, char *) +
1804 ETHER_VLAN_ENCAP_LEN);
1805 } else {
1806 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1807 eh = mtod(m, struct ether_header *);
1808 }
1809 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1810 goto swcsum;
1811 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1812
1813 /* IPv4 only */
1814 if (ip->ip_v != IPVERSION)
1815 goto swcsum;
1816
1817 hlen = ip->ip_hl << 2;
1818 if (hlen < sizeof(struct ip))
1819 goto swcsum;
1820
1821 /*
1822 * bail if too short, has random trailing garbage,
1823 * truncated, fragment, or has ethernet pad.
1824 */
1825 if ((ntohs(ip->ip_len) < hlen) ||
1826 (ntohs(ip->ip_len) != pktlen) ||
1827 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1828 goto swcsum;
1829
1830 switch (ip->ip_p) {
1831 case IPPROTO_TCP:
1832 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1833 goto swcsum;
1834 if (pktlen < (hlen + sizeof(struct tcphdr)))
1835 goto swcsum;
1836 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1837 break;
1838 case IPPROTO_UDP:
1839 /* FALLTHROUGH */
1840 default:
1841 goto swcsum;
1842 }
1843
1844 /* the uncomplemented sum is expected */
1845 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1846
1847 /* if the pkt had ip options, we have to deduct them */
1848 if (hlen > sizeof(struct ip)) {
1849 uint16_t *opts;
1850 uint32_t optsum, temp;
1851
1852 optsum = 0;
1853 temp = hlen - sizeof(struct ip);
1854 opts = (uint16_t *) ((char *) ip +
1855 sizeof(struct ip));
1856
1857 while (temp > 1) {
1858 optsum += ntohs(*opts++);
1859 temp -= 2;
1860 }
1861 while (optsum >> 16)
1862 optsum = (optsum >> 16) +
1863 (optsum & 0xffff);
1864
1865 /* Deduct ip opts sum from hwsum (rfc 1624). */
1866 m->m_pkthdr.csum_data =
1867 ~((~m->m_pkthdr.csum_data) - ~optsum);
1868
1869 while (m->m_pkthdr.csum_data >> 16)
1870 m->m_pkthdr.csum_data =
1871 (m->m_pkthdr.csum_data >> 16) +
1872 (m->m_pkthdr.csum_data &
1873 0xffff);
1874 }
1875
1876 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1877 M_CSUM_NO_PSEUDOHDR;
1878 } else
1879 swcsum:
1880 m->m_pkthdr.csum_flags = 0;
1881 #endif
1882 /* Pass it on. */
1883 (*ifp->if_input)(ifp, m);
1884 }
1885
1886 if (progress) {
1887 /* Update the receive pointer. */
1888 if (i == sc->sc_rxptr) {
1889 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1890 #ifdef GEM_DEBUG
1891 if (ifp->if_flags & IFF_DEBUG)
1892 printf("%s: rint: ring wrap\n",
1893 sc->sc_dev.dv_xname);
1894 #endif
1895 }
1896 sc->sc_rxptr = i;
1897 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1898 }
1899 #ifdef GEM_COUNTERS
1900 if (progress <= 4) {
1901 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1902 } else if (progress < 32) {
1903 if (progress < 16)
1904 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1905 else
1906 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1907
1908 } else {
1909 if (progress < 64)
1910 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1911 else
1912 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1913 }
1914 #endif
1915
1916 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1917 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1918
1919 /* Read error counters ... */
1920 ifp->if_ierrors +=
1921 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1922 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1923 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1924 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1925
1926 /* ... then clear the hardware counters. */
1927 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1928 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1929 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1930 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1931
1932 return (1);
1933 }
1934
1935
1936 /*
1937 * gem_add_rxbuf:
1938 *
1939 * Add a receive buffer to the indicated descriptor.
1940 */
1941 int
1942 gem_add_rxbuf(struct gem_softc *sc, int idx)
1943 {
1944 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1945 struct mbuf *m;
1946 int error;
1947
1948 MGETHDR(m, M_DONTWAIT, MT_DATA);
1949 if (m == NULL)
1950 return (ENOBUFS);
1951
1952 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1953 MCLGET(m, M_DONTWAIT);
1954 if ((m->m_flags & M_EXT) == 0) {
1955 m_freem(m);
1956 return (ENOBUFS);
1957 }
1958
1959 #ifdef GEM_DEBUG
1960 /* bzero the packet to check DMA */
1961 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1962 #endif
1963
1964 if (rxs->rxs_mbuf != NULL)
1965 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1966
1967 rxs->rxs_mbuf = m;
1968
1969 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1970 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1971 BUS_DMA_READ|BUS_DMA_NOWAIT);
1972 if (error) {
1973 printf("%s: can't load rx DMA map %d, error = %d\n",
1974 sc->sc_dev.dv_xname, idx, error);
1975 panic("gem_add_rxbuf"); /* XXX */
1976 }
1977
1978 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1979 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1980
1981 GEM_INIT_RXDESC(sc, idx);
1982
1983 return (0);
1984 }
1985
1986
1987 int
1988 gem_eint(struct gem_softc *sc, u_int status)
1989 {
1990 char bits[128];
1991 u_int32_t v;
1992
1993 if ((status & GEM_INTR_MIF) != 0) {
1994 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1995 return (1);
1996 }
1997
1998 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
1999 gem_reset_rxdma(sc);
2000 return (1);
2001 }
2002
2003 if (status & GEM_INTR_BERR) {
2004 bus_space_read_4(sc->sc_bustag, sc->sc_h2, GEM_ERROR_STATUS);
2005 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2,
2006 GEM_ERROR_STATUS);
2007 printf("%s: bus error interrupt: 0x%02x\n",
2008 sc->sc_dev.dv_xname, v);
2009 return (1);
2010 }
2011
2012 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
2013 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
2014 return (1);
2015 }
2016
2017
2018 /*
2019 * PCS interrupts.
2020 * We should receive these when the link status changes, but sometimes
2021 * we don't receive them for link up. We compensate for this in the
2022 * gem_tick() callout.
2023 */
2024 int
2025 gem_pint(struct gem_softc *sc)
2026 {
2027 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2028 bus_space_tag_t t = sc->sc_bustag;
2029 bus_space_handle_t h = sc->sc_h1;
2030 u_int32_t v, v2;
2031
2032 /*
2033 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2034 * latched, so we have to read it twice. There is only one bit in
2035 * use, so the value is meaningless.
2036 */
2037 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2038 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2039
2040 if ((ifp->if_flags & IFF_UP) == 0)
2041 return 1;
2042
2043 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2044 return 1;
2045
2046 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2047 /* If we see remote fault, our link partner is probably going away */
2048 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2049 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2050 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2051 /* Otherwise, we may need to wait after auto-negotiation completes */
2052 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2053 GEM_MII_STATUS_ANEG_CPT) {
2054 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2055 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2056 }
2057 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2058 if (sc->sc_flags & GEM_LINK) {
2059 return 1;
2060 }
2061 callout_stop(&sc->sc_tick_ch);
2062 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2063 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2064 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2065 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2066 v &= v2;
2067 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2068 sc->sc_mii.mii_media_active |= IFM_FDX;
2069 #ifdef GEM_DEBUG
2070 aprint_debug("%s: link up: full duplex\n",
2071 sc->sc_dev.dv_xname);
2072 #endif
2073 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2074 sc->sc_mii.mii_media_active |= IFM_HDX;
2075 #ifdef GEM_DEBUG
2076 aprint_debug("%s: link up: half duplex\n",
2077 sc->sc_dev.dv_xname);
2078 #endif
2079 } else {
2080 #ifdef GEM_DEBUG
2081 aprint_debug("%s: duplex mismatch\n",
2082 sc->sc_dev.dv_xname);
2083 #endif
2084 }
2085 gem_statuschange(sc);
2086 } else {
2087 if ((sc->sc_flags & GEM_LINK) == 0) {
2088 return 1;
2089 }
2090 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2091 sc->sc_mii.mii_media_status = IFM_AVALID;
2092 #ifdef GEM_DEBUG
2093 aprint_debug("%s: link down\n",
2094 sc->sc_dev.dv_xname);
2095 #endif
2096 gem_statuschange(sc);
2097
2098 /* Start the 10 second timer */
2099 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2100 }
2101 return 1;
2102 }
2103
2104
2105
2106 int
2107 gem_intr(v)
2108 void *v;
2109 {
2110 struct gem_softc *sc = (struct gem_softc *)v;
2111 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2112 bus_space_tag_t t = sc->sc_bustag;
2113 bus_space_handle_t h = sc->sc_h1;
2114 u_int32_t status;
2115 int r = 0;
2116 #ifdef GEM_DEBUG
2117 char bits[128];
2118 #endif
2119
2120 /* XXX We should probably mask out interrupts until we're done */
2121
2122 sc->sc_ev_intr.ev_count++;
2123
2124 status = bus_space_read_4(t, h, GEM_STATUS);
2125 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2126 sc->sc_dev.dv_xname, (status >> 19),
2127 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
2128
2129 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2130 r |= gem_eint(sc, status);
2131
2132 /* We don't bother with GEM_INTR_TX_DONE */
2133 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2134 GEM_COUNTER_INCR(sc, sc_ev_txint);
2135 r |= gem_tint(sc);
2136 }
2137
2138 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2139 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2140 r |= gem_rint(sc);
2141 }
2142
2143 /* We should eventually do more than just print out error stats. */
2144 if (status & GEM_INTR_TX_MAC) {
2145 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2146 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2147 printf("%s: MAC tx fault, status %x\n",
2148 sc->sc_dev.dv_xname, txstat);
2149 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2150 gem_init(ifp);
2151 }
2152 if (status & GEM_INTR_RX_MAC) {
2153 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2154 /*
2155 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2156 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2157 * silicon bug so handle them silently. Moreover, it's
2158 * likely that the receiver has hung so we reset it.
2159 */
2160 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2161 ifp->if_ierrors++;
2162 gem_reset_rxdma(sc);
2163 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2164 printf("%s: MAC rx fault, status 0x%02x\n",
2165 sc->sc_dev.dv_xname, rxstat);
2166 }
2167 if (status & GEM_INTR_PCS) {
2168 r |= gem_pint(sc);
2169 }
2170
2171 /* Do we need to do anything with these?
2172 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2173 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2174 if ((status2 & GEM_MAC_PAUSED) != 0)
2175 aprintf_debug("%s: PAUSE received (%d slots)\n",
2176 GEM_MAC_PAUSE_TIME(status2), sc->sc_dev.dv_xname);
2177 if ((status2 & GEM_MAC_PAUSE) != 0)
2178 aprintf_debug("%s: transited to PAUSE state\n",
2179 sc->sc_dev.dv_xname);
2180 if ((status2 & GEM_MAC_RESUME) != 0)
2181 aprintf_debug("%s: transited to non-PAUSE state\n",
2182 sc->sc_dev.dv_xname);
2183 }
2184 if ((status & GEM_INTR_MIF) != 0)
2185 aprintf_debug("%s: MIF interrupt\n", sc->sc_dev.dv_xname);
2186 */
2187 #if NRND > 0
2188 rnd_add_uint32(&sc->rnd_source, status);
2189 #endif
2190 return (r);
2191 }
2192
2193
2194 void
2195 gem_watchdog(ifp)
2196 struct ifnet *ifp;
2197 {
2198 struct gem_softc *sc = ifp->if_softc;
2199
2200 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2201 "GEM_MAC_RX_CONFIG %x\n",
2202 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2203 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2204 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2205
2206 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
2207 ++ifp->if_oerrors;
2208
2209 /* Try to get more packets going. */
2210 gem_start(ifp);
2211 }
2212
2213 /*
2214 * Initialize the MII Management Interface
2215 */
2216 void
2217 gem_mifinit(sc)
2218 struct gem_softc *sc;
2219 {
2220 bus_space_tag_t t = sc->sc_bustag;
2221 bus_space_handle_t mif = sc->sc_h1;
2222
2223 /* Configure the MIF in frame mode */
2224 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2225 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2226 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2227 }
2228
2229 /*
2230 * MII interface
2231 *
2232 * The GEM MII interface supports at least three different operating modes:
2233 *
2234 * Bitbang mode is implemented using data, clock and output enable registers.
2235 *
2236 * Frame mode is implemented by loading a complete frame into the frame
2237 * register and polling the valid bit for completion.
2238 *
2239 * Polling mode uses the frame register but completion is indicated by
2240 * an interrupt.
2241 *
2242 */
2243 static int
2244 gem_mii_readreg(self, phy, reg)
2245 struct device *self;
2246 int phy, reg;
2247 {
2248 struct gem_softc *sc = (void *)self;
2249 bus_space_tag_t t = sc->sc_bustag;
2250 bus_space_handle_t mif = sc->sc_h1;
2251 int n;
2252 u_int32_t v;
2253
2254 #ifdef GEM_DEBUG1
2255 if (sc->sc_debug)
2256 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2257 #endif
2258
2259 /* Construct the frame command */
2260 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2261 GEM_MIF_FRAME_READ;
2262
2263 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2264 for (n = 0; n < 100; n++) {
2265 DELAY(1);
2266 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2267 if (v & GEM_MIF_FRAME_TA0)
2268 return (v & GEM_MIF_FRAME_DATA);
2269 }
2270
2271 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
2272 return (0);
2273 }
2274
2275 static void
2276 gem_mii_writereg(self, phy, reg, val)
2277 struct device *self;
2278 int phy, reg, val;
2279 {
2280 struct gem_softc *sc = (void *)self;
2281 bus_space_tag_t t = sc->sc_bustag;
2282 bus_space_handle_t mif = sc->sc_h1;
2283 int n;
2284 u_int32_t v;
2285
2286 #ifdef GEM_DEBUG1
2287 if (sc->sc_debug)
2288 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2289 phy, reg, val);
2290 #endif
2291
2292 /* Construct the frame command */
2293 v = GEM_MIF_FRAME_WRITE |
2294 (phy << GEM_MIF_PHY_SHIFT) |
2295 (reg << GEM_MIF_REG_SHIFT) |
2296 (val & GEM_MIF_FRAME_DATA);
2297
2298 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2299 for (n = 0; n < 100; n++) {
2300 DELAY(1);
2301 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2302 if (v & GEM_MIF_FRAME_TA0)
2303 return;
2304 }
2305
2306 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
2307 }
2308
2309 static void
2310 gem_mii_statchg(dev)
2311 struct device *dev;
2312 {
2313 struct gem_softc *sc = (void *)dev;
2314 #ifdef GEM_DEBUG
2315 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2316 #endif
2317
2318 #ifdef GEM_DEBUG
2319 if (sc->sc_debug)
2320 printf("gem_mii_statchg: status change: phy = %d\n",
2321 sc->sc_phys[instance]);
2322 #endif
2323 gem_statuschange(sc);
2324 }
2325
2326 /*
2327 * Common status change for gem_mii_statchg() and gem_pint()
2328 */
2329 void
2330 gem_statuschange(struct gem_softc* sc)
2331 {
2332 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2333 bus_space_tag_t t = sc->sc_bustag;
2334 bus_space_handle_t mac = sc->sc_h1;
2335 int gigabit;
2336 u_int32_t rxcfg, txcfg, v;
2337
2338 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2339 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2340 sc->sc_flags |= GEM_LINK;
2341 else
2342 sc->sc_flags &= ~GEM_LINK;
2343
2344 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2345 gigabit = 1;
2346 else
2347 gigabit = 0;
2348
2349 /*
2350 * The configuration done here corresponds to the steps F) and
2351 * G) and as far as enabling of RX and TX MAC goes also step H)
2352 * of the initialization sequence outlined in section 3.2.1 of
2353 * the GEM Gigabit Ethernet ASIC Specification.
2354 */
2355
2356 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2357 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2358 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2359 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2360 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2361 else if (gigabit) {
2362 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2363 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2364 }
2365 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2366 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2367 BUS_SPACE_BARRIER_WRITE);
2368 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2369 aprint_normal("%s: cannot disable TX MAC\n",
2370 sc->sc_dev.dv_xname);
2371 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2372 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2373 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2374 BUS_SPACE_BARRIER_WRITE);
2375 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2376 aprint_normal("%s: cannot disable RX MAC\n",
2377 sc->sc_dev.dv_xname);
2378 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2379
2380 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2381 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2382 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2383
2384 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2385 gigabit != 0)
2386 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2387 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2388 else
2389 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2390 GEM_MAC_SLOT_TIME_NORMAL);
2391
2392 /* XIF Configuration */
2393 if (sc->sc_flags & GEM_LINK)
2394 v = GEM_MAC_XIF_LINK_LED;
2395 else
2396 v = 0;
2397 v |= GEM_MAC_XIF_TX_MII_ENA;
2398
2399 /* If an external transceiver is connected, enable its MII drivers */
2400 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2401 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2402 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2403 /* External MII needs echo disable if half duplex. */
2404 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2405 IFM_FDX) != 0)
2406 /* turn on full duplex LED */
2407 v |= GEM_MAC_XIF_FDPLX_LED;
2408 else
2409 /* half duplex -- disable echo */
2410 v |= GEM_MAC_XIF_ECHO_DISABL;
2411 if (gigabit)
2412 v |= GEM_MAC_XIF_GMII_MODE;
2413 else
2414 v &= ~GEM_MAC_XIF_GMII_MODE;
2415 } else
2416 /* Internal MII needs buf enable */
2417 v |= GEM_MAC_XIF_MII_BUF_ENA;
2418 } else {
2419 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2420 v |= GEM_MAC_XIF_FDPLX_LED;
2421 v |= GEM_MAC_XIF_GMII_MODE;
2422 }
2423 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2424
2425 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2426 (sc->sc_flags & GEM_LINK) != 0) {
2427 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2428 txcfg | GEM_MAC_TX_ENABLE);
2429 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2430 rxcfg | GEM_MAC_RX_ENABLE);
2431 }
2432 }
2433
2434 int
2435 gem_ser_mediachange(struct ifnet *ifp)
2436 {
2437 struct gem_softc *sc = ifp->if_softc;
2438 u_int s, t;
2439
2440 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2441 return EINVAL;
2442
2443 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2444 if (s == IFM_AUTO) {
2445 if (sc->sc_mii_media != s) {
2446 #ifdef GEM_DEBUG
2447 aprint_debug("%s: setting media to auto\n",
2448 sc->sc_dev.dv_xname);
2449 #endif
2450 sc->sc_mii_media = s;
2451 if (ifp->if_flags & IFF_UP) {
2452 gem_pcs_stop(sc, 0);
2453 gem_pcs_start(sc);
2454 }
2455 }
2456 return 0;
2457 }
2458 if (s == IFM_1000_SX) {
2459 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2460 if (t == IFM_FDX || t == IFM_HDX) {
2461 if (sc->sc_mii_media != t) {
2462 sc->sc_mii_media = t;
2463 #ifdef GEM_DEBUG
2464 aprint_debug("%s:"
2465 " setting media to 1000baseSX-%s\n",
2466 sc->sc_dev.dv_xname,
2467 t == IFM_FDX ? "FDX" : "HDX");
2468 #endif
2469 if (ifp->if_flags & IFF_UP) {
2470 gem_pcs_stop(sc, 0);
2471 gem_pcs_start(sc);
2472 }
2473 }
2474 return 0;
2475 }
2476 }
2477 return EINVAL;
2478 }
2479
2480 void
2481 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2482 {
2483 struct gem_softc *sc = ifp->if_softc;
2484
2485 if ((ifp->if_flags & IFF_UP) == 0)
2486 return;
2487 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2488 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2489 }
2490
2491 /*
2492 * Process an ioctl request.
2493 */
2494 int
2495 gem_ioctl(ifp, cmd, data)
2496 struct ifnet *ifp;
2497 u_long cmd;
2498 void *data;
2499 {
2500 struct gem_softc *sc = ifp->if_softc;
2501 int s, error = 0;
2502
2503 s = splnet();
2504
2505 switch (cmd) {
2506 case SIOCSIFFLAGS:
2507 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
2508 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
2509 == (IFF_UP|IFF_RUNNING))
2510 && ((ifp->if_flags & (~RESETIGN))
2511 == (sc->sc_if_flags & (~RESETIGN)))) {
2512 gem_setladrf(sc);
2513 break;
2514 }
2515 #undef RESETIGN
2516 /*FALLTHROUGH*/
2517 default:
2518 error = ether_ioctl(ifp, cmd, data);
2519 if (error == ENETRESET) {
2520 /*
2521 * Multicast list has changed; set the hardware filter
2522 * accordingly.
2523 */
2524 if (ifp->if_flags & IFF_RUNNING)
2525 gem_setladrf(sc);
2526 error = 0;
2527 }
2528 break;
2529 }
2530
2531 /* Try to get things going again */
2532 if (ifp->if_flags & IFF_UP)
2533 gem_start(ifp);
2534 splx(s);
2535 return (error);
2536 }
2537
2538
2539 void
2540 gem_shutdown(arg)
2541 void *arg;
2542 {
2543 struct gem_softc *sc = (struct gem_softc *)arg;
2544 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2545
2546 gem_stop(ifp, 1);
2547 }
2548
2549 /*
2550 * Set up the logical address filter.
2551 */
2552 void
2553 gem_setladrf(sc)
2554 struct gem_softc *sc;
2555 {
2556 struct ethercom *ec = &sc->sc_ethercom;
2557 struct ifnet *ifp = &ec->ec_if;
2558 struct ether_multi *enm;
2559 struct ether_multistep step;
2560 bus_space_tag_t t = sc->sc_bustag;
2561 bus_space_handle_t h = sc->sc_h1;
2562 u_int32_t crc;
2563 u_int32_t hash[16];
2564 u_int32_t v;
2565 int i;
2566
2567 /* Get current RX configuration */
2568 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2569
2570 /*
2571 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2572 * and hash filter. Depending on the case, the right bit will be
2573 * enabled.
2574 */
2575 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2576 GEM_MAC_RX_PROMISC_GRP);
2577
2578 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2579 /* Turn on promiscuous mode */
2580 v |= GEM_MAC_RX_PROMISCUOUS;
2581 ifp->if_flags |= IFF_ALLMULTI;
2582 goto chipit;
2583 }
2584
2585 /*
2586 * Set up multicast address filter by passing all multicast addresses
2587 * through a crc generator, and then using the high order 8 bits as an
2588 * index into the 256 bit logical address filter. The high order 4
2589 * bits selects the word, while the other 4 bits select the bit within
2590 * the word (where bit 0 is the MSB).
2591 */
2592
2593 /* Clear hash table */
2594 memset(hash, 0, sizeof(hash));
2595
2596 ETHER_FIRST_MULTI(step, ec, enm);
2597 while (enm != NULL) {
2598 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2599 /*
2600 * We must listen to a range of multicast addresses.
2601 * For now, just accept all multicasts, rather than
2602 * trying to set only those filter bits needed to match
2603 * the range. (At this time, the only use of address
2604 * ranges is for IP multicast routing, for which the
2605 * range is big enough to require all bits set.)
2606 * XXX should use the address filters for this
2607 */
2608 ifp->if_flags |= IFF_ALLMULTI;
2609 v |= GEM_MAC_RX_PROMISC_GRP;
2610 goto chipit;
2611 }
2612
2613 /* Get the LE CRC32 of the address */
2614 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2615
2616 /* Just want the 8 most significant bits. */
2617 crc >>= 24;
2618
2619 /* Set the corresponding bit in the filter. */
2620 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2621
2622 ETHER_NEXT_MULTI(step, enm);
2623 }
2624
2625 v |= GEM_MAC_RX_HASH_FILTER;
2626 ifp->if_flags &= ~IFF_ALLMULTI;
2627
2628 /* Now load the hash table into the chip (if we are using it) */
2629 for (i = 0; i < 16; i++) {
2630 bus_space_write_4(t, h,
2631 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2632 hash[i]);
2633 }
2634
2635 chipit:
2636 sc->sc_if_flags = ifp->if_flags;
2637 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2638 }
2639
2640 #if notyet
2641
2642 /*
2643 * gem_power:
2644 *
2645 * Power management (suspend/resume) hook.
2646 */
2647 void
2648 gem_power(why, arg)
2649 int why;
2650 void *arg;
2651 {
2652 struct gem_softc *sc = arg;
2653 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2654 int s;
2655
2656 s = splnet();
2657 switch (why) {
2658 case PWR_SUSPEND:
2659 case PWR_STANDBY:
2660 gem_stop(ifp, 1);
2661 if (sc->sc_power != NULL)
2662 (*sc->sc_power)(sc, why);
2663 break;
2664 case PWR_RESUME:
2665 if (ifp->if_flags & IFF_UP) {
2666 if (sc->sc_power != NULL)
2667 (*sc->sc_power)(sc, why);
2668 gem_init(ifp);
2669 }
2670 break;
2671 case PWR_SOFTSUSPEND:
2672 case PWR_SOFTSTANDBY:
2673 case PWR_SOFTRESUME:
2674 break;
2675 }
2676 splx(s);
2677 }
2678 #endif
2679