Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.74
      1 /*	$NetBSD: gem.c,v 1.74 2008/02/07 01:21:53 dyoung Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * Copyright (c) 2001-2003 Thomas Moestl
      7  * All rights reserved.
      8  *
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 /*
     34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
     35  * See `GEM Gigabit Ethernet ASIC Specification'
     36  *   http://www.sun.com/processors/manuals/ge.pdf
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.74 2008/02/07 01:21:53 dyoung Exp $");
     41 
     42 #include "opt_inet.h"
     43 #include "bpfilter.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/callout.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/malloc.h>
     51 #include <sys/kernel.h>
     52 #include <sys/socket.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #include <sys/device.h>
     56 
     57 #include <machine/endian.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 #include <net/if.h>
     62 #include <net/if_dl.h>
     63 #include <net/if_media.h>
     64 #include <net/if_ether.h>
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/in_var.h>
     70 #include <netinet/ip.h>
     71 #include <netinet/tcp.h>
     72 #include <netinet/udp.h>
     73 #endif
     74 
     75 #if NBPFILTER > 0
     76 #include <net/bpf.h>
     77 #endif
     78 
     79 #include <sys/bus.h>
     80 #include <sys/intr.h>
     81 
     82 #include <dev/mii/mii.h>
     83 #include <dev/mii/miivar.h>
     84 #include <dev/mii/mii_bitbang.h>
     85 
     86 #include <dev/ic/gemreg.h>
     87 #include <dev/ic/gemvar.h>
     88 
     89 #define TRIES	10000
     90 
     91 static void	gem_start(struct ifnet *);
     92 static void	gem_stop(struct ifnet *, int);
     93 int		gem_ioctl(struct ifnet *, u_long, void *);
     94 void		gem_tick(void *);
     95 void		gem_watchdog(struct ifnet *);
     96 void		gem_shutdown(void *);
     97 void		gem_pcs_start(struct gem_softc *sc);
     98 void		gem_pcs_stop(struct gem_softc *sc, int);
     99 int		gem_init(struct ifnet *);
    100 void		gem_init_regs(struct gem_softc *sc);
    101 static int	gem_ringsize(int sz);
    102 static int	gem_meminit(struct gem_softc *);
    103 void		gem_mifinit(struct gem_softc *);
    104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
    105 		    u_int32_t, u_int32_t);
    106 void		gem_reset(struct gem_softc *);
    107 int		gem_reset_rx(struct gem_softc *sc);
    108 static void	gem_reset_rxdma(struct gem_softc *sc);
    109 static void	gem_rx_common(struct gem_softc *sc);
    110 int		gem_reset_tx(struct gem_softc *sc);
    111 int		gem_disable_rx(struct gem_softc *sc);
    112 int		gem_disable_tx(struct gem_softc *sc);
    113 static void	gem_rxdrain(struct gem_softc *sc);
    114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    115 void		gem_setladrf(struct gem_softc *);
    116 
    117 /* MII methods & callbacks */
    118 static int	gem_mii_readreg(struct device *, int, int);
    119 static void	gem_mii_writereg(struct device *, int, int, int);
    120 static void	gem_mii_statchg(struct device *);
    121 
    122 void		gem_statuschange(struct gem_softc *);
    123 
    124 int		gem_ser_mediachange(struct ifnet *);
    125 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
    126 
    127 struct mbuf	*gem_get(struct gem_softc *, int, int);
    128 int		gem_put(struct gem_softc *, int, struct mbuf *);
    129 void		gem_read(struct gem_softc *, int, int);
    130 int		gem_pint(struct gem_softc *);
    131 int		gem_eint(struct gem_softc *, u_int);
    132 int		gem_rint(struct gem_softc *);
    133 int		gem_tint(struct gem_softc *);
    134 void		gem_power(int, void *);
    135 
    136 #ifdef GEM_DEBUG
    137 static void gem_txsoft_print(const struct gem_softc *, int, int);
    138 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    139 				printf x
    140 #else
    141 #define	DPRINTF(sc, x)	/* nothing */
    142 #endif
    143 
    144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    145 
    146 
    147 /*
    148  * gem_attach:
    149  *
    150  *	Attach a Gem interface to the system.
    151  */
    152 void
    153 gem_attach(sc, enaddr)
    154 	struct gem_softc *sc;
    155 	const uint8_t *enaddr;
    156 {
    157 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    158 	struct mii_data *mii = &sc->sc_mii;
    159 	bus_space_tag_t t = sc->sc_bustag;
    160 	bus_space_handle_t h = sc->sc_h1;
    161 	struct ifmedia_entry *ifm;
    162 	int i, error;
    163 	u_int32_t v;
    164 	char *nullbuf;
    165 
    166 	/* Make sure the chip is stopped. */
    167 	ifp->if_softc = sc;
    168 	gem_reset(sc);
    169 
    170 	/*
    171 	 * Allocate the control data structures, and create and load the
    172 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    173 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    174 	 */
    175 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    176 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    177 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    178 		aprint_error(
    179 		   "%s: unable to allocate control data, error = %d\n",
    180 		    sc->sc_dev.dv_xname, error);
    181 		goto fail_0;
    182 	}
    183 
    184 	/* XXX should map this in with correct endianness */
    185 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    186 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
    187 	    BUS_DMA_COHERENT)) != 0) {
    188 		aprint_error("%s: unable to map control data, error = %d\n",
    189 		    sc->sc_dev.dv_xname, error);
    190 		goto fail_1;
    191 	}
    192 
    193 	nullbuf =
    194 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    195 
    196 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    197 	    sizeof(struct gem_control_data), 1,
    198 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    199 		aprint_error("%s: unable to create control data DMA map, "
    200 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    201 		goto fail_2;
    202 	}
    203 
    204 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    205 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    206 	    0)) != 0) {
    207 		aprint_error(
    208 		    "%s: unable to load control data DMA map, error = %d\n",
    209 		    sc->sc_dev.dv_xname, error);
    210 		goto fail_3;
    211 	}
    212 
    213 	memset(nullbuf, 0, ETHER_MIN_TX);
    214 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    215 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    216 		aprint_error("%s: unable to create padding DMA map, "
    217 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    218 		goto fail_4;
    219 	}
    220 
    221 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    222 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    223 		aprint_error(
    224 		    "%s: unable to load padding DMA map, error = %d\n",
    225 		    sc->sc_dev.dv_xname, error);
    226 		goto fail_5;
    227 	}
    228 
    229 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    230 	    BUS_DMASYNC_PREWRITE);
    231 
    232 	/*
    233 	 * Initialize the transmit job descriptors.
    234 	 */
    235 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    236 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    237 
    238 	/*
    239 	 * Create the transmit buffer DMA maps.
    240 	 */
    241 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    242 		struct gem_txsoft *txs;
    243 
    244 		txs = &sc->sc_txsoft[i];
    245 		txs->txs_mbuf = NULL;
    246 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    247 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    248 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    249 		    &txs->txs_dmamap)) != 0) {
    250 			aprint_error("%s: unable to create tx DMA map %d, "
    251 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    252 			goto fail_6;
    253 		}
    254 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    255 	}
    256 
    257 	/*
    258 	 * Create the receive buffer DMA maps.
    259 	 */
    260 	for (i = 0; i < GEM_NRXDESC; i++) {
    261 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    262 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    263 			aprint_error("%s: unable to create rx DMA map %d, "
    264 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    265 			goto fail_7;
    266 		}
    267 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    268 	}
    269 
    270 	/* Initialize ifmedia structures and MII info */
    271 	mii->mii_ifp = ifp;
    272 	mii->mii_readreg = gem_mii_readreg;
    273 	mii->mii_writereg = gem_mii_writereg;
    274 	mii->mii_statchg = gem_mii_statchg;
    275 
    276 	sc->sc_ethercom.ec_mii = mii;
    277 
    278 	/*
    279 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
    280 	 * Section 3.2.1 `Initialization Sequence'.
    281 	 * However, we can't assume SERDES or Serialink if neither
    282 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
    283 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
    284 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
    285 	 * Also, for Apple variants with 2 PHY's, we prefer the external
    286 	 * PHY over the internal PHY.
    287 	 */
    288 	gem_mifinit(sc);
    289 
    290 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
    291 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    292 		    ether_mediastatus);
    293 		mii_attach(&sc->sc_dev, mii, 0xffffffff,
    294 		    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    295 		if (LIST_EMPTY(&mii->mii_phys)) {
    296 				/* No PHY attached */
    297 				aprint_error("%s: PHY probe failed\n",
    298 				    sc->sc_dev.dv_xname);
    299 				goto fail_7;
    300 		} else {
    301 			struct mii_softc *child;
    302 
    303 			/*
    304 			 * Walk along the list of attached MII devices and
    305 			 * establish an `MII instance' to `PHY number'
    306 			 * mapping.
    307 			 */
    308 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
    309 				/*
    310 				 * Note: we support just one PHY: the internal
    311 				 * or external MII is already selected for us
    312 				 * by the GEM_MIF_CONFIG  register.
    313 				 */
    314 				if (child->mii_phy > 1 || child->mii_inst > 0) {
    315 					aprint_error(
    316 					    "%s: cannot accommodate MII device"
    317 					    " %s at PHY %d, instance %d\n",
    318 					       sc->sc_dev.dv_xname,
    319 					       child->mii_dev.dv_xname,
    320 					       child->mii_phy, child->mii_inst);
    321 					continue;
    322 				}
    323 				sc->sc_phys[child->mii_inst] = child->mii_phy;
    324 			}
    325 
    326 			/*
    327 			 * Now select and activate the PHY we will use.
    328 			 *
    329 			 * The order of preference is External (MDI1),
    330 			 * then Internal (MDI0),
    331 			 */
    332 			if (sc->sc_phys[1]) {
    333 #ifdef GEM_DEBUG
    334 				aprint_debug("%s: using external PHY\n",
    335 				    sc->sc_dev.dv_xname);
    336 #endif
    337 				sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    338 			} else {
    339 #ifdef GEM_DEBUG
    340 				aprint_debug("%s: using internal PHY\n",
    341 				    sc->sc_dev.dv_xname);
    342 				sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    343 #endif
    344 			}
    345 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    346 			    sc->sc_mif_config);
    347 			if (sc->sc_variant != GEM_SUN_ERI)
    348 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    349 				    GEM_MII_DATAPATH_MII);
    350 
    351 			/*
    352 			 * XXX - we can really do the following ONLY if the
    353 			 * PHY indeed has the auto negotiation capability!!
    354 			 */
    355 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    356 		}
    357 	} else {
    358 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
    359 		    gem_ser_mediastatus);
    360 		/* SERDES or Serialink */
    361 		if (sc->sc_flags & GEM_SERDES) {
    362 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    363 			    GEM_MII_DATAPATH_SERDES);
    364 		} else {
    365 			sc->sc_flags |= GEM_SERIAL;
    366 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    367 			    GEM_MII_DATAPATH_SERIAL);
    368 		}
    369 
    370 		aprint_normal("%s: using external PCS %s: ",
    371 		    sc->sc_dev.dv_xname,
    372 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
    373 
    374 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    375 		/* Check for FDX and HDX capabilities */
    376 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
    377 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
    378 			ifmedia_add(&sc->sc_mii.mii_media,
    379 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
    380 			aprint_normal("1000baseSX-FDX, ");
    381 		}
    382 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
    383 			ifmedia_add(&sc->sc_mii.mii_media,
    384 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
    385 			aprint_normal("1000baseSX-HDX, ");
    386 		}
    387 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    388 		sc->sc_mii_media = IFM_AUTO;
    389 		aprint_normal("auto\n");
    390 
    391 		gem_pcs_stop(sc, 1);
    392 	}
    393 
    394 	/*
    395 	 * From this point forward, the attachment cannot fail.  A failure
    396 	 * before this point releases all resources that may have been
    397 	 * allocated.
    398 	 */
    399 
    400 	/* Announce ourselves. */
    401 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
    402 	    ether_sprintf(enaddr));
    403 
    404 	/* Get RX FIFO size */
    405 	sc->sc_rxfifosize = 64 *
    406 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
    407 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    408 
    409 	/* Get TX FIFO size */
    410 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
    411 	aprint_normal(", %uKB TX fifo\n", v / 16);
    412 
    413 	/* Initialize ifnet structure. */
    414 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    415 	ifp->if_softc = sc;
    416 	ifp->if_flags =
    417 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    418 	sc->sc_if_flags = ifp->if_flags;
    419 	/*
    420 	 * The GEM hardware supports basic TCP checksum offloading only.
    421 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
    422 	 * have bugs in the receive checksum, so don't enable it for now.
    423 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
    424 	    (GEM_IS_APPLE(sc) &&
    425 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
    426 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
    427 	*/
    428 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
    429 	ifp->if_start = gem_start;
    430 	ifp->if_ioctl = gem_ioctl;
    431 	ifp->if_watchdog = gem_watchdog;
    432 	ifp->if_stop = gem_stop;
    433 	ifp->if_init = gem_init;
    434 	IFQ_SET_READY(&ifp->if_snd);
    435 
    436 	/*
    437 	 * If we support GigE media, we support jumbo frames too.
    438 	 * Unless we are Apple.
    439 	 */
    440 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
    441 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    442 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    443 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    444 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    445 			if (!GEM_IS_APPLE(sc))
    446 				sc->sc_ethercom.ec_capabilities
    447 				    |= ETHERCAP_JUMBO_MTU;
    448 			sc->sc_flags |= GEM_GIGABIT;
    449 			break;
    450 		}
    451 	}
    452 
    453 	/* claim 802.1q capability */
    454 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    455 
    456 	/* Attach the interface. */
    457 	if_attach(ifp);
    458 	ether_ifattach(ifp, enaddr);
    459 
    460 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    461 	if (sc->sc_sh == NULL)
    462 		panic("gem_config: can't establish shutdownhook");
    463 
    464 #if NRND > 0
    465 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    466 			  RND_TYPE_NET, 0);
    467 #endif
    468 
    469 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    470 	    NULL, sc->sc_dev.dv_xname, "interrupts");
    471 #ifdef GEM_COUNTERS
    472 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    473 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
    474 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    475 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
    476 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    477 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
    478 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    479 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
    480 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    481 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
    482 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    483 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
    484 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    485 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
    486 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    487 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
    488 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    489 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
    490 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    491 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
    492 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    493 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
    494 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    495 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
    496 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    497 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
    498 #endif
    499 
    500 #if notyet
    501 	/*
    502 	 * Add a suspend hook to make sure we come back up after a
    503 	 * resume.
    504 	 */
    505 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
    506 	    gem_power, sc);
    507 	if (sc->sc_powerhook == NULL)
    508 		aprint_error("%s: WARNING: unable to establish power hook\n",
    509 		    sc->sc_dev.dv_xname);
    510 #endif
    511 
    512 	callout_init(&sc->sc_tick_ch, 0);
    513 	return;
    514 
    515 	/*
    516 	 * Free any resources we've allocated during the failed attach
    517 	 * attempt.  Do this in reverse order and fall through.
    518 	 */
    519  fail_7:
    520 	for (i = 0; i < GEM_NRXDESC; i++) {
    521 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    522 			bus_dmamap_destroy(sc->sc_dmatag,
    523 			    sc->sc_rxsoft[i].rxs_dmamap);
    524 	}
    525  fail_6:
    526 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    527 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    528 			bus_dmamap_destroy(sc->sc_dmatag,
    529 			    sc->sc_txsoft[i].txs_dmamap);
    530 	}
    531 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    532  fail_5:
    533 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    534  fail_4:
    535 	bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
    536  fail_3:
    537 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    538  fail_2:
    539 	bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
    540 	    sizeof(struct gem_control_data));
    541  fail_1:
    542 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    543  fail_0:
    544 	return;
    545 }
    546 
    547 
    548 void
    549 gem_tick(arg)
    550 	void *arg;
    551 {
    552 	struct gem_softc *sc = arg;
    553 	int s;
    554 
    555 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
    556 		/*
    557 		 * We have to reset everything if we failed to get a
    558 		 * PCS interrupt.  Restarting the callout is handled
    559 		 * in gem_pcs_start().
    560 		 */
    561 		gem_init(&sc->sc_ethercom.ec_if);
    562 	} else {
    563 		s = splnet();
    564 		mii_tick(&sc->sc_mii);
    565 		splx(s);
    566 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    567 	}
    568 }
    569 
    570 static int
    571 gem_bitwait(sc, h, r, clr, set)
    572 	struct gem_softc *sc;
    573 	bus_space_handle_t h;
    574 	int r;
    575 	u_int32_t clr;
    576 	u_int32_t set;
    577 {
    578 	int i;
    579 	u_int32_t reg;
    580 
    581 	for (i = TRIES; i--; DELAY(100)) {
    582 		reg = bus_space_read_4(sc->sc_bustag, h, r);
    583 		if ((reg & clr) == 0 && (reg & set) == set)
    584 			return (1);
    585 	}
    586 	return (0);
    587 }
    588 
    589 void
    590 gem_reset(sc)
    591 	struct gem_softc *sc;
    592 {
    593 	bus_space_tag_t t = sc->sc_bustag;
    594 	bus_space_handle_t h = sc->sc_h2;
    595 	int s;
    596 
    597 	s = splnet();
    598 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    599 	gem_reset_rx(sc);
    600 	gem_reset_tx(sc);
    601 
    602 	/* Do a full reset */
    603 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    604 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    605 		printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
    606 	splx(s);
    607 }
    608 
    609 
    610 /*
    611  * gem_rxdrain:
    612  *
    613  *	Drain the receive queue.
    614  */
    615 static void
    616 gem_rxdrain(struct gem_softc *sc)
    617 {
    618 	struct gem_rxsoft *rxs;
    619 	int i;
    620 
    621 	for (i = 0; i < GEM_NRXDESC; i++) {
    622 		rxs = &sc->sc_rxsoft[i];
    623 		if (rxs->rxs_mbuf != NULL) {
    624 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    625 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    626 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    627 			m_freem(rxs->rxs_mbuf);
    628 			rxs->rxs_mbuf = NULL;
    629 		}
    630 	}
    631 }
    632 
    633 /*
    634  * Reset the whole thing.
    635  */
    636 static void
    637 gem_stop(struct ifnet *ifp, int disable)
    638 {
    639 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    640 	struct gem_txsoft *txs;
    641 
    642 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    643 
    644 	callout_stop(&sc->sc_tick_ch);
    645 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
    646 		gem_pcs_stop(sc, disable);
    647 	else
    648 		mii_down(&sc->sc_mii);
    649 
    650 	/* XXX - Should we reset these instead? */
    651 	gem_disable_tx(sc);
    652 	gem_disable_rx(sc);
    653 
    654 	/*
    655 	 * Release any queued transmit buffers.
    656 	 */
    657 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    658 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    659 		if (txs->txs_mbuf != NULL) {
    660 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    661 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    662 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    663 			m_freem(txs->txs_mbuf);
    664 			txs->txs_mbuf = NULL;
    665 		}
    666 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    667 	}
    668 
    669 	if (disable) {
    670 		gem_rxdrain(sc);
    671 	}
    672 
    673 	/*
    674 	 * Mark the interface down and cancel the watchdog timer.
    675 	 */
    676 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    677 	sc->sc_if_flags = ifp->if_flags;
    678 	ifp->if_timer = 0;
    679 }
    680 
    681 
    682 /*
    683  * Reset the receiver
    684  */
    685 int
    686 gem_reset_rx(struct gem_softc *sc)
    687 {
    688 	bus_space_tag_t t = sc->sc_bustag;
    689 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    690 
    691 	/*
    692 	 * Resetting while DMA is in progress can cause a bus hang, so we
    693 	 * disable DMA first.
    694 	 */
    695 	gem_disable_rx(sc);
    696 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    697 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    698 	/* Wait till it finishes */
    699 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
    700 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    701 
    702 	/* Finally, reset the ERX */
    703 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
    704 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    705 	/* Wait till it finishes */
    706 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
    707 		printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
    708 		return (1);
    709 	}
    710 	return (0);
    711 }
    712 
    713 
    714 /*
    715  * Reset the receiver DMA engine.
    716  *
    717  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
    718  * etc in order to reset the receiver DMA engine only and not do a full
    719  * reset which amongst others also downs the link and clears the FIFOs.
    720  */
    721 static void
    722 gem_reset_rxdma(struct gem_softc *sc)
    723 {
    724 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    725 	bus_space_tag_t t = sc->sc_bustag;
    726 	bus_space_handle_t h = sc->sc_h1;
    727 	int i;
    728 
    729 	if (gem_reset_rx(sc) != 0) {
    730 		gem_init(ifp);
    731 		return;
    732 	}
    733 	for (i = 0; i < GEM_NRXDESC; i++)
    734 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
    735 			GEM_UPDATE_RXDESC(sc, i);
    736 	sc->sc_rxptr = 0;
    737 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    738 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    739 
    740 	/* Reprogram Descriptor Ring Base Addresses */
    741 	/* NOTE: we use only 32-bit DMA addresses here. */
    742 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    743 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    744 
    745 	/* Redo ERX Configuration */
    746 	gem_rx_common(sc);
    747 
    748 	/* Give the reciever a swift kick */
    749 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
    750 }
    751 
    752 /*
    753  * Common RX configuration for gem_init() and gem_reset_rxdma().
    754  */
    755 static void
    756 gem_rx_common(struct gem_softc *sc)
    757 {
    758 	bus_space_tag_t t = sc->sc_bustag;
    759 	bus_space_handle_t h = sc->sc_h1;
    760 	u_int32_t v;
    761 
    762 	/* Encode Receive Descriptor ring size: four possible values */
    763 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    764 
    765 	/* Set receive h/w checksum offset */
    766 #ifdef INET
    767 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    768 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    769 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    770 #endif
    771 
    772 	/* Enable RX DMA */
    773 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    774 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
    775 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
    776 
    777 	/*
    778 	 * The following value is for an OFF Threshold of about 3/4 full
    779 	 * and an ON Threshold of 1/4 full.
    780 	 */
    781 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    782 	    (3 * sc->sc_rxfifosize / 256) |
    783 	    ((sc->sc_rxfifosize / 256) << 12));
    784 	bus_space_write_4(t, h, GEM_RX_BLANKING,
    785 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
    786 }
    787 
    788 /*
    789  * Reset the transmitter
    790  */
    791 int
    792 gem_reset_tx(struct gem_softc *sc)
    793 {
    794 	bus_space_tag_t t = sc->sc_bustag;
    795 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    796 
    797 	/*
    798 	 * Resetting while DMA is in progress can cause a bus hang, so we
    799 	 * disable DMA first.
    800 	 */
    801 	gem_disable_tx(sc);
    802 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    803 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    804 	/* Wait till it finishes */
    805 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
    806 		printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
    807 	/* Wait 5ms extra. */
    808 	delay(5000);
    809 
    810 	/* Finally, reset the ETX */
    811 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
    812 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    813 	/* Wait till it finishes */
    814 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
    815 		printf("%s: cannot reset receiver\n",
    816 			sc->sc_dev.dv_xname);
    817 		return (1);
    818 	}
    819 	return (0);
    820 }
    821 
    822 /*
    823  * disable receiver.
    824  */
    825 int
    826 gem_disable_rx(struct gem_softc *sc)
    827 {
    828 	bus_space_tag_t t = sc->sc_bustag;
    829 	bus_space_handle_t h = sc->sc_h1;
    830 	u_int32_t cfg;
    831 
    832 	/* Flip the enable bit */
    833 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    834 	cfg &= ~GEM_MAC_RX_ENABLE;
    835 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    836 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    837 	/* Wait for it to finish */
    838 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    839 }
    840 
    841 /*
    842  * disable transmitter.
    843  */
    844 int
    845 gem_disable_tx(struct gem_softc *sc)
    846 {
    847 	bus_space_tag_t t = sc->sc_bustag;
    848 	bus_space_handle_t h = sc->sc_h1;
    849 	u_int32_t cfg;
    850 
    851 	/* Flip the enable bit */
    852 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    853 	cfg &= ~GEM_MAC_TX_ENABLE;
    854 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    855 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    856 	/* Wait for it to finish */
    857 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    858 }
    859 
    860 /*
    861  * Initialize interface.
    862  */
    863 int
    864 gem_meminit(struct gem_softc *sc)
    865 {
    866 	struct gem_rxsoft *rxs;
    867 	int i, error;
    868 
    869 	/*
    870 	 * Initialize the transmit descriptor ring.
    871 	 */
    872 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    873 	for (i = 0; i < GEM_NTXDESC; i++) {
    874 		sc->sc_txdescs[i].gd_flags = 0;
    875 		sc->sc_txdescs[i].gd_addr = 0;
    876 	}
    877 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    878 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    879 	sc->sc_txfree = GEM_NTXDESC-1;
    880 	sc->sc_txnext = 0;
    881 	sc->sc_txwin = 0;
    882 
    883 	/*
    884 	 * Initialize the receive descriptor and receive job
    885 	 * descriptor rings.
    886 	 */
    887 	for (i = 0; i < GEM_NRXDESC; i++) {
    888 		rxs = &sc->sc_rxsoft[i];
    889 		if (rxs->rxs_mbuf == NULL) {
    890 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    891 				printf("%s: unable to allocate or map rx "
    892 				    "buffer %d, error = %d\n",
    893 				    sc->sc_dev.dv_xname, i, error);
    894 				/*
    895 				 * XXX Should attempt to run with fewer receive
    896 				 * XXX buffers instead of just failing.
    897 				 */
    898 				gem_rxdrain(sc);
    899 				return (1);
    900 			}
    901 		} else
    902 			GEM_INIT_RXDESC(sc, i);
    903 	}
    904 	sc->sc_rxptr = 0;
    905 	sc->sc_meminited = 1;
    906 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    907 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    908 
    909 	return (0);
    910 }
    911 
    912 static int
    913 gem_ringsize(int sz)
    914 {
    915 	switch (sz) {
    916 	case 32:
    917 		return GEM_RING_SZ_32;
    918 	case 64:
    919 		return GEM_RING_SZ_64;
    920 	case 128:
    921 		return GEM_RING_SZ_128;
    922 	case 256:
    923 		return GEM_RING_SZ_256;
    924 	case 512:
    925 		return GEM_RING_SZ_512;
    926 	case 1024:
    927 		return GEM_RING_SZ_1024;
    928 	case 2048:
    929 		return GEM_RING_SZ_2048;
    930 	case 4096:
    931 		return GEM_RING_SZ_4096;
    932 	case 8192:
    933 		return GEM_RING_SZ_8192;
    934 	default:
    935 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    936 		return GEM_RING_SZ_32;
    937 	}
    938 }
    939 
    940 
    941 /*
    942  * Start PCS
    943  */
    944 void
    945 gem_pcs_start(struct gem_softc *sc)
    946 {
    947 	bus_space_tag_t t = sc->sc_bustag;
    948 	bus_space_handle_t h = sc->sc_h1;
    949 	uint32_t v;
    950 
    951 #ifdef GEM_DEBUG
    952 	aprint_debug("%s: gem_pcs_start()\n", sc->sc_dev.dv_xname);
    953 #endif
    954 
    955 	/*
    956 	 * Set up.  We must disable the MII before modifying the
    957 	 * GEM_MII_ANAR register
    958 	 */
    959 	if (sc->sc_flags & GEM_SERDES) {
    960 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    961 		    GEM_MII_DATAPATH_SERDES);
    962 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
    963 		    GEM_MII_SLINK_LOOPBACK);
    964 	} else {
    965 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    966 		    GEM_MII_DATAPATH_SERIAL);
    967 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
    968 	}
    969 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
    970 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
    971 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
    972 	if (sc->sc_mii_media == IFM_AUTO)
    973 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
    974 	else if (sc->sc_mii_media == IFM_FDX) {
    975 		v |= GEM_MII_ANEG_FUL_DUPLX;
    976 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
    977 	} else if (sc->sc_mii_media == IFM_HDX) {
    978 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
    979 		v |= GEM_MII_ANEG_HLF_DUPLX;
    980 	}
    981 
    982 	/* Configure link. */
    983 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
    984 	bus_space_write_4(t, h, GEM_MII_CONTROL,
    985 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
    986 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
    987 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
    988 
    989 	/* Start the 10 second timer */
    990 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
    991 }
    992 
    993 /*
    994  * Stop PCS
    995  */
    996 void
    997 gem_pcs_stop(struct gem_softc *sc, int disable)
    998 {
    999 	bus_space_tag_t t = sc->sc_bustag;
   1000 	bus_space_handle_t h = sc->sc_h1;
   1001 
   1002 #ifdef GEM_DEBUG
   1003 	aprint_debug("%s: gem_pcs_stop()\n", sc->sc_dev.dv_xname);
   1004 #endif
   1005 
   1006 	/* Tell link partner that we're going away */
   1007 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
   1008 
   1009 	/*
   1010 	 * Disable PCS MII.  The documentation suggests that setting
   1011 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
   1012 	 * negotiation will shut down the link.  However, it appears
   1013 	 * that we also need to unset the datapath mode.
   1014 	 */
   1015 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1016 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1017 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1018 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
   1019 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1020 
   1021 	if (disable) {
   1022 		if (sc->sc_flags & GEM_SERDES)
   1023 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1024 				GEM_MII_SLINK_POWER_OFF);
   1025 		else
   1026 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1027 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
   1028 	}
   1029 
   1030 	sc->sc_flags &= ~GEM_LINK;
   1031 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   1032 	sc->sc_mii.mii_media_status = IFM_AVALID;
   1033 }
   1034 
   1035 
   1036 /*
   1037  * Initialization of interface; set up initialization block
   1038  * and transmit/receive descriptor rings.
   1039  */
   1040 int
   1041 gem_init(struct ifnet *ifp)
   1042 {
   1043 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1044 	bus_space_tag_t t = sc->sc_bustag;
   1045 	bus_space_handle_t h = sc->sc_h1;
   1046 	int rc = 0, s;
   1047 	u_int max_frame_size;
   1048 	u_int32_t v;
   1049 
   1050 	s = splnet();
   1051 
   1052 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
   1053 	/*
   1054 	 * Initialization sequence. The numbered steps below correspond
   1055 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
   1056 	 * Channel Engine manual (part of the PCIO manual).
   1057 	 * See also the STP2002-STQ document from Sun Microsystems.
   1058 	 */
   1059 
   1060 	/* step 1 & 2. Reset the Ethernet Channel */
   1061 	gem_stop(ifp, 0);
   1062 	gem_reset(sc);
   1063 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
   1064 
   1065 	/* Re-initialize the MIF */
   1066 	gem_mifinit(sc);
   1067 
   1068 	/* Set up correct datapath for non-SERDES/Serialink */
   1069 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1070 	    sc->sc_variant != GEM_SUN_ERI)
   1071 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1072 		    GEM_MII_DATAPATH_MII);
   1073 
   1074 	/* Call MI reset function if any */
   1075 	if (sc->sc_hwreset)
   1076 		(*sc->sc_hwreset)(sc);
   1077 
   1078 	/* step 3. Setup data structures in host memory */
   1079 	if (gem_meminit(sc) != 0)
   1080 		return 1;
   1081 
   1082 	/* step 4. TX MAC registers & counters */
   1083 	gem_init_regs(sc);
   1084 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
   1085 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
   1086 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1087 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
   1088 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1089 	    max_frame_size|/* burst size */(0x2000<<16));
   1090 
   1091 	/* step 5. RX MAC registers & counters */
   1092 	gem_setladrf(sc);
   1093 
   1094 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
   1095 	/* NOTE: we use only 32-bit DMA addresses here. */
   1096 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
   1097 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
   1098 
   1099 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
   1100 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
   1101 
   1102 	/* step 8. Global Configuration & Interrupt Mask */
   1103 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1104 		v = GEM_INTR_PCS;
   1105 	else
   1106 		v = GEM_INTR_MIF;
   1107 	bus_space_write_4(t, h, GEM_INTMASK,
   1108 		      ~(GEM_INTR_TX_INTME |
   1109 			GEM_INTR_TX_EMPTY |
   1110 			GEM_INTR_TX_MAC |
   1111 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
   1112 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
   1113 			GEM_INTR_BERR | v));
   1114 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
   1115 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
   1116 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
   1117 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
   1118 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
   1119 
   1120 	/* step 9. ETX Configuration: use mostly default values */
   1121 
   1122 	/* Enable TX DMA */
   1123 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
   1124 	bus_space_write_4(t, h, GEM_TX_CONFIG,
   1125 		v|GEM_TX_CONFIG_TXDMA_EN|
   1126 		((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
   1127 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
   1128 
   1129 	/* step 10. ERX Configuration */
   1130 	gem_rx_common(sc);
   1131 
   1132 	/* step 11. Configure Media */
   1133 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1134 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1135 		goto out;
   1136 
   1137 	/* step 12. RX_MAC Configuration Register */
   1138 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1139 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
   1140 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1141 
   1142 	/* step 14. Issue Transmit Pending command */
   1143 
   1144 	/* Call MI initialization function if any */
   1145 	if (sc->sc_hwinit)
   1146 		(*sc->sc_hwinit)(sc);
   1147 
   1148 
   1149 	/* step 15.  Give the reciever a swift kick */
   1150 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
   1151 
   1152 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1153 		/* Configure PCS */
   1154 		gem_pcs_start(sc);
   1155 	else
   1156 		/* Start the one second timer. */
   1157 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
   1158 
   1159 	sc->sc_flags &= ~GEM_LINK;
   1160 	ifp->if_flags |= IFF_RUNNING;
   1161 	ifp->if_flags &= ~IFF_OACTIVE;
   1162 	ifp->if_timer = 0;
   1163 	sc->sc_if_flags = ifp->if_flags;
   1164 out:
   1165 	splx(s);
   1166 
   1167 	return (0);
   1168 }
   1169 
   1170 void
   1171 gem_init_regs(struct gem_softc *sc)
   1172 {
   1173 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1174 	bus_space_tag_t t = sc->sc_bustag;
   1175 	bus_space_handle_t h = sc->sc_h1;
   1176 	const u_char *laddr = CLLADDR(ifp->if_sadl);
   1177 	u_int32_t v;
   1178 
   1179 	/* These regs are not cleared on reset */
   1180 	if (!sc->sc_inited) {
   1181 
   1182 		/* Load recommended values */
   1183 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
   1184 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
   1185 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
   1186 
   1187 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
   1188 		/* Max frame and max burst size */
   1189 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1190 		    ETHER_MAX_LEN | (0x2000<<16));
   1191 
   1192 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
   1193 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
   1194 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
   1195 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
   1196 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
   1197 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
   1198 
   1199 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
   1200 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
   1201 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
   1202 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
   1203 
   1204 		/* MAC control addr set to 01:80:c2:00:00:01 */
   1205 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
   1206 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
   1207 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
   1208 
   1209 		/* MAC filter addr set to 0:0:0:0:0:0 */
   1210 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
   1211 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
   1212 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
   1213 
   1214 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
   1215 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
   1216 
   1217 		sc->sc_inited = 1;
   1218 	}
   1219 
   1220 	/* Counters need to be zeroed */
   1221 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
   1222 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
   1223 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
   1224 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
   1225 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
   1226 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
   1227 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
   1228 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1229 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1230 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1231 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1232 
   1233 	/* Set XOFF PAUSE time. */
   1234 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
   1235 
   1236 	/*
   1237 	 * Set the internal arbitration to "infinite" bursts of the
   1238 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
   1239 	 * split up in cache line size chunks. This greatly improves
   1240 	 * especially RX performance.
   1241 	 * Enable silicon bug workarounds for the Apple variants.
   1242 	 */
   1243 	bus_space_write_4(t, h, GEM_CONFIG,
   1244 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
   1245 	    GEM_CONFIG_BURST_INF | (GEM_IS_APPLE(sc) ?
   1246 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
   1247 
   1248 	/*
   1249 	 * Set the station address.
   1250 	 */
   1251 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1252 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1253 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1254 
   1255 	/*
   1256 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1257 	 */
   1258 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1259 	v = GEM_MAC_XIF_TX_MII_ENA;
   1260 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
   1261 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1262 			v |= GEM_MAC_XIF_FDPLX_LED;
   1263 				if (sc->sc_flags & GEM_GIGABIT)
   1264 					v |= GEM_MAC_XIF_GMII_MODE;
   1265 		}
   1266 	} else {
   1267 		v |= GEM_MAC_XIF_GMII_MODE;
   1268 	}
   1269 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1270 }
   1271 
   1272 #ifdef GEM_DEBUG
   1273 static void
   1274 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
   1275 {
   1276 	int i;
   1277 
   1278 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
   1279 		printf("descriptor %d:\t", i);
   1280 		printf("gd_flags:   0x%016" PRIx64 "\t",
   1281 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1282 		printf("gd_addr: 0x%016" PRIx64 "\n",
   1283 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1284 		if (i == lastdesc)
   1285 			break;
   1286 	}
   1287 }
   1288 #endif
   1289 
   1290 static void
   1291 gem_start(ifp)
   1292 	struct ifnet *ifp;
   1293 {
   1294 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1295 	struct mbuf *m0, *m;
   1296 	struct gem_txsoft *txs;
   1297 	bus_dmamap_t dmamap;
   1298 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
   1299 	uint64_t flags = 0;
   1300 
   1301 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1302 		return;
   1303 
   1304 	/*
   1305 	 * Remember the previous number of free descriptors and
   1306 	 * the first descriptor we'll use.
   1307 	 */
   1308 	ofree = sc->sc_txfree;
   1309 	firsttx = sc->sc_txnext;
   1310 
   1311 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1312 	    sc->sc_dev.dv_xname, ofree, firsttx));
   1313 
   1314 	/*
   1315 	 * Loop through the send queue, setting up transmit descriptors
   1316 	 * until we drain the queue, or use up all available transmit
   1317 	 * descriptors.
   1318 	 */
   1319 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1320 	    sc->sc_txfree != 0) {
   1321 		/*
   1322 		 * Grab a packet off the queue.
   1323 		 */
   1324 		IFQ_POLL(&ifp->if_snd, m0);
   1325 		if (m0 == NULL)
   1326 			break;
   1327 		m = NULL;
   1328 
   1329 		dmamap = txs->txs_dmamap;
   1330 
   1331 		/*
   1332 		 * Load the DMA map.  If this fails, the packet either
   1333 		 * didn't fit in the alloted number of segments, or we were
   1334 		 * short on resources.  In this case, we'll copy and try
   1335 		 * again.
   1336 		 */
   1337 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1338 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1339 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1340 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1341 			if (m0->m_pkthdr.len > MCLBYTES) {
   1342 				printf("%s: unable to allocate jumbo Tx "
   1343 				    "cluster\n", sc->sc_dev.dv_xname);
   1344 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1345 				m_freem(m0);
   1346 				continue;
   1347 			}
   1348 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1349 			if (m == NULL) {
   1350 				printf("%s: unable to allocate Tx mbuf\n",
   1351 				    sc->sc_dev.dv_xname);
   1352 				break;
   1353 			}
   1354 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1355 			if (m0->m_pkthdr.len > MHLEN) {
   1356 				MCLGET(m, M_DONTWAIT);
   1357 				if ((m->m_flags & M_EXT) == 0) {
   1358 					printf("%s: unable to allocate Tx "
   1359 					    "cluster\n", sc->sc_dev.dv_xname);
   1360 					m_freem(m);
   1361 					break;
   1362 				}
   1363 			}
   1364 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1365 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1366 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1367 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1368 			if (error) {
   1369 				printf("%s: unable to load Tx buffer, "
   1370 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1371 				break;
   1372 			}
   1373 		}
   1374 
   1375 		/*
   1376 		 * Ensure we have enough descriptors free to describe
   1377 		 * the packet.
   1378 		 */
   1379 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1380 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1381 			/*
   1382 			 * Not enough free descriptors to transmit this
   1383 			 * packet.  We haven't committed to anything yet,
   1384 			 * so just unload the DMA map, put the packet
   1385 			 * back on the queue, and punt.  Notify the upper
   1386 			 * layer that there are no more slots left.
   1387 			 *
   1388 			 * XXX We could allocate an mbuf and copy, but
   1389 			 * XXX it is worth it?
   1390 			 */
   1391 			ifp->if_flags |= IFF_OACTIVE;
   1392 			sc->sc_if_flags = ifp->if_flags;
   1393 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1394 			if (m != NULL)
   1395 				m_freem(m);
   1396 			break;
   1397 		}
   1398 
   1399 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1400 		if (m != NULL) {
   1401 			m_freem(m0);
   1402 			m0 = m;
   1403 		}
   1404 
   1405 		/*
   1406 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1407 		 */
   1408 
   1409 		/* Sync the DMA map. */
   1410 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1411 		    BUS_DMASYNC_PREWRITE);
   1412 
   1413 		/*
   1414 		 * Initialize the transmit descriptors.
   1415 		 */
   1416 		for (nexttx = sc->sc_txnext, seg = 0;
   1417 		     seg < dmamap->dm_nsegs;
   1418 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1419 
   1420 			/*
   1421 			 * If this is the first descriptor we're
   1422 			 * enqueueing, set the start of packet flag,
   1423 			 * and the checksum stuff if we want the hardware
   1424 			 * to do it.
   1425 			 */
   1426 			sc->sc_txdescs[nexttx].gd_addr =
   1427 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1428 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1429 			if (nexttx == firsttx) {
   1430 				flags |= GEM_TD_START_OF_PACKET;
   1431 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1432 					sc->sc_txwin = 0;
   1433 					flags |= GEM_TD_INTERRUPT_ME;
   1434 				}
   1435 
   1436 #ifdef INET
   1437 				/* h/w checksum */
   1438 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
   1439 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1440 					struct ether_header *eh;
   1441 					uint16_t offset, start;
   1442 
   1443 					eh = mtod(m0, struct ether_header *);
   1444 					switch (ntohs(eh->ether_type)) {
   1445 					case ETHERTYPE_IP:
   1446 						start = ETHER_HDR_LEN;
   1447 						break;
   1448 					case ETHERTYPE_VLAN:
   1449 						start = ETHER_HDR_LEN +
   1450 							ETHER_VLAN_ENCAP_LEN;
   1451 						break;
   1452 					default:
   1453 						/* unsupported, drop it */
   1454 						m_free(m0);
   1455 						continue;
   1456 					}
   1457 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1458 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1459 					flags |= (start <<
   1460 						  GEM_TD_CXSUM_STARTSHFT) |
   1461 						 (offset <<
   1462 						  GEM_TD_CXSUM_STUFFSHFT) |
   1463 						 GEM_TD_CXSUM_ENABLE;
   1464 				}
   1465 #endif
   1466 			}
   1467 			if (seg == dmamap->dm_nsegs - 1) {
   1468 				flags |= GEM_TD_END_OF_PACKET;
   1469 			} else {
   1470 				/* last flag set outside of loop */
   1471 				sc->sc_txdescs[nexttx].gd_flags =
   1472 					GEM_DMA_WRITE(sc, flags);
   1473 			}
   1474 			lasttx = nexttx;
   1475 		}
   1476 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1477 			/* add padding buffer at end of chain */
   1478 			flags &= ~GEM_TD_END_OF_PACKET;
   1479 			sc->sc_txdescs[lasttx].gd_flags =
   1480 			    GEM_DMA_WRITE(sc, flags);
   1481 
   1482 			sc->sc_txdescs[nexttx].gd_addr =
   1483 			    GEM_DMA_WRITE(sc,
   1484 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1485 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1486 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1487 			lasttx = nexttx;
   1488 			nexttx = GEM_NEXTTX(nexttx);
   1489 			seg++;
   1490 		}
   1491 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1492 
   1493 		KASSERT(lasttx != -1);
   1494 
   1495 		/*
   1496 		 * Store a pointer to the packet so we can free it later,
   1497 		 * and remember what txdirty will be once the packet is
   1498 		 * done.
   1499 		 */
   1500 		txs->txs_mbuf = m0;
   1501 		txs->txs_firstdesc = sc->sc_txnext;
   1502 		txs->txs_lastdesc = lasttx;
   1503 		txs->txs_ndescs = seg;
   1504 
   1505 #ifdef GEM_DEBUG
   1506 		if (ifp->if_flags & IFF_DEBUG) {
   1507 			printf("     gem_start %p transmit chain:\n", txs);
   1508 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1509 			    txs->txs_lastdesc);
   1510 		}
   1511 #endif
   1512 
   1513 		/* Sync the descriptors we're using. */
   1514 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1515 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1516 
   1517 		/* Advance the tx pointer. */
   1518 		sc->sc_txfree -= txs->txs_ndescs;
   1519 		sc->sc_txnext = nexttx;
   1520 
   1521 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1522 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1523 
   1524 #if NBPFILTER > 0
   1525 		/*
   1526 		 * Pass the packet to any BPF listeners.
   1527 		 */
   1528 		if (ifp->if_bpf)
   1529 			bpf_mtap(ifp->if_bpf, m0);
   1530 #endif /* NBPFILTER > 0 */
   1531 	}
   1532 
   1533 	if (txs == NULL || sc->sc_txfree == 0) {
   1534 		/* No more slots left; notify upper layer. */
   1535 		ifp->if_flags |= IFF_OACTIVE;
   1536 		sc->sc_if_flags = ifp->if_flags;
   1537 	}
   1538 
   1539 	if (sc->sc_txfree != ofree) {
   1540 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1541 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1542 		/*
   1543 		 * The entire packet chain is set up.
   1544 		 * Kick the transmitter.
   1545 		 */
   1546 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1547 			sc->sc_dev.dv_xname, nexttx));
   1548 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
   1549 			sc->sc_txnext);
   1550 
   1551 		/* Set a watchdog timer in case the chip flakes out. */
   1552 		ifp->if_timer = 5;
   1553 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1554 			sc->sc_dev.dv_xname, ifp->if_timer));
   1555 	}
   1556 }
   1557 
   1558 /*
   1559  * Transmit interrupt.
   1560  */
   1561 int
   1562 gem_tint(sc)
   1563 	struct gem_softc *sc;
   1564 {
   1565 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1566 	bus_space_tag_t t = sc->sc_bustag;
   1567 	bus_space_handle_t mac = sc->sc_h1;
   1568 	struct gem_txsoft *txs;
   1569 	int txlast;
   1570 	int progress = 0;
   1571 	u_int32_t v;
   1572 
   1573 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1574 
   1575 	/* Unload collision counters ... */
   1576 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1577 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1578 	ifp->if_collisions += v +
   1579 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1580 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
   1581 	ifp->if_oerrors += v;
   1582 
   1583 	/* ... then clear the hardware counters. */
   1584 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1585 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1586 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1587 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1588 
   1589 	/*
   1590 	 * Go through our Tx list and free mbufs for those
   1591 	 * frames that have been transmitted.
   1592 	 */
   1593 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1594 		/*
   1595 		 * In theory, we could harvest some descriptors before
   1596 		 * the ring is empty, but that's a bit complicated.
   1597 		 *
   1598 		 * GEM_TX_COMPLETION points to the last descriptor
   1599 		 * processed +1.
   1600 		 *
   1601 		 * Let's assume that the NIC writes back to the Tx
   1602 		 * descriptors before it updates the completion
   1603 		 * register.  If the NIC has posted writes to the
   1604 		 * Tx descriptors, PCI ordering requires that the
   1605 		 * posted writes flush to RAM before the register-read
   1606 		 * finishes.  So let's read the completion register,
   1607 		 * before syncing the descriptors, so that we
   1608 		 * examine Tx descriptors that are at least as
   1609 		 * current as the completion register.
   1610 		 */
   1611 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1612 		DPRINTF(sc,
   1613 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1614 				txs->txs_lastdesc, txlast));
   1615 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1616 			if (txlast >= txs->txs_firstdesc &&
   1617 			    txlast <= txs->txs_lastdesc)
   1618 				break;
   1619 		} else if (txlast >= txs->txs_firstdesc ||
   1620 			   txlast <= txs->txs_lastdesc)
   1621 			break;
   1622 
   1623 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1624 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1625 
   1626 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
   1627 		if (ifp->if_flags & IFF_DEBUG) {
   1628 			printf("    txsoft %p transmit chain:\n", txs);
   1629 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1630 			    txs->txs_lastdesc);
   1631 		}
   1632 #endif
   1633 
   1634 
   1635 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1636 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1637 
   1638 		sc->sc_txfree += txs->txs_ndescs;
   1639 
   1640 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1641 		    0, txs->txs_dmamap->dm_mapsize,
   1642 		    BUS_DMASYNC_POSTWRITE);
   1643 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1644 		if (txs->txs_mbuf != NULL) {
   1645 			m_freem(txs->txs_mbuf);
   1646 			txs->txs_mbuf = NULL;
   1647 		}
   1648 
   1649 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1650 
   1651 		ifp->if_opackets++;
   1652 		progress = 1;
   1653 	}
   1654 
   1655 #if 0
   1656 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1657 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
   1658 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
   1659 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1660 			GEM_TX_DATA_PTR_HI) << 32) |
   1661 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1662 			GEM_TX_DATA_PTR_LO),
   1663 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
   1664 #endif
   1665 
   1666 	if (progress) {
   1667 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1668 			sc->sc_txwin = 0;
   1669 
   1670 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
   1671 		ifp->if_flags &= ~IFF_OACTIVE;
   1672 		sc->sc_if_flags = ifp->if_flags;
   1673 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
   1674 		gem_start(ifp);
   1675 	}
   1676 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1677 		sc->sc_dev.dv_xname, ifp->if_timer));
   1678 
   1679 	return (1);
   1680 }
   1681 
   1682 /*
   1683  * Receive interrupt.
   1684  */
   1685 int
   1686 gem_rint(sc)
   1687 	struct gem_softc *sc;
   1688 {
   1689 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1690 	bus_space_tag_t t = sc->sc_bustag;
   1691 	bus_space_handle_t h = sc->sc_h1;
   1692 	struct gem_rxsoft *rxs;
   1693 	struct mbuf *m;
   1694 	u_int64_t rxstat;
   1695 	u_int32_t rxcomp;
   1696 	int i, len, progress = 0;
   1697 
   1698 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1699 
   1700 	/*
   1701 	 * Ignore spurious interrupt that sometimes occurs before
   1702 	 * we are set up when we network boot.
   1703 	 */
   1704 	if (!sc->sc_meminited)
   1705 		return 1;
   1706 
   1707 	/*
   1708 	 * Read the completion register once.  This limits
   1709 	 * how long the following loop can execute.
   1710 	 */
   1711 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1712 
   1713 	/*
   1714 	 * XXX Read the lastrx only once at the top for speed.
   1715 	 */
   1716 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1717 		sc->sc_rxptr, rxcomp));
   1718 
   1719 	/*
   1720 	 * Go into the loop at least once.
   1721 	 */
   1722 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1723 	     i = GEM_NEXTRX(i)) {
   1724 		rxs = &sc->sc_rxsoft[i];
   1725 
   1726 		GEM_CDRXSYNC(sc, i,
   1727 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1728 
   1729 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1730 
   1731 		if (rxstat & GEM_RD_OWN) {
   1732 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1733 			/*
   1734 			 * We have processed all of the receive buffers.
   1735 			 */
   1736 			break;
   1737 		}
   1738 
   1739 		progress++;
   1740 		ifp->if_ipackets++;
   1741 
   1742 		if (rxstat & GEM_RD_BAD_CRC) {
   1743 			ifp->if_ierrors++;
   1744 			printf("%s: receive error: CRC error\n",
   1745 				sc->sc_dev.dv_xname);
   1746 			GEM_INIT_RXDESC(sc, i);
   1747 			continue;
   1748 		}
   1749 
   1750 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1751 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1752 #ifdef GEM_DEBUG
   1753 		if (ifp->if_flags & IFF_DEBUG) {
   1754 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1755 			printf("gd_flags: 0x%016llx\t", (long long)
   1756 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1757 			printf("gd_addr: 0x%016llx\n", (long long)
   1758 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1759 		}
   1760 #endif
   1761 
   1762 		/* No errors; receive the packet. */
   1763 		len = GEM_RD_BUFLEN(rxstat);
   1764 
   1765 		/*
   1766 		 * Allocate a new mbuf cluster.  If that fails, we are
   1767 		 * out of memory, and must drop the packet and recycle
   1768 		 * the buffer that's already attached to this descriptor.
   1769 		 */
   1770 		m = rxs->rxs_mbuf;
   1771 		if (gem_add_rxbuf(sc, i) != 0) {
   1772 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1773 			ifp->if_ierrors++;
   1774 			GEM_INIT_RXDESC(sc, i);
   1775 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1776 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1777 			continue;
   1778 		}
   1779 		m->m_data += 2; /* We're already off by two */
   1780 
   1781 		m->m_pkthdr.rcvif = ifp;
   1782 		m->m_pkthdr.len = m->m_len = len;
   1783 
   1784 #if NBPFILTER > 0
   1785 		/*
   1786 		 * Pass this up to any BPF listeners, but only
   1787 		 * pass it up the stack if it's for us.
   1788 		 */
   1789 		if (ifp->if_bpf)
   1790 			bpf_mtap(ifp->if_bpf, m);
   1791 #endif /* NBPFILTER > 0 */
   1792 
   1793 #ifdef INET
   1794 		/* hardware checksum */
   1795 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1796 			struct ether_header *eh;
   1797 			struct ip *ip;
   1798 			int32_t hlen, pktlen;
   1799 
   1800 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1801 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1802 					 ETHER_VLAN_ENCAP_LEN;
   1803 				eh = (struct ether_header *) (mtod(m, char *) +
   1804 					ETHER_VLAN_ENCAP_LEN);
   1805 			} else {
   1806 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1807 				eh = mtod(m, struct ether_header *);
   1808 			}
   1809 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1810 				goto swcsum;
   1811 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
   1812 
   1813 			/* IPv4 only */
   1814 			if (ip->ip_v != IPVERSION)
   1815 				goto swcsum;
   1816 
   1817 			hlen = ip->ip_hl << 2;
   1818 			if (hlen < sizeof(struct ip))
   1819 				goto swcsum;
   1820 
   1821 			/*
   1822 			 * bail if too short, has random trailing garbage,
   1823 			 * truncated, fragment, or has ethernet pad.
   1824 			 */
   1825 			if ((ntohs(ip->ip_len) < hlen) ||
   1826 			    (ntohs(ip->ip_len) != pktlen) ||
   1827 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1828 				goto swcsum;
   1829 
   1830 			switch (ip->ip_p) {
   1831 			case IPPROTO_TCP:
   1832 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1833 					goto swcsum;
   1834 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1835 					goto swcsum;
   1836 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1837 				break;
   1838 			case IPPROTO_UDP:
   1839 				/* FALLTHROUGH */
   1840 			default:
   1841 				goto swcsum;
   1842 			}
   1843 
   1844 			/* the uncomplemented sum is expected */
   1845 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1846 
   1847 			/* if the pkt had ip options, we have to deduct them */
   1848 			if (hlen > sizeof(struct ip)) {
   1849 				uint16_t *opts;
   1850 				uint32_t optsum, temp;
   1851 
   1852 				optsum = 0;
   1853 				temp = hlen - sizeof(struct ip);
   1854 				opts = (uint16_t *) ((char *) ip +
   1855 					sizeof(struct ip));
   1856 
   1857 				while (temp > 1) {
   1858 					optsum += ntohs(*opts++);
   1859 					temp -= 2;
   1860 				}
   1861 				while (optsum >> 16)
   1862 					optsum = (optsum >> 16) +
   1863 						 (optsum & 0xffff);
   1864 
   1865 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1866 				m->m_pkthdr.csum_data =
   1867 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1868 
   1869 				while (m->m_pkthdr.csum_data >> 16)
   1870 					m->m_pkthdr.csum_data =
   1871 						(m->m_pkthdr.csum_data >> 16) +
   1872 						(m->m_pkthdr.csum_data &
   1873 						 0xffff);
   1874 			}
   1875 
   1876 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1877 						  M_CSUM_NO_PSEUDOHDR;
   1878 		} else
   1879 swcsum:
   1880 			m->m_pkthdr.csum_flags = 0;
   1881 #endif
   1882 		/* Pass it on. */
   1883 		(*ifp->if_input)(ifp, m);
   1884 	}
   1885 
   1886 	if (progress) {
   1887 		/* Update the receive pointer. */
   1888 		if (i == sc->sc_rxptr) {
   1889 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1890 #ifdef GEM_DEBUG
   1891 			if (ifp->if_flags & IFF_DEBUG)
   1892 				printf("%s: rint: ring wrap\n",
   1893 				    sc->sc_dev.dv_xname);
   1894 #endif
   1895 		}
   1896 		sc->sc_rxptr = i;
   1897 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1898 	}
   1899 #ifdef GEM_COUNTERS
   1900 	if (progress <= 4) {
   1901 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1902 	} else if (progress < 32) {
   1903 		if (progress < 16)
   1904 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1905 		else
   1906 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1907 
   1908 	} else {
   1909 		if (progress < 64)
   1910 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1911 		else
   1912 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1913 	}
   1914 #endif
   1915 
   1916 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1917 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1918 
   1919 	/* Read error counters ... */
   1920 	ifp->if_ierrors +=
   1921 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
   1922 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
   1923 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
   1924 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
   1925 
   1926 	/* ... then clear the hardware counters. */
   1927 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1928 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1929 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1930 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1931 
   1932 	return (1);
   1933 }
   1934 
   1935 
   1936 /*
   1937  * gem_add_rxbuf:
   1938  *
   1939  *	Add a receive buffer to the indicated descriptor.
   1940  */
   1941 int
   1942 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1943 {
   1944 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1945 	struct mbuf *m;
   1946 	int error;
   1947 
   1948 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1949 	if (m == NULL)
   1950 		return (ENOBUFS);
   1951 
   1952 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1953 	MCLGET(m, M_DONTWAIT);
   1954 	if ((m->m_flags & M_EXT) == 0) {
   1955 		m_freem(m);
   1956 		return (ENOBUFS);
   1957 	}
   1958 
   1959 #ifdef GEM_DEBUG
   1960 /* bzero the packet to check DMA */
   1961 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1962 #endif
   1963 
   1964 	if (rxs->rxs_mbuf != NULL)
   1965 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1966 
   1967 	rxs->rxs_mbuf = m;
   1968 
   1969 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1970 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1971 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1972 	if (error) {
   1973 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1974 		    sc->sc_dev.dv_xname, idx, error);
   1975 		panic("gem_add_rxbuf");	/* XXX */
   1976 	}
   1977 
   1978 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1979 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1980 
   1981 	GEM_INIT_RXDESC(sc, idx);
   1982 
   1983 	return (0);
   1984 }
   1985 
   1986 
   1987 int
   1988 gem_eint(struct gem_softc *sc, u_int status)
   1989 {
   1990 	char bits[128];
   1991 	u_int32_t v;
   1992 
   1993 	if ((status & GEM_INTR_MIF) != 0) {
   1994 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1995 		return (1);
   1996 	}
   1997 
   1998 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
   1999 		gem_reset_rxdma(sc);
   2000 		return (1);
   2001 	}
   2002 
   2003 	if (status & GEM_INTR_BERR) {
   2004 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, GEM_ERROR_STATUS);
   2005 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2,
   2006 		    GEM_ERROR_STATUS);
   2007 		printf("%s: bus error interrupt: 0x%02x\n",
   2008 		    sc->sc_dev.dv_xname, v);
   2009 		return (1);
   2010 	}
   2011 
   2012 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   2013 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   2014 	return (1);
   2015 }
   2016 
   2017 
   2018 /*
   2019  * PCS interrupts.
   2020  * We should receive these when the link status changes, but sometimes
   2021  * we don't receive them for link up.  We compensate for this in the
   2022  * gem_tick() callout.
   2023  */
   2024 int
   2025 gem_pint(struct gem_softc *sc)
   2026 {
   2027 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2028 	bus_space_tag_t t = sc->sc_bustag;
   2029 	bus_space_handle_t h = sc->sc_h1;
   2030 	u_int32_t v, v2;
   2031 
   2032 	/*
   2033 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
   2034 	 * latched, so we have to read it twice.  There is only one bit in
   2035 	 * use, so the value is meaningless.
   2036 	 */
   2037 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2038 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2039 
   2040 	if ((ifp->if_flags & IFF_UP) == 0)
   2041 		return 1;
   2042 
   2043 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
   2044 		return 1;
   2045 
   2046 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2047 	/* If we see remote fault, our link partner is probably going away */
   2048 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
   2049 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
   2050 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2051 	/* Otherwise, we may need to wait after auto-negotiation completes */
   2052 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
   2053 	    GEM_MII_STATUS_ANEG_CPT) {
   2054 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
   2055 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2056 	}
   2057 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
   2058 		if (sc->sc_flags & GEM_LINK) {
   2059 			return 1;
   2060 		}
   2061 		callout_stop(&sc->sc_tick_ch);
   2062 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
   2063 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
   2064 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
   2065 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
   2066 		v &= v2;
   2067 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
   2068 			sc->sc_mii.mii_media_active |= IFM_FDX;
   2069 #ifdef GEM_DEBUG
   2070 			aprint_debug("%s: link up: full duplex\n",
   2071 			    sc->sc_dev.dv_xname);
   2072 #endif
   2073 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
   2074 			sc->sc_mii.mii_media_active |= IFM_HDX;
   2075 #ifdef GEM_DEBUG
   2076 			aprint_debug("%s: link up: half duplex\n",
   2077 			    sc->sc_dev.dv_xname);
   2078 #endif
   2079 		} else {
   2080 #ifdef GEM_DEBUG
   2081 			aprint_debug("%s: duplex mismatch\n",
   2082 			    sc->sc_dev.dv_xname);
   2083 #endif
   2084 		}
   2085 		gem_statuschange(sc);
   2086 	} else {
   2087 		if ((sc->sc_flags & GEM_LINK) == 0) {
   2088 			return 1;
   2089 		}
   2090 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   2091 		sc->sc_mii.mii_media_status = IFM_AVALID;
   2092 #ifdef GEM_DEBUG
   2093 			aprint_debug("%s: link down\n",
   2094 			    sc->sc_dev.dv_xname);
   2095 #endif
   2096 		gem_statuschange(sc);
   2097 
   2098 		/* Start the 10 second timer */
   2099 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   2100 	}
   2101 	return 1;
   2102 }
   2103 
   2104 
   2105 
   2106 int
   2107 gem_intr(v)
   2108 	void *v;
   2109 {
   2110 	struct gem_softc *sc = (struct gem_softc *)v;
   2111 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2112 	bus_space_tag_t t = sc->sc_bustag;
   2113 	bus_space_handle_t h = sc->sc_h1;
   2114 	u_int32_t status;
   2115 	int r = 0;
   2116 #ifdef GEM_DEBUG
   2117 	char bits[128];
   2118 #endif
   2119 
   2120 	/* XXX We should probably mask out interrupts until we're done */
   2121 
   2122 	sc->sc_ev_intr.ev_count++;
   2123 
   2124 	status = bus_space_read_4(t, h, GEM_STATUS);
   2125 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   2126 		sc->sc_dev.dv_xname, (status >> 19),
   2127 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   2128 
   2129 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   2130 		r |= gem_eint(sc, status);
   2131 
   2132 	/* We don't bother with GEM_INTR_TX_DONE */
   2133 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   2134 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   2135 		r |= gem_tint(sc);
   2136 	}
   2137 
   2138 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   2139 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   2140 		r |= gem_rint(sc);
   2141 	}
   2142 
   2143 	/* We should eventually do more than just print out error stats. */
   2144 	if (status & GEM_INTR_TX_MAC) {
   2145 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
   2146 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   2147 			printf("%s: MAC tx fault, status %x\n",
   2148 			    sc->sc_dev.dv_xname, txstat);
   2149 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   2150 			gem_init(ifp);
   2151 	}
   2152 	if (status & GEM_INTR_RX_MAC) {
   2153 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
   2154 		/*
   2155 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
   2156 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
   2157 		 * silicon bug so handle them silently. Moreover, it's
   2158 		 * likely that the receiver has hung so we reset it.
   2159 		 */
   2160 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
   2161 			ifp->if_ierrors++;
   2162 			gem_reset_rxdma(sc);
   2163 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   2164 			printf("%s: MAC rx fault, status 0x%02x\n",
   2165 			    sc->sc_dev.dv_xname, rxstat);
   2166 	}
   2167 	if (status & GEM_INTR_PCS) {
   2168 		r |= gem_pint(sc);
   2169 	}
   2170 
   2171 /* Do we need to do anything with these?
   2172 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
   2173 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
   2174 		if ((status2 & GEM_MAC_PAUSED) != 0)
   2175 			aprintf_debug("%s: PAUSE received (%d slots)\n",
   2176 			    GEM_MAC_PAUSE_TIME(status2), sc->sc_dev.dv_xname);
   2177 		if ((status2 & GEM_MAC_PAUSE) != 0)
   2178 			aprintf_debug("%s: transited to PAUSE state\n",
   2179 			    sc->sc_dev.dv_xname);
   2180 		if ((status2 & GEM_MAC_RESUME) != 0)
   2181 			aprintf_debug("%s: transited to non-PAUSE state\n",
   2182 			    sc->sc_dev.dv_xname);
   2183 	}
   2184 	if ((status & GEM_INTR_MIF) != 0)
   2185 		aprintf_debug("%s: MIF interrupt\n", sc->sc_dev.dv_xname);
   2186 */
   2187 #if NRND > 0
   2188 	rnd_add_uint32(&sc->rnd_source, status);
   2189 #endif
   2190 	return (r);
   2191 }
   2192 
   2193 
   2194 void
   2195 gem_watchdog(ifp)
   2196 	struct ifnet *ifp;
   2197 {
   2198 	struct gem_softc *sc = ifp->if_softc;
   2199 
   2200 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   2201 		"GEM_MAC_RX_CONFIG %x\n",
   2202 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
   2203 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
   2204 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
   2205 
   2206 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   2207 	++ifp->if_oerrors;
   2208 
   2209 	/* Try to get more packets going. */
   2210 	gem_start(ifp);
   2211 }
   2212 
   2213 /*
   2214  * Initialize the MII Management Interface
   2215  */
   2216 void
   2217 gem_mifinit(sc)
   2218 	struct gem_softc *sc;
   2219 {
   2220 	bus_space_tag_t t = sc->sc_bustag;
   2221 	bus_space_handle_t mif = sc->sc_h1;
   2222 
   2223 	/* Configure the MIF in frame mode */
   2224 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   2225 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   2226 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   2227 }
   2228 
   2229 /*
   2230  * MII interface
   2231  *
   2232  * The GEM MII interface supports at least three different operating modes:
   2233  *
   2234  * Bitbang mode is implemented using data, clock and output enable registers.
   2235  *
   2236  * Frame mode is implemented by loading a complete frame into the frame
   2237  * register and polling the valid bit for completion.
   2238  *
   2239  * Polling mode uses the frame register but completion is indicated by
   2240  * an interrupt.
   2241  *
   2242  */
   2243 static int
   2244 gem_mii_readreg(self, phy, reg)
   2245 	struct device *self;
   2246 	int phy, reg;
   2247 {
   2248 	struct gem_softc *sc = (void *)self;
   2249 	bus_space_tag_t t = sc->sc_bustag;
   2250 	bus_space_handle_t mif = sc->sc_h1;
   2251 	int n;
   2252 	u_int32_t v;
   2253 
   2254 #ifdef GEM_DEBUG1
   2255 	if (sc->sc_debug)
   2256 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
   2257 #endif
   2258 
   2259 	/* Construct the frame command */
   2260 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   2261 		GEM_MIF_FRAME_READ;
   2262 
   2263 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2264 	for (n = 0; n < 100; n++) {
   2265 		DELAY(1);
   2266 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2267 		if (v & GEM_MIF_FRAME_TA0)
   2268 			return (v & GEM_MIF_FRAME_DATA);
   2269 	}
   2270 
   2271 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   2272 	return (0);
   2273 }
   2274 
   2275 static void
   2276 gem_mii_writereg(self, phy, reg, val)
   2277 	struct device *self;
   2278 	int phy, reg, val;
   2279 {
   2280 	struct gem_softc *sc = (void *)self;
   2281 	bus_space_tag_t t = sc->sc_bustag;
   2282 	bus_space_handle_t mif = sc->sc_h1;
   2283 	int n;
   2284 	u_int32_t v;
   2285 
   2286 #ifdef GEM_DEBUG1
   2287 	if (sc->sc_debug)
   2288 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
   2289 			phy, reg, val);
   2290 #endif
   2291 
   2292 	/* Construct the frame command */
   2293 	v = GEM_MIF_FRAME_WRITE			|
   2294 	    (phy << GEM_MIF_PHY_SHIFT)		|
   2295 	    (reg << GEM_MIF_REG_SHIFT)		|
   2296 	    (val & GEM_MIF_FRAME_DATA);
   2297 
   2298 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2299 	for (n = 0; n < 100; n++) {
   2300 		DELAY(1);
   2301 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2302 		if (v & GEM_MIF_FRAME_TA0)
   2303 			return;
   2304 	}
   2305 
   2306 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   2307 }
   2308 
   2309 static void
   2310 gem_mii_statchg(dev)
   2311 	struct device *dev;
   2312 {
   2313 	struct gem_softc *sc = (void *)dev;
   2314 #ifdef GEM_DEBUG
   2315 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   2316 #endif
   2317 
   2318 #ifdef GEM_DEBUG
   2319 	if (sc->sc_debug)
   2320 		printf("gem_mii_statchg: status change: phy = %d\n",
   2321 			sc->sc_phys[instance]);
   2322 #endif
   2323 	gem_statuschange(sc);
   2324 }
   2325 
   2326 /*
   2327  * Common status change for gem_mii_statchg() and gem_pint()
   2328  */
   2329 void
   2330 gem_statuschange(struct gem_softc* sc)
   2331 {
   2332 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2333 	bus_space_tag_t t = sc->sc_bustag;
   2334 	bus_space_handle_t mac = sc->sc_h1;
   2335 	int gigabit;
   2336 	u_int32_t rxcfg, txcfg, v;
   2337 
   2338 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
   2339 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
   2340 		sc->sc_flags |= GEM_LINK;
   2341 	else
   2342 		sc->sc_flags &= ~GEM_LINK;
   2343 
   2344 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2345 		gigabit = 1;
   2346 	else
   2347 		gigabit = 0;
   2348 
   2349 	/*
   2350 	 * The configuration done here corresponds to the steps F) and
   2351 	 * G) and as far as enabling of RX and TX MAC goes also step H)
   2352 	 * of the initialization sequence outlined in section 3.2.1 of
   2353 	 * the GEM Gigabit Ethernet ASIC Specification.
   2354 	 */
   2355 
   2356 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
   2357 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
   2358 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
   2359 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2360 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
   2361 	else if (gigabit) {
   2362 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
   2363 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
   2364 	}
   2365 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   2366 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
   2367 	    BUS_SPACE_BARRIER_WRITE);
   2368 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
   2369 		aprint_normal("%s: cannot disable TX MAC\n",
   2370 		    sc->sc_dev.dv_xname);
   2371 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
   2372 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
   2373 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
   2374 	    BUS_SPACE_BARRIER_WRITE);
   2375 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
   2376 		aprint_normal("%s: cannot disable RX MAC\n",
   2377 		    sc->sc_dev.dv_xname);
   2378 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
   2379 
   2380 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
   2381 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
   2382 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
   2383 
   2384 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
   2385 	    gigabit != 0)
   2386 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2387 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
   2388 	else
   2389 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2390 		    GEM_MAC_SLOT_TIME_NORMAL);
   2391 
   2392 	/* XIF Configuration */
   2393 	if (sc->sc_flags & GEM_LINK)
   2394 		v = GEM_MAC_XIF_LINK_LED;
   2395 	else
   2396 		v = 0;
   2397 	v |= GEM_MAC_XIF_TX_MII_ENA;
   2398 
   2399 	/* If an external transceiver is connected, enable its MII drivers */
   2400 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   2401 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
   2402 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   2403 			/* External MII needs echo disable if half duplex. */
   2404 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
   2405 			    IFM_FDX) != 0)
   2406 				/* turn on full duplex LED */
   2407 				v |= GEM_MAC_XIF_FDPLX_LED;
   2408 			else
   2409 				/* half duplex -- disable echo */
   2410 				v |= GEM_MAC_XIF_ECHO_DISABL;
   2411 			if (gigabit)
   2412 				v |= GEM_MAC_XIF_GMII_MODE;
   2413 			else
   2414 				v &= ~GEM_MAC_XIF_GMII_MODE;
   2415 		} else
   2416 			/* Internal MII needs buf enable */
   2417 			v |= GEM_MAC_XIF_MII_BUF_ENA;
   2418 	} else {
   2419 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2420 			v |= GEM_MAC_XIF_FDPLX_LED;
   2421 		v |= GEM_MAC_XIF_GMII_MODE;
   2422 	}
   2423 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   2424 
   2425 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2426 	    (sc->sc_flags & GEM_LINK) != 0) {
   2427 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
   2428 		    txcfg | GEM_MAC_TX_ENABLE);
   2429 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
   2430 		    rxcfg | GEM_MAC_RX_ENABLE);
   2431 	}
   2432 }
   2433 
   2434 int
   2435 gem_ser_mediachange(struct ifnet *ifp)
   2436 {
   2437 	struct gem_softc *sc = ifp->if_softc;
   2438 	u_int s, t;
   2439 
   2440 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
   2441 		return EINVAL;
   2442 
   2443 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
   2444 	if (s == IFM_AUTO) {
   2445 		if (sc->sc_mii_media != s) {
   2446 #ifdef GEM_DEBUG
   2447 			aprint_debug("%s: setting media to auto\n",
   2448 			    sc->sc_dev.dv_xname);
   2449 #endif
   2450 			sc->sc_mii_media = s;
   2451 			if (ifp->if_flags & IFF_UP) {
   2452 				gem_pcs_stop(sc, 0);
   2453 				gem_pcs_start(sc);
   2454 			}
   2455 		}
   2456 		return 0;
   2457 	}
   2458 	if (s == IFM_1000_SX) {
   2459 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
   2460 		if (t == IFM_FDX || t == IFM_HDX) {
   2461 			if (sc->sc_mii_media != t) {
   2462 				sc->sc_mii_media = t;
   2463 #ifdef GEM_DEBUG
   2464 				aprint_debug("%s:"
   2465 				    " setting media to 1000baseSX-%s\n",
   2466 				    sc->sc_dev.dv_xname,
   2467 				    t == IFM_FDX ? "FDX" : "HDX");
   2468 #endif
   2469 				if (ifp->if_flags & IFF_UP) {
   2470 					gem_pcs_stop(sc, 0);
   2471 					gem_pcs_start(sc);
   2472 				}
   2473 			}
   2474 			return 0;
   2475 		}
   2476 	}
   2477 	return EINVAL;
   2478 }
   2479 
   2480 void
   2481 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2482 {
   2483 	struct gem_softc *sc = ifp->if_softc;
   2484 
   2485 	if ((ifp->if_flags & IFF_UP) == 0)
   2486 		return;
   2487 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2488 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2489 }
   2490 
   2491 /*
   2492  * Process an ioctl request.
   2493  */
   2494 int
   2495 gem_ioctl(ifp, cmd, data)
   2496 	struct ifnet *ifp;
   2497 	u_long cmd;
   2498 	void *data;
   2499 {
   2500 	struct gem_softc *sc = ifp->if_softc;
   2501 	int s, error = 0;
   2502 
   2503 	s = splnet();
   2504 
   2505 	switch (cmd) {
   2506 	case SIOCSIFFLAGS:
   2507 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   2508 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   2509 		    == (IFF_UP|IFF_RUNNING))
   2510 		    && ((ifp->if_flags & (~RESETIGN))
   2511 		    == (sc->sc_if_flags & (~RESETIGN)))) {
   2512 			gem_setladrf(sc);
   2513 			break;
   2514 		}
   2515 #undef RESETIGN
   2516 		/*FALLTHROUGH*/
   2517 	default:
   2518 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   2519 			break;
   2520 
   2521 		error = 0;
   2522 
   2523 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2524 			;
   2525 		else if (ifp->if_flags & IFF_RUNNING) {
   2526 			/*
   2527 			 * Multicast list has changed; set the hardware filter
   2528 			 * accordingly.
   2529 			 */
   2530 			gem_setladrf(sc);
   2531 		}
   2532 		break;
   2533 	}
   2534 
   2535 	/* Try to get things going again */
   2536 	if (ifp->if_flags & IFF_UP)
   2537 		gem_start(ifp);
   2538 	splx(s);
   2539 	return (error);
   2540 }
   2541 
   2542 
   2543 void
   2544 gem_shutdown(arg)
   2545 	void *arg;
   2546 {
   2547 	struct gem_softc *sc = (struct gem_softc *)arg;
   2548 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2549 
   2550 	gem_stop(ifp, 1);
   2551 }
   2552 
   2553 /*
   2554  * Set up the logical address filter.
   2555  */
   2556 void
   2557 gem_setladrf(sc)
   2558 	struct gem_softc *sc;
   2559 {
   2560 	struct ethercom *ec = &sc->sc_ethercom;
   2561 	struct ifnet *ifp = &ec->ec_if;
   2562 	struct ether_multi *enm;
   2563 	struct ether_multistep step;
   2564 	bus_space_tag_t t = sc->sc_bustag;
   2565 	bus_space_handle_t h = sc->sc_h1;
   2566 	u_int32_t crc;
   2567 	u_int32_t hash[16];
   2568 	u_int32_t v;
   2569 	int i;
   2570 
   2571 	/* Get current RX configuration */
   2572 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2573 
   2574 	/*
   2575 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2576 	 * and hash filter.  Depending on the case, the right bit will be
   2577 	 * enabled.
   2578 	 */
   2579 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2580 	    GEM_MAC_RX_PROMISC_GRP);
   2581 
   2582 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2583 		/* Turn on promiscuous mode */
   2584 		v |= GEM_MAC_RX_PROMISCUOUS;
   2585 		ifp->if_flags |= IFF_ALLMULTI;
   2586 		goto chipit;
   2587 	}
   2588 
   2589 	/*
   2590 	 * Set up multicast address filter by passing all multicast addresses
   2591 	 * through a crc generator, and then using the high order 8 bits as an
   2592 	 * index into the 256 bit logical address filter.  The high order 4
   2593 	 * bits selects the word, while the other 4 bits select the bit within
   2594 	 * the word (where bit 0 is the MSB).
   2595 	 */
   2596 
   2597 	/* Clear hash table */
   2598 	memset(hash, 0, sizeof(hash));
   2599 
   2600 	ETHER_FIRST_MULTI(step, ec, enm);
   2601 	while (enm != NULL) {
   2602 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2603 			/*
   2604 			 * We must listen to a range of multicast addresses.
   2605 			 * For now, just accept all multicasts, rather than
   2606 			 * trying to set only those filter bits needed to match
   2607 			 * the range.  (At this time, the only use of address
   2608 			 * ranges is for IP multicast routing, for which the
   2609 			 * range is big enough to require all bits set.)
   2610 			 * XXX should use the address filters for this
   2611 			 */
   2612 			ifp->if_flags |= IFF_ALLMULTI;
   2613 			v |= GEM_MAC_RX_PROMISC_GRP;
   2614 			goto chipit;
   2615 		}
   2616 
   2617 		/* Get the LE CRC32 of the address */
   2618 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2619 
   2620 		/* Just want the 8 most significant bits. */
   2621 		crc >>= 24;
   2622 
   2623 		/* Set the corresponding bit in the filter. */
   2624 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2625 
   2626 		ETHER_NEXT_MULTI(step, enm);
   2627 	}
   2628 
   2629 	v |= GEM_MAC_RX_HASH_FILTER;
   2630 	ifp->if_flags &= ~IFF_ALLMULTI;
   2631 
   2632 	/* Now load the hash table into the chip (if we are using it) */
   2633 	for (i = 0; i < 16; i++) {
   2634 		bus_space_write_4(t, h,
   2635 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2636 		    hash[i]);
   2637 	}
   2638 
   2639 chipit:
   2640 	sc->sc_if_flags = ifp->if_flags;
   2641 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2642 }
   2643 
   2644 #if notyet
   2645 
   2646 /*
   2647  * gem_power:
   2648  *
   2649  *	Power management (suspend/resume) hook.
   2650  */
   2651 void
   2652 gem_power(why, arg)
   2653 	int why;
   2654 	void *arg;
   2655 {
   2656 	struct gem_softc *sc = arg;
   2657 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2658 	int s;
   2659 
   2660 	s = splnet();
   2661 	switch (why) {
   2662 	case PWR_SUSPEND:
   2663 	case PWR_STANDBY:
   2664 		gem_stop(ifp, 1);
   2665 		if (sc->sc_power != NULL)
   2666 			(*sc->sc_power)(sc, why);
   2667 		break;
   2668 	case PWR_RESUME:
   2669 		if (ifp->if_flags & IFF_UP) {
   2670 			if (sc->sc_power != NULL)
   2671 				(*sc->sc_power)(sc, why);
   2672 			gem_init(ifp);
   2673 		}
   2674 		break;
   2675 	case PWR_SOFTSUSPEND:
   2676 	case PWR_SOFTSTANDBY:
   2677 	case PWR_SOFTRESUME:
   2678 		break;
   2679 	}
   2680 	splx(s);
   2681 }
   2682 #endif
   2683