gem.c revision 1.75 1 /* $NetBSD: gem.c,v 1.75 2008/03/11 23:58:06 dyoung Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.75 2008/03/11 23:58:06 dyoung Exp $");
41
42 #include "opt_inet.h"
43 #include "bpfilter.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56
57 #include <machine/endian.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
78
79 #include <sys/bus.h>
80 #include <sys/intr.h>
81
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
85
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
88
89 #define TRIES 10000
90
91 static void gem_start(struct ifnet *);
92 static void gem_stop(struct ifnet *, int);
93 int gem_ioctl(struct ifnet *, u_long, void *);
94 void gem_tick(void *);
95 void gem_watchdog(struct ifnet *);
96 void gem_shutdown(void *);
97 void gem_pcs_start(struct gem_softc *sc);
98 void gem_pcs_stop(struct gem_softc *sc, int);
99 int gem_init(struct ifnet *);
100 void gem_init_regs(struct gem_softc *sc);
101 static int gem_ringsize(int sz);
102 static int gem_meminit(struct gem_softc *);
103 void gem_mifinit(struct gem_softc *);
104 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 u_int32_t, u_int32_t);
106 void gem_reset(struct gem_softc *);
107 int gem_reset_rx(struct gem_softc *sc);
108 static void gem_reset_rxdma(struct gem_softc *sc);
109 static void gem_rx_common(struct gem_softc *sc);
110 int gem_reset_tx(struct gem_softc *sc);
111 int gem_disable_rx(struct gem_softc *sc);
112 int gem_disable_tx(struct gem_softc *sc);
113 static void gem_rxdrain(struct gem_softc *sc);
114 int gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void gem_setladrf(struct gem_softc *);
116
117 /* MII methods & callbacks */
118 static int gem_mii_readreg(struct device *, int, int);
119 static void gem_mii_writereg(struct device *, int, int, int);
120 static void gem_mii_statchg(struct device *);
121
122 void gem_statuschange(struct gem_softc *);
123
124 int gem_ser_mediachange(struct ifnet *);
125 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146
147 /*
148 * gem_attach:
149 *
150 * Attach a Gem interface to the system.
151 */
152 void
153 gem_attach(sc, enaddr)
154 struct gem_softc *sc;
155 const uint8_t *enaddr;
156 {
157 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
158 struct mii_data *mii = &sc->sc_mii;
159 bus_space_tag_t t = sc->sc_bustag;
160 bus_space_handle_t h = sc->sc_h1;
161 struct ifmedia_entry *ifm;
162 int i, error;
163 u_int32_t v;
164 char *nullbuf;
165
166 /* Make sure the chip is stopped. */
167 ifp->if_softc = sc;
168 gem_reset(sc);
169
170 /*
171 * Allocate the control data structures, and create and load the
172 * DMA map for it. gem_control_data is 9216 bytes, we have space for
173 * the padding buffer in the bus_dmamem_alloc()'d memory.
174 */
175 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
176 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
177 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
178 aprint_error(
179 "%s: unable to allocate control data, error = %d\n",
180 sc->sc_dev.dv_xname, error);
181 goto fail_0;
182 }
183
184 /* XXX should map this in with correct endianness */
185 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
186 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
187 BUS_DMA_COHERENT)) != 0) {
188 aprint_error("%s: unable to map control data, error = %d\n",
189 sc->sc_dev.dv_xname, error);
190 goto fail_1;
191 }
192
193 nullbuf =
194 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
195
196 if ((error = bus_dmamap_create(sc->sc_dmatag,
197 sizeof(struct gem_control_data), 1,
198 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
199 aprint_error("%s: unable to create control data DMA map, "
200 "error = %d\n", sc->sc_dev.dv_xname, error);
201 goto fail_2;
202 }
203
204 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
205 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
206 0)) != 0) {
207 aprint_error(
208 "%s: unable to load control data DMA map, error = %d\n",
209 sc->sc_dev.dv_xname, error);
210 goto fail_3;
211 }
212
213 memset(nullbuf, 0, ETHER_MIN_TX);
214 if ((error = bus_dmamap_create(sc->sc_dmatag,
215 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
216 aprint_error("%s: unable to create padding DMA map, "
217 "error = %d\n", sc->sc_dev.dv_xname, error);
218 goto fail_4;
219 }
220
221 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
222 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
223 aprint_error(
224 "%s: unable to load padding DMA map, error = %d\n",
225 sc->sc_dev.dv_xname, error);
226 goto fail_5;
227 }
228
229 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
230 BUS_DMASYNC_PREWRITE);
231
232 /*
233 * Initialize the transmit job descriptors.
234 */
235 SIMPLEQ_INIT(&sc->sc_txfreeq);
236 SIMPLEQ_INIT(&sc->sc_txdirtyq);
237
238 /*
239 * Create the transmit buffer DMA maps.
240 */
241 for (i = 0; i < GEM_TXQUEUELEN; i++) {
242 struct gem_txsoft *txs;
243
244 txs = &sc->sc_txsoft[i];
245 txs->txs_mbuf = NULL;
246 if ((error = bus_dmamap_create(sc->sc_dmatag,
247 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
248 ETHER_MAX_LEN_JUMBO, 0, 0,
249 &txs->txs_dmamap)) != 0) {
250 aprint_error("%s: unable to create tx DMA map %d, "
251 "error = %d\n", sc->sc_dev.dv_xname, i, error);
252 goto fail_6;
253 }
254 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
255 }
256
257 /*
258 * Create the receive buffer DMA maps.
259 */
260 for (i = 0; i < GEM_NRXDESC; i++) {
261 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
262 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
263 aprint_error("%s: unable to create rx DMA map %d, "
264 "error = %d\n", sc->sc_dev.dv_xname, i, error);
265 goto fail_7;
266 }
267 sc->sc_rxsoft[i].rxs_mbuf = NULL;
268 }
269
270 /* Initialize ifmedia structures and MII info */
271 mii->mii_ifp = ifp;
272 mii->mii_readreg = gem_mii_readreg;
273 mii->mii_writereg = gem_mii_writereg;
274 mii->mii_statchg = gem_mii_statchg;
275
276 sc->sc_ethercom.ec_mii = mii;
277
278 /*
279 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
280 * Section 3.2.1 `Initialization Sequence'.
281 * However, we can't assume SERDES or Serialink if neither
282 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
283 * being set, as both are set on Sun X1141A (with SERDES). So,
284 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
285 * Also, for Apple variants with 2 PHY's, we prefer the external
286 * PHY over the internal PHY.
287 */
288 gem_mifinit(sc);
289
290 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
291 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
292 ether_mediastatus);
293 mii_attach(&sc->sc_dev, mii, 0xffffffff,
294 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
295 if (LIST_EMPTY(&mii->mii_phys)) {
296 /* No PHY attached */
297 aprint_error("%s: PHY probe failed\n",
298 sc->sc_dev.dv_xname);
299 goto fail_7;
300 } else {
301 struct mii_softc *child;
302
303 /*
304 * Walk along the list of attached MII devices and
305 * establish an `MII instance' to `PHY number'
306 * mapping.
307 */
308 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
309 /*
310 * Note: we support just one PHY: the internal
311 * or external MII is already selected for us
312 * by the GEM_MIF_CONFIG register.
313 */
314 if (child->mii_phy > 1 || child->mii_inst > 0) {
315 aprint_error(
316 "%s: cannot accommodate MII device"
317 " %s at PHY %d, instance %d\n",
318 sc->sc_dev.dv_xname,
319 child->mii_dev.dv_xname,
320 child->mii_phy, child->mii_inst);
321 continue;
322 }
323 sc->sc_phys[child->mii_inst] = child->mii_phy;
324 }
325
326 /*
327 * Now select and activate the PHY we will use.
328 *
329 * The order of preference is External (MDI1),
330 * then Internal (MDI0),
331 */
332 if (sc->sc_phys[1]) {
333 #ifdef GEM_DEBUG
334 aprint_debug("%s: using external PHY\n",
335 sc->sc_dev.dv_xname);
336 #endif
337 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
338 } else {
339 #ifdef GEM_DEBUG
340 aprint_debug("%s: using internal PHY\n",
341 sc->sc_dev.dv_xname);
342 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
343 #endif
344 }
345 bus_space_write_4(t, h, GEM_MIF_CONFIG,
346 sc->sc_mif_config);
347 if (sc->sc_variant != GEM_SUN_ERI)
348 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
349 GEM_MII_DATAPATH_MII);
350
351 /*
352 * XXX - we can really do the following ONLY if the
353 * PHY indeed has the auto negotiation capability!!
354 */
355 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
356 }
357 } else {
358 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
359 gem_ser_mediastatus);
360 /* SERDES or Serialink */
361 if (sc->sc_flags & GEM_SERDES) {
362 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
363 GEM_MII_DATAPATH_SERDES);
364 } else {
365 sc->sc_flags |= GEM_SERIAL;
366 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
367 GEM_MII_DATAPATH_SERIAL);
368 }
369
370 aprint_normal("%s: using external PCS %s: ",
371 sc->sc_dev.dv_xname,
372 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
373
374 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
375 /* Check for FDX and HDX capabilities */
376 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
377 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
378 ifmedia_add(&sc->sc_mii.mii_media,
379 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
380 aprint_normal("1000baseSX-FDX, ");
381 }
382 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
383 ifmedia_add(&sc->sc_mii.mii_media,
384 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
385 aprint_normal("1000baseSX-HDX, ");
386 }
387 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
388 sc->sc_mii_media = IFM_AUTO;
389 aprint_normal("auto\n");
390
391 gem_pcs_stop(sc, 1);
392 }
393
394 /*
395 * From this point forward, the attachment cannot fail. A failure
396 * before this point releases all resources that may have been
397 * allocated.
398 */
399
400 /* Announce ourselves. */
401 aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
402 ether_sprintf(enaddr));
403
404 /* Get RX FIFO size */
405 sc->sc_rxfifosize = 64 *
406 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
407 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
408
409 /* Get TX FIFO size */
410 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
411 aprint_normal(", %uKB TX fifo\n", v / 16);
412
413 /* Initialize ifnet structure. */
414 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
415 ifp->if_softc = sc;
416 ifp->if_flags =
417 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
418 sc->sc_if_flags = ifp->if_flags;
419 /*
420 * The GEM hardware supports basic TCP checksum offloading only.
421 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
422 * have bugs in the receive checksum, so don't enable it for now.
423 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
424 (GEM_IS_APPLE(sc) &&
425 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
426 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
427 */
428 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
429 ifp->if_start = gem_start;
430 ifp->if_ioctl = gem_ioctl;
431 ifp->if_watchdog = gem_watchdog;
432 ifp->if_stop = gem_stop;
433 ifp->if_init = gem_init;
434 IFQ_SET_READY(&ifp->if_snd);
435
436 /*
437 * If we support GigE media, we support jumbo frames too.
438 * Unless we are Apple.
439 */
440 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
441 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
442 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
443 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
444 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
445 if (!GEM_IS_APPLE(sc))
446 sc->sc_ethercom.ec_capabilities
447 |= ETHERCAP_JUMBO_MTU;
448 sc->sc_flags |= GEM_GIGABIT;
449 break;
450 }
451 }
452
453 /* claim 802.1q capability */
454 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
455
456 /* Attach the interface. */
457 if_attach(ifp);
458 ether_ifattach(ifp, enaddr);
459
460 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
461 if (sc->sc_sh == NULL)
462 panic("gem_config: can't establish shutdownhook");
463
464 #if NRND > 0
465 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
466 RND_TYPE_NET, 0);
467 #endif
468
469 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
470 NULL, sc->sc_dev.dv_xname, "interrupts");
471 #ifdef GEM_COUNTERS
472 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
473 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
474 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
475 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
476 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
477 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
478 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
479 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
480 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
481 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
482 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
483 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
484 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
485 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
486 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
487 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
488 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
489 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
490 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
491 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
492 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
493 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
494 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
495 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
496 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
497 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
498 #endif
499
500 #if notyet
501 /*
502 * Add a suspend hook to make sure we come back up after a
503 * resume.
504 */
505 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
506 gem_power, sc);
507 if (sc->sc_powerhook == NULL)
508 aprint_error("%s: WARNING: unable to establish power hook\n",
509 sc->sc_dev.dv_xname);
510 #endif
511
512 callout_init(&sc->sc_tick_ch, 0);
513 return;
514
515 /*
516 * Free any resources we've allocated during the failed attach
517 * attempt. Do this in reverse order and fall through.
518 */
519 fail_7:
520 for (i = 0; i < GEM_NRXDESC; i++) {
521 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
522 bus_dmamap_destroy(sc->sc_dmatag,
523 sc->sc_rxsoft[i].rxs_dmamap);
524 }
525 fail_6:
526 for (i = 0; i < GEM_TXQUEUELEN; i++) {
527 if (sc->sc_txsoft[i].txs_dmamap != NULL)
528 bus_dmamap_destroy(sc->sc_dmatag,
529 sc->sc_txsoft[i].txs_dmamap);
530 }
531 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
532 fail_5:
533 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
534 fail_4:
535 bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
536 fail_3:
537 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
538 fail_2:
539 bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
540 sizeof(struct gem_control_data));
541 fail_1:
542 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
543 fail_0:
544 return;
545 }
546
547
548 void
549 gem_tick(arg)
550 void *arg;
551 {
552 struct gem_softc *sc = arg;
553 int s;
554
555 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
556 /*
557 * We have to reset everything if we failed to get a
558 * PCS interrupt. Restarting the callout is handled
559 * in gem_pcs_start().
560 */
561 gem_init(&sc->sc_ethercom.ec_if);
562 } else {
563 s = splnet();
564 mii_tick(&sc->sc_mii);
565 splx(s);
566 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
567 }
568 }
569
570 static int
571 gem_bitwait(sc, h, r, clr, set)
572 struct gem_softc *sc;
573 bus_space_handle_t h;
574 int r;
575 u_int32_t clr;
576 u_int32_t set;
577 {
578 int i;
579 u_int32_t reg;
580
581 for (i = TRIES; i--; DELAY(100)) {
582 reg = bus_space_read_4(sc->sc_bustag, h, r);
583 if ((reg & clr) == 0 && (reg & set) == set)
584 return (1);
585 }
586 return (0);
587 }
588
589 void
590 gem_reset(sc)
591 struct gem_softc *sc;
592 {
593 bus_space_tag_t t = sc->sc_bustag;
594 bus_space_handle_t h = sc->sc_h2;
595 int s;
596
597 s = splnet();
598 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
599 gem_reset_rx(sc);
600 gem_reset_tx(sc);
601
602 /* Do a full reset */
603 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
604 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
605 printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
606 splx(s);
607 }
608
609
610 /*
611 * gem_rxdrain:
612 *
613 * Drain the receive queue.
614 */
615 static void
616 gem_rxdrain(struct gem_softc *sc)
617 {
618 struct gem_rxsoft *rxs;
619 int i;
620
621 for (i = 0; i < GEM_NRXDESC; i++) {
622 rxs = &sc->sc_rxsoft[i];
623 if (rxs->rxs_mbuf != NULL) {
624 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
625 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
626 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
627 m_freem(rxs->rxs_mbuf);
628 rxs->rxs_mbuf = NULL;
629 }
630 }
631 }
632
633 /*
634 * Reset the whole thing.
635 */
636 static void
637 gem_stop(struct ifnet *ifp, int disable)
638 {
639 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
640 struct gem_txsoft *txs;
641
642 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
643
644 callout_stop(&sc->sc_tick_ch);
645 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
646 gem_pcs_stop(sc, disable);
647 else
648 mii_down(&sc->sc_mii);
649
650 /* XXX - Should we reset these instead? */
651 gem_disable_tx(sc);
652 gem_disable_rx(sc);
653
654 /*
655 * Release any queued transmit buffers.
656 */
657 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
658 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
659 if (txs->txs_mbuf != NULL) {
660 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
661 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
662 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
663 m_freem(txs->txs_mbuf);
664 txs->txs_mbuf = NULL;
665 }
666 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
667 }
668
669 /*
670 * Mark the interface down and cancel the watchdog timer.
671 */
672 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
673 sc->sc_if_flags = ifp->if_flags;
674 ifp->if_timer = 0;
675
676 if (disable)
677 gem_rxdrain(sc);
678 }
679
680
681 /*
682 * Reset the receiver
683 */
684 int
685 gem_reset_rx(struct gem_softc *sc)
686 {
687 bus_space_tag_t t = sc->sc_bustag;
688 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
689
690 /*
691 * Resetting while DMA is in progress can cause a bus hang, so we
692 * disable DMA first.
693 */
694 gem_disable_rx(sc);
695 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
696 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
697 /* Wait till it finishes */
698 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
699 printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
700
701 /* Finally, reset the ERX */
702 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
703 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
704 /* Wait till it finishes */
705 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
706 printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
707 return (1);
708 }
709 return (0);
710 }
711
712
713 /*
714 * Reset the receiver DMA engine.
715 *
716 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
717 * etc in order to reset the receiver DMA engine only and not do a full
718 * reset which amongst others also downs the link and clears the FIFOs.
719 */
720 static void
721 gem_reset_rxdma(struct gem_softc *sc)
722 {
723 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
724 bus_space_tag_t t = sc->sc_bustag;
725 bus_space_handle_t h = sc->sc_h1;
726 int i;
727
728 if (gem_reset_rx(sc) != 0) {
729 gem_init(ifp);
730 return;
731 }
732 for (i = 0; i < GEM_NRXDESC; i++)
733 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
734 GEM_UPDATE_RXDESC(sc, i);
735 sc->sc_rxptr = 0;
736 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
737 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
738
739 /* Reprogram Descriptor Ring Base Addresses */
740 /* NOTE: we use only 32-bit DMA addresses here. */
741 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
742 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
743
744 /* Redo ERX Configuration */
745 gem_rx_common(sc);
746
747 /* Give the reciever a swift kick */
748 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
749 }
750
751 /*
752 * Common RX configuration for gem_init() and gem_reset_rxdma().
753 */
754 static void
755 gem_rx_common(struct gem_softc *sc)
756 {
757 bus_space_tag_t t = sc->sc_bustag;
758 bus_space_handle_t h = sc->sc_h1;
759 u_int32_t v;
760
761 /* Encode Receive Descriptor ring size: four possible values */
762 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
763
764 /* Set receive h/w checksum offset */
765 #ifdef INET
766 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
767 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
768 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
769 #endif
770
771 /* Enable RX DMA */
772 bus_space_write_4(t, h, GEM_RX_CONFIG,
773 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
774 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
775
776 /*
777 * The following value is for an OFF Threshold of about 3/4 full
778 * and an ON Threshold of 1/4 full.
779 */
780 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
781 (3 * sc->sc_rxfifosize / 256) |
782 ((sc->sc_rxfifosize / 256) << 12));
783 bus_space_write_4(t, h, GEM_RX_BLANKING,
784 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
785 }
786
787 /*
788 * Reset the transmitter
789 */
790 int
791 gem_reset_tx(struct gem_softc *sc)
792 {
793 bus_space_tag_t t = sc->sc_bustag;
794 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
795
796 /*
797 * Resetting while DMA is in progress can cause a bus hang, so we
798 * disable DMA first.
799 */
800 gem_disable_tx(sc);
801 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
802 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
803 /* Wait till it finishes */
804 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
805 printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
806 /* Wait 5ms extra. */
807 delay(5000);
808
809 /* Finally, reset the ETX */
810 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
811 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
812 /* Wait till it finishes */
813 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
814 printf("%s: cannot reset receiver\n",
815 sc->sc_dev.dv_xname);
816 return (1);
817 }
818 return (0);
819 }
820
821 /*
822 * disable receiver.
823 */
824 int
825 gem_disable_rx(struct gem_softc *sc)
826 {
827 bus_space_tag_t t = sc->sc_bustag;
828 bus_space_handle_t h = sc->sc_h1;
829 u_int32_t cfg;
830
831 /* Flip the enable bit */
832 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
833 cfg &= ~GEM_MAC_RX_ENABLE;
834 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
835 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
836 /* Wait for it to finish */
837 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
838 }
839
840 /*
841 * disable transmitter.
842 */
843 int
844 gem_disable_tx(struct gem_softc *sc)
845 {
846 bus_space_tag_t t = sc->sc_bustag;
847 bus_space_handle_t h = sc->sc_h1;
848 u_int32_t cfg;
849
850 /* Flip the enable bit */
851 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
852 cfg &= ~GEM_MAC_TX_ENABLE;
853 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
854 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
855 /* Wait for it to finish */
856 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
857 }
858
859 /*
860 * Initialize interface.
861 */
862 int
863 gem_meminit(struct gem_softc *sc)
864 {
865 struct gem_rxsoft *rxs;
866 int i, error;
867
868 /*
869 * Initialize the transmit descriptor ring.
870 */
871 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
872 for (i = 0; i < GEM_NTXDESC; i++) {
873 sc->sc_txdescs[i].gd_flags = 0;
874 sc->sc_txdescs[i].gd_addr = 0;
875 }
876 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
877 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
878 sc->sc_txfree = GEM_NTXDESC-1;
879 sc->sc_txnext = 0;
880 sc->sc_txwin = 0;
881
882 /*
883 * Initialize the receive descriptor and receive job
884 * descriptor rings.
885 */
886 for (i = 0; i < GEM_NRXDESC; i++) {
887 rxs = &sc->sc_rxsoft[i];
888 if (rxs->rxs_mbuf == NULL) {
889 if ((error = gem_add_rxbuf(sc, i)) != 0) {
890 printf("%s: unable to allocate or map rx "
891 "buffer %d, error = %d\n",
892 sc->sc_dev.dv_xname, i, error);
893 /*
894 * XXX Should attempt to run with fewer receive
895 * XXX buffers instead of just failing.
896 */
897 gem_rxdrain(sc);
898 return (1);
899 }
900 } else
901 GEM_INIT_RXDESC(sc, i);
902 }
903 sc->sc_rxptr = 0;
904 sc->sc_meminited = 1;
905 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
906 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
907
908 return (0);
909 }
910
911 static int
912 gem_ringsize(int sz)
913 {
914 switch (sz) {
915 case 32:
916 return GEM_RING_SZ_32;
917 case 64:
918 return GEM_RING_SZ_64;
919 case 128:
920 return GEM_RING_SZ_128;
921 case 256:
922 return GEM_RING_SZ_256;
923 case 512:
924 return GEM_RING_SZ_512;
925 case 1024:
926 return GEM_RING_SZ_1024;
927 case 2048:
928 return GEM_RING_SZ_2048;
929 case 4096:
930 return GEM_RING_SZ_4096;
931 case 8192:
932 return GEM_RING_SZ_8192;
933 default:
934 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
935 return GEM_RING_SZ_32;
936 }
937 }
938
939
940 /*
941 * Start PCS
942 */
943 void
944 gem_pcs_start(struct gem_softc *sc)
945 {
946 bus_space_tag_t t = sc->sc_bustag;
947 bus_space_handle_t h = sc->sc_h1;
948 uint32_t v;
949
950 #ifdef GEM_DEBUG
951 aprint_debug("%s: gem_pcs_start()\n", sc->sc_dev.dv_xname);
952 #endif
953
954 /*
955 * Set up. We must disable the MII before modifying the
956 * GEM_MII_ANAR register
957 */
958 if (sc->sc_flags & GEM_SERDES) {
959 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
960 GEM_MII_DATAPATH_SERDES);
961 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
962 GEM_MII_SLINK_LOOPBACK);
963 } else {
964 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
965 GEM_MII_DATAPATH_SERIAL);
966 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
967 }
968 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
969 v = bus_space_read_4(t, h, GEM_MII_ANAR);
970 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
971 if (sc->sc_mii_media == IFM_AUTO)
972 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
973 else if (sc->sc_mii_media == IFM_FDX) {
974 v |= GEM_MII_ANEG_FUL_DUPLX;
975 v &= ~GEM_MII_ANEG_HLF_DUPLX;
976 } else if (sc->sc_mii_media == IFM_HDX) {
977 v &= ~GEM_MII_ANEG_FUL_DUPLX;
978 v |= GEM_MII_ANEG_HLF_DUPLX;
979 }
980
981 /* Configure link. */
982 bus_space_write_4(t, h, GEM_MII_ANAR, v);
983 bus_space_write_4(t, h, GEM_MII_CONTROL,
984 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
985 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
986 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
987
988 /* Start the 10 second timer */
989 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
990 }
991
992 /*
993 * Stop PCS
994 */
995 void
996 gem_pcs_stop(struct gem_softc *sc, int disable)
997 {
998 bus_space_tag_t t = sc->sc_bustag;
999 bus_space_handle_t h = sc->sc_h1;
1000
1001 #ifdef GEM_DEBUG
1002 aprint_debug("%s: gem_pcs_stop()\n", sc->sc_dev.dv_xname);
1003 #endif
1004
1005 /* Tell link partner that we're going away */
1006 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1007
1008 /*
1009 * Disable PCS MII. The documentation suggests that setting
1010 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1011 * negotiation will shut down the link. However, it appears
1012 * that we also need to unset the datapath mode.
1013 */
1014 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1015 bus_space_write_4(t, h, GEM_MII_CONTROL,
1016 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1017 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1018 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1019
1020 if (disable) {
1021 if (sc->sc_flags & GEM_SERDES)
1022 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1023 GEM_MII_SLINK_POWER_OFF);
1024 else
1025 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1026 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1027 }
1028
1029 sc->sc_flags &= ~GEM_LINK;
1030 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1031 sc->sc_mii.mii_media_status = IFM_AVALID;
1032 }
1033
1034
1035 /*
1036 * Initialization of interface; set up initialization block
1037 * and transmit/receive descriptor rings.
1038 */
1039 int
1040 gem_init(struct ifnet *ifp)
1041 {
1042 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1043 bus_space_tag_t t = sc->sc_bustag;
1044 bus_space_handle_t h = sc->sc_h1;
1045 int rc = 0, s;
1046 u_int max_frame_size;
1047 u_int32_t v;
1048
1049 s = splnet();
1050
1051 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
1052 /*
1053 * Initialization sequence. The numbered steps below correspond
1054 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1055 * Channel Engine manual (part of the PCIO manual).
1056 * See also the STP2002-STQ document from Sun Microsystems.
1057 */
1058
1059 /* step 1 & 2. Reset the Ethernet Channel */
1060 gem_stop(ifp, 0);
1061 gem_reset(sc);
1062 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
1063
1064 /* Re-initialize the MIF */
1065 gem_mifinit(sc);
1066
1067 /* Set up correct datapath for non-SERDES/Serialink */
1068 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1069 sc->sc_variant != GEM_SUN_ERI)
1070 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1071 GEM_MII_DATAPATH_MII);
1072
1073 /* Call MI reset function if any */
1074 if (sc->sc_hwreset)
1075 (*sc->sc_hwreset)(sc);
1076
1077 /* step 3. Setup data structures in host memory */
1078 if (gem_meminit(sc) != 0)
1079 return 1;
1080
1081 /* step 4. TX MAC registers & counters */
1082 gem_init_regs(sc);
1083 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1084 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1085 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1086 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1087 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1088 max_frame_size|/* burst size */(0x2000<<16));
1089
1090 /* step 5. RX MAC registers & counters */
1091 gem_setladrf(sc);
1092
1093 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1094 /* NOTE: we use only 32-bit DMA addresses here. */
1095 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1096 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1097
1098 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1099 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1100
1101 /* step 8. Global Configuration & Interrupt Mask */
1102 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1103 v = GEM_INTR_PCS;
1104 else
1105 v = GEM_INTR_MIF;
1106 bus_space_write_4(t, h, GEM_INTMASK,
1107 ~(GEM_INTR_TX_INTME |
1108 GEM_INTR_TX_EMPTY |
1109 GEM_INTR_TX_MAC |
1110 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
1111 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
1112 GEM_INTR_BERR | v));
1113 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1114 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1115 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1116 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1117 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1118
1119 /* step 9. ETX Configuration: use mostly default values */
1120
1121 /* Enable TX DMA */
1122 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1123 bus_space_write_4(t, h, GEM_TX_CONFIG,
1124 v|GEM_TX_CONFIG_TXDMA_EN|
1125 ((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
1126 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1127
1128 /* step 10. ERX Configuration */
1129 gem_rx_common(sc);
1130
1131 /* step 11. Configure Media */
1132 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1133 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1134 goto out;
1135
1136 /* step 12. RX_MAC Configuration Register */
1137 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1138 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1139 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1140
1141 /* step 14. Issue Transmit Pending command */
1142
1143 /* Call MI initialization function if any */
1144 if (sc->sc_hwinit)
1145 (*sc->sc_hwinit)(sc);
1146
1147
1148 /* step 15. Give the reciever a swift kick */
1149 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1150
1151 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1152 /* Configure PCS */
1153 gem_pcs_start(sc);
1154 else
1155 /* Start the one second timer. */
1156 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1157
1158 sc->sc_flags &= ~GEM_LINK;
1159 ifp->if_flags |= IFF_RUNNING;
1160 ifp->if_flags &= ~IFF_OACTIVE;
1161 ifp->if_timer = 0;
1162 sc->sc_if_flags = ifp->if_flags;
1163 out:
1164 splx(s);
1165
1166 return (0);
1167 }
1168
1169 void
1170 gem_init_regs(struct gem_softc *sc)
1171 {
1172 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1173 bus_space_tag_t t = sc->sc_bustag;
1174 bus_space_handle_t h = sc->sc_h1;
1175 const u_char *laddr = CLLADDR(ifp->if_sadl);
1176 u_int32_t v;
1177
1178 /* These regs are not cleared on reset */
1179 if (!sc->sc_inited) {
1180
1181 /* Load recommended values */
1182 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1183 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1184 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1185
1186 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1187 /* Max frame and max burst size */
1188 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1189 ETHER_MAX_LEN | (0x2000<<16));
1190
1191 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1192 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1193 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1194 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1195 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1196 ((laddr[5]<<8)|laddr[4])&0x3ff);
1197
1198 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1199 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1200 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1201 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1202
1203 /* MAC control addr set to 01:80:c2:00:00:01 */
1204 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1205 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1206 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1207
1208 /* MAC filter addr set to 0:0:0:0:0:0 */
1209 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1210 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1211 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1212
1213 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1214 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1215
1216 sc->sc_inited = 1;
1217 }
1218
1219 /* Counters need to be zeroed */
1220 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1221 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1222 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1223 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1224 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1225 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1226 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1227 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1228 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1229 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1230 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1231
1232 /* Set XOFF PAUSE time. */
1233 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1234
1235 /*
1236 * Set the internal arbitration to "infinite" bursts of the
1237 * maximum length of 31 * 64 bytes so DMA transfers aren't
1238 * split up in cache line size chunks. This greatly improves
1239 * especially RX performance.
1240 * Enable silicon bug workarounds for the Apple variants.
1241 */
1242 bus_space_write_4(t, h, GEM_CONFIG,
1243 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1244 GEM_CONFIG_BURST_INF | (GEM_IS_APPLE(sc) ?
1245 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1246
1247 /*
1248 * Set the station address.
1249 */
1250 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1251 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1252 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1253
1254 /*
1255 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1256 */
1257 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1258 v = GEM_MAC_XIF_TX_MII_ENA;
1259 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1260 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1261 v |= GEM_MAC_XIF_FDPLX_LED;
1262 if (sc->sc_flags & GEM_GIGABIT)
1263 v |= GEM_MAC_XIF_GMII_MODE;
1264 }
1265 } else {
1266 v |= GEM_MAC_XIF_GMII_MODE;
1267 }
1268 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1269 }
1270
1271 #ifdef GEM_DEBUG
1272 static void
1273 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1274 {
1275 int i;
1276
1277 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1278 printf("descriptor %d:\t", i);
1279 printf("gd_flags: 0x%016" PRIx64 "\t",
1280 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1281 printf("gd_addr: 0x%016" PRIx64 "\n",
1282 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1283 if (i == lastdesc)
1284 break;
1285 }
1286 }
1287 #endif
1288
1289 static void
1290 gem_start(ifp)
1291 struct ifnet *ifp;
1292 {
1293 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1294 struct mbuf *m0, *m;
1295 struct gem_txsoft *txs;
1296 bus_dmamap_t dmamap;
1297 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1298 uint64_t flags = 0;
1299
1300 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1301 return;
1302
1303 /*
1304 * Remember the previous number of free descriptors and
1305 * the first descriptor we'll use.
1306 */
1307 ofree = sc->sc_txfree;
1308 firsttx = sc->sc_txnext;
1309
1310 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1311 sc->sc_dev.dv_xname, ofree, firsttx));
1312
1313 /*
1314 * Loop through the send queue, setting up transmit descriptors
1315 * until we drain the queue, or use up all available transmit
1316 * descriptors.
1317 */
1318 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1319 sc->sc_txfree != 0) {
1320 /*
1321 * Grab a packet off the queue.
1322 */
1323 IFQ_POLL(&ifp->if_snd, m0);
1324 if (m0 == NULL)
1325 break;
1326 m = NULL;
1327
1328 dmamap = txs->txs_dmamap;
1329
1330 /*
1331 * Load the DMA map. If this fails, the packet either
1332 * didn't fit in the alloted number of segments, or we were
1333 * short on resources. In this case, we'll copy and try
1334 * again.
1335 */
1336 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1337 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1338 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1339 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1340 if (m0->m_pkthdr.len > MCLBYTES) {
1341 printf("%s: unable to allocate jumbo Tx "
1342 "cluster\n", sc->sc_dev.dv_xname);
1343 IFQ_DEQUEUE(&ifp->if_snd, m0);
1344 m_freem(m0);
1345 continue;
1346 }
1347 MGETHDR(m, M_DONTWAIT, MT_DATA);
1348 if (m == NULL) {
1349 printf("%s: unable to allocate Tx mbuf\n",
1350 sc->sc_dev.dv_xname);
1351 break;
1352 }
1353 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1354 if (m0->m_pkthdr.len > MHLEN) {
1355 MCLGET(m, M_DONTWAIT);
1356 if ((m->m_flags & M_EXT) == 0) {
1357 printf("%s: unable to allocate Tx "
1358 "cluster\n", sc->sc_dev.dv_xname);
1359 m_freem(m);
1360 break;
1361 }
1362 }
1363 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1364 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1365 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1366 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1367 if (error) {
1368 printf("%s: unable to load Tx buffer, "
1369 "error = %d\n", sc->sc_dev.dv_xname, error);
1370 break;
1371 }
1372 }
1373
1374 /*
1375 * Ensure we have enough descriptors free to describe
1376 * the packet.
1377 */
1378 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1379 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1380 /*
1381 * Not enough free descriptors to transmit this
1382 * packet. We haven't committed to anything yet,
1383 * so just unload the DMA map, put the packet
1384 * back on the queue, and punt. Notify the upper
1385 * layer that there are no more slots left.
1386 *
1387 * XXX We could allocate an mbuf and copy, but
1388 * XXX it is worth it?
1389 */
1390 ifp->if_flags |= IFF_OACTIVE;
1391 sc->sc_if_flags = ifp->if_flags;
1392 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1393 if (m != NULL)
1394 m_freem(m);
1395 break;
1396 }
1397
1398 IFQ_DEQUEUE(&ifp->if_snd, m0);
1399 if (m != NULL) {
1400 m_freem(m0);
1401 m0 = m;
1402 }
1403
1404 /*
1405 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1406 */
1407
1408 /* Sync the DMA map. */
1409 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1410 BUS_DMASYNC_PREWRITE);
1411
1412 /*
1413 * Initialize the transmit descriptors.
1414 */
1415 for (nexttx = sc->sc_txnext, seg = 0;
1416 seg < dmamap->dm_nsegs;
1417 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1418
1419 /*
1420 * If this is the first descriptor we're
1421 * enqueueing, set the start of packet flag,
1422 * and the checksum stuff if we want the hardware
1423 * to do it.
1424 */
1425 sc->sc_txdescs[nexttx].gd_addr =
1426 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1427 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1428 if (nexttx == firsttx) {
1429 flags |= GEM_TD_START_OF_PACKET;
1430 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1431 sc->sc_txwin = 0;
1432 flags |= GEM_TD_INTERRUPT_ME;
1433 }
1434
1435 #ifdef INET
1436 /* h/w checksum */
1437 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1438 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1439 struct ether_header *eh;
1440 uint16_t offset, start;
1441
1442 eh = mtod(m0, struct ether_header *);
1443 switch (ntohs(eh->ether_type)) {
1444 case ETHERTYPE_IP:
1445 start = ETHER_HDR_LEN;
1446 break;
1447 case ETHERTYPE_VLAN:
1448 start = ETHER_HDR_LEN +
1449 ETHER_VLAN_ENCAP_LEN;
1450 break;
1451 default:
1452 /* unsupported, drop it */
1453 m_free(m0);
1454 continue;
1455 }
1456 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1457 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1458 flags |= (start <<
1459 GEM_TD_CXSUM_STARTSHFT) |
1460 (offset <<
1461 GEM_TD_CXSUM_STUFFSHFT) |
1462 GEM_TD_CXSUM_ENABLE;
1463 }
1464 #endif
1465 }
1466 if (seg == dmamap->dm_nsegs - 1) {
1467 flags |= GEM_TD_END_OF_PACKET;
1468 } else {
1469 /* last flag set outside of loop */
1470 sc->sc_txdescs[nexttx].gd_flags =
1471 GEM_DMA_WRITE(sc, flags);
1472 }
1473 lasttx = nexttx;
1474 }
1475 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1476 /* add padding buffer at end of chain */
1477 flags &= ~GEM_TD_END_OF_PACKET;
1478 sc->sc_txdescs[lasttx].gd_flags =
1479 GEM_DMA_WRITE(sc, flags);
1480
1481 sc->sc_txdescs[nexttx].gd_addr =
1482 GEM_DMA_WRITE(sc,
1483 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1484 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1485 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1486 lasttx = nexttx;
1487 nexttx = GEM_NEXTTX(nexttx);
1488 seg++;
1489 }
1490 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1491
1492 KASSERT(lasttx != -1);
1493
1494 /*
1495 * Store a pointer to the packet so we can free it later,
1496 * and remember what txdirty will be once the packet is
1497 * done.
1498 */
1499 txs->txs_mbuf = m0;
1500 txs->txs_firstdesc = sc->sc_txnext;
1501 txs->txs_lastdesc = lasttx;
1502 txs->txs_ndescs = seg;
1503
1504 #ifdef GEM_DEBUG
1505 if (ifp->if_flags & IFF_DEBUG) {
1506 printf(" gem_start %p transmit chain:\n", txs);
1507 gem_txsoft_print(sc, txs->txs_firstdesc,
1508 txs->txs_lastdesc);
1509 }
1510 #endif
1511
1512 /* Sync the descriptors we're using. */
1513 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1514 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1515
1516 /* Advance the tx pointer. */
1517 sc->sc_txfree -= txs->txs_ndescs;
1518 sc->sc_txnext = nexttx;
1519
1520 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1521 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1522
1523 #if NBPFILTER > 0
1524 /*
1525 * Pass the packet to any BPF listeners.
1526 */
1527 if (ifp->if_bpf)
1528 bpf_mtap(ifp->if_bpf, m0);
1529 #endif /* NBPFILTER > 0 */
1530 }
1531
1532 if (txs == NULL || sc->sc_txfree == 0) {
1533 /* No more slots left; notify upper layer. */
1534 ifp->if_flags |= IFF_OACTIVE;
1535 sc->sc_if_flags = ifp->if_flags;
1536 }
1537
1538 if (sc->sc_txfree != ofree) {
1539 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1540 sc->sc_dev.dv_xname, lasttx, firsttx));
1541 /*
1542 * The entire packet chain is set up.
1543 * Kick the transmitter.
1544 */
1545 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1546 sc->sc_dev.dv_xname, nexttx));
1547 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1548 sc->sc_txnext);
1549
1550 /* Set a watchdog timer in case the chip flakes out. */
1551 ifp->if_timer = 5;
1552 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1553 sc->sc_dev.dv_xname, ifp->if_timer));
1554 }
1555 }
1556
1557 /*
1558 * Transmit interrupt.
1559 */
1560 int
1561 gem_tint(sc)
1562 struct gem_softc *sc;
1563 {
1564 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1565 bus_space_tag_t t = sc->sc_bustag;
1566 bus_space_handle_t mac = sc->sc_h1;
1567 struct gem_txsoft *txs;
1568 int txlast;
1569 int progress = 0;
1570 u_int32_t v;
1571
1572 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1573
1574 /* Unload collision counters ... */
1575 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1576 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1577 ifp->if_collisions += v +
1578 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1579 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1580 ifp->if_oerrors += v;
1581
1582 /* ... then clear the hardware counters. */
1583 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1584 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1585 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1586 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1587
1588 /*
1589 * Go through our Tx list and free mbufs for those
1590 * frames that have been transmitted.
1591 */
1592 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1593 /*
1594 * In theory, we could harvest some descriptors before
1595 * the ring is empty, but that's a bit complicated.
1596 *
1597 * GEM_TX_COMPLETION points to the last descriptor
1598 * processed +1.
1599 *
1600 * Let's assume that the NIC writes back to the Tx
1601 * descriptors before it updates the completion
1602 * register. If the NIC has posted writes to the
1603 * Tx descriptors, PCI ordering requires that the
1604 * posted writes flush to RAM before the register-read
1605 * finishes. So let's read the completion register,
1606 * before syncing the descriptors, so that we
1607 * examine Tx descriptors that are at least as
1608 * current as the completion register.
1609 */
1610 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1611 DPRINTF(sc,
1612 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1613 txs->txs_lastdesc, txlast));
1614 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1615 if (txlast >= txs->txs_firstdesc &&
1616 txlast <= txs->txs_lastdesc)
1617 break;
1618 } else if (txlast >= txs->txs_firstdesc ||
1619 txlast <= txs->txs_lastdesc)
1620 break;
1621
1622 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1623 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1624
1625 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1626 if (ifp->if_flags & IFF_DEBUG) {
1627 printf(" txsoft %p transmit chain:\n", txs);
1628 gem_txsoft_print(sc, txs->txs_firstdesc,
1629 txs->txs_lastdesc);
1630 }
1631 #endif
1632
1633
1634 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1635 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1636
1637 sc->sc_txfree += txs->txs_ndescs;
1638
1639 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1640 0, txs->txs_dmamap->dm_mapsize,
1641 BUS_DMASYNC_POSTWRITE);
1642 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1643 if (txs->txs_mbuf != NULL) {
1644 m_freem(txs->txs_mbuf);
1645 txs->txs_mbuf = NULL;
1646 }
1647
1648 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1649
1650 ifp->if_opackets++;
1651 progress = 1;
1652 }
1653
1654 #if 0
1655 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1656 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1657 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1658 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1659 GEM_TX_DATA_PTR_HI) << 32) |
1660 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1661 GEM_TX_DATA_PTR_LO),
1662 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1663 #endif
1664
1665 if (progress) {
1666 if (sc->sc_txfree == GEM_NTXDESC - 1)
1667 sc->sc_txwin = 0;
1668
1669 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1670 ifp->if_flags &= ~IFF_OACTIVE;
1671 sc->sc_if_flags = ifp->if_flags;
1672 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1673 gem_start(ifp);
1674 }
1675 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1676 sc->sc_dev.dv_xname, ifp->if_timer));
1677
1678 return (1);
1679 }
1680
1681 /*
1682 * Receive interrupt.
1683 */
1684 int
1685 gem_rint(sc)
1686 struct gem_softc *sc;
1687 {
1688 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1689 bus_space_tag_t t = sc->sc_bustag;
1690 bus_space_handle_t h = sc->sc_h1;
1691 struct gem_rxsoft *rxs;
1692 struct mbuf *m;
1693 u_int64_t rxstat;
1694 u_int32_t rxcomp;
1695 int i, len, progress = 0;
1696
1697 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1698
1699 /*
1700 * Ignore spurious interrupt that sometimes occurs before
1701 * we are set up when we network boot.
1702 */
1703 if (!sc->sc_meminited)
1704 return 1;
1705
1706 /*
1707 * Read the completion register once. This limits
1708 * how long the following loop can execute.
1709 */
1710 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1711
1712 /*
1713 * XXX Read the lastrx only once at the top for speed.
1714 */
1715 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1716 sc->sc_rxptr, rxcomp));
1717
1718 /*
1719 * Go into the loop at least once.
1720 */
1721 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1722 i = GEM_NEXTRX(i)) {
1723 rxs = &sc->sc_rxsoft[i];
1724
1725 GEM_CDRXSYNC(sc, i,
1726 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1727
1728 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1729
1730 if (rxstat & GEM_RD_OWN) {
1731 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1732 /*
1733 * We have processed all of the receive buffers.
1734 */
1735 break;
1736 }
1737
1738 progress++;
1739 ifp->if_ipackets++;
1740
1741 if (rxstat & GEM_RD_BAD_CRC) {
1742 ifp->if_ierrors++;
1743 printf("%s: receive error: CRC error\n",
1744 sc->sc_dev.dv_xname);
1745 GEM_INIT_RXDESC(sc, i);
1746 continue;
1747 }
1748
1749 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1750 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1751 #ifdef GEM_DEBUG
1752 if (ifp->if_flags & IFF_DEBUG) {
1753 printf(" rxsoft %p descriptor %d: ", rxs, i);
1754 printf("gd_flags: 0x%016llx\t", (long long)
1755 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1756 printf("gd_addr: 0x%016llx\n", (long long)
1757 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1758 }
1759 #endif
1760
1761 /* No errors; receive the packet. */
1762 len = GEM_RD_BUFLEN(rxstat);
1763
1764 /*
1765 * Allocate a new mbuf cluster. If that fails, we are
1766 * out of memory, and must drop the packet and recycle
1767 * the buffer that's already attached to this descriptor.
1768 */
1769 m = rxs->rxs_mbuf;
1770 if (gem_add_rxbuf(sc, i) != 0) {
1771 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1772 ifp->if_ierrors++;
1773 GEM_INIT_RXDESC(sc, i);
1774 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1775 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1776 continue;
1777 }
1778 m->m_data += 2; /* We're already off by two */
1779
1780 m->m_pkthdr.rcvif = ifp;
1781 m->m_pkthdr.len = m->m_len = len;
1782
1783 #if NBPFILTER > 0
1784 /*
1785 * Pass this up to any BPF listeners, but only
1786 * pass it up the stack if it's for us.
1787 */
1788 if (ifp->if_bpf)
1789 bpf_mtap(ifp->if_bpf, m);
1790 #endif /* NBPFILTER > 0 */
1791
1792 #ifdef INET
1793 /* hardware checksum */
1794 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1795 struct ether_header *eh;
1796 struct ip *ip;
1797 int32_t hlen, pktlen;
1798
1799 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1800 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1801 ETHER_VLAN_ENCAP_LEN;
1802 eh = (struct ether_header *) (mtod(m, char *) +
1803 ETHER_VLAN_ENCAP_LEN);
1804 } else {
1805 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1806 eh = mtod(m, struct ether_header *);
1807 }
1808 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1809 goto swcsum;
1810 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1811
1812 /* IPv4 only */
1813 if (ip->ip_v != IPVERSION)
1814 goto swcsum;
1815
1816 hlen = ip->ip_hl << 2;
1817 if (hlen < sizeof(struct ip))
1818 goto swcsum;
1819
1820 /*
1821 * bail if too short, has random trailing garbage,
1822 * truncated, fragment, or has ethernet pad.
1823 */
1824 if ((ntohs(ip->ip_len) < hlen) ||
1825 (ntohs(ip->ip_len) != pktlen) ||
1826 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1827 goto swcsum;
1828
1829 switch (ip->ip_p) {
1830 case IPPROTO_TCP:
1831 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1832 goto swcsum;
1833 if (pktlen < (hlen + sizeof(struct tcphdr)))
1834 goto swcsum;
1835 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1836 break;
1837 case IPPROTO_UDP:
1838 /* FALLTHROUGH */
1839 default:
1840 goto swcsum;
1841 }
1842
1843 /* the uncomplemented sum is expected */
1844 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1845
1846 /* if the pkt had ip options, we have to deduct them */
1847 if (hlen > sizeof(struct ip)) {
1848 uint16_t *opts;
1849 uint32_t optsum, temp;
1850
1851 optsum = 0;
1852 temp = hlen - sizeof(struct ip);
1853 opts = (uint16_t *) ((char *) ip +
1854 sizeof(struct ip));
1855
1856 while (temp > 1) {
1857 optsum += ntohs(*opts++);
1858 temp -= 2;
1859 }
1860 while (optsum >> 16)
1861 optsum = (optsum >> 16) +
1862 (optsum & 0xffff);
1863
1864 /* Deduct ip opts sum from hwsum (rfc 1624). */
1865 m->m_pkthdr.csum_data =
1866 ~((~m->m_pkthdr.csum_data) - ~optsum);
1867
1868 while (m->m_pkthdr.csum_data >> 16)
1869 m->m_pkthdr.csum_data =
1870 (m->m_pkthdr.csum_data >> 16) +
1871 (m->m_pkthdr.csum_data &
1872 0xffff);
1873 }
1874
1875 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1876 M_CSUM_NO_PSEUDOHDR;
1877 } else
1878 swcsum:
1879 m->m_pkthdr.csum_flags = 0;
1880 #endif
1881 /* Pass it on. */
1882 (*ifp->if_input)(ifp, m);
1883 }
1884
1885 if (progress) {
1886 /* Update the receive pointer. */
1887 if (i == sc->sc_rxptr) {
1888 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1889 #ifdef GEM_DEBUG
1890 if (ifp->if_flags & IFF_DEBUG)
1891 printf("%s: rint: ring wrap\n",
1892 sc->sc_dev.dv_xname);
1893 #endif
1894 }
1895 sc->sc_rxptr = i;
1896 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1897 }
1898 #ifdef GEM_COUNTERS
1899 if (progress <= 4) {
1900 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1901 } else if (progress < 32) {
1902 if (progress < 16)
1903 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1904 else
1905 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1906
1907 } else {
1908 if (progress < 64)
1909 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1910 else
1911 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1912 }
1913 #endif
1914
1915 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1916 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1917
1918 /* Read error counters ... */
1919 ifp->if_ierrors +=
1920 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1921 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1922 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1923 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1924
1925 /* ... then clear the hardware counters. */
1926 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1927 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1928 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1929 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1930
1931 return (1);
1932 }
1933
1934
1935 /*
1936 * gem_add_rxbuf:
1937 *
1938 * Add a receive buffer to the indicated descriptor.
1939 */
1940 int
1941 gem_add_rxbuf(struct gem_softc *sc, int idx)
1942 {
1943 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1944 struct mbuf *m;
1945 int error;
1946
1947 MGETHDR(m, M_DONTWAIT, MT_DATA);
1948 if (m == NULL)
1949 return (ENOBUFS);
1950
1951 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1952 MCLGET(m, M_DONTWAIT);
1953 if ((m->m_flags & M_EXT) == 0) {
1954 m_freem(m);
1955 return (ENOBUFS);
1956 }
1957
1958 #ifdef GEM_DEBUG
1959 /* bzero the packet to check DMA */
1960 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1961 #endif
1962
1963 if (rxs->rxs_mbuf != NULL)
1964 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1965
1966 rxs->rxs_mbuf = m;
1967
1968 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1969 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1970 BUS_DMA_READ|BUS_DMA_NOWAIT);
1971 if (error) {
1972 printf("%s: can't load rx DMA map %d, error = %d\n",
1973 sc->sc_dev.dv_xname, idx, error);
1974 panic("gem_add_rxbuf"); /* XXX */
1975 }
1976
1977 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1978 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1979
1980 GEM_INIT_RXDESC(sc, idx);
1981
1982 return (0);
1983 }
1984
1985
1986 int
1987 gem_eint(struct gem_softc *sc, u_int status)
1988 {
1989 char bits[128];
1990 u_int32_t v;
1991
1992 if ((status & GEM_INTR_MIF) != 0) {
1993 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1994 return (1);
1995 }
1996
1997 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
1998 gem_reset_rxdma(sc);
1999 return (1);
2000 }
2001
2002 if (status & GEM_INTR_BERR) {
2003 bus_space_read_4(sc->sc_bustag, sc->sc_h2, GEM_ERROR_STATUS);
2004 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2,
2005 GEM_ERROR_STATUS);
2006 printf("%s: bus error interrupt: 0x%02x\n",
2007 sc->sc_dev.dv_xname, v);
2008 return (1);
2009 }
2010
2011 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
2012 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
2013 return (1);
2014 }
2015
2016
2017 /*
2018 * PCS interrupts.
2019 * We should receive these when the link status changes, but sometimes
2020 * we don't receive them for link up. We compensate for this in the
2021 * gem_tick() callout.
2022 */
2023 int
2024 gem_pint(struct gem_softc *sc)
2025 {
2026 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2027 bus_space_tag_t t = sc->sc_bustag;
2028 bus_space_handle_t h = sc->sc_h1;
2029 u_int32_t v, v2;
2030
2031 /*
2032 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2033 * latched, so we have to read it twice. There is only one bit in
2034 * use, so the value is meaningless.
2035 */
2036 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2037 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2038
2039 if ((ifp->if_flags & IFF_UP) == 0)
2040 return 1;
2041
2042 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2043 return 1;
2044
2045 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2046 /* If we see remote fault, our link partner is probably going away */
2047 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2048 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2049 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2050 /* Otherwise, we may need to wait after auto-negotiation completes */
2051 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2052 GEM_MII_STATUS_ANEG_CPT) {
2053 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2054 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2055 }
2056 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2057 if (sc->sc_flags & GEM_LINK) {
2058 return 1;
2059 }
2060 callout_stop(&sc->sc_tick_ch);
2061 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2062 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2063 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2064 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2065 v &= v2;
2066 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2067 sc->sc_mii.mii_media_active |= IFM_FDX;
2068 #ifdef GEM_DEBUG
2069 aprint_debug("%s: link up: full duplex\n",
2070 sc->sc_dev.dv_xname);
2071 #endif
2072 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2073 sc->sc_mii.mii_media_active |= IFM_HDX;
2074 #ifdef GEM_DEBUG
2075 aprint_debug("%s: link up: half duplex\n",
2076 sc->sc_dev.dv_xname);
2077 #endif
2078 } else {
2079 #ifdef GEM_DEBUG
2080 aprint_debug("%s: duplex mismatch\n",
2081 sc->sc_dev.dv_xname);
2082 #endif
2083 }
2084 gem_statuschange(sc);
2085 } else {
2086 if ((sc->sc_flags & GEM_LINK) == 0) {
2087 return 1;
2088 }
2089 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2090 sc->sc_mii.mii_media_status = IFM_AVALID;
2091 #ifdef GEM_DEBUG
2092 aprint_debug("%s: link down\n",
2093 sc->sc_dev.dv_xname);
2094 #endif
2095 gem_statuschange(sc);
2096
2097 /* Start the 10 second timer */
2098 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2099 }
2100 return 1;
2101 }
2102
2103
2104
2105 int
2106 gem_intr(v)
2107 void *v;
2108 {
2109 struct gem_softc *sc = (struct gem_softc *)v;
2110 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2111 bus_space_tag_t t = sc->sc_bustag;
2112 bus_space_handle_t h = sc->sc_h1;
2113 u_int32_t status;
2114 int r = 0;
2115 #ifdef GEM_DEBUG
2116 char bits[128];
2117 #endif
2118
2119 /* XXX We should probably mask out interrupts until we're done */
2120
2121 sc->sc_ev_intr.ev_count++;
2122
2123 status = bus_space_read_4(t, h, GEM_STATUS);
2124 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2125 sc->sc_dev.dv_xname, (status >> 19),
2126 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
2127
2128 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2129 r |= gem_eint(sc, status);
2130
2131 /* We don't bother with GEM_INTR_TX_DONE */
2132 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2133 GEM_COUNTER_INCR(sc, sc_ev_txint);
2134 r |= gem_tint(sc);
2135 }
2136
2137 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2138 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2139 r |= gem_rint(sc);
2140 }
2141
2142 /* We should eventually do more than just print out error stats. */
2143 if (status & GEM_INTR_TX_MAC) {
2144 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2145 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2146 printf("%s: MAC tx fault, status %x\n",
2147 sc->sc_dev.dv_xname, txstat);
2148 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2149 gem_init(ifp);
2150 }
2151 if (status & GEM_INTR_RX_MAC) {
2152 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2153 /*
2154 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2155 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2156 * silicon bug so handle them silently. Moreover, it's
2157 * likely that the receiver has hung so we reset it.
2158 */
2159 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2160 ifp->if_ierrors++;
2161 gem_reset_rxdma(sc);
2162 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2163 printf("%s: MAC rx fault, status 0x%02x\n",
2164 sc->sc_dev.dv_xname, rxstat);
2165 }
2166 if (status & GEM_INTR_PCS) {
2167 r |= gem_pint(sc);
2168 }
2169
2170 /* Do we need to do anything with these?
2171 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2172 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2173 if ((status2 & GEM_MAC_PAUSED) != 0)
2174 aprintf_debug("%s: PAUSE received (%d slots)\n",
2175 GEM_MAC_PAUSE_TIME(status2), sc->sc_dev.dv_xname);
2176 if ((status2 & GEM_MAC_PAUSE) != 0)
2177 aprintf_debug("%s: transited to PAUSE state\n",
2178 sc->sc_dev.dv_xname);
2179 if ((status2 & GEM_MAC_RESUME) != 0)
2180 aprintf_debug("%s: transited to non-PAUSE state\n",
2181 sc->sc_dev.dv_xname);
2182 }
2183 if ((status & GEM_INTR_MIF) != 0)
2184 aprintf_debug("%s: MIF interrupt\n", sc->sc_dev.dv_xname);
2185 */
2186 #if NRND > 0
2187 rnd_add_uint32(&sc->rnd_source, status);
2188 #endif
2189 return (r);
2190 }
2191
2192
2193 void
2194 gem_watchdog(ifp)
2195 struct ifnet *ifp;
2196 {
2197 struct gem_softc *sc = ifp->if_softc;
2198
2199 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2200 "GEM_MAC_RX_CONFIG %x\n",
2201 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2202 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2203 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2204
2205 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
2206 ++ifp->if_oerrors;
2207
2208 /* Try to get more packets going. */
2209 gem_start(ifp);
2210 }
2211
2212 /*
2213 * Initialize the MII Management Interface
2214 */
2215 void
2216 gem_mifinit(sc)
2217 struct gem_softc *sc;
2218 {
2219 bus_space_tag_t t = sc->sc_bustag;
2220 bus_space_handle_t mif = sc->sc_h1;
2221
2222 /* Configure the MIF in frame mode */
2223 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2224 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2225 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2226 }
2227
2228 /*
2229 * MII interface
2230 *
2231 * The GEM MII interface supports at least three different operating modes:
2232 *
2233 * Bitbang mode is implemented using data, clock and output enable registers.
2234 *
2235 * Frame mode is implemented by loading a complete frame into the frame
2236 * register and polling the valid bit for completion.
2237 *
2238 * Polling mode uses the frame register but completion is indicated by
2239 * an interrupt.
2240 *
2241 */
2242 static int
2243 gem_mii_readreg(self, phy, reg)
2244 struct device *self;
2245 int phy, reg;
2246 {
2247 struct gem_softc *sc = (void *)self;
2248 bus_space_tag_t t = sc->sc_bustag;
2249 bus_space_handle_t mif = sc->sc_h1;
2250 int n;
2251 u_int32_t v;
2252
2253 #ifdef GEM_DEBUG1
2254 if (sc->sc_debug)
2255 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2256 #endif
2257
2258 /* Construct the frame command */
2259 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2260 GEM_MIF_FRAME_READ;
2261
2262 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2263 for (n = 0; n < 100; n++) {
2264 DELAY(1);
2265 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2266 if (v & GEM_MIF_FRAME_TA0)
2267 return (v & GEM_MIF_FRAME_DATA);
2268 }
2269
2270 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
2271 return (0);
2272 }
2273
2274 static void
2275 gem_mii_writereg(self, phy, reg, val)
2276 struct device *self;
2277 int phy, reg, val;
2278 {
2279 struct gem_softc *sc = (void *)self;
2280 bus_space_tag_t t = sc->sc_bustag;
2281 bus_space_handle_t mif = sc->sc_h1;
2282 int n;
2283 u_int32_t v;
2284
2285 #ifdef GEM_DEBUG1
2286 if (sc->sc_debug)
2287 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2288 phy, reg, val);
2289 #endif
2290
2291 /* Construct the frame command */
2292 v = GEM_MIF_FRAME_WRITE |
2293 (phy << GEM_MIF_PHY_SHIFT) |
2294 (reg << GEM_MIF_REG_SHIFT) |
2295 (val & GEM_MIF_FRAME_DATA);
2296
2297 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2298 for (n = 0; n < 100; n++) {
2299 DELAY(1);
2300 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2301 if (v & GEM_MIF_FRAME_TA0)
2302 return;
2303 }
2304
2305 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
2306 }
2307
2308 static void
2309 gem_mii_statchg(dev)
2310 struct device *dev;
2311 {
2312 struct gem_softc *sc = (void *)dev;
2313 #ifdef GEM_DEBUG
2314 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2315 #endif
2316
2317 #ifdef GEM_DEBUG
2318 if (sc->sc_debug)
2319 printf("gem_mii_statchg: status change: phy = %d\n",
2320 sc->sc_phys[instance]);
2321 #endif
2322 gem_statuschange(sc);
2323 }
2324
2325 /*
2326 * Common status change for gem_mii_statchg() and gem_pint()
2327 */
2328 void
2329 gem_statuschange(struct gem_softc* sc)
2330 {
2331 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2332 bus_space_tag_t t = sc->sc_bustag;
2333 bus_space_handle_t mac = sc->sc_h1;
2334 int gigabit;
2335 u_int32_t rxcfg, txcfg, v;
2336
2337 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2338 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2339 sc->sc_flags |= GEM_LINK;
2340 else
2341 sc->sc_flags &= ~GEM_LINK;
2342
2343 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2344 gigabit = 1;
2345 else
2346 gigabit = 0;
2347
2348 /*
2349 * The configuration done here corresponds to the steps F) and
2350 * G) and as far as enabling of RX and TX MAC goes also step H)
2351 * of the initialization sequence outlined in section 3.2.1 of
2352 * the GEM Gigabit Ethernet ASIC Specification.
2353 */
2354
2355 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2356 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2357 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2358 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2359 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2360 else if (gigabit) {
2361 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2362 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2363 }
2364 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2365 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2366 BUS_SPACE_BARRIER_WRITE);
2367 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2368 aprint_normal("%s: cannot disable TX MAC\n",
2369 sc->sc_dev.dv_xname);
2370 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2371 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2372 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2373 BUS_SPACE_BARRIER_WRITE);
2374 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2375 aprint_normal("%s: cannot disable RX MAC\n",
2376 sc->sc_dev.dv_xname);
2377 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2378
2379 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2380 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2381 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2382
2383 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2384 gigabit != 0)
2385 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2386 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2387 else
2388 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2389 GEM_MAC_SLOT_TIME_NORMAL);
2390
2391 /* XIF Configuration */
2392 if (sc->sc_flags & GEM_LINK)
2393 v = GEM_MAC_XIF_LINK_LED;
2394 else
2395 v = 0;
2396 v |= GEM_MAC_XIF_TX_MII_ENA;
2397
2398 /* If an external transceiver is connected, enable its MII drivers */
2399 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2400 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2401 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2402 /* External MII needs echo disable if half duplex. */
2403 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2404 IFM_FDX) != 0)
2405 /* turn on full duplex LED */
2406 v |= GEM_MAC_XIF_FDPLX_LED;
2407 else
2408 /* half duplex -- disable echo */
2409 v |= GEM_MAC_XIF_ECHO_DISABL;
2410 if (gigabit)
2411 v |= GEM_MAC_XIF_GMII_MODE;
2412 else
2413 v &= ~GEM_MAC_XIF_GMII_MODE;
2414 } else
2415 /* Internal MII needs buf enable */
2416 v |= GEM_MAC_XIF_MII_BUF_ENA;
2417 } else {
2418 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2419 v |= GEM_MAC_XIF_FDPLX_LED;
2420 v |= GEM_MAC_XIF_GMII_MODE;
2421 }
2422 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2423
2424 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2425 (sc->sc_flags & GEM_LINK) != 0) {
2426 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2427 txcfg | GEM_MAC_TX_ENABLE);
2428 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2429 rxcfg | GEM_MAC_RX_ENABLE);
2430 }
2431 }
2432
2433 int
2434 gem_ser_mediachange(struct ifnet *ifp)
2435 {
2436 struct gem_softc *sc = ifp->if_softc;
2437 u_int s, t;
2438
2439 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2440 return EINVAL;
2441
2442 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2443 if (s == IFM_AUTO) {
2444 if (sc->sc_mii_media != s) {
2445 #ifdef GEM_DEBUG
2446 aprint_debug("%s: setting media to auto\n",
2447 sc->sc_dev.dv_xname);
2448 #endif
2449 sc->sc_mii_media = s;
2450 if (ifp->if_flags & IFF_UP) {
2451 gem_pcs_stop(sc, 0);
2452 gem_pcs_start(sc);
2453 }
2454 }
2455 return 0;
2456 }
2457 if (s == IFM_1000_SX) {
2458 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2459 if (t == IFM_FDX || t == IFM_HDX) {
2460 if (sc->sc_mii_media != t) {
2461 sc->sc_mii_media = t;
2462 #ifdef GEM_DEBUG
2463 aprint_debug("%s:"
2464 " setting media to 1000baseSX-%s\n",
2465 sc->sc_dev.dv_xname,
2466 t == IFM_FDX ? "FDX" : "HDX");
2467 #endif
2468 if (ifp->if_flags & IFF_UP) {
2469 gem_pcs_stop(sc, 0);
2470 gem_pcs_start(sc);
2471 }
2472 }
2473 return 0;
2474 }
2475 }
2476 return EINVAL;
2477 }
2478
2479 void
2480 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2481 {
2482 struct gem_softc *sc = ifp->if_softc;
2483
2484 if ((ifp->if_flags & IFF_UP) == 0)
2485 return;
2486 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2487 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2488 }
2489
2490 /*
2491 * Process an ioctl request.
2492 */
2493 int
2494 gem_ioctl(ifp, cmd, data)
2495 struct ifnet *ifp;
2496 u_long cmd;
2497 void *data;
2498 {
2499 struct gem_softc *sc = ifp->if_softc;
2500 int s, error = 0;
2501
2502 s = splnet();
2503
2504 switch (cmd) {
2505 case SIOCSIFFLAGS:
2506 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
2507 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
2508 == (IFF_UP|IFF_RUNNING))
2509 && ((ifp->if_flags & (~RESETIGN))
2510 == (sc->sc_if_flags & (~RESETIGN)))) {
2511 gem_setladrf(sc);
2512 break;
2513 }
2514 #undef RESETIGN
2515 /*FALLTHROUGH*/
2516 default:
2517 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2518 break;
2519
2520 error = 0;
2521
2522 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2523 ;
2524 else if (ifp->if_flags & IFF_RUNNING) {
2525 /*
2526 * Multicast list has changed; set the hardware filter
2527 * accordingly.
2528 */
2529 gem_setladrf(sc);
2530 }
2531 break;
2532 }
2533
2534 /* Try to get things going again */
2535 if (ifp->if_flags & IFF_UP)
2536 gem_start(ifp);
2537 splx(s);
2538 return (error);
2539 }
2540
2541
2542 void
2543 gem_shutdown(arg)
2544 void *arg;
2545 {
2546 struct gem_softc *sc = (struct gem_softc *)arg;
2547 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2548
2549 gem_stop(ifp, 1);
2550 }
2551
2552 /*
2553 * Set up the logical address filter.
2554 */
2555 void
2556 gem_setladrf(sc)
2557 struct gem_softc *sc;
2558 {
2559 struct ethercom *ec = &sc->sc_ethercom;
2560 struct ifnet *ifp = &ec->ec_if;
2561 struct ether_multi *enm;
2562 struct ether_multistep step;
2563 bus_space_tag_t t = sc->sc_bustag;
2564 bus_space_handle_t h = sc->sc_h1;
2565 u_int32_t crc;
2566 u_int32_t hash[16];
2567 u_int32_t v;
2568 int i;
2569
2570 /* Get current RX configuration */
2571 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2572
2573 /*
2574 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2575 * and hash filter. Depending on the case, the right bit will be
2576 * enabled.
2577 */
2578 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2579 GEM_MAC_RX_PROMISC_GRP);
2580
2581 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2582 /* Turn on promiscuous mode */
2583 v |= GEM_MAC_RX_PROMISCUOUS;
2584 ifp->if_flags |= IFF_ALLMULTI;
2585 goto chipit;
2586 }
2587
2588 /*
2589 * Set up multicast address filter by passing all multicast addresses
2590 * through a crc generator, and then using the high order 8 bits as an
2591 * index into the 256 bit logical address filter. The high order 4
2592 * bits selects the word, while the other 4 bits select the bit within
2593 * the word (where bit 0 is the MSB).
2594 */
2595
2596 /* Clear hash table */
2597 memset(hash, 0, sizeof(hash));
2598
2599 ETHER_FIRST_MULTI(step, ec, enm);
2600 while (enm != NULL) {
2601 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2602 /*
2603 * We must listen to a range of multicast addresses.
2604 * For now, just accept all multicasts, rather than
2605 * trying to set only those filter bits needed to match
2606 * the range. (At this time, the only use of address
2607 * ranges is for IP multicast routing, for which the
2608 * range is big enough to require all bits set.)
2609 * XXX should use the address filters for this
2610 */
2611 ifp->if_flags |= IFF_ALLMULTI;
2612 v |= GEM_MAC_RX_PROMISC_GRP;
2613 goto chipit;
2614 }
2615
2616 /* Get the LE CRC32 of the address */
2617 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2618
2619 /* Just want the 8 most significant bits. */
2620 crc >>= 24;
2621
2622 /* Set the corresponding bit in the filter. */
2623 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2624
2625 ETHER_NEXT_MULTI(step, enm);
2626 }
2627
2628 v |= GEM_MAC_RX_HASH_FILTER;
2629 ifp->if_flags &= ~IFF_ALLMULTI;
2630
2631 /* Now load the hash table into the chip (if we are using it) */
2632 for (i = 0; i < 16; i++) {
2633 bus_space_write_4(t, h,
2634 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2635 hash[i]);
2636 }
2637
2638 chipit:
2639 sc->sc_if_flags = ifp->if_flags;
2640 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2641 }
2642
2643 #if notyet
2644
2645 /*
2646 * gem_power:
2647 *
2648 * Power management (suspend/resume) hook.
2649 */
2650 void
2651 gem_power(why, arg)
2652 int why;
2653 void *arg;
2654 {
2655 struct gem_softc *sc = arg;
2656 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2657 int s;
2658
2659 s = splnet();
2660 switch (why) {
2661 case PWR_SUSPEND:
2662 case PWR_STANDBY:
2663 gem_stop(ifp, 1);
2664 if (sc->sc_power != NULL)
2665 (*sc->sc_power)(sc, why);
2666 break;
2667 case PWR_RESUME:
2668 if (ifp->if_flags & IFF_UP) {
2669 if (sc->sc_power != NULL)
2670 (*sc->sc_power)(sc, why);
2671 gem_init(ifp);
2672 }
2673 break;
2674 case PWR_SOFTSUSPEND:
2675 case PWR_SOFTSTANDBY:
2676 case PWR_SOFTRESUME:
2677 break;
2678 }
2679 splx(s);
2680 }
2681 #endif
2682