Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.79
      1 /*	$NetBSD: gem.c,v 1.79 2008/11/07 00:20:02 dyoung Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * Copyright (c) 2001-2003 Thomas Moestl
      7  * All rights reserved.
      8  *
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 /*
     34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
     35  * See `GEM Gigabit Ethernet ASIC Specification'
     36  *   http://www.sun.com/processors/manuals/ge.pdf
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.79 2008/11/07 00:20:02 dyoung Exp $");
     41 
     42 #include "opt_inet.h"
     43 #include "bpfilter.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/callout.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/malloc.h>
     51 #include <sys/kernel.h>
     52 #include <sys/socket.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #include <sys/device.h>
     56 
     57 #include <machine/endian.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 #include <net/if.h>
     62 #include <net/if_dl.h>
     63 #include <net/if_media.h>
     64 #include <net/if_ether.h>
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/in_var.h>
     70 #include <netinet/ip.h>
     71 #include <netinet/tcp.h>
     72 #include <netinet/udp.h>
     73 #endif
     74 
     75 #if NBPFILTER > 0
     76 #include <net/bpf.h>
     77 #endif
     78 
     79 #include <sys/bus.h>
     80 #include <sys/intr.h>
     81 
     82 #include <dev/mii/mii.h>
     83 #include <dev/mii/miivar.h>
     84 #include <dev/mii/mii_bitbang.h>
     85 
     86 #include <dev/ic/gemreg.h>
     87 #include <dev/ic/gemvar.h>
     88 
     89 #define TRIES	10000
     90 
     91 static void	gem_start(struct ifnet *);
     92 static void	gem_stop(struct ifnet *, int);
     93 int		gem_ioctl(struct ifnet *, u_long, void *);
     94 void		gem_tick(void *);
     95 void		gem_watchdog(struct ifnet *);
     96 void		gem_shutdown(void *);
     97 void		gem_pcs_start(struct gem_softc *sc);
     98 void		gem_pcs_stop(struct gem_softc *sc, int);
     99 int		gem_init(struct ifnet *);
    100 void		gem_init_regs(struct gem_softc *sc);
    101 static int	gem_ringsize(int sz);
    102 static int	gem_meminit(struct gem_softc *);
    103 void		gem_mifinit(struct gem_softc *);
    104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
    105 		    u_int32_t, u_int32_t);
    106 void		gem_reset(struct gem_softc *);
    107 int		gem_reset_rx(struct gem_softc *sc);
    108 static void	gem_reset_rxdma(struct gem_softc *sc);
    109 static void	gem_rx_common(struct gem_softc *sc);
    110 int		gem_reset_tx(struct gem_softc *sc);
    111 int		gem_disable_rx(struct gem_softc *sc);
    112 int		gem_disable_tx(struct gem_softc *sc);
    113 static void	gem_rxdrain(struct gem_softc *sc);
    114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    115 void		gem_setladrf(struct gem_softc *);
    116 
    117 /* MII methods & callbacks */
    118 static int	gem_mii_readreg(struct device *, int, int);
    119 static void	gem_mii_writereg(struct device *, int, int, int);
    120 static void	gem_mii_statchg(struct device *);
    121 
    122 static int	gem_ifflags_cb(struct ethercom *);
    123 
    124 void		gem_statuschange(struct gem_softc *);
    125 
    126 int		gem_ser_mediachange(struct ifnet *);
    127 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
    128 
    129 struct mbuf	*gem_get(struct gem_softc *, int, int);
    130 int		gem_put(struct gem_softc *, int, struct mbuf *);
    131 void		gem_read(struct gem_softc *, int, int);
    132 int		gem_pint(struct gem_softc *);
    133 int		gem_eint(struct gem_softc *, u_int);
    134 int		gem_rint(struct gem_softc *);
    135 int		gem_tint(struct gem_softc *);
    136 void		gem_power(int, void *);
    137 
    138 #ifdef GEM_DEBUG
    139 static void gem_txsoft_print(const struct gem_softc *, int, int);
    140 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    141 				printf x
    142 #else
    143 #define	DPRINTF(sc, x)	/* nothing */
    144 #endif
    145 
    146 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    147 
    148 
    149 /*
    150  * gem_attach:
    151  *
    152  *	Attach a Gem interface to the system.
    153  */
    154 void
    155 gem_attach(sc, enaddr)
    156 	struct gem_softc *sc;
    157 	const uint8_t *enaddr;
    158 {
    159 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    160 	struct mii_data *mii = &sc->sc_mii;
    161 	bus_space_tag_t t = sc->sc_bustag;
    162 	bus_space_handle_t h = sc->sc_h1;
    163 	struct ifmedia_entry *ifm;
    164 	int i, error;
    165 	u_int32_t v;
    166 	char *nullbuf;
    167 
    168 	/* Make sure the chip is stopped. */
    169 	ifp->if_softc = sc;
    170 	gem_reset(sc);
    171 
    172 	/*
    173 	 * Allocate the control data structures, and create and load the
    174 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    175 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    176 	 */
    177 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    178 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    179 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    180 		aprint_error_dev(&sc->sc_dev,
    181 		   "unable to allocate control data, error = %d\n",
    182 		    error);
    183 		goto fail_0;
    184 	}
    185 
    186 	/* XXX should map this in with correct endianness */
    187 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    188 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
    189 	    BUS_DMA_COHERENT)) != 0) {
    190 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    191 		    error);
    192 		goto fail_1;
    193 	}
    194 
    195 	nullbuf =
    196 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    197 
    198 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    199 	    sizeof(struct gem_control_data), 1,
    200 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    201 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    202 		    "error = %d\n", error);
    203 		goto fail_2;
    204 	}
    205 
    206 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    207 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    208 	    0)) != 0) {
    209 		aprint_error_dev(&sc->sc_dev,
    210 		    "unable to load control data DMA map, error = %d\n",
    211 		    error);
    212 		goto fail_3;
    213 	}
    214 
    215 	memset(nullbuf, 0, ETHER_MIN_TX);
    216 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    217 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    218 		aprint_error_dev(&sc->sc_dev, "unable to create padding DMA map, "
    219 		    "error = %d\n", error);
    220 		goto fail_4;
    221 	}
    222 
    223 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    224 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    225 		aprint_error_dev(&sc->sc_dev,
    226 		    "unable to load padding DMA map, error = %d\n",
    227 		    error);
    228 		goto fail_5;
    229 	}
    230 
    231 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    232 	    BUS_DMASYNC_PREWRITE);
    233 
    234 	/*
    235 	 * Initialize the transmit job descriptors.
    236 	 */
    237 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    238 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    239 
    240 	/*
    241 	 * Create the transmit buffer DMA maps.
    242 	 */
    243 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    244 		struct gem_txsoft *txs;
    245 
    246 		txs = &sc->sc_txsoft[i];
    247 		txs->txs_mbuf = NULL;
    248 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    249 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    250 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    251 		    &txs->txs_dmamap)) != 0) {
    252 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
    253 			    "error = %d\n", i, error);
    254 			goto fail_6;
    255 		}
    256 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    257 	}
    258 
    259 	/*
    260 	 * Create the receive buffer DMA maps.
    261 	 */
    262 	for (i = 0; i < GEM_NRXDESC; i++) {
    263 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    264 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    265 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
    266 			    "error = %d\n", i, error);
    267 			goto fail_7;
    268 		}
    269 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    270 	}
    271 
    272 	/* Initialize ifmedia structures and MII info */
    273 	mii->mii_ifp = ifp;
    274 	mii->mii_readreg = gem_mii_readreg;
    275 	mii->mii_writereg = gem_mii_writereg;
    276 	mii->mii_statchg = gem_mii_statchg;
    277 
    278 	sc->sc_ethercom.ec_mii = mii;
    279 
    280 	/*
    281 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
    282 	 * Section 3.2.1 `Initialization Sequence'.
    283 	 * However, we can't assume SERDES or Serialink if neither
    284 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
    285 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
    286 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
    287 	 * Also, for Apple variants with 2 PHY's, we prefer the external
    288 	 * PHY over the internal PHY.
    289 	 */
    290 	gem_mifinit(sc);
    291 
    292 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
    293 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    294 		    ether_mediastatus);
    295 		mii_attach(&sc->sc_dev, mii, 0xffffffff,
    296 		    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    297 		if (LIST_EMPTY(&mii->mii_phys)) {
    298 				/* No PHY attached */
    299 				aprint_error_dev(&sc->sc_dev, "PHY probe failed\n");
    300 				goto fail_7;
    301 		} else {
    302 			struct mii_softc *child;
    303 
    304 			/*
    305 			 * Walk along the list of attached MII devices and
    306 			 * establish an `MII instance' to `PHY number'
    307 			 * mapping.
    308 			 */
    309 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
    310 				/*
    311 				 * Note: we support just one PHY: the internal
    312 				 * or external MII is already selected for us
    313 				 * by the GEM_MIF_CONFIG  register.
    314 				 */
    315 				if (child->mii_phy > 1 || child->mii_inst > 0) {
    316 					aprint_error_dev(&sc->sc_dev,
    317 					    "cannot accommodate MII device"
    318 					    " %s at PHY %d, instance %d\n",
    319 					       device_xname(child->mii_dev),
    320 					       child->mii_phy, child->mii_inst);
    321 					continue;
    322 				}
    323 				sc->sc_phys[child->mii_inst] = child->mii_phy;
    324 			}
    325 
    326 			/*
    327 			 * Now select and activate the PHY we will use.
    328 			 *
    329 			 * The order of preference is External (MDI1),
    330 			 * then Internal (MDI0),
    331 			 */
    332 			if (sc->sc_phys[1]) {
    333 #ifdef GEM_DEBUG
    334 				aprint_debug_dev(&sc->sc_dev, "using external PHY\n");
    335 #endif
    336 				sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    337 			} else {
    338 #ifdef GEM_DEBUG
    339 				aprint_debug_dev(&sc->sc_dev, "using internal PHY\n");
    340 				sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    341 #endif
    342 			}
    343 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    344 			    sc->sc_mif_config);
    345 			if (sc->sc_variant != GEM_SUN_ERI)
    346 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    347 				    GEM_MII_DATAPATH_MII);
    348 
    349 			/*
    350 			 * XXX - we can really do the following ONLY if the
    351 			 * PHY indeed has the auto negotiation capability!!
    352 			 */
    353 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    354 		}
    355 	} else {
    356 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
    357 		    gem_ser_mediastatus);
    358 		/* SERDES or Serialink */
    359 		if (sc->sc_flags & GEM_SERDES) {
    360 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    361 			    GEM_MII_DATAPATH_SERDES);
    362 		} else {
    363 			sc->sc_flags |= GEM_SERIAL;
    364 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    365 			    GEM_MII_DATAPATH_SERIAL);
    366 		}
    367 
    368 		aprint_normal_dev(&sc->sc_dev, "using external PCS %s: ",
    369 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
    370 
    371 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    372 		/* Check for FDX and HDX capabilities */
    373 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
    374 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
    375 			ifmedia_add(&sc->sc_mii.mii_media,
    376 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
    377 			aprint_normal("1000baseSX-FDX, ");
    378 		}
    379 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
    380 			ifmedia_add(&sc->sc_mii.mii_media,
    381 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
    382 			aprint_normal("1000baseSX-HDX, ");
    383 		}
    384 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    385 		sc->sc_mii_media = IFM_AUTO;
    386 		aprint_normal("auto\n");
    387 
    388 		gem_pcs_stop(sc, 1);
    389 	}
    390 
    391 	/*
    392 	 * From this point forward, the attachment cannot fail.  A failure
    393 	 * before this point releases all resources that may have been
    394 	 * allocated.
    395 	 */
    396 
    397 	/* Announce ourselves. */
    398 	aprint_normal_dev(&sc->sc_dev, "Ethernet address %s",
    399 	    ether_sprintf(enaddr));
    400 
    401 	/* Get RX FIFO size */
    402 	sc->sc_rxfifosize = 64 *
    403 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
    404 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    405 
    406 	/* Get TX FIFO size */
    407 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
    408 	aprint_normal(", %uKB TX fifo\n", v / 16);
    409 
    410 	/* Initialize ifnet structure. */
    411 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    412 	ifp->if_softc = sc;
    413 	ifp->if_flags =
    414 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    415 	sc->sc_if_flags = ifp->if_flags;
    416 	/*
    417 	 * The GEM hardware supports basic TCP checksum offloading only.
    418 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
    419 	 * have bugs in the receive checksum, so don't enable it for now.
    420 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
    421 	    (GEM_IS_APPLE(sc) &&
    422 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
    423 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
    424 	*/
    425 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
    426 	ifp->if_start = gem_start;
    427 	ifp->if_ioctl = gem_ioctl;
    428 	ifp->if_watchdog = gem_watchdog;
    429 	ifp->if_stop = gem_stop;
    430 	ifp->if_init = gem_init;
    431 	IFQ_SET_READY(&ifp->if_snd);
    432 
    433 	/*
    434 	 * If we support GigE media, we support jumbo frames too.
    435 	 * Unless we are Apple.
    436 	 */
    437 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
    438 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    439 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    440 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    441 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    442 			if (!GEM_IS_APPLE(sc))
    443 				sc->sc_ethercom.ec_capabilities
    444 				    |= ETHERCAP_JUMBO_MTU;
    445 			sc->sc_flags |= GEM_GIGABIT;
    446 			break;
    447 		}
    448 	}
    449 
    450 	/* claim 802.1q capability */
    451 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    452 
    453 	/* Attach the interface. */
    454 	if_attach(ifp);
    455 	ether_ifattach(ifp, enaddr);
    456 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
    457 
    458 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    459 	if (sc->sc_sh == NULL)
    460 		panic("gem_config: can't establish shutdownhook");
    461 
    462 #if NRND > 0
    463 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    464 			  RND_TYPE_NET, 0);
    465 #endif
    466 
    467 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    468 	    NULL, device_xname(&sc->sc_dev), "interrupts");
    469 #ifdef GEM_COUNTERS
    470 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    471 	    &sc->sc_ev_intr, device_xname(&sc->sc_dev), "tx interrupts");
    472 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    473 	    &sc->sc_ev_intr, device_xname(&sc->sc_dev), "rx interrupts");
    474 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    475 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx ring full");
    476 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    477 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx malloc failure");
    478 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    479 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 0desc");
    480 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    481 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 1desc");
    482 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    483 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 2desc");
    484 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    485 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 3desc");
    486 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    487 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >3desc");
    488 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    489 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >7desc");
    490 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    491 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >15desc");
    492 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    493 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >31desc");
    494 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    495 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >63desc");
    496 #endif
    497 
    498 #if notyet
    499 	/*
    500 	 * Add a suspend hook to make sure we come back up after a
    501 	 * resume.
    502 	 */
    503 	sc->sc_powerhook = powerhook_establish(device_xname(&sc->sc_dev),
    504 	    gem_power, sc);
    505 	if (sc->sc_powerhook == NULL)
    506 		aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish power hook\n");
    507 #endif
    508 
    509 	callout_init(&sc->sc_tick_ch, 0);
    510 	return;
    511 
    512 	/*
    513 	 * Free any resources we've allocated during the failed attach
    514 	 * attempt.  Do this in reverse order and fall through.
    515 	 */
    516  fail_7:
    517 	for (i = 0; i < GEM_NRXDESC; i++) {
    518 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    519 			bus_dmamap_destroy(sc->sc_dmatag,
    520 			    sc->sc_rxsoft[i].rxs_dmamap);
    521 	}
    522  fail_6:
    523 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    524 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    525 			bus_dmamap_destroy(sc->sc_dmatag,
    526 			    sc->sc_txsoft[i].txs_dmamap);
    527 	}
    528 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    529  fail_5:
    530 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    531  fail_4:
    532 	bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
    533  fail_3:
    534 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    535  fail_2:
    536 	bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
    537 	    sizeof(struct gem_control_data));
    538  fail_1:
    539 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    540  fail_0:
    541 	return;
    542 }
    543 
    544 
    545 void
    546 gem_tick(arg)
    547 	void *arg;
    548 {
    549 	struct gem_softc *sc = arg;
    550 	int s;
    551 
    552 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
    553 		/*
    554 		 * We have to reset everything if we failed to get a
    555 		 * PCS interrupt.  Restarting the callout is handled
    556 		 * in gem_pcs_start().
    557 		 */
    558 		gem_init(&sc->sc_ethercom.ec_if);
    559 	} else {
    560 		s = splnet();
    561 		mii_tick(&sc->sc_mii);
    562 		splx(s);
    563 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    564 	}
    565 }
    566 
    567 static int
    568 gem_bitwait(sc, h, r, clr, set)
    569 	struct gem_softc *sc;
    570 	bus_space_handle_t h;
    571 	int r;
    572 	u_int32_t clr;
    573 	u_int32_t set;
    574 {
    575 	int i;
    576 	u_int32_t reg;
    577 
    578 	for (i = TRIES; i--; DELAY(100)) {
    579 		reg = bus_space_read_4(sc->sc_bustag, h, r);
    580 		if ((reg & clr) == 0 && (reg & set) == set)
    581 			return (1);
    582 	}
    583 	return (0);
    584 }
    585 
    586 void
    587 gem_reset(sc)
    588 	struct gem_softc *sc;
    589 {
    590 	bus_space_tag_t t = sc->sc_bustag;
    591 	bus_space_handle_t h = sc->sc_h2;
    592 	int s;
    593 
    594 	s = splnet();
    595 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(&sc->sc_dev)));
    596 	gem_reset_rx(sc);
    597 	gem_reset_tx(sc);
    598 
    599 	/* Do a full reset */
    600 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    601 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    602 		aprint_error_dev(&sc->sc_dev, "cannot reset device\n");
    603 	splx(s);
    604 }
    605 
    606 
    607 /*
    608  * gem_rxdrain:
    609  *
    610  *	Drain the receive queue.
    611  */
    612 static void
    613 gem_rxdrain(struct gem_softc *sc)
    614 {
    615 	struct gem_rxsoft *rxs;
    616 	int i;
    617 
    618 	for (i = 0; i < GEM_NRXDESC; i++) {
    619 		rxs = &sc->sc_rxsoft[i];
    620 		if (rxs->rxs_mbuf != NULL) {
    621 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    622 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    623 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    624 			m_freem(rxs->rxs_mbuf);
    625 			rxs->rxs_mbuf = NULL;
    626 		}
    627 	}
    628 }
    629 
    630 /*
    631  * Reset the whole thing.
    632  */
    633 static void
    634 gem_stop(struct ifnet *ifp, int disable)
    635 {
    636 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    637 	struct gem_txsoft *txs;
    638 
    639 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(&sc->sc_dev)));
    640 
    641 	callout_stop(&sc->sc_tick_ch);
    642 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
    643 		gem_pcs_stop(sc, disable);
    644 	else
    645 		mii_down(&sc->sc_mii);
    646 
    647 	/* XXX - Should we reset these instead? */
    648 	gem_disable_tx(sc);
    649 	gem_disable_rx(sc);
    650 
    651 	/*
    652 	 * Release any queued transmit buffers.
    653 	 */
    654 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    655 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    656 		if (txs->txs_mbuf != NULL) {
    657 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    658 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    659 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    660 			m_freem(txs->txs_mbuf);
    661 			txs->txs_mbuf = NULL;
    662 		}
    663 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    664 	}
    665 
    666 	/*
    667 	 * Mark the interface down and cancel the watchdog timer.
    668 	 */
    669 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    670 	sc->sc_if_flags = ifp->if_flags;
    671 	ifp->if_timer = 0;
    672 
    673 	if (disable)
    674 		gem_rxdrain(sc);
    675 }
    676 
    677 
    678 /*
    679  * Reset the receiver
    680  */
    681 int
    682 gem_reset_rx(struct gem_softc *sc)
    683 {
    684 	bus_space_tag_t t = sc->sc_bustag;
    685 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    686 
    687 	/*
    688 	 * Resetting while DMA is in progress can cause a bus hang, so we
    689 	 * disable DMA first.
    690 	 */
    691 	gem_disable_rx(sc);
    692 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    693 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    694 	/* Wait till it finishes */
    695 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
    696 		aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n");
    697 
    698 	/* Finally, reset the ERX */
    699 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
    700 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    701 	/* Wait till it finishes */
    702 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
    703 		aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n");
    704 		return (1);
    705 	}
    706 	return (0);
    707 }
    708 
    709 
    710 /*
    711  * Reset the receiver DMA engine.
    712  *
    713  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
    714  * etc in order to reset the receiver DMA engine only and not do a full
    715  * reset which amongst others also downs the link and clears the FIFOs.
    716  */
    717 static void
    718 gem_reset_rxdma(struct gem_softc *sc)
    719 {
    720 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    721 	bus_space_tag_t t = sc->sc_bustag;
    722 	bus_space_handle_t h = sc->sc_h1;
    723 	int i;
    724 
    725 	if (gem_reset_rx(sc) != 0) {
    726 		gem_init(ifp);
    727 		return;
    728 	}
    729 	for (i = 0; i < GEM_NRXDESC; i++)
    730 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
    731 			GEM_UPDATE_RXDESC(sc, i);
    732 	sc->sc_rxptr = 0;
    733 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    734 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    735 
    736 	/* Reprogram Descriptor Ring Base Addresses */
    737 	/* NOTE: we use only 32-bit DMA addresses here. */
    738 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    739 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    740 
    741 	/* Redo ERX Configuration */
    742 	gem_rx_common(sc);
    743 
    744 	/* Give the reciever a swift kick */
    745 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
    746 }
    747 
    748 /*
    749  * Common RX configuration for gem_init() and gem_reset_rxdma().
    750  */
    751 static void
    752 gem_rx_common(struct gem_softc *sc)
    753 {
    754 	bus_space_tag_t t = sc->sc_bustag;
    755 	bus_space_handle_t h = sc->sc_h1;
    756 	u_int32_t v;
    757 
    758 	/* Encode Receive Descriptor ring size: four possible values */
    759 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    760 
    761 	/* Set receive h/w checksum offset */
    762 #ifdef INET
    763 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    764 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    765 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    766 #endif
    767 
    768 	/* Enable RX DMA */
    769 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    770 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
    771 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
    772 
    773 	/*
    774 	 * The following value is for an OFF Threshold of about 3/4 full
    775 	 * and an ON Threshold of 1/4 full.
    776 	 */
    777 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    778 	    (3 * sc->sc_rxfifosize / 256) |
    779 	    ((sc->sc_rxfifosize / 256) << 12));
    780 	bus_space_write_4(t, h, GEM_RX_BLANKING,
    781 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
    782 }
    783 
    784 /*
    785  * Reset the transmitter
    786  */
    787 int
    788 gem_reset_tx(struct gem_softc *sc)
    789 {
    790 	bus_space_tag_t t = sc->sc_bustag;
    791 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    792 
    793 	/*
    794 	 * Resetting while DMA is in progress can cause a bus hang, so we
    795 	 * disable DMA first.
    796 	 */
    797 	gem_disable_tx(sc);
    798 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    799 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    800 	/* Wait till it finishes */
    801 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
    802 		aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n");
    803 	/* Wait 5ms extra. */
    804 	delay(5000);
    805 
    806 	/* Finally, reset the ETX */
    807 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
    808 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    809 	/* Wait till it finishes */
    810 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
    811 		aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n");
    812 		return (1);
    813 	}
    814 	return (0);
    815 }
    816 
    817 /*
    818  * disable receiver.
    819  */
    820 int
    821 gem_disable_rx(struct gem_softc *sc)
    822 {
    823 	bus_space_tag_t t = sc->sc_bustag;
    824 	bus_space_handle_t h = sc->sc_h1;
    825 	u_int32_t cfg;
    826 
    827 	/* Flip the enable bit */
    828 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    829 	cfg &= ~GEM_MAC_RX_ENABLE;
    830 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    831 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    832 	/* Wait for it to finish */
    833 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    834 }
    835 
    836 /*
    837  * disable transmitter.
    838  */
    839 int
    840 gem_disable_tx(struct gem_softc *sc)
    841 {
    842 	bus_space_tag_t t = sc->sc_bustag;
    843 	bus_space_handle_t h = sc->sc_h1;
    844 	u_int32_t cfg;
    845 
    846 	/* Flip the enable bit */
    847 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    848 	cfg &= ~GEM_MAC_TX_ENABLE;
    849 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    850 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    851 	/* Wait for it to finish */
    852 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    853 }
    854 
    855 /*
    856  * Initialize interface.
    857  */
    858 int
    859 gem_meminit(struct gem_softc *sc)
    860 {
    861 	struct gem_rxsoft *rxs;
    862 	int i, error;
    863 
    864 	/*
    865 	 * Initialize the transmit descriptor ring.
    866 	 */
    867 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    868 	for (i = 0; i < GEM_NTXDESC; i++) {
    869 		sc->sc_txdescs[i].gd_flags = 0;
    870 		sc->sc_txdescs[i].gd_addr = 0;
    871 	}
    872 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    873 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    874 	sc->sc_txfree = GEM_NTXDESC-1;
    875 	sc->sc_txnext = 0;
    876 	sc->sc_txwin = 0;
    877 
    878 	/*
    879 	 * Initialize the receive descriptor and receive job
    880 	 * descriptor rings.
    881 	 */
    882 	for (i = 0; i < GEM_NRXDESC; i++) {
    883 		rxs = &sc->sc_rxsoft[i];
    884 		if (rxs->rxs_mbuf == NULL) {
    885 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    886 				aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
    887 				    "buffer %d, error = %d\n",
    888 				    i, error);
    889 				/*
    890 				 * XXX Should attempt to run with fewer receive
    891 				 * XXX buffers instead of just failing.
    892 				 */
    893 				gem_rxdrain(sc);
    894 				return (1);
    895 			}
    896 		} else
    897 			GEM_INIT_RXDESC(sc, i);
    898 	}
    899 	sc->sc_rxptr = 0;
    900 	sc->sc_meminited = 1;
    901 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    902 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    903 
    904 	return (0);
    905 }
    906 
    907 static int
    908 gem_ringsize(int sz)
    909 {
    910 	switch (sz) {
    911 	case 32:
    912 		return GEM_RING_SZ_32;
    913 	case 64:
    914 		return GEM_RING_SZ_64;
    915 	case 128:
    916 		return GEM_RING_SZ_128;
    917 	case 256:
    918 		return GEM_RING_SZ_256;
    919 	case 512:
    920 		return GEM_RING_SZ_512;
    921 	case 1024:
    922 		return GEM_RING_SZ_1024;
    923 	case 2048:
    924 		return GEM_RING_SZ_2048;
    925 	case 4096:
    926 		return GEM_RING_SZ_4096;
    927 	case 8192:
    928 		return GEM_RING_SZ_8192;
    929 	default:
    930 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    931 		return GEM_RING_SZ_32;
    932 	}
    933 }
    934 
    935 
    936 /*
    937  * Start PCS
    938  */
    939 void
    940 gem_pcs_start(struct gem_softc *sc)
    941 {
    942 	bus_space_tag_t t = sc->sc_bustag;
    943 	bus_space_handle_t h = sc->sc_h1;
    944 	uint32_t v;
    945 
    946 #ifdef GEM_DEBUG
    947 	aprint_debug_dev(&sc->sc_dev, "gem_pcs_start()\n");
    948 #endif
    949 
    950 	/*
    951 	 * Set up.  We must disable the MII before modifying the
    952 	 * GEM_MII_ANAR register
    953 	 */
    954 	if (sc->sc_flags & GEM_SERDES) {
    955 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    956 		    GEM_MII_DATAPATH_SERDES);
    957 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
    958 		    GEM_MII_SLINK_LOOPBACK);
    959 	} else {
    960 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    961 		    GEM_MII_DATAPATH_SERIAL);
    962 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
    963 	}
    964 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
    965 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
    966 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
    967 	if (sc->sc_mii_media == IFM_AUTO)
    968 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
    969 	else if (sc->sc_mii_media == IFM_FDX) {
    970 		v |= GEM_MII_ANEG_FUL_DUPLX;
    971 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
    972 	} else if (sc->sc_mii_media == IFM_HDX) {
    973 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
    974 		v |= GEM_MII_ANEG_HLF_DUPLX;
    975 	}
    976 
    977 	/* Configure link. */
    978 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
    979 	bus_space_write_4(t, h, GEM_MII_CONTROL,
    980 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
    981 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
    982 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
    983 
    984 	/* Start the 10 second timer */
    985 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
    986 }
    987 
    988 /*
    989  * Stop PCS
    990  */
    991 void
    992 gem_pcs_stop(struct gem_softc *sc, int disable)
    993 {
    994 	bus_space_tag_t t = sc->sc_bustag;
    995 	bus_space_handle_t h = sc->sc_h1;
    996 
    997 #ifdef GEM_DEBUG
    998 	aprint_debug_dev(&sc->sc_dev, "gem_pcs_stop()\n");
    999 #endif
   1000 
   1001 	/* Tell link partner that we're going away */
   1002 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
   1003 
   1004 	/*
   1005 	 * Disable PCS MII.  The documentation suggests that setting
   1006 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
   1007 	 * negotiation will shut down the link.  However, it appears
   1008 	 * that we also need to unset the datapath mode.
   1009 	 */
   1010 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1011 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1012 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1013 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
   1014 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1015 
   1016 	if (disable) {
   1017 		if (sc->sc_flags & GEM_SERDES)
   1018 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1019 				GEM_MII_SLINK_POWER_OFF);
   1020 		else
   1021 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1022 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
   1023 	}
   1024 
   1025 	sc->sc_flags &= ~GEM_LINK;
   1026 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   1027 	sc->sc_mii.mii_media_status = IFM_AVALID;
   1028 }
   1029 
   1030 
   1031 /*
   1032  * Initialization of interface; set up initialization block
   1033  * and transmit/receive descriptor rings.
   1034  */
   1035 int
   1036 gem_init(struct ifnet *ifp)
   1037 {
   1038 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1039 	bus_space_tag_t t = sc->sc_bustag;
   1040 	bus_space_handle_t h = sc->sc_h1;
   1041 	int rc = 0, s;
   1042 	u_int max_frame_size;
   1043 	u_int32_t v;
   1044 
   1045 	s = splnet();
   1046 
   1047 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(&sc->sc_dev)));
   1048 	/*
   1049 	 * Initialization sequence. The numbered steps below correspond
   1050 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
   1051 	 * Channel Engine manual (part of the PCIO manual).
   1052 	 * See also the STP2002-STQ document from Sun Microsystems.
   1053 	 */
   1054 
   1055 	/* step 1 & 2. Reset the Ethernet Channel */
   1056 	gem_stop(ifp, 0);
   1057 	gem_reset(sc);
   1058 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(&sc->sc_dev)));
   1059 
   1060 	/* Re-initialize the MIF */
   1061 	gem_mifinit(sc);
   1062 
   1063 	/* Set up correct datapath for non-SERDES/Serialink */
   1064 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1065 	    sc->sc_variant != GEM_SUN_ERI)
   1066 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1067 		    GEM_MII_DATAPATH_MII);
   1068 
   1069 	/* Call MI reset function if any */
   1070 	if (sc->sc_hwreset)
   1071 		(*sc->sc_hwreset)(sc);
   1072 
   1073 	/* step 3. Setup data structures in host memory */
   1074 	if (gem_meminit(sc) != 0)
   1075 		return 1;
   1076 
   1077 	/* step 4. TX MAC registers & counters */
   1078 	gem_init_regs(sc);
   1079 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
   1080 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
   1081 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1082 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
   1083 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1084 	    max_frame_size|/* burst size */(0x2000<<16));
   1085 
   1086 	/* step 5. RX MAC registers & counters */
   1087 	gem_setladrf(sc);
   1088 
   1089 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
   1090 	/* NOTE: we use only 32-bit DMA addresses here. */
   1091 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
   1092 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
   1093 
   1094 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
   1095 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
   1096 
   1097 	/* step 8. Global Configuration & Interrupt Mask */
   1098 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1099 		v = GEM_INTR_PCS;
   1100 	else
   1101 		v = GEM_INTR_MIF;
   1102 	bus_space_write_4(t, h, GEM_INTMASK,
   1103 		      ~(GEM_INTR_TX_INTME |
   1104 			GEM_INTR_TX_EMPTY |
   1105 			GEM_INTR_TX_MAC |
   1106 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
   1107 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
   1108 			GEM_INTR_BERR | v));
   1109 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
   1110 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
   1111 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
   1112 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
   1113 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
   1114 
   1115 	/* step 9. ETX Configuration: use mostly default values */
   1116 
   1117 	/* Enable TX DMA */
   1118 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
   1119 	bus_space_write_4(t, h, GEM_TX_CONFIG,
   1120 		v|GEM_TX_CONFIG_TXDMA_EN|
   1121 		((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
   1122 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
   1123 
   1124 	/* step 10. ERX Configuration */
   1125 	gem_rx_common(sc);
   1126 
   1127 	/* step 11. Configure Media */
   1128 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1129 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1130 		goto out;
   1131 
   1132 	/* step 12. RX_MAC Configuration Register */
   1133 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1134 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
   1135 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1136 
   1137 	/* step 14. Issue Transmit Pending command */
   1138 
   1139 	/* Call MI initialization function if any */
   1140 	if (sc->sc_hwinit)
   1141 		(*sc->sc_hwinit)(sc);
   1142 
   1143 
   1144 	/* step 15.  Give the reciever a swift kick */
   1145 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
   1146 
   1147 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1148 		/* Configure PCS */
   1149 		gem_pcs_start(sc);
   1150 	else
   1151 		/* Start the one second timer. */
   1152 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
   1153 
   1154 	sc->sc_flags &= ~GEM_LINK;
   1155 	ifp->if_flags |= IFF_RUNNING;
   1156 	ifp->if_flags &= ~IFF_OACTIVE;
   1157 	ifp->if_timer = 0;
   1158 	sc->sc_if_flags = ifp->if_flags;
   1159 out:
   1160 	splx(s);
   1161 
   1162 	return (0);
   1163 }
   1164 
   1165 void
   1166 gem_init_regs(struct gem_softc *sc)
   1167 {
   1168 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1169 	bus_space_tag_t t = sc->sc_bustag;
   1170 	bus_space_handle_t h = sc->sc_h1;
   1171 	const u_char *laddr = CLLADDR(ifp->if_sadl);
   1172 	u_int32_t v;
   1173 
   1174 	/* These regs are not cleared on reset */
   1175 	if (!sc->sc_inited) {
   1176 
   1177 		/* Load recommended values */
   1178 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
   1179 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
   1180 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
   1181 
   1182 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
   1183 		/* Max frame and max burst size */
   1184 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1185 		    ETHER_MAX_LEN | (0x2000<<16));
   1186 
   1187 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
   1188 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
   1189 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
   1190 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
   1191 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
   1192 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
   1193 
   1194 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
   1195 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
   1196 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
   1197 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
   1198 
   1199 		/* MAC control addr set to 01:80:c2:00:00:01 */
   1200 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
   1201 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
   1202 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
   1203 
   1204 		/* MAC filter addr set to 0:0:0:0:0:0 */
   1205 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
   1206 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
   1207 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
   1208 
   1209 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
   1210 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
   1211 
   1212 		sc->sc_inited = 1;
   1213 	}
   1214 
   1215 	/* Counters need to be zeroed */
   1216 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
   1217 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
   1218 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
   1219 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
   1220 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
   1221 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
   1222 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
   1223 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1224 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1225 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1226 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1227 
   1228 	/* Set XOFF PAUSE time. */
   1229 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
   1230 
   1231 	/*
   1232 	 * Set the internal arbitration to "infinite" bursts of the
   1233 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
   1234 	 * split up in cache line size chunks. This greatly improves
   1235 	 * especially RX performance.
   1236 	 * Enable silicon bug workarounds for the Apple variants.
   1237 	 */
   1238 	bus_space_write_4(t, h, GEM_CONFIG,
   1239 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
   1240 	    ((sc->sc_flags & GEM_PCI) ?
   1241 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
   1242 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
   1243 
   1244 	/*
   1245 	 * Set the station address.
   1246 	 */
   1247 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1248 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1249 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1250 
   1251 	/*
   1252 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1253 	 */
   1254 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1255 	v = GEM_MAC_XIF_TX_MII_ENA;
   1256 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
   1257 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1258 			v |= GEM_MAC_XIF_FDPLX_LED;
   1259 				if (sc->sc_flags & GEM_GIGABIT)
   1260 					v |= GEM_MAC_XIF_GMII_MODE;
   1261 		}
   1262 	} else {
   1263 		v |= GEM_MAC_XIF_GMII_MODE;
   1264 	}
   1265 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1266 }
   1267 
   1268 #ifdef GEM_DEBUG
   1269 static void
   1270 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
   1271 {
   1272 	int i;
   1273 
   1274 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
   1275 		printf("descriptor %d:\t", i);
   1276 		printf("gd_flags:   0x%016" PRIx64 "\t",
   1277 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1278 		printf("gd_addr: 0x%016" PRIx64 "\n",
   1279 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1280 		if (i == lastdesc)
   1281 			break;
   1282 	}
   1283 }
   1284 #endif
   1285 
   1286 static void
   1287 gem_start(ifp)
   1288 	struct ifnet *ifp;
   1289 {
   1290 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1291 	struct mbuf *m0, *m;
   1292 	struct gem_txsoft *txs;
   1293 	bus_dmamap_t dmamap;
   1294 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
   1295 	uint64_t flags = 0;
   1296 
   1297 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1298 		return;
   1299 
   1300 	/*
   1301 	 * Remember the previous number of free descriptors and
   1302 	 * the first descriptor we'll use.
   1303 	 */
   1304 	ofree = sc->sc_txfree;
   1305 	firsttx = sc->sc_txnext;
   1306 
   1307 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1308 	    device_xname(&sc->sc_dev), ofree, firsttx));
   1309 
   1310 	/*
   1311 	 * Loop through the send queue, setting up transmit descriptors
   1312 	 * until we drain the queue, or use up all available transmit
   1313 	 * descriptors.
   1314 	 */
   1315 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1316 	    sc->sc_txfree != 0) {
   1317 		/*
   1318 		 * Grab a packet off the queue.
   1319 		 */
   1320 		IFQ_POLL(&ifp->if_snd, m0);
   1321 		if (m0 == NULL)
   1322 			break;
   1323 		m = NULL;
   1324 
   1325 		dmamap = txs->txs_dmamap;
   1326 
   1327 		/*
   1328 		 * Load the DMA map.  If this fails, the packet either
   1329 		 * didn't fit in the alloted number of segments, or we were
   1330 		 * short on resources.  In this case, we'll copy and try
   1331 		 * again.
   1332 		 */
   1333 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1334 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1335 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1336 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1337 			if (m0->m_pkthdr.len > MCLBYTES) {
   1338 				aprint_error_dev(&sc->sc_dev, "unable to allocate jumbo Tx "
   1339 				    "cluster\n");
   1340 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1341 				m_freem(m0);
   1342 				continue;
   1343 			}
   1344 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1345 			if (m == NULL) {
   1346 				aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
   1347 				break;
   1348 			}
   1349 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1350 			if (m0->m_pkthdr.len > MHLEN) {
   1351 				MCLGET(m, M_DONTWAIT);
   1352 				if ((m->m_flags & M_EXT) == 0) {
   1353 					aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
   1354 					    "cluster\n");
   1355 					m_freem(m);
   1356 					break;
   1357 				}
   1358 			}
   1359 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1360 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1361 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1362 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1363 			if (error) {
   1364 				aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
   1365 				    "error = %d\n", error);
   1366 				break;
   1367 			}
   1368 		}
   1369 
   1370 		/*
   1371 		 * Ensure we have enough descriptors free to describe
   1372 		 * the packet.
   1373 		 */
   1374 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1375 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1376 			/*
   1377 			 * Not enough free descriptors to transmit this
   1378 			 * packet.  We haven't committed to anything yet,
   1379 			 * so just unload the DMA map, put the packet
   1380 			 * back on the queue, and punt.  Notify the upper
   1381 			 * layer that there are no more slots left.
   1382 			 *
   1383 			 * XXX We could allocate an mbuf and copy, but
   1384 			 * XXX it is worth it?
   1385 			 */
   1386 			ifp->if_flags |= IFF_OACTIVE;
   1387 			sc->sc_if_flags = ifp->if_flags;
   1388 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1389 			if (m != NULL)
   1390 				m_freem(m);
   1391 			break;
   1392 		}
   1393 
   1394 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1395 		if (m != NULL) {
   1396 			m_freem(m0);
   1397 			m0 = m;
   1398 		}
   1399 
   1400 		/*
   1401 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1402 		 */
   1403 
   1404 		/* Sync the DMA map. */
   1405 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1406 		    BUS_DMASYNC_PREWRITE);
   1407 
   1408 		/*
   1409 		 * Initialize the transmit descriptors.
   1410 		 */
   1411 		for (nexttx = sc->sc_txnext, seg = 0;
   1412 		     seg < dmamap->dm_nsegs;
   1413 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1414 
   1415 			/*
   1416 			 * If this is the first descriptor we're
   1417 			 * enqueueing, set the start of packet flag,
   1418 			 * and the checksum stuff if we want the hardware
   1419 			 * to do it.
   1420 			 */
   1421 			sc->sc_txdescs[nexttx].gd_addr =
   1422 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1423 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1424 			if (nexttx == firsttx) {
   1425 				flags |= GEM_TD_START_OF_PACKET;
   1426 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1427 					sc->sc_txwin = 0;
   1428 					flags |= GEM_TD_INTERRUPT_ME;
   1429 				}
   1430 
   1431 #ifdef INET
   1432 				/* h/w checksum */
   1433 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
   1434 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1435 					struct ether_header *eh;
   1436 					uint16_t offset, start;
   1437 
   1438 					eh = mtod(m0, struct ether_header *);
   1439 					switch (ntohs(eh->ether_type)) {
   1440 					case ETHERTYPE_IP:
   1441 						start = ETHER_HDR_LEN;
   1442 						break;
   1443 					case ETHERTYPE_VLAN:
   1444 						start = ETHER_HDR_LEN +
   1445 							ETHER_VLAN_ENCAP_LEN;
   1446 						break;
   1447 					default:
   1448 						/* unsupported, drop it */
   1449 						m_free(m0);
   1450 						continue;
   1451 					}
   1452 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1453 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1454 					flags |= (start <<
   1455 						  GEM_TD_CXSUM_STARTSHFT) |
   1456 						 (offset <<
   1457 						  GEM_TD_CXSUM_STUFFSHFT) |
   1458 						 GEM_TD_CXSUM_ENABLE;
   1459 				}
   1460 #endif
   1461 			}
   1462 			if (seg == dmamap->dm_nsegs - 1) {
   1463 				flags |= GEM_TD_END_OF_PACKET;
   1464 			} else {
   1465 				/* last flag set outside of loop */
   1466 				sc->sc_txdescs[nexttx].gd_flags =
   1467 					GEM_DMA_WRITE(sc, flags);
   1468 			}
   1469 			lasttx = nexttx;
   1470 		}
   1471 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1472 			/* add padding buffer at end of chain */
   1473 			flags &= ~GEM_TD_END_OF_PACKET;
   1474 			sc->sc_txdescs[lasttx].gd_flags =
   1475 			    GEM_DMA_WRITE(sc, flags);
   1476 
   1477 			sc->sc_txdescs[nexttx].gd_addr =
   1478 			    GEM_DMA_WRITE(sc,
   1479 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1480 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1481 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1482 			lasttx = nexttx;
   1483 			nexttx = GEM_NEXTTX(nexttx);
   1484 			seg++;
   1485 		}
   1486 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1487 
   1488 		KASSERT(lasttx != -1);
   1489 
   1490 		/*
   1491 		 * Store a pointer to the packet so we can free it later,
   1492 		 * and remember what txdirty will be once the packet is
   1493 		 * done.
   1494 		 */
   1495 		txs->txs_mbuf = m0;
   1496 		txs->txs_firstdesc = sc->sc_txnext;
   1497 		txs->txs_lastdesc = lasttx;
   1498 		txs->txs_ndescs = seg;
   1499 
   1500 #ifdef GEM_DEBUG
   1501 		if (ifp->if_flags & IFF_DEBUG) {
   1502 			printf("     gem_start %p transmit chain:\n", txs);
   1503 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1504 			    txs->txs_lastdesc);
   1505 		}
   1506 #endif
   1507 
   1508 		/* Sync the descriptors we're using. */
   1509 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1510 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1511 
   1512 		/* Advance the tx pointer. */
   1513 		sc->sc_txfree -= txs->txs_ndescs;
   1514 		sc->sc_txnext = nexttx;
   1515 
   1516 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1517 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1518 
   1519 #if NBPFILTER > 0
   1520 		/*
   1521 		 * Pass the packet to any BPF listeners.
   1522 		 */
   1523 		if (ifp->if_bpf)
   1524 			bpf_mtap(ifp->if_bpf, m0);
   1525 #endif /* NBPFILTER > 0 */
   1526 	}
   1527 
   1528 	if (txs == NULL || sc->sc_txfree == 0) {
   1529 		/* No more slots left; notify upper layer. */
   1530 		ifp->if_flags |= IFF_OACTIVE;
   1531 		sc->sc_if_flags = ifp->if_flags;
   1532 	}
   1533 
   1534 	if (sc->sc_txfree != ofree) {
   1535 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1536 		    device_xname(&sc->sc_dev), lasttx, firsttx));
   1537 		/*
   1538 		 * The entire packet chain is set up.
   1539 		 * Kick the transmitter.
   1540 		 */
   1541 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1542 			device_xname(&sc->sc_dev), nexttx));
   1543 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
   1544 			sc->sc_txnext);
   1545 
   1546 		/* Set a watchdog timer in case the chip flakes out. */
   1547 		ifp->if_timer = 5;
   1548 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1549 			device_xname(&sc->sc_dev), ifp->if_timer));
   1550 	}
   1551 }
   1552 
   1553 /*
   1554  * Transmit interrupt.
   1555  */
   1556 int
   1557 gem_tint(sc)
   1558 	struct gem_softc *sc;
   1559 {
   1560 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1561 	bus_space_tag_t t = sc->sc_bustag;
   1562 	bus_space_handle_t mac = sc->sc_h1;
   1563 	struct gem_txsoft *txs;
   1564 	int txlast;
   1565 	int progress = 0;
   1566 	u_int32_t v;
   1567 
   1568 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(&sc->sc_dev)));
   1569 
   1570 	/* Unload collision counters ... */
   1571 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1572 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1573 	ifp->if_collisions += v +
   1574 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1575 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
   1576 	ifp->if_oerrors += v;
   1577 
   1578 	/* ... then clear the hardware counters. */
   1579 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1580 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1581 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1582 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1583 
   1584 	/*
   1585 	 * Go through our Tx list and free mbufs for those
   1586 	 * frames that have been transmitted.
   1587 	 */
   1588 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1589 		/*
   1590 		 * In theory, we could harvest some descriptors before
   1591 		 * the ring is empty, but that's a bit complicated.
   1592 		 *
   1593 		 * GEM_TX_COMPLETION points to the last descriptor
   1594 		 * processed +1.
   1595 		 *
   1596 		 * Let's assume that the NIC writes back to the Tx
   1597 		 * descriptors before it updates the completion
   1598 		 * register.  If the NIC has posted writes to the
   1599 		 * Tx descriptors, PCI ordering requires that the
   1600 		 * posted writes flush to RAM before the register-read
   1601 		 * finishes.  So let's read the completion register,
   1602 		 * before syncing the descriptors, so that we
   1603 		 * examine Tx descriptors that are at least as
   1604 		 * current as the completion register.
   1605 		 */
   1606 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1607 		DPRINTF(sc,
   1608 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1609 				txs->txs_lastdesc, txlast));
   1610 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1611 			if (txlast >= txs->txs_firstdesc &&
   1612 			    txlast <= txs->txs_lastdesc)
   1613 				break;
   1614 		} else if (txlast >= txs->txs_firstdesc ||
   1615 			   txlast <= txs->txs_lastdesc)
   1616 			break;
   1617 
   1618 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1619 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1620 
   1621 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
   1622 		if (ifp->if_flags & IFF_DEBUG) {
   1623 			printf("    txsoft %p transmit chain:\n", txs);
   1624 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1625 			    txs->txs_lastdesc);
   1626 		}
   1627 #endif
   1628 
   1629 
   1630 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1631 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1632 
   1633 		sc->sc_txfree += txs->txs_ndescs;
   1634 
   1635 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1636 		    0, txs->txs_dmamap->dm_mapsize,
   1637 		    BUS_DMASYNC_POSTWRITE);
   1638 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1639 		if (txs->txs_mbuf != NULL) {
   1640 			m_freem(txs->txs_mbuf);
   1641 			txs->txs_mbuf = NULL;
   1642 		}
   1643 
   1644 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1645 
   1646 		ifp->if_opackets++;
   1647 		progress = 1;
   1648 	}
   1649 
   1650 #if 0
   1651 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1652 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
   1653 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
   1654 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1655 			GEM_TX_DATA_PTR_HI) << 32) |
   1656 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1657 			GEM_TX_DATA_PTR_LO),
   1658 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
   1659 #endif
   1660 
   1661 	if (progress) {
   1662 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1663 			sc->sc_txwin = 0;
   1664 
   1665 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
   1666 		ifp->if_flags &= ~IFF_OACTIVE;
   1667 		sc->sc_if_flags = ifp->if_flags;
   1668 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
   1669 		gem_start(ifp);
   1670 	}
   1671 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1672 		device_xname(&sc->sc_dev), ifp->if_timer));
   1673 
   1674 	return (1);
   1675 }
   1676 
   1677 /*
   1678  * Receive interrupt.
   1679  */
   1680 int
   1681 gem_rint(sc)
   1682 	struct gem_softc *sc;
   1683 {
   1684 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1685 	bus_space_tag_t t = sc->sc_bustag;
   1686 	bus_space_handle_t h = sc->sc_h1;
   1687 	struct gem_rxsoft *rxs;
   1688 	struct mbuf *m;
   1689 	u_int64_t rxstat;
   1690 	u_int32_t rxcomp;
   1691 	int i, len, progress = 0;
   1692 
   1693 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(&sc->sc_dev)));
   1694 
   1695 	/*
   1696 	 * Ignore spurious interrupt that sometimes occurs before
   1697 	 * we are set up when we network boot.
   1698 	 */
   1699 	if (!sc->sc_meminited)
   1700 		return 1;
   1701 
   1702 	/*
   1703 	 * Read the completion register once.  This limits
   1704 	 * how long the following loop can execute.
   1705 	 */
   1706 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1707 
   1708 	/*
   1709 	 * XXX Read the lastrx only once at the top for speed.
   1710 	 */
   1711 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1712 		sc->sc_rxptr, rxcomp));
   1713 
   1714 	/*
   1715 	 * Go into the loop at least once.
   1716 	 */
   1717 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1718 	     i = GEM_NEXTRX(i)) {
   1719 		rxs = &sc->sc_rxsoft[i];
   1720 
   1721 		GEM_CDRXSYNC(sc, i,
   1722 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1723 
   1724 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1725 
   1726 		if (rxstat & GEM_RD_OWN) {
   1727 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1728 			/*
   1729 			 * We have processed all of the receive buffers.
   1730 			 */
   1731 			break;
   1732 		}
   1733 
   1734 		progress++;
   1735 		ifp->if_ipackets++;
   1736 
   1737 		if (rxstat & GEM_RD_BAD_CRC) {
   1738 			ifp->if_ierrors++;
   1739 			aprint_error_dev(&sc->sc_dev, "receive error: CRC error\n");
   1740 			GEM_INIT_RXDESC(sc, i);
   1741 			continue;
   1742 		}
   1743 
   1744 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1745 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1746 #ifdef GEM_DEBUG
   1747 		if (ifp->if_flags & IFF_DEBUG) {
   1748 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1749 			printf("gd_flags: 0x%016llx\t", (long long)
   1750 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1751 			printf("gd_addr: 0x%016llx\n", (long long)
   1752 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1753 		}
   1754 #endif
   1755 
   1756 		/* No errors; receive the packet. */
   1757 		len = GEM_RD_BUFLEN(rxstat);
   1758 
   1759 		/*
   1760 		 * Allocate a new mbuf cluster.  If that fails, we are
   1761 		 * out of memory, and must drop the packet and recycle
   1762 		 * the buffer that's already attached to this descriptor.
   1763 		 */
   1764 		m = rxs->rxs_mbuf;
   1765 		if (gem_add_rxbuf(sc, i) != 0) {
   1766 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1767 			ifp->if_ierrors++;
   1768 			GEM_INIT_RXDESC(sc, i);
   1769 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1770 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1771 			continue;
   1772 		}
   1773 		m->m_data += 2; /* We're already off by two */
   1774 
   1775 		m->m_pkthdr.rcvif = ifp;
   1776 		m->m_pkthdr.len = m->m_len = len;
   1777 
   1778 #if NBPFILTER > 0
   1779 		/*
   1780 		 * Pass this up to any BPF listeners, but only
   1781 		 * pass it up the stack if it's for us.
   1782 		 */
   1783 		if (ifp->if_bpf)
   1784 			bpf_mtap(ifp->if_bpf, m);
   1785 #endif /* NBPFILTER > 0 */
   1786 
   1787 #ifdef INET
   1788 		/* hardware checksum */
   1789 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1790 			struct ether_header *eh;
   1791 			struct ip *ip;
   1792 			int32_t hlen, pktlen;
   1793 
   1794 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1795 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1796 					 ETHER_VLAN_ENCAP_LEN;
   1797 				eh = (struct ether_header *) (mtod(m, char *) +
   1798 					ETHER_VLAN_ENCAP_LEN);
   1799 			} else {
   1800 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1801 				eh = mtod(m, struct ether_header *);
   1802 			}
   1803 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1804 				goto swcsum;
   1805 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
   1806 
   1807 			/* IPv4 only */
   1808 			if (ip->ip_v != IPVERSION)
   1809 				goto swcsum;
   1810 
   1811 			hlen = ip->ip_hl << 2;
   1812 			if (hlen < sizeof(struct ip))
   1813 				goto swcsum;
   1814 
   1815 			/*
   1816 			 * bail if too short, has random trailing garbage,
   1817 			 * truncated, fragment, or has ethernet pad.
   1818 			 */
   1819 			if ((ntohs(ip->ip_len) < hlen) ||
   1820 			    (ntohs(ip->ip_len) != pktlen) ||
   1821 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1822 				goto swcsum;
   1823 
   1824 			switch (ip->ip_p) {
   1825 			case IPPROTO_TCP:
   1826 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1827 					goto swcsum;
   1828 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1829 					goto swcsum;
   1830 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1831 				break;
   1832 			case IPPROTO_UDP:
   1833 				/* FALLTHROUGH */
   1834 			default:
   1835 				goto swcsum;
   1836 			}
   1837 
   1838 			/* the uncomplemented sum is expected */
   1839 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1840 
   1841 			/* if the pkt had ip options, we have to deduct them */
   1842 			if (hlen > sizeof(struct ip)) {
   1843 				uint16_t *opts;
   1844 				uint32_t optsum, temp;
   1845 
   1846 				optsum = 0;
   1847 				temp = hlen - sizeof(struct ip);
   1848 				opts = (uint16_t *) ((char *) ip +
   1849 					sizeof(struct ip));
   1850 
   1851 				while (temp > 1) {
   1852 					optsum += ntohs(*opts++);
   1853 					temp -= 2;
   1854 				}
   1855 				while (optsum >> 16)
   1856 					optsum = (optsum >> 16) +
   1857 						 (optsum & 0xffff);
   1858 
   1859 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1860 				m->m_pkthdr.csum_data =
   1861 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1862 
   1863 				while (m->m_pkthdr.csum_data >> 16)
   1864 					m->m_pkthdr.csum_data =
   1865 						(m->m_pkthdr.csum_data >> 16) +
   1866 						(m->m_pkthdr.csum_data &
   1867 						 0xffff);
   1868 			}
   1869 
   1870 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1871 						  M_CSUM_NO_PSEUDOHDR;
   1872 		} else
   1873 swcsum:
   1874 			m->m_pkthdr.csum_flags = 0;
   1875 #endif
   1876 		/* Pass it on. */
   1877 		(*ifp->if_input)(ifp, m);
   1878 	}
   1879 
   1880 	if (progress) {
   1881 		/* Update the receive pointer. */
   1882 		if (i == sc->sc_rxptr) {
   1883 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1884 #ifdef GEM_DEBUG
   1885 			if (ifp->if_flags & IFF_DEBUG)
   1886 				printf("%s: rint: ring wrap\n",
   1887 				    device_xname(&sc->sc_dev));
   1888 #endif
   1889 		}
   1890 		sc->sc_rxptr = i;
   1891 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1892 	}
   1893 #ifdef GEM_COUNTERS
   1894 	if (progress <= 4) {
   1895 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1896 	} else if (progress < 32) {
   1897 		if (progress < 16)
   1898 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1899 		else
   1900 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1901 
   1902 	} else {
   1903 		if (progress < 64)
   1904 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1905 		else
   1906 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1907 	}
   1908 #endif
   1909 
   1910 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1911 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1912 
   1913 	/* Read error counters ... */
   1914 	ifp->if_ierrors +=
   1915 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
   1916 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
   1917 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
   1918 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
   1919 
   1920 	/* ... then clear the hardware counters. */
   1921 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1922 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1923 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1924 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1925 
   1926 	return (1);
   1927 }
   1928 
   1929 
   1930 /*
   1931  * gem_add_rxbuf:
   1932  *
   1933  *	Add a receive buffer to the indicated descriptor.
   1934  */
   1935 int
   1936 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1937 {
   1938 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1939 	struct mbuf *m;
   1940 	int error;
   1941 
   1942 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1943 	if (m == NULL)
   1944 		return (ENOBUFS);
   1945 
   1946 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1947 	MCLGET(m, M_DONTWAIT);
   1948 	if ((m->m_flags & M_EXT) == 0) {
   1949 		m_freem(m);
   1950 		return (ENOBUFS);
   1951 	}
   1952 
   1953 #ifdef GEM_DEBUG
   1954 /* bzero the packet to check DMA */
   1955 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1956 #endif
   1957 
   1958 	if (rxs->rxs_mbuf != NULL)
   1959 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1960 
   1961 	rxs->rxs_mbuf = m;
   1962 
   1963 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1964 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1965 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1966 	if (error) {
   1967 		aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
   1968 		    idx, error);
   1969 		panic("gem_add_rxbuf");	/* XXX */
   1970 	}
   1971 
   1972 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1973 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1974 
   1975 	GEM_INIT_RXDESC(sc, idx);
   1976 
   1977 	return (0);
   1978 }
   1979 
   1980 
   1981 int
   1982 gem_eint(struct gem_softc *sc, u_int status)
   1983 {
   1984 	char bits[128];
   1985 	u_int32_t r, v;
   1986 
   1987 	if ((status & GEM_INTR_MIF) != 0) {
   1988 		printf("%s: XXXlink status changed\n", device_xname(&sc->sc_dev));
   1989 		return (1);
   1990 	}
   1991 
   1992 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
   1993 		gem_reset_rxdma(sc);
   1994 		return (1);
   1995 	}
   1996 
   1997 	if (status & GEM_INTR_BERR) {
   1998 		if (sc->sc_flags & GEM_PCI)
   1999 			r = GEM_ERROR_STATUS;
   2000 		else
   2001 			r = GEM_SBUS_ERROR_STATUS;
   2002 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   2003 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   2004 		aprint_error_dev(&sc->sc_dev, "bus error interrupt: 0x%02x\n",
   2005 		    v);
   2006 		return (1);
   2007 	}
   2008 
   2009 	printf("%s: status=%s\n", device_xname(&sc->sc_dev),
   2010 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   2011 	return (1);
   2012 }
   2013 
   2014 
   2015 /*
   2016  * PCS interrupts.
   2017  * We should receive these when the link status changes, but sometimes
   2018  * we don't receive them for link up.  We compensate for this in the
   2019  * gem_tick() callout.
   2020  */
   2021 int
   2022 gem_pint(struct gem_softc *sc)
   2023 {
   2024 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2025 	bus_space_tag_t t = sc->sc_bustag;
   2026 	bus_space_handle_t h = sc->sc_h1;
   2027 	u_int32_t v, v2;
   2028 
   2029 	/*
   2030 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
   2031 	 * latched, so we have to read it twice.  There is only one bit in
   2032 	 * use, so the value is meaningless.
   2033 	 */
   2034 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2035 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2036 
   2037 	if ((ifp->if_flags & IFF_UP) == 0)
   2038 		return 1;
   2039 
   2040 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
   2041 		return 1;
   2042 
   2043 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2044 	/* If we see remote fault, our link partner is probably going away */
   2045 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
   2046 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
   2047 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2048 	/* Otherwise, we may need to wait after auto-negotiation completes */
   2049 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
   2050 	    GEM_MII_STATUS_ANEG_CPT) {
   2051 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
   2052 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2053 	}
   2054 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
   2055 		if (sc->sc_flags & GEM_LINK) {
   2056 			return 1;
   2057 		}
   2058 		callout_stop(&sc->sc_tick_ch);
   2059 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
   2060 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
   2061 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
   2062 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
   2063 		v &= v2;
   2064 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
   2065 			sc->sc_mii.mii_media_active |= IFM_FDX;
   2066 #ifdef GEM_DEBUG
   2067 			aprint_debug_dev(&sc->sc_dev, "link up: full duplex\n");
   2068 #endif
   2069 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
   2070 			sc->sc_mii.mii_media_active |= IFM_HDX;
   2071 #ifdef GEM_DEBUG
   2072 			aprint_debug_dev(&sc->sc_dev, "link up: half duplex\n");
   2073 #endif
   2074 		} else {
   2075 #ifdef GEM_DEBUG
   2076 			aprint_debug_dev(&sc->sc_dev, "duplex mismatch\n");
   2077 #endif
   2078 		}
   2079 		gem_statuschange(sc);
   2080 	} else {
   2081 		if ((sc->sc_flags & GEM_LINK) == 0) {
   2082 			return 1;
   2083 		}
   2084 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   2085 		sc->sc_mii.mii_media_status = IFM_AVALID;
   2086 #ifdef GEM_DEBUG
   2087 			aprint_debug_dev(&sc->sc_dev, "link down\n");
   2088 #endif
   2089 		gem_statuschange(sc);
   2090 
   2091 		/* Start the 10 second timer */
   2092 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   2093 	}
   2094 	return 1;
   2095 }
   2096 
   2097 
   2098 
   2099 int
   2100 gem_intr(v)
   2101 	void *v;
   2102 {
   2103 	struct gem_softc *sc = (struct gem_softc *)v;
   2104 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2105 	bus_space_tag_t t = sc->sc_bustag;
   2106 	bus_space_handle_t h = sc->sc_h1;
   2107 	u_int32_t status;
   2108 	int r = 0;
   2109 #ifdef GEM_DEBUG
   2110 	char bits[128];
   2111 #endif
   2112 
   2113 	/* XXX We should probably mask out interrupts until we're done */
   2114 
   2115 	sc->sc_ev_intr.ev_count++;
   2116 
   2117 	status = bus_space_read_4(t, h, GEM_STATUS);
   2118 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   2119 		device_xname(&sc->sc_dev), (status >> 19),
   2120 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   2121 
   2122 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   2123 		r |= gem_eint(sc, status);
   2124 
   2125 	/* We don't bother with GEM_INTR_TX_DONE */
   2126 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   2127 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   2128 		r |= gem_tint(sc);
   2129 	}
   2130 
   2131 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   2132 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   2133 		r |= gem_rint(sc);
   2134 	}
   2135 
   2136 	/* We should eventually do more than just print out error stats. */
   2137 	if (status & GEM_INTR_TX_MAC) {
   2138 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
   2139 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   2140 			printf("%s: MAC tx fault, status %x\n",
   2141 			    device_xname(&sc->sc_dev), txstat);
   2142 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   2143 			gem_init(ifp);
   2144 	}
   2145 	if (status & GEM_INTR_RX_MAC) {
   2146 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
   2147 		/*
   2148 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
   2149 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
   2150 		 * silicon bug so handle them silently. Moreover, it's
   2151 		 * likely that the receiver has hung so we reset it.
   2152 		 */
   2153 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
   2154 			ifp->if_ierrors++;
   2155 			gem_reset_rxdma(sc);
   2156 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   2157 			printf("%s: MAC rx fault, status 0x%02x\n",
   2158 			    device_xname(&sc->sc_dev), rxstat);
   2159 	}
   2160 	if (status & GEM_INTR_PCS) {
   2161 		r |= gem_pint(sc);
   2162 	}
   2163 
   2164 /* Do we need to do anything with these?
   2165 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
   2166 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
   2167 		if ((status2 & GEM_MAC_PAUSED) != 0)
   2168 			aprintf_debug_dev(&sc->sc_dev, "PAUSE received (%d slots)\n",
   2169 			    GEM_MAC_PAUSE_TIME(status2));
   2170 		if ((status2 & GEM_MAC_PAUSE) != 0)
   2171 			aprintf_debug_dev(&sc->sc_dev, "transited to PAUSE state\n");
   2172 		if ((status2 & GEM_MAC_RESUME) != 0)
   2173 			aprintf_debug_dev(&sc->sc_dev, "transited to non-PAUSE state\n");
   2174 	}
   2175 	if ((status & GEM_INTR_MIF) != 0)
   2176 		aprintf_debug_dev(&sc->sc_dev, "MIF interrupt\n");
   2177 */
   2178 #if NRND > 0
   2179 	rnd_add_uint32(&sc->rnd_source, status);
   2180 #endif
   2181 	return (r);
   2182 }
   2183 
   2184 
   2185 void
   2186 gem_watchdog(ifp)
   2187 	struct ifnet *ifp;
   2188 {
   2189 	struct gem_softc *sc = ifp->if_softc;
   2190 
   2191 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   2192 		"GEM_MAC_RX_CONFIG %x\n",
   2193 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
   2194 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
   2195 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
   2196 
   2197 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   2198 	++ifp->if_oerrors;
   2199 
   2200 	/* Try to get more packets going. */
   2201 	gem_start(ifp);
   2202 }
   2203 
   2204 /*
   2205  * Initialize the MII Management Interface
   2206  */
   2207 void
   2208 gem_mifinit(sc)
   2209 	struct gem_softc *sc;
   2210 {
   2211 	bus_space_tag_t t = sc->sc_bustag;
   2212 	bus_space_handle_t mif = sc->sc_h1;
   2213 
   2214 	/* Configure the MIF in frame mode */
   2215 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   2216 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   2217 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   2218 }
   2219 
   2220 /*
   2221  * MII interface
   2222  *
   2223  * The GEM MII interface supports at least three different operating modes:
   2224  *
   2225  * Bitbang mode is implemented using data, clock and output enable registers.
   2226  *
   2227  * Frame mode is implemented by loading a complete frame into the frame
   2228  * register and polling the valid bit for completion.
   2229  *
   2230  * Polling mode uses the frame register but completion is indicated by
   2231  * an interrupt.
   2232  *
   2233  */
   2234 static int
   2235 gem_mii_readreg(self, phy, reg)
   2236 	struct device *self;
   2237 	int phy, reg;
   2238 {
   2239 	struct gem_softc *sc = (void *)self;
   2240 	bus_space_tag_t t = sc->sc_bustag;
   2241 	bus_space_handle_t mif = sc->sc_h1;
   2242 	int n;
   2243 	u_int32_t v;
   2244 
   2245 #ifdef GEM_DEBUG1
   2246 	if (sc->sc_debug)
   2247 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
   2248 #endif
   2249 
   2250 	/* Construct the frame command */
   2251 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   2252 		GEM_MIF_FRAME_READ;
   2253 
   2254 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2255 	for (n = 0; n < 100; n++) {
   2256 		DELAY(1);
   2257 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2258 		if (v & GEM_MIF_FRAME_TA0)
   2259 			return (v & GEM_MIF_FRAME_DATA);
   2260 	}
   2261 
   2262 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
   2263 	return (0);
   2264 }
   2265 
   2266 static void
   2267 gem_mii_writereg(self, phy, reg, val)
   2268 	struct device *self;
   2269 	int phy, reg, val;
   2270 {
   2271 	struct gem_softc *sc = (void *)self;
   2272 	bus_space_tag_t t = sc->sc_bustag;
   2273 	bus_space_handle_t mif = sc->sc_h1;
   2274 	int n;
   2275 	u_int32_t v;
   2276 
   2277 #ifdef GEM_DEBUG1
   2278 	if (sc->sc_debug)
   2279 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
   2280 			phy, reg, val);
   2281 #endif
   2282 
   2283 	/* Construct the frame command */
   2284 	v = GEM_MIF_FRAME_WRITE			|
   2285 	    (phy << GEM_MIF_PHY_SHIFT)		|
   2286 	    (reg << GEM_MIF_REG_SHIFT)		|
   2287 	    (val & GEM_MIF_FRAME_DATA);
   2288 
   2289 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2290 	for (n = 0; n < 100; n++) {
   2291 		DELAY(1);
   2292 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2293 		if (v & GEM_MIF_FRAME_TA0)
   2294 			return;
   2295 	}
   2296 
   2297 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
   2298 }
   2299 
   2300 static void
   2301 gem_mii_statchg(dev)
   2302 	struct device *dev;
   2303 {
   2304 	struct gem_softc *sc = (void *)dev;
   2305 #ifdef GEM_DEBUG
   2306 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   2307 #endif
   2308 
   2309 #ifdef GEM_DEBUG
   2310 	if (sc->sc_debug)
   2311 		printf("gem_mii_statchg: status change: phy = %d\n",
   2312 			sc->sc_phys[instance]);
   2313 #endif
   2314 	gem_statuschange(sc);
   2315 }
   2316 
   2317 /*
   2318  * Common status change for gem_mii_statchg() and gem_pint()
   2319  */
   2320 void
   2321 gem_statuschange(struct gem_softc* sc)
   2322 {
   2323 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2324 	bus_space_tag_t t = sc->sc_bustag;
   2325 	bus_space_handle_t mac = sc->sc_h1;
   2326 	int gigabit;
   2327 	u_int32_t rxcfg, txcfg, v;
   2328 
   2329 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
   2330 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
   2331 		sc->sc_flags |= GEM_LINK;
   2332 	else
   2333 		sc->sc_flags &= ~GEM_LINK;
   2334 
   2335 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2336 		gigabit = 1;
   2337 	else
   2338 		gigabit = 0;
   2339 
   2340 	/*
   2341 	 * The configuration done here corresponds to the steps F) and
   2342 	 * G) and as far as enabling of RX and TX MAC goes also step H)
   2343 	 * of the initialization sequence outlined in section 3.2.1 of
   2344 	 * the GEM Gigabit Ethernet ASIC Specification.
   2345 	 */
   2346 
   2347 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
   2348 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
   2349 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
   2350 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2351 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
   2352 	else if (gigabit) {
   2353 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
   2354 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
   2355 	}
   2356 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   2357 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
   2358 	    BUS_SPACE_BARRIER_WRITE);
   2359 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
   2360 		aprint_normal_dev(&sc->sc_dev, "cannot disable TX MAC\n");
   2361 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
   2362 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
   2363 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
   2364 	    BUS_SPACE_BARRIER_WRITE);
   2365 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
   2366 		aprint_normal_dev(&sc->sc_dev, "cannot disable RX MAC\n");
   2367 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
   2368 
   2369 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
   2370 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
   2371 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
   2372 
   2373 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
   2374 	    gigabit != 0)
   2375 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2376 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
   2377 	else
   2378 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2379 		    GEM_MAC_SLOT_TIME_NORMAL);
   2380 
   2381 	/* XIF Configuration */
   2382 	if (sc->sc_flags & GEM_LINK)
   2383 		v = GEM_MAC_XIF_LINK_LED;
   2384 	else
   2385 		v = 0;
   2386 	v |= GEM_MAC_XIF_TX_MII_ENA;
   2387 
   2388 	/* If an external transceiver is connected, enable its MII drivers */
   2389 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   2390 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
   2391 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   2392 			/* External MII needs echo disable if half duplex. */
   2393 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
   2394 			    IFM_FDX) != 0)
   2395 				/* turn on full duplex LED */
   2396 				v |= GEM_MAC_XIF_FDPLX_LED;
   2397 			else
   2398 				/* half duplex -- disable echo */
   2399 				v |= GEM_MAC_XIF_ECHO_DISABL;
   2400 			if (gigabit)
   2401 				v |= GEM_MAC_XIF_GMII_MODE;
   2402 			else
   2403 				v &= ~GEM_MAC_XIF_GMII_MODE;
   2404 		} else
   2405 			/* Internal MII needs buf enable */
   2406 			v |= GEM_MAC_XIF_MII_BUF_ENA;
   2407 	} else {
   2408 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2409 			v |= GEM_MAC_XIF_FDPLX_LED;
   2410 		v |= GEM_MAC_XIF_GMII_MODE;
   2411 	}
   2412 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   2413 
   2414 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2415 	    (sc->sc_flags & GEM_LINK) != 0) {
   2416 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
   2417 		    txcfg | GEM_MAC_TX_ENABLE);
   2418 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
   2419 		    rxcfg | GEM_MAC_RX_ENABLE);
   2420 	}
   2421 }
   2422 
   2423 int
   2424 gem_ser_mediachange(struct ifnet *ifp)
   2425 {
   2426 	struct gem_softc *sc = ifp->if_softc;
   2427 	u_int s, t;
   2428 
   2429 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
   2430 		return EINVAL;
   2431 
   2432 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
   2433 	if (s == IFM_AUTO) {
   2434 		if (sc->sc_mii_media != s) {
   2435 #ifdef GEM_DEBUG
   2436 			aprint_debug_dev(&sc->sc_dev, "setting media to auto\n");
   2437 #endif
   2438 			sc->sc_mii_media = s;
   2439 			if (ifp->if_flags & IFF_UP) {
   2440 				gem_pcs_stop(sc, 0);
   2441 				gem_pcs_start(sc);
   2442 			}
   2443 		}
   2444 		return 0;
   2445 	}
   2446 	if (s == IFM_1000_SX) {
   2447 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
   2448 		if (t == IFM_FDX || t == IFM_HDX) {
   2449 			if (sc->sc_mii_media != t) {
   2450 				sc->sc_mii_media = t;
   2451 #ifdef GEM_DEBUG
   2452 				aprint_debug_dev(&sc->sc_dev,
   2453 				    "setting media to 1000baseSX-%s\n",
   2454 				    t == IFM_FDX ? "FDX" : "HDX");
   2455 #endif
   2456 				if (ifp->if_flags & IFF_UP) {
   2457 					gem_pcs_stop(sc, 0);
   2458 					gem_pcs_start(sc);
   2459 				}
   2460 			}
   2461 			return 0;
   2462 		}
   2463 	}
   2464 	return EINVAL;
   2465 }
   2466 
   2467 void
   2468 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2469 {
   2470 	struct gem_softc *sc = ifp->if_softc;
   2471 
   2472 	if ((ifp->if_flags & IFF_UP) == 0)
   2473 		return;
   2474 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2475 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2476 }
   2477 
   2478 static int
   2479 gem_ifflags_cb(struct ethercom *ec)
   2480 {
   2481 	struct ifnet *ifp = &ec->ec_if;
   2482 	struct gem_softc *sc = ifp->if_softc;
   2483 	int change = ifp->if_flags ^ sc->sc_if_flags;
   2484 
   2485 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   2486 		return ENETRESET;
   2487 	else if ((change & IFF_PROMISC) != 0)
   2488 		gem_setladrf(sc);
   2489 	return 0;
   2490 }
   2491 
   2492 /*
   2493  * Process an ioctl request.
   2494  */
   2495 int
   2496 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   2497 {
   2498 	struct gem_softc *sc = ifp->if_softc;
   2499 	int s, error = 0;
   2500 
   2501 	s = splnet();
   2502 
   2503 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2504 		error = 0;
   2505 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2506 			;
   2507 		else if (ifp->if_flags & IFF_RUNNING) {
   2508 			/*
   2509 			 * Multicast list has changed; set the hardware filter
   2510 			 * accordingly.
   2511 			 */
   2512 			gem_setladrf(sc);
   2513 		}
   2514 	}
   2515 
   2516 	/* Try to get things going again */
   2517 	if (ifp->if_flags & IFF_UP)
   2518 		gem_start(ifp);
   2519 	splx(s);
   2520 	return (error);
   2521 }
   2522 
   2523 
   2524 void
   2525 gem_shutdown(arg)
   2526 	void *arg;
   2527 {
   2528 	struct gem_softc *sc = (struct gem_softc *)arg;
   2529 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2530 
   2531 	gem_stop(ifp, 1);
   2532 }
   2533 
   2534 /*
   2535  * Set up the logical address filter.
   2536  */
   2537 void
   2538 gem_setladrf(sc)
   2539 	struct gem_softc *sc;
   2540 {
   2541 	struct ethercom *ec = &sc->sc_ethercom;
   2542 	struct ifnet *ifp = &ec->ec_if;
   2543 	struct ether_multi *enm;
   2544 	struct ether_multistep step;
   2545 	bus_space_tag_t t = sc->sc_bustag;
   2546 	bus_space_handle_t h = sc->sc_h1;
   2547 	u_int32_t crc;
   2548 	u_int32_t hash[16];
   2549 	u_int32_t v;
   2550 	int i;
   2551 
   2552 	/* Get current RX configuration */
   2553 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2554 
   2555 	/*
   2556 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2557 	 * and hash filter.  Depending on the case, the right bit will be
   2558 	 * enabled.
   2559 	 */
   2560 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2561 	    GEM_MAC_RX_PROMISC_GRP);
   2562 
   2563 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2564 		/* Turn on promiscuous mode */
   2565 		v |= GEM_MAC_RX_PROMISCUOUS;
   2566 		ifp->if_flags |= IFF_ALLMULTI;
   2567 		goto chipit;
   2568 	}
   2569 
   2570 	/*
   2571 	 * Set up multicast address filter by passing all multicast addresses
   2572 	 * through a crc generator, and then using the high order 8 bits as an
   2573 	 * index into the 256 bit logical address filter.  The high order 4
   2574 	 * bits selects the word, while the other 4 bits select the bit within
   2575 	 * the word (where bit 0 is the MSB).
   2576 	 */
   2577 
   2578 	/* Clear hash table */
   2579 	memset(hash, 0, sizeof(hash));
   2580 
   2581 	ETHER_FIRST_MULTI(step, ec, enm);
   2582 	while (enm != NULL) {
   2583 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2584 			/*
   2585 			 * We must listen to a range of multicast addresses.
   2586 			 * For now, just accept all multicasts, rather than
   2587 			 * trying to set only those filter bits needed to match
   2588 			 * the range.  (At this time, the only use of address
   2589 			 * ranges is for IP multicast routing, for which the
   2590 			 * range is big enough to require all bits set.)
   2591 			 * XXX should use the address filters for this
   2592 			 */
   2593 			ifp->if_flags |= IFF_ALLMULTI;
   2594 			v |= GEM_MAC_RX_PROMISC_GRP;
   2595 			goto chipit;
   2596 		}
   2597 
   2598 		/* Get the LE CRC32 of the address */
   2599 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2600 
   2601 		/* Just want the 8 most significant bits. */
   2602 		crc >>= 24;
   2603 
   2604 		/* Set the corresponding bit in the filter. */
   2605 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2606 
   2607 		ETHER_NEXT_MULTI(step, enm);
   2608 	}
   2609 
   2610 	v |= GEM_MAC_RX_HASH_FILTER;
   2611 	ifp->if_flags &= ~IFF_ALLMULTI;
   2612 
   2613 	/* Now load the hash table into the chip (if we are using it) */
   2614 	for (i = 0; i < 16; i++) {
   2615 		bus_space_write_4(t, h,
   2616 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2617 		    hash[i]);
   2618 	}
   2619 
   2620 chipit:
   2621 	sc->sc_if_flags = ifp->if_flags;
   2622 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2623 }
   2624 
   2625 #if notyet
   2626 
   2627 /*
   2628  * gem_power:
   2629  *
   2630  *	Power management (suspend/resume) hook.
   2631  */
   2632 void
   2633 gem_power(why, arg)
   2634 	int why;
   2635 	void *arg;
   2636 {
   2637 	struct gem_softc *sc = arg;
   2638 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2639 	int s;
   2640 
   2641 	s = splnet();
   2642 	switch (why) {
   2643 	case PWR_SUSPEND:
   2644 	case PWR_STANDBY:
   2645 		gem_stop(ifp, 1);
   2646 		if (sc->sc_power != NULL)
   2647 			(*sc->sc_power)(sc, why);
   2648 		break;
   2649 	case PWR_RESUME:
   2650 		if (ifp->if_flags & IFF_UP) {
   2651 			if (sc->sc_power != NULL)
   2652 				(*sc->sc_power)(sc, why);
   2653 			gem_init(ifp);
   2654 		}
   2655 		break;
   2656 	case PWR_SOFTSUSPEND:
   2657 	case PWR_SOFTSTANDBY:
   2658 	case PWR_SOFTRESUME:
   2659 		break;
   2660 	}
   2661 	splx(s);
   2662 }
   2663 #endif
   2664