gem.c revision 1.79 1 /* $NetBSD: gem.c,v 1.79 2008/11/07 00:20:02 dyoung Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.79 2008/11/07 00:20:02 dyoung Exp $");
41
42 #include "opt_inet.h"
43 #include "bpfilter.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56
57 #include <machine/endian.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
78
79 #include <sys/bus.h>
80 #include <sys/intr.h>
81
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
85
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
88
89 #define TRIES 10000
90
91 static void gem_start(struct ifnet *);
92 static void gem_stop(struct ifnet *, int);
93 int gem_ioctl(struct ifnet *, u_long, void *);
94 void gem_tick(void *);
95 void gem_watchdog(struct ifnet *);
96 void gem_shutdown(void *);
97 void gem_pcs_start(struct gem_softc *sc);
98 void gem_pcs_stop(struct gem_softc *sc, int);
99 int gem_init(struct ifnet *);
100 void gem_init_regs(struct gem_softc *sc);
101 static int gem_ringsize(int sz);
102 static int gem_meminit(struct gem_softc *);
103 void gem_mifinit(struct gem_softc *);
104 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 u_int32_t, u_int32_t);
106 void gem_reset(struct gem_softc *);
107 int gem_reset_rx(struct gem_softc *sc);
108 static void gem_reset_rxdma(struct gem_softc *sc);
109 static void gem_rx_common(struct gem_softc *sc);
110 int gem_reset_tx(struct gem_softc *sc);
111 int gem_disable_rx(struct gem_softc *sc);
112 int gem_disable_tx(struct gem_softc *sc);
113 static void gem_rxdrain(struct gem_softc *sc);
114 int gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void gem_setladrf(struct gem_softc *);
116
117 /* MII methods & callbacks */
118 static int gem_mii_readreg(struct device *, int, int);
119 static void gem_mii_writereg(struct device *, int, int, int);
120 static void gem_mii_statchg(struct device *);
121
122 static int gem_ifflags_cb(struct ethercom *);
123
124 void gem_statuschange(struct gem_softc *);
125
126 int gem_ser_mediachange(struct ifnet *);
127 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
128
129 struct mbuf *gem_get(struct gem_softc *, int, int);
130 int gem_put(struct gem_softc *, int, struct mbuf *);
131 void gem_read(struct gem_softc *, int, int);
132 int gem_pint(struct gem_softc *);
133 int gem_eint(struct gem_softc *, u_int);
134 int gem_rint(struct gem_softc *);
135 int gem_tint(struct gem_softc *);
136 void gem_power(int, void *);
137
138 #ifdef GEM_DEBUG
139 static void gem_txsoft_print(const struct gem_softc *, int, int);
140 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
141 printf x
142 #else
143 #define DPRINTF(sc, x) /* nothing */
144 #endif
145
146 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
147
148
149 /*
150 * gem_attach:
151 *
152 * Attach a Gem interface to the system.
153 */
154 void
155 gem_attach(sc, enaddr)
156 struct gem_softc *sc;
157 const uint8_t *enaddr;
158 {
159 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
160 struct mii_data *mii = &sc->sc_mii;
161 bus_space_tag_t t = sc->sc_bustag;
162 bus_space_handle_t h = sc->sc_h1;
163 struct ifmedia_entry *ifm;
164 int i, error;
165 u_int32_t v;
166 char *nullbuf;
167
168 /* Make sure the chip is stopped. */
169 ifp->if_softc = sc;
170 gem_reset(sc);
171
172 /*
173 * Allocate the control data structures, and create and load the
174 * DMA map for it. gem_control_data is 9216 bytes, we have space for
175 * the padding buffer in the bus_dmamem_alloc()'d memory.
176 */
177 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
178 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
179 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
180 aprint_error_dev(&sc->sc_dev,
181 "unable to allocate control data, error = %d\n",
182 error);
183 goto fail_0;
184 }
185
186 /* XXX should map this in with correct endianness */
187 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
188 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
189 BUS_DMA_COHERENT)) != 0) {
190 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
191 error);
192 goto fail_1;
193 }
194
195 nullbuf =
196 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
197
198 if ((error = bus_dmamap_create(sc->sc_dmatag,
199 sizeof(struct gem_control_data), 1,
200 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
201 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
202 "error = %d\n", error);
203 goto fail_2;
204 }
205
206 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
207 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
208 0)) != 0) {
209 aprint_error_dev(&sc->sc_dev,
210 "unable to load control data DMA map, error = %d\n",
211 error);
212 goto fail_3;
213 }
214
215 memset(nullbuf, 0, ETHER_MIN_TX);
216 if ((error = bus_dmamap_create(sc->sc_dmatag,
217 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
218 aprint_error_dev(&sc->sc_dev, "unable to create padding DMA map, "
219 "error = %d\n", error);
220 goto fail_4;
221 }
222
223 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
224 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
225 aprint_error_dev(&sc->sc_dev,
226 "unable to load padding DMA map, error = %d\n",
227 error);
228 goto fail_5;
229 }
230
231 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
232 BUS_DMASYNC_PREWRITE);
233
234 /*
235 * Initialize the transmit job descriptors.
236 */
237 SIMPLEQ_INIT(&sc->sc_txfreeq);
238 SIMPLEQ_INIT(&sc->sc_txdirtyq);
239
240 /*
241 * Create the transmit buffer DMA maps.
242 */
243 for (i = 0; i < GEM_TXQUEUELEN; i++) {
244 struct gem_txsoft *txs;
245
246 txs = &sc->sc_txsoft[i];
247 txs->txs_mbuf = NULL;
248 if ((error = bus_dmamap_create(sc->sc_dmatag,
249 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
250 ETHER_MAX_LEN_JUMBO, 0, 0,
251 &txs->txs_dmamap)) != 0) {
252 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
253 "error = %d\n", i, error);
254 goto fail_6;
255 }
256 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
257 }
258
259 /*
260 * Create the receive buffer DMA maps.
261 */
262 for (i = 0; i < GEM_NRXDESC; i++) {
263 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
264 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
265 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
266 "error = %d\n", i, error);
267 goto fail_7;
268 }
269 sc->sc_rxsoft[i].rxs_mbuf = NULL;
270 }
271
272 /* Initialize ifmedia structures and MII info */
273 mii->mii_ifp = ifp;
274 mii->mii_readreg = gem_mii_readreg;
275 mii->mii_writereg = gem_mii_writereg;
276 mii->mii_statchg = gem_mii_statchg;
277
278 sc->sc_ethercom.ec_mii = mii;
279
280 /*
281 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
282 * Section 3.2.1 `Initialization Sequence'.
283 * However, we can't assume SERDES or Serialink if neither
284 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
285 * being set, as both are set on Sun X1141A (with SERDES). So,
286 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
287 * Also, for Apple variants with 2 PHY's, we prefer the external
288 * PHY over the internal PHY.
289 */
290 gem_mifinit(sc);
291
292 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
293 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
294 ether_mediastatus);
295 mii_attach(&sc->sc_dev, mii, 0xffffffff,
296 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
297 if (LIST_EMPTY(&mii->mii_phys)) {
298 /* No PHY attached */
299 aprint_error_dev(&sc->sc_dev, "PHY probe failed\n");
300 goto fail_7;
301 } else {
302 struct mii_softc *child;
303
304 /*
305 * Walk along the list of attached MII devices and
306 * establish an `MII instance' to `PHY number'
307 * mapping.
308 */
309 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
310 /*
311 * Note: we support just one PHY: the internal
312 * or external MII is already selected for us
313 * by the GEM_MIF_CONFIG register.
314 */
315 if (child->mii_phy > 1 || child->mii_inst > 0) {
316 aprint_error_dev(&sc->sc_dev,
317 "cannot accommodate MII device"
318 " %s at PHY %d, instance %d\n",
319 device_xname(child->mii_dev),
320 child->mii_phy, child->mii_inst);
321 continue;
322 }
323 sc->sc_phys[child->mii_inst] = child->mii_phy;
324 }
325
326 /*
327 * Now select and activate the PHY we will use.
328 *
329 * The order of preference is External (MDI1),
330 * then Internal (MDI0),
331 */
332 if (sc->sc_phys[1]) {
333 #ifdef GEM_DEBUG
334 aprint_debug_dev(&sc->sc_dev, "using external PHY\n");
335 #endif
336 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
337 } else {
338 #ifdef GEM_DEBUG
339 aprint_debug_dev(&sc->sc_dev, "using internal PHY\n");
340 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
341 #endif
342 }
343 bus_space_write_4(t, h, GEM_MIF_CONFIG,
344 sc->sc_mif_config);
345 if (sc->sc_variant != GEM_SUN_ERI)
346 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
347 GEM_MII_DATAPATH_MII);
348
349 /*
350 * XXX - we can really do the following ONLY if the
351 * PHY indeed has the auto negotiation capability!!
352 */
353 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
354 }
355 } else {
356 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
357 gem_ser_mediastatus);
358 /* SERDES or Serialink */
359 if (sc->sc_flags & GEM_SERDES) {
360 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
361 GEM_MII_DATAPATH_SERDES);
362 } else {
363 sc->sc_flags |= GEM_SERIAL;
364 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
365 GEM_MII_DATAPATH_SERIAL);
366 }
367
368 aprint_normal_dev(&sc->sc_dev, "using external PCS %s: ",
369 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
370
371 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
372 /* Check for FDX and HDX capabilities */
373 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
374 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
375 ifmedia_add(&sc->sc_mii.mii_media,
376 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
377 aprint_normal("1000baseSX-FDX, ");
378 }
379 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
380 ifmedia_add(&sc->sc_mii.mii_media,
381 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
382 aprint_normal("1000baseSX-HDX, ");
383 }
384 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
385 sc->sc_mii_media = IFM_AUTO;
386 aprint_normal("auto\n");
387
388 gem_pcs_stop(sc, 1);
389 }
390
391 /*
392 * From this point forward, the attachment cannot fail. A failure
393 * before this point releases all resources that may have been
394 * allocated.
395 */
396
397 /* Announce ourselves. */
398 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s",
399 ether_sprintf(enaddr));
400
401 /* Get RX FIFO size */
402 sc->sc_rxfifosize = 64 *
403 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
404 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
405
406 /* Get TX FIFO size */
407 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
408 aprint_normal(", %uKB TX fifo\n", v / 16);
409
410 /* Initialize ifnet structure. */
411 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
412 ifp->if_softc = sc;
413 ifp->if_flags =
414 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
415 sc->sc_if_flags = ifp->if_flags;
416 /*
417 * The GEM hardware supports basic TCP checksum offloading only.
418 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
419 * have bugs in the receive checksum, so don't enable it for now.
420 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
421 (GEM_IS_APPLE(sc) &&
422 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
423 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
424 */
425 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
426 ifp->if_start = gem_start;
427 ifp->if_ioctl = gem_ioctl;
428 ifp->if_watchdog = gem_watchdog;
429 ifp->if_stop = gem_stop;
430 ifp->if_init = gem_init;
431 IFQ_SET_READY(&ifp->if_snd);
432
433 /*
434 * If we support GigE media, we support jumbo frames too.
435 * Unless we are Apple.
436 */
437 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
438 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
439 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
440 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
441 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
442 if (!GEM_IS_APPLE(sc))
443 sc->sc_ethercom.ec_capabilities
444 |= ETHERCAP_JUMBO_MTU;
445 sc->sc_flags |= GEM_GIGABIT;
446 break;
447 }
448 }
449
450 /* claim 802.1q capability */
451 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
452
453 /* Attach the interface. */
454 if_attach(ifp);
455 ether_ifattach(ifp, enaddr);
456 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
457
458 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
459 if (sc->sc_sh == NULL)
460 panic("gem_config: can't establish shutdownhook");
461
462 #if NRND > 0
463 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
464 RND_TYPE_NET, 0);
465 #endif
466
467 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
468 NULL, device_xname(&sc->sc_dev), "interrupts");
469 #ifdef GEM_COUNTERS
470 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
471 &sc->sc_ev_intr, device_xname(&sc->sc_dev), "tx interrupts");
472 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
473 &sc->sc_ev_intr, device_xname(&sc->sc_dev), "rx interrupts");
474 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
475 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx ring full");
476 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
477 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx malloc failure");
478 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
479 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 0desc");
480 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
481 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 1desc");
482 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
483 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 2desc");
484 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
485 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 3desc");
486 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
487 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >3desc");
488 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
489 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >7desc");
490 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
491 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >15desc");
492 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
493 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >31desc");
494 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
495 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >63desc");
496 #endif
497
498 #if notyet
499 /*
500 * Add a suspend hook to make sure we come back up after a
501 * resume.
502 */
503 sc->sc_powerhook = powerhook_establish(device_xname(&sc->sc_dev),
504 gem_power, sc);
505 if (sc->sc_powerhook == NULL)
506 aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish power hook\n");
507 #endif
508
509 callout_init(&sc->sc_tick_ch, 0);
510 return;
511
512 /*
513 * Free any resources we've allocated during the failed attach
514 * attempt. Do this in reverse order and fall through.
515 */
516 fail_7:
517 for (i = 0; i < GEM_NRXDESC; i++) {
518 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
519 bus_dmamap_destroy(sc->sc_dmatag,
520 sc->sc_rxsoft[i].rxs_dmamap);
521 }
522 fail_6:
523 for (i = 0; i < GEM_TXQUEUELEN; i++) {
524 if (sc->sc_txsoft[i].txs_dmamap != NULL)
525 bus_dmamap_destroy(sc->sc_dmatag,
526 sc->sc_txsoft[i].txs_dmamap);
527 }
528 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
529 fail_5:
530 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
531 fail_4:
532 bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
533 fail_3:
534 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
535 fail_2:
536 bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
537 sizeof(struct gem_control_data));
538 fail_1:
539 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
540 fail_0:
541 return;
542 }
543
544
545 void
546 gem_tick(arg)
547 void *arg;
548 {
549 struct gem_softc *sc = arg;
550 int s;
551
552 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
553 /*
554 * We have to reset everything if we failed to get a
555 * PCS interrupt. Restarting the callout is handled
556 * in gem_pcs_start().
557 */
558 gem_init(&sc->sc_ethercom.ec_if);
559 } else {
560 s = splnet();
561 mii_tick(&sc->sc_mii);
562 splx(s);
563 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
564 }
565 }
566
567 static int
568 gem_bitwait(sc, h, r, clr, set)
569 struct gem_softc *sc;
570 bus_space_handle_t h;
571 int r;
572 u_int32_t clr;
573 u_int32_t set;
574 {
575 int i;
576 u_int32_t reg;
577
578 for (i = TRIES; i--; DELAY(100)) {
579 reg = bus_space_read_4(sc->sc_bustag, h, r);
580 if ((reg & clr) == 0 && (reg & set) == set)
581 return (1);
582 }
583 return (0);
584 }
585
586 void
587 gem_reset(sc)
588 struct gem_softc *sc;
589 {
590 bus_space_tag_t t = sc->sc_bustag;
591 bus_space_handle_t h = sc->sc_h2;
592 int s;
593
594 s = splnet();
595 DPRINTF(sc, ("%s: gem_reset\n", device_xname(&sc->sc_dev)));
596 gem_reset_rx(sc);
597 gem_reset_tx(sc);
598
599 /* Do a full reset */
600 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
601 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
602 aprint_error_dev(&sc->sc_dev, "cannot reset device\n");
603 splx(s);
604 }
605
606
607 /*
608 * gem_rxdrain:
609 *
610 * Drain the receive queue.
611 */
612 static void
613 gem_rxdrain(struct gem_softc *sc)
614 {
615 struct gem_rxsoft *rxs;
616 int i;
617
618 for (i = 0; i < GEM_NRXDESC; i++) {
619 rxs = &sc->sc_rxsoft[i];
620 if (rxs->rxs_mbuf != NULL) {
621 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
622 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
623 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
624 m_freem(rxs->rxs_mbuf);
625 rxs->rxs_mbuf = NULL;
626 }
627 }
628 }
629
630 /*
631 * Reset the whole thing.
632 */
633 static void
634 gem_stop(struct ifnet *ifp, int disable)
635 {
636 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
637 struct gem_txsoft *txs;
638
639 DPRINTF(sc, ("%s: gem_stop\n", device_xname(&sc->sc_dev)));
640
641 callout_stop(&sc->sc_tick_ch);
642 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
643 gem_pcs_stop(sc, disable);
644 else
645 mii_down(&sc->sc_mii);
646
647 /* XXX - Should we reset these instead? */
648 gem_disable_tx(sc);
649 gem_disable_rx(sc);
650
651 /*
652 * Release any queued transmit buffers.
653 */
654 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
655 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
656 if (txs->txs_mbuf != NULL) {
657 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
658 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
659 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
660 m_freem(txs->txs_mbuf);
661 txs->txs_mbuf = NULL;
662 }
663 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
664 }
665
666 /*
667 * Mark the interface down and cancel the watchdog timer.
668 */
669 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
670 sc->sc_if_flags = ifp->if_flags;
671 ifp->if_timer = 0;
672
673 if (disable)
674 gem_rxdrain(sc);
675 }
676
677
678 /*
679 * Reset the receiver
680 */
681 int
682 gem_reset_rx(struct gem_softc *sc)
683 {
684 bus_space_tag_t t = sc->sc_bustag;
685 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
686
687 /*
688 * Resetting while DMA is in progress can cause a bus hang, so we
689 * disable DMA first.
690 */
691 gem_disable_rx(sc);
692 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
693 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
694 /* Wait till it finishes */
695 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
696 aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n");
697
698 /* Finally, reset the ERX */
699 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
700 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
701 /* Wait till it finishes */
702 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
703 aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n");
704 return (1);
705 }
706 return (0);
707 }
708
709
710 /*
711 * Reset the receiver DMA engine.
712 *
713 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
714 * etc in order to reset the receiver DMA engine only and not do a full
715 * reset which amongst others also downs the link and clears the FIFOs.
716 */
717 static void
718 gem_reset_rxdma(struct gem_softc *sc)
719 {
720 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
721 bus_space_tag_t t = sc->sc_bustag;
722 bus_space_handle_t h = sc->sc_h1;
723 int i;
724
725 if (gem_reset_rx(sc) != 0) {
726 gem_init(ifp);
727 return;
728 }
729 for (i = 0; i < GEM_NRXDESC; i++)
730 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
731 GEM_UPDATE_RXDESC(sc, i);
732 sc->sc_rxptr = 0;
733 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
734 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
735
736 /* Reprogram Descriptor Ring Base Addresses */
737 /* NOTE: we use only 32-bit DMA addresses here. */
738 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
739 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
740
741 /* Redo ERX Configuration */
742 gem_rx_common(sc);
743
744 /* Give the reciever a swift kick */
745 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
746 }
747
748 /*
749 * Common RX configuration for gem_init() and gem_reset_rxdma().
750 */
751 static void
752 gem_rx_common(struct gem_softc *sc)
753 {
754 bus_space_tag_t t = sc->sc_bustag;
755 bus_space_handle_t h = sc->sc_h1;
756 u_int32_t v;
757
758 /* Encode Receive Descriptor ring size: four possible values */
759 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
760
761 /* Set receive h/w checksum offset */
762 #ifdef INET
763 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
764 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
765 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
766 #endif
767
768 /* Enable RX DMA */
769 bus_space_write_4(t, h, GEM_RX_CONFIG,
770 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
771 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
772
773 /*
774 * The following value is for an OFF Threshold of about 3/4 full
775 * and an ON Threshold of 1/4 full.
776 */
777 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
778 (3 * sc->sc_rxfifosize / 256) |
779 ((sc->sc_rxfifosize / 256) << 12));
780 bus_space_write_4(t, h, GEM_RX_BLANKING,
781 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
782 }
783
784 /*
785 * Reset the transmitter
786 */
787 int
788 gem_reset_tx(struct gem_softc *sc)
789 {
790 bus_space_tag_t t = sc->sc_bustag;
791 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
792
793 /*
794 * Resetting while DMA is in progress can cause a bus hang, so we
795 * disable DMA first.
796 */
797 gem_disable_tx(sc);
798 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
799 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
800 /* Wait till it finishes */
801 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
802 aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n");
803 /* Wait 5ms extra. */
804 delay(5000);
805
806 /* Finally, reset the ETX */
807 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
808 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
809 /* Wait till it finishes */
810 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
811 aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n");
812 return (1);
813 }
814 return (0);
815 }
816
817 /*
818 * disable receiver.
819 */
820 int
821 gem_disable_rx(struct gem_softc *sc)
822 {
823 bus_space_tag_t t = sc->sc_bustag;
824 bus_space_handle_t h = sc->sc_h1;
825 u_int32_t cfg;
826
827 /* Flip the enable bit */
828 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
829 cfg &= ~GEM_MAC_RX_ENABLE;
830 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
831 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
832 /* Wait for it to finish */
833 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
834 }
835
836 /*
837 * disable transmitter.
838 */
839 int
840 gem_disable_tx(struct gem_softc *sc)
841 {
842 bus_space_tag_t t = sc->sc_bustag;
843 bus_space_handle_t h = sc->sc_h1;
844 u_int32_t cfg;
845
846 /* Flip the enable bit */
847 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
848 cfg &= ~GEM_MAC_TX_ENABLE;
849 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
850 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
851 /* Wait for it to finish */
852 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
853 }
854
855 /*
856 * Initialize interface.
857 */
858 int
859 gem_meminit(struct gem_softc *sc)
860 {
861 struct gem_rxsoft *rxs;
862 int i, error;
863
864 /*
865 * Initialize the transmit descriptor ring.
866 */
867 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
868 for (i = 0; i < GEM_NTXDESC; i++) {
869 sc->sc_txdescs[i].gd_flags = 0;
870 sc->sc_txdescs[i].gd_addr = 0;
871 }
872 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
873 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
874 sc->sc_txfree = GEM_NTXDESC-1;
875 sc->sc_txnext = 0;
876 sc->sc_txwin = 0;
877
878 /*
879 * Initialize the receive descriptor and receive job
880 * descriptor rings.
881 */
882 for (i = 0; i < GEM_NRXDESC; i++) {
883 rxs = &sc->sc_rxsoft[i];
884 if (rxs->rxs_mbuf == NULL) {
885 if ((error = gem_add_rxbuf(sc, i)) != 0) {
886 aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
887 "buffer %d, error = %d\n",
888 i, error);
889 /*
890 * XXX Should attempt to run with fewer receive
891 * XXX buffers instead of just failing.
892 */
893 gem_rxdrain(sc);
894 return (1);
895 }
896 } else
897 GEM_INIT_RXDESC(sc, i);
898 }
899 sc->sc_rxptr = 0;
900 sc->sc_meminited = 1;
901 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
902 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
903
904 return (0);
905 }
906
907 static int
908 gem_ringsize(int sz)
909 {
910 switch (sz) {
911 case 32:
912 return GEM_RING_SZ_32;
913 case 64:
914 return GEM_RING_SZ_64;
915 case 128:
916 return GEM_RING_SZ_128;
917 case 256:
918 return GEM_RING_SZ_256;
919 case 512:
920 return GEM_RING_SZ_512;
921 case 1024:
922 return GEM_RING_SZ_1024;
923 case 2048:
924 return GEM_RING_SZ_2048;
925 case 4096:
926 return GEM_RING_SZ_4096;
927 case 8192:
928 return GEM_RING_SZ_8192;
929 default:
930 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
931 return GEM_RING_SZ_32;
932 }
933 }
934
935
936 /*
937 * Start PCS
938 */
939 void
940 gem_pcs_start(struct gem_softc *sc)
941 {
942 bus_space_tag_t t = sc->sc_bustag;
943 bus_space_handle_t h = sc->sc_h1;
944 uint32_t v;
945
946 #ifdef GEM_DEBUG
947 aprint_debug_dev(&sc->sc_dev, "gem_pcs_start()\n");
948 #endif
949
950 /*
951 * Set up. We must disable the MII before modifying the
952 * GEM_MII_ANAR register
953 */
954 if (sc->sc_flags & GEM_SERDES) {
955 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
956 GEM_MII_DATAPATH_SERDES);
957 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
958 GEM_MII_SLINK_LOOPBACK);
959 } else {
960 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
961 GEM_MII_DATAPATH_SERIAL);
962 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
963 }
964 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
965 v = bus_space_read_4(t, h, GEM_MII_ANAR);
966 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
967 if (sc->sc_mii_media == IFM_AUTO)
968 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
969 else if (sc->sc_mii_media == IFM_FDX) {
970 v |= GEM_MII_ANEG_FUL_DUPLX;
971 v &= ~GEM_MII_ANEG_HLF_DUPLX;
972 } else if (sc->sc_mii_media == IFM_HDX) {
973 v &= ~GEM_MII_ANEG_FUL_DUPLX;
974 v |= GEM_MII_ANEG_HLF_DUPLX;
975 }
976
977 /* Configure link. */
978 bus_space_write_4(t, h, GEM_MII_ANAR, v);
979 bus_space_write_4(t, h, GEM_MII_CONTROL,
980 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
981 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
982 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
983
984 /* Start the 10 second timer */
985 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
986 }
987
988 /*
989 * Stop PCS
990 */
991 void
992 gem_pcs_stop(struct gem_softc *sc, int disable)
993 {
994 bus_space_tag_t t = sc->sc_bustag;
995 bus_space_handle_t h = sc->sc_h1;
996
997 #ifdef GEM_DEBUG
998 aprint_debug_dev(&sc->sc_dev, "gem_pcs_stop()\n");
999 #endif
1000
1001 /* Tell link partner that we're going away */
1002 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1003
1004 /*
1005 * Disable PCS MII. The documentation suggests that setting
1006 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1007 * negotiation will shut down the link. However, it appears
1008 * that we also need to unset the datapath mode.
1009 */
1010 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1011 bus_space_write_4(t, h, GEM_MII_CONTROL,
1012 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1013 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1014 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1015
1016 if (disable) {
1017 if (sc->sc_flags & GEM_SERDES)
1018 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1019 GEM_MII_SLINK_POWER_OFF);
1020 else
1021 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1022 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1023 }
1024
1025 sc->sc_flags &= ~GEM_LINK;
1026 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1027 sc->sc_mii.mii_media_status = IFM_AVALID;
1028 }
1029
1030
1031 /*
1032 * Initialization of interface; set up initialization block
1033 * and transmit/receive descriptor rings.
1034 */
1035 int
1036 gem_init(struct ifnet *ifp)
1037 {
1038 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1039 bus_space_tag_t t = sc->sc_bustag;
1040 bus_space_handle_t h = sc->sc_h1;
1041 int rc = 0, s;
1042 u_int max_frame_size;
1043 u_int32_t v;
1044
1045 s = splnet();
1046
1047 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(&sc->sc_dev)));
1048 /*
1049 * Initialization sequence. The numbered steps below correspond
1050 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1051 * Channel Engine manual (part of the PCIO manual).
1052 * See also the STP2002-STQ document from Sun Microsystems.
1053 */
1054
1055 /* step 1 & 2. Reset the Ethernet Channel */
1056 gem_stop(ifp, 0);
1057 gem_reset(sc);
1058 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(&sc->sc_dev)));
1059
1060 /* Re-initialize the MIF */
1061 gem_mifinit(sc);
1062
1063 /* Set up correct datapath for non-SERDES/Serialink */
1064 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1065 sc->sc_variant != GEM_SUN_ERI)
1066 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1067 GEM_MII_DATAPATH_MII);
1068
1069 /* Call MI reset function if any */
1070 if (sc->sc_hwreset)
1071 (*sc->sc_hwreset)(sc);
1072
1073 /* step 3. Setup data structures in host memory */
1074 if (gem_meminit(sc) != 0)
1075 return 1;
1076
1077 /* step 4. TX MAC registers & counters */
1078 gem_init_regs(sc);
1079 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1080 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1081 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1082 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1083 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1084 max_frame_size|/* burst size */(0x2000<<16));
1085
1086 /* step 5. RX MAC registers & counters */
1087 gem_setladrf(sc);
1088
1089 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1090 /* NOTE: we use only 32-bit DMA addresses here. */
1091 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1092 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1093
1094 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1095 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1096
1097 /* step 8. Global Configuration & Interrupt Mask */
1098 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1099 v = GEM_INTR_PCS;
1100 else
1101 v = GEM_INTR_MIF;
1102 bus_space_write_4(t, h, GEM_INTMASK,
1103 ~(GEM_INTR_TX_INTME |
1104 GEM_INTR_TX_EMPTY |
1105 GEM_INTR_TX_MAC |
1106 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
1107 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
1108 GEM_INTR_BERR | v));
1109 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1110 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1111 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1112 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1113 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1114
1115 /* step 9. ETX Configuration: use mostly default values */
1116
1117 /* Enable TX DMA */
1118 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1119 bus_space_write_4(t, h, GEM_TX_CONFIG,
1120 v|GEM_TX_CONFIG_TXDMA_EN|
1121 ((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
1122 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1123
1124 /* step 10. ERX Configuration */
1125 gem_rx_common(sc);
1126
1127 /* step 11. Configure Media */
1128 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1129 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1130 goto out;
1131
1132 /* step 12. RX_MAC Configuration Register */
1133 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1134 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1135 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1136
1137 /* step 14. Issue Transmit Pending command */
1138
1139 /* Call MI initialization function if any */
1140 if (sc->sc_hwinit)
1141 (*sc->sc_hwinit)(sc);
1142
1143
1144 /* step 15. Give the reciever a swift kick */
1145 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1146
1147 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1148 /* Configure PCS */
1149 gem_pcs_start(sc);
1150 else
1151 /* Start the one second timer. */
1152 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1153
1154 sc->sc_flags &= ~GEM_LINK;
1155 ifp->if_flags |= IFF_RUNNING;
1156 ifp->if_flags &= ~IFF_OACTIVE;
1157 ifp->if_timer = 0;
1158 sc->sc_if_flags = ifp->if_flags;
1159 out:
1160 splx(s);
1161
1162 return (0);
1163 }
1164
1165 void
1166 gem_init_regs(struct gem_softc *sc)
1167 {
1168 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1169 bus_space_tag_t t = sc->sc_bustag;
1170 bus_space_handle_t h = sc->sc_h1;
1171 const u_char *laddr = CLLADDR(ifp->if_sadl);
1172 u_int32_t v;
1173
1174 /* These regs are not cleared on reset */
1175 if (!sc->sc_inited) {
1176
1177 /* Load recommended values */
1178 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1179 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1180 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1181
1182 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1183 /* Max frame and max burst size */
1184 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1185 ETHER_MAX_LEN | (0x2000<<16));
1186
1187 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1188 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1189 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1190 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1191 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1192 ((laddr[5]<<8)|laddr[4])&0x3ff);
1193
1194 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1195 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1196 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1197 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1198
1199 /* MAC control addr set to 01:80:c2:00:00:01 */
1200 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1201 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1202 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1203
1204 /* MAC filter addr set to 0:0:0:0:0:0 */
1205 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1206 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1207 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1208
1209 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1210 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1211
1212 sc->sc_inited = 1;
1213 }
1214
1215 /* Counters need to be zeroed */
1216 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1217 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1218 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1219 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1220 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1221 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1222 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1223 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1224 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1225 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1226 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1227
1228 /* Set XOFF PAUSE time. */
1229 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1230
1231 /*
1232 * Set the internal arbitration to "infinite" bursts of the
1233 * maximum length of 31 * 64 bytes so DMA transfers aren't
1234 * split up in cache line size chunks. This greatly improves
1235 * especially RX performance.
1236 * Enable silicon bug workarounds for the Apple variants.
1237 */
1238 bus_space_write_4(t, h, GEM_CONFIG,
1239 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1240 ((sc->sc_flags & GEM_PCI) ?
1241 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1242 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1243
1244 /*
1245 * Set the station address.
1246 */
1247 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1248 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1249 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1250
1251 /*
1252 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1253 */
1254 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1255 v = GEM_MAC_XIF_TX_MII_ENA;
1256 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1257 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1258 v |= GEM_MAC_XIF_FDPLX_LED;
1259 if (sc->sc_flags & GEM_GIGABIT)
1260 v |= GEM_MAC_XIF_GMII_MODE;
1261 }
1262 } else {
1263 v |= GEM_MAC_XIF_GMII_MODE;
1264 }
1265 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1266 }
1267
1268 #ifdef GEM_DEBUG
1269 static void
1270 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1271 {
1272 int i;
1273
1274 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1275 printf("descriptor %d:\t", i);
1276 printf("gd_flags: 0x%016" PRIx64 "\t",
1277 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1278 printf("gd_addr: 0x%016" PRIx64 "\n",
1279 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1280 if (i == lastdesc)
1281 break;
1282 }
1283 }
1284 #endif
1285
1286 static void
1287 gem_start(ifp)
1288 struct ifnet *ifp;
1289 {
1290 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1291 struct mbuf *m0, *m;
1292 struct gem_txsoft *txs;
1293 bus_dmamap_t dmamap;
1294 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1295 uint64_t flags = 0;
1296
1297 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1298 return;
1299
1300 /*
1301 * Remember the previous number of free descriptors and
1302 * the first descriptor we'll use.
1303 */
1304 ofree = sc->sc_txfree;
1305 firsttx = sc->sc_txnext;
1306
1307 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1308 device_xname(&sc->sc_dev), ofree, firsttx));
1309
1310 /*
1311 * Loop through the send queue, setting up transmit descriptors
1312 * until we drain the queue, or use up all available transmit
1313 * descriptors.
1314 */
1315 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1316 sc->sc_txfree != 0) {
1317 /*
1318 * Grab a packet off the queue.
1319 */
1320 IFQ_POLL(&ifp->if_snd, m0);
1321 if (m0 == NULL)
1322 break;
1323 m = NULL;
1324
1325 dmamap = txs->txs_dmamap;
1326
1327 /*
1328 * Load the DMA map. If this fails, the packet either
1329 * didn't fit in the alloted number of segments, or we were
1330 * short on resources. In this case, we'll copy and try
1331 * again.
1332 */
1333 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1334 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1335 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1336 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1337 if (m0->m_pkthdr.len > MCLBYTES) {
1338 aprint_error_dev(&sc->sc_dev, "unable to allocate jumbo Tx "
1339 "cluster\n");
1340 IFQ_DEQUEUE(&ifp->if_snd, m0);
1341 m_freem(m0);
1342 continue;
1343 }
1344 MGETHDR(m, M_DONTWAIT, MT_DATA);
1345 if (m == NULL) {
1346 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
1347 break;
1348 }
1349 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1350 if (m0->m_pkthdr.len > MHLEN) {
1351 MCLGET(m, M_DONTWAIT);
1352 if ((m->m_flags & M_EXT) == 0) {
1353 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
1354 "cluster\n");
1355 m_freem(m);
1356 break;
1357 }
1358 }
1359 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1360 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1361 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1362 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1363 if (error) {
1364 aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
1365 "error = %d\n", error);
1366 break;
1367 }
1368 }
1369
1370 /*
1371 * Ensure we have enough descriptors free to describe
1372 * the packet.
1373 */
1374 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1375 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1376 /*
1377 * Not enough free descriptors to transmit this
1378 * packet. We haven't committed to anything yet,
1379 * so just unload the DMA map, put the packet
1380 * back on the queue, and punt. Notify the upper
1381 * layer that there are no more slots left.
1382 *
1383 * XXX We could allocate an mbuf and copy, but
1384 * XXX it is worth it?
1385 */
1386 ifp->if_flags |= IFF_OACTIVE;
1387 sc->sc_if_flags = ifp->if_flags;
1388 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1389 if (m != NULL)
1390 m_freem(m);
1391 break;
1392 }
1393
1394 IFQ_DEQUEUE(&ifp->if_snd, m0);
1395 if (m != NULL) {
1396 m_freem(m0);
1397 m0 = m;
1398 }
1399
1400 /*
1401 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1402 */
1403
1404 /* Sync the DMA map. */
1405 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1406 BUS_DMASYNC_PREWRITE);
1407
1408 /*
1409 * Initialize the transmit descriptors.
1410 */
1411 for (nexttx = sc->sc_txnext, seg = 0;
1412 seg < dmamap->dm_nsegs;
1413 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1414
1415 /*
1416 * If this is the first descriptor we're
1417 * enqueueing, set the start of packet flag,
1418 * and the checksum stuff if we want the hardware
1419 * to do it.
1420 */
1421 sc->sc_txdescs[nexttx].gd_addr =
1422 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1423 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1424 if (nexttx == firsttx) {
1425 flags |= GEM_TD_START_OF_PACKET;
1426 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1427 sc->sc_txwin = 0;
1428 flags |= GEM_TD_INTERRUPT_ME;
1429 }
1430
1431 #ifdef INET
1432 /* h/w checksum */
1433 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1434 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1435 struct ether_header *eh;
1436 uint16_t offset, start;
1437
1438 eh = mtod(m0, struct ether_header *);
1439 switch (ntohs(eh->ether_type)) {
1440 case ETHERTYPE_IP:
1441 start = ETHER_HDR_LEN;
1442 break;
1443 case ETHERTYPE_VLAN:
1444 start = ETHER_HDR_LEN +
1445 ETHER_VLAN_ENCAP_LEN;
1446 break;
1447 default:
1448 /* unsupported, drop it */
1449 m_free(m0);
1450 continue;
1451 }
1452 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1453 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1454 flags |= (start <<
1455 GEM_TD_CXSUM_STARTSHFT) |
1456 (offset <<
1457 GEM_TD_CXSUM_STUFFSHFT) |
1458 GEM_TD_CXSUM_ENABLE;
1459 }
1460 #endif
1461 }
1462 if (seg == dmamap->dm_nsegs - 1) {
1463 flags |= GEM_TD_END_OF_PACKET;
1464 } else {
1465 /* last flag set outside of loop */
1466 sc->sc_txdescs[nexttx].gd_flags =
1467 GEM_DMA_WRITE(sc, flags);
1468 }
1469 lasttx = nexttx;
1470 }
1471 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1472 /* add padding buffer at end of chain */
1473 flags &= ~GEM_TD_END_OF_PACKET;
1474 sc->sc_txdescs[lasttx].gd_flags =
1475 GEM_DMA_WRITE(sc, flags);
1476
1477 sc->sc_txdescs[nexttx].gd_addr =
1478 GEM_DMA_WRITE(sc,
1479 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1480 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1481 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1482 lasttx = nexttx;
1483 nexttx = GEM_NEXTTX(nexttx);
1484 seg++;
1485 }
1486 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1487
1488 KASSERT(lasttx != -1);
1489
1490 /*
1491 * Store a pointer to the packet so we can free it later,
1492 * and remember what txdirty will be once the packet is
1493 * done.
1494 */
1495 txs->txs_mbuf = m0;
1496 txs->txs_firstdesc = sc->sc_txnext;
1497 txs->txs_lastdesc = lasttx;
1498 txs->txs_ndescs = seg;
1499
1500 #ifdef GEM_DEBUG
1501 if (ifp->if_flags & IFF_DEBUG) {
1502 printf(" gem_start %p transmit chain:\n", txs);
1503 gem_txsoft_print(sc, txs->txs_firstdesc,
1504 txs->txs_lastdesc);
1505 }
1506 #endif
1507
1508 /* Sync the descriptors we're using. */
1509 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1510 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1511
1512 /* Advance the tx pointer. */
1513 sc->sc_txfree -= txs->txs_ndescs;
1514 sc->sc_txnext = nexttx;
1515
1516 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1517 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1518
1519 #if NBPFILTER > 0
1520 /*
1521 * Pass the packet to any BPF listeners.
1522 */
1523 if (ifp->if_bpf)
1524 bpf_mtap(ifp->if_bpf, m0);
1525 #endif /* NBPFILTER > 0 */
1526 }
1527
1528 if (txs == NULL || sc->sc_txfree == 0) {
1529 /* No more slots left; notify upper layer. */
1530 ifp->if_flags |= IFF_OACTIVE;
1531 sc->sc_if_flags = ifp->if_flags;
1532 }
1533
1534 if (sc->sc_txfree != ofree) {
1535 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1536 device_xname(&sc->sc_dev), lasttx, firsttx));
1537 /*
1538 * The entire packet chain is set up.
1539 * Kick the transmitter.
1540 */
1541 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1542 device_xname(&sc->sc_dev), nexttx));
1543 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1544 sc->sc_txnext);
1545
1546 /* Set a watchdog timer in case the chip flakes out. */
1547 ifp->if_timer = 5;
1548 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1549 device_xname(&sc->sc_dev), ifp->if_timer));
1550 }
1551 }
1552
1553 /*
1554 * Transmit interrupt.
1555 */
1556 int
1557 gem_tint(sc)
1558 struct gem_softc *sc;
1559 {
1560 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1561 bus_space_tag_t t = sc->sc_bustag;
1562 bus_space_handle_t mac = sc->sc_h1;
1563 struct gem_txsoft *txs;
1564 int txlast;
1565 int progress = 0;
1566 u_int32_t v;
1567
1568 DPRINTF(sc, ("%s: gem_tint\n", device_xname(&sc->sc_dev)));
1569
1570 /* Unload collision counters ... */
1571 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1572 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1573 ifp->if_collisions += v +
1574 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1575 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1576 ifp->if_oerrors += v;
1577
1578 /* ... then clear the hardware counters. */
1579 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1580 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1581 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1582 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1583
1584 /*
1585 * Go through our Tx list and free mbufs for those
1586 * frames that have been transmitted.
1587 */
1588 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1589 /*
1590 * In theory, we could harvest some descriptors before
1591 * the ring is empty, but that's a bit complicated.
1592 *
1593 * GEM_TX_COMPLETION points to the last descriptor
1594 * processed +1.
1595 *
1596 * Let's assume that the NIC writes back to the Tx
1597 * descriptors before it updates the completion
1598 * register. If the NIC has posted writes to the
1599 * Tx descriptors, PCI ordering requires that the
1600 * posted writes flush to RAM before the register-read
1601 * finishes. So let's read the completion register,
1602 * before syncing the descriptors, so that we
1603 * examine Tx descriptors that are at least as
1604 * current as the completion register.
1605 */
1606 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1607 DPRINTF(sc,
1608 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1609 txs->txs_lastdesc, txlast));
1610 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1611 if (txlast >= txs->txs_firstdesc &&
1612 txlast <= txs->txs_lastdesc)
1613 break;
1614 } else if (txlast >= txs->txs_firstdesc ||
1615 txlast <= txs->txs_lastdesc)
1616 break;
1617
1618 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1619 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1620
1621 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1622 if (ifp->if_flags & IFF_DEBUG) {
1623 printf(" txsoft %p transmit chain:\n", txs);
1624 gem_txsoft_print(sc, txs->txs_firstdesc,
1625 txs->txs_lastdesc);
1626 }
1627 #endif
1628
1629
1630 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1631 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1632
1633 sc->sc_txfree += txs->txs_ndescs;
1634
1635 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1636 0, txs->txs_dmamap->dm_mapsize,
1637 BUS_DMASYNC_POSTWRITE);
1638 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1639 if (txs->txs_mbuf != NULL) {
1640 m_freem(txs->txs_mbuf);
1641 txs->txs_mbuf = NULL;
1642 }
1643
1644 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1645
1646 ifp->if_opackets++;
1647 progress = 1;
1648 }
1649
1650 #if 0
1651 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1652 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1653 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1654 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1655 GEM_TX_DATA_PTR_HI) << 32) |
1656 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1657 GEM_TX_DATA_PTR_LO),
1658 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1659 #endif
1660
1661 if (progress) {
1662 if (sc->sc_txfree == GEM_NTXDESC - 1)
1663 sc->sc_txwin = 0;
1664
1665 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1666 ifp->if_flags &= ~IFF_OACTIVE;
1667 sc->sc_if_flags = ifp->if_flags;
1668 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1669 gem_start(ifp);
1670 }
1671 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1672 device_xname(&sc->sc_dev), ifp->if_timer));
1673
1674 return (1);
1675 }
1676
1677 /*
1678 * Receive interrupt.
1679 */
1680 int
1681 gem_rint(sc)
1682 struct gem_softc *sc;
1683 {
1684 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1685 bus_space_tag_t t = sc->sc_bustag;
1686 bus_space_handle_t h = sc->sc_h1;
1687 struct gem_rxsoft *rxs;
1688 struct mbuf *m;
1689 u_int64_t rxstat;
1690 u_int32_t rxcomp;
1691 int i, len, progress = 0;
1692
1693 DPRINTF(sc, ("%s: gem_rint\n", device_xname(&sc->sc_dev)));
1694
1695 /*
1696 * Ignore spurious interrupt that sometimes occurs before
1697 * we are set up when we network boot.
1698 */
1699 if (!sc->sc_meminited)
1700 return 1;
1701
1702 /*
1703 * Read the completion register once. This limits
1704 * how long the following loop can execute.
1705 */
1706 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1707
1708 /*
1709 * XXX Read the lastrx only once at the top for speed.
1710 */
1711 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1712 sc->sc_rxptr, rxcomp));
1713
1714 /*
1715 * Go into the loop at least once.
1716 */
1717 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1718 i = GEM_NEXTRX(i)) {
1719 rxs = &sc->sc_rxsoft[i];
1720
1721 GEM_CDRXSYNC(sc, i,
1722 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1723
1724 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1725
1726 if (rxstat & GEM_RD_OWN) {
1727 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1728 /*
1729 * We have processed all of the receive buffers.
1730 */
1731 break;
1732 }
1733
1734 progress++;
1735 ifp->if_ipackets++;
1736
1737 if (rxstat & GEM_RD_BAD_CRC) {
1738 ifp->if_ierrors++;
1739 aprint_error_dev(&sc->sc_dev, "receive error: CRC error\n");
1740 GEM_INIT_RXDESC(sc, i);
1741 continue;
1742 }
1743
1744 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1745 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1746 #ifdef GEM_DEBUG
1747 if (ifp->if_flags & IFF_DEBUG) {
1748 printf(" rxsoft %p descriptor %d: ", rxs, i);
1749 printf("gd_flags: 0x%016llx\t", (long long)
1750 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1751 printf("gd_addr: 0x%016llx\n", (long long)
1752 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1753 }
1754 #endif
1755
1756 /* No errors; receive the packet. */
1757 len = GEM_RD_BUFLEN(rxstat);
1758
1759 /*
1760 * Allocate a new mbuf cluster. If that fails, we are
1761 * out of memory, and must drop the packet and recycle
1762 * the buffer that's already attached to this descriptor.
1763 */
1764 m = rxs->rxs_mbuf;
1765 if (gem_add_rxbuf(sc, i) != 0) {
1766 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1767 ifp->if_ierrors++;
1768 GEM_INIT_RXDESC(sc, i);
1769 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1770 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1771 continue;
1772 }
1773 m->m_data += 2; /* We're already off by two */
1774
1775 m->m_pkthdr.rcvif = ifp;
1776 m->m_pkthdr.len = m->m_len = len;
1777
1778 #if NBPFILTER > 0
1779 /*
1780 * Pass this up to any BPF listeners, but only
1781 * pass it up the stack if it's for us.
1782 */
1783 if (ifp->if_bpf)
1784 bpf_mtap(ifp->if_bpf, m);
1785 #endif /* NBPFILTER > 0 */
1786
1787 #ifdef INET
1788 /* hardware checksum */
1789 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1790 struct ether_header *eh;
1791 struct ip *ip;
1792 int32_t hlen, pktlen;
1793
1794 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1795 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1796 ETHER_VLAN_ENCAP_LEN;
1797 eh = (struct ether_header *) (mtod(m, char *) +
1798 ETHER_VLAN_ENCAP_LEN);
1799 } else {
1800 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1801 eh = mtod(m, struct ether_header *);
1802 }
1803 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1804 goto swcsum;
1805 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1806
1807 /* IPv4 only */
1808 if (ip->ip_v != IPVERSION)
1809 goto swcsum;
1810
1811 hlen = ip->ip_hl << 2;
1812 if (hlen < sizeof(struct ip))
1813 goto swcsum;
1814
1815 /*
1816 * bail if too short, has random trailing garbage,
1817 * truncated, fragment, or has ethernet pad.
1818 */
1819 if ((ntohs(ip->ip_len) < hlen) ||
1820 (ntohs(ip->ip_len) != pktlen) ||
1821 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1822 goto swcsum;
1823
1824 switch (ip->ip_p) {
1825 case IPPROTO_TCP:
1826 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1827 goto swcsum;
1828 if (pktlen < (hlen + sizeof(struct tcphdr)))
1829 goto swcsum;
1830 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1831 break;
1832 case IPPROTO_UDP:
1833 /* FALLTHROUGH */
1834 default:
1835 goto swcsum;
1836 }
1837
1838 /* the uncomplemented sum is expected */
1839 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1840
1841 /* if the pkt had ip options, we have to deduct them */
1842 if (hlen > sizeof(struct ip)) {
1843 uint16_t *opts;
1844 uint32_t optsum, temp;
1845
1846 optsum = 0;
1847 temp = hlen - sizeof(struct ip);
1848 opts = (uint16_t *) ((char *) ip +
1849 sizeof(struct ip));
1850
1851 while (temp > 1) {
1852 optsum += ntohs(*opts++);
1853 temp -= 2;
1854 }
1855 while (optsum >> 16)
1856 optsum = (optsum >> 16) +
1857 (optsum & 0xffff);
1858
1859 /* Deduct ip opts sum from hwsum (rfc 1624). */
1860 m->m_pkthdr.csum_data =
1861 ~((~m->m_pkthdr.csum_data) - ~optsum);
1862
1863 while (m->m_pkthdr.csum_data >> 16)
1864 m->m_pkthdr.csum_data =
1865 (m->m_pkthdr.csum_data >> 16) +
1866 (m->m_pkthdr.csum_data &
1867 0xffff);
1868 }
1869
1870 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1871 M_CSUM_NO_PSEUDOHDR;
1872 } else
1873 swcsum:
1874 m->m_pkthdr.csum_flags = 0;
1875 #endif
1876 /* Pass it on. */
1877 (*ifp->if_input)(ifp, m);
1878 }
1879
1880 if (progress) {
1881 /* Update the receive pointer. */
1882 if (i == sc->sc_rxptr) {
1883 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1884 #ifdef GEM_DEBUG
1885 if (ifp->if_flags & IFF_DEBUG)
1886 printf("%s: rint: ring wrap\n",
1887 device_xname(&sc->sc_dev));
1888 #endif
1889 }
1890 sc->sc_rxptr = i;
1891 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1892 }
1893 #ifdef GEM_COUNTERS
1894 if (progress <= 4) {
1895 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1896 } else if (progress < 32) {
1897 if (progress < 16)
1898 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1899 else
1900 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1901
1902 } else {
1903 if (progress < 64)
1904 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1905 else
1906 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1907 }
1908 #endif
1909
1910 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1911 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1912
1913 /* Read error counters ... */
1914 ifp->if_ierrors +=
1915 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1916 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1917 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1918 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1919
1920 /* ... then clear the hardware counters. */
1921 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1922 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1923 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1924 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1925
1926 return (1);
1927 }
1928
1929
1930 /*
1931 * gem_add_rxbuf:
1932 *
1933 * Add a receive buffer to the indicated descriptor.
1934 */
1935 int
1936 gem_add_rxbuf(struct gem_softc *sc, int idx)
1937 {
1938 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1939 struct mbuf *m;
1940 int error;
1941
1942 MGETHDR(m, M_DONTWAIT, MT_DATA);
1943 if (m == NULL)
1944 return (ENOBUFS);
1945
1946 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1947 MCLGET(m, M_DONTWAIT);
1948 if ((m->m_flags & M_EXT) == 0) {
1949 m_freem(m);
1950 return (ENOBUFS);
1951 }
1952
1953 #ifdef GEM_DEBUG
1954 /* bzero the packet to check DMA */
1955 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1956 #endif
1957
1958 if (rxs->rxs_mbuf != NULL)
1959 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1960
1961 rxs->rxs_mbuf = m;
1962
1963 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1964 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1965 BUS_DMA_READ|BUS_DMA_NOWAIT);
1966 if (error) {
1967 aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
1968 idx, error);
1969 panic("gem_add_rxbuf"); /* XXX */
1970 }
1971
1972 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1973 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1974
1975 GEM_INIT_RXDESC(sc, idx);
1976
1977 return (0);
1978 }
1979
1980
1981 int
1982 gem_eint(struct gem_softc *sc, u_int status)
1983 {
1984 char bits[128];
1985 u_int32_t r, v;
1986
1987 if ((status & GEM_INTR_MIF) != 0) {
1988 printf("%s: XXXlink status changed\n", device_xname(&sc->sc_dev));
1989 return (1);
1990 }
1991
1992 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
1993 gem_reset_rxdma(sc);
1994 return (1);
1995 }
1996
1997 if (status & GEM_INTR_BERR) {
1998 if (sc->sc_flags & GEM_PCI)
1999 r = GEM_ERROR_STATUS;
2000 else
2001 r = GEM_SBUS_ERROR_STATUS;
2002 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2003 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2004 aprint_error_dev(&sc->sc_dev, "bus error interrupt: 0x%02x\n",
2005 v);
2006 return (1);
2007 }
2008
2009 printf("%s: status=%s\n", device_xname(&sc->sc_dev),
2010 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
2011 return (1);
2012 }
2013
2014
2015 /*
2016 * PCS interrupts.
2017 * We should receive these when the link status changes, but sometimes
2018 * we don't receive them for link up. We compensate for this in the
2019 * gem_tick() callout.
2020 */
2021 int
2022 gem_pint(struct gem_softc *sc)
2023 {
2024 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2025 bus_space_tag_t t = sc->sc_bustag;
2026 bus_space_handle_t h = sc->sc_h1;
2027 u_int32_t v, v2;
2028
2029 /*
2030 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2031 * latched, so we have to read it twice. There is only one bit in
2032 * use, so the value is meaningless.
2033 */
2034 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2035 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2036
2037 if ((ifp->if_flags & IFF_UP) == 0)
2038 return 1;
2039
2040 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2041 return 1;
2042
2043 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2044 /* If we see remote fault, our link partner is probably going away */
2045 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2046 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2047 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2048 /* Otherwise, we may need to wait after auto-negotiation completes */
2049 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2050 GEM_MII_STATUS_ANEG_CPT) {
2051 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2052 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2053 }
2054 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2055 if (sc->sc_flags & GEM_LINK) {
2056 return 1;
2057 }
2058 callout_stop(&sc->sc_tick_ch);
2059 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2060 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2061 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2062 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2063 v &= v2;
2064 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2065 sc->sc_mii.mii_media_active |= IFM_FDX;
2066 #ifdef GEM_DEBUG
2067 aprint_debug_dev(&sc->sc_dev, "link up: full duplex\n");
2068 #endif
2069 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2070 sc->sc_mii.mii_media_active |= IFM_HDX;
2071 #ifdef GEM_DEBUG
2072 aprint_debug_dev(&sc->sc_dev, "link up: half duplex\n");
2073 #endif
2074 } else {
2075 #ifdef GEM_DEBUG
2076 aprint_debug_dev(&sc->sc_dev, "duplex mismatch\n");
2077 #endif
2078 }
2079 gem_statuschange(sc);
2080 } else {
2081 if ((sc->sc_flags & GEM_LINK) == 0) {
2082 return 1;
2083 }
2084 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2085 sc->sc_mii.mii_media_status = IFM_AVALID;
2086 #ifdef GEM_DEBUG
2087 aprint_debug_dev(&sc->sc_dev, "link down\n");
2088 #endif
2089 gem_statuschange(sc);
2090
2091 /* Start the 10 second timer */
2092 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2093 }
2094 return 1;
2095 }
2096
2097
2098
2099 int
2100 gem_intr(v)
2101 void *v;
2102 {
2103 struct gem_softc *sc = (struct gem_softc *)v;
2104 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2105 bus_space_tag_t t = sc->sc_bustag;
2106 bus_space_handle_t h = sc->sc_h1;
2107 u_int32_t status;
2108 int r = 0;
2109 #ifdef GEM_DEBUG
2110 char bits[128];
2111 #endif
2112
2113 /* XXX We should probably mask out interrupts until we're done */
2114
2115 sc->sc_ev_intr.ev_count++;
2116
2117 status = bus_space_read_4(t, h, GEM_STATUS);
2118 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2119 device_xname(&sc->sc_dev), (status >> 19),
2120 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
2121
2122 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2123 r |= gem_eint(sc, status);
2124
2125 /* We don't bother with GEM_INTR_TX_DONE */
2126 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2127 GEM_COUNTER_INCR(sc, sc_ev_txint);
2128 r |= gem_tint(sc);
2129 }
2130
2131 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2132 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2133 r |= gem_rint(sc);
2134 }
2135
2136 /* We should eventually do more than just print out error stats. */
2137 if (status & GEM_INTR_TX_MAC) {
2138 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2139 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2140 printf("%s: MAC tx fault, status %x\n",
2141 device_xname(&sc->sc_dev), txstat);
2142 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2143 gem_init(ifp);
2144 }
2145 if (status & GEM_INTR_RX_MAC) {
2146 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2147 /*
2148 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2149 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2150 * silicon bug so handle them silently. Moreover, it's
2151 * likely that the receiver has hung so we reset it.
2152 */
2153 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2154 ifp->if_ierrors++;
2155 gem_reset_rxdma(sc);
2156 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2157 printf("%s: MAC rx fault, status 0x%02x\n",
2158 device_xname(&sc->sc_dev), rxstat);
2159 }
2160 if (status & GEM_INTR_PCS) {
2161 r |= gem_pint(sc);
2162 }
2163
2164 /* Do we need to do anything with these?
2165 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2166 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2167 if ((status2 & GEM_MAC_PAUSED) != 0)
2168 aprintf_debug_dev(&sc->sc_dev, "PAUSE received (%d slots)\n",
2169 GEM_MAC_PAUSE_TIME(status2));
2170 if ((status2 & GEM_MAC_PAUSE) != 0)
2171 aprintf_debug_dev(&sc->sc_dev, "transited to PAUSE state\n");
2172 if ((status2 & GEM_MAC_RESUME) != 0)
2173 aprintf_debug_dev(&sc->sc_dev, "transited to non-PAUSE state\n");
2174 }
2175 if ((status & GEM_INTR_MIF) != 0)
2176 aprintf_debug_dev(&sc->sc_dev, "MIF interrupt\n");
2177 */
2178 #if NRND > 0
2179 rnd_add_uint32(&sc->rnd_source, status);
2180 #endif
2181 return (r);
2182 }
2183
2184
2185 void
2186 gem_watchdog(ifp)
2187 struct ifnet *ifp;
2188 {
2189 struct gem_softc *sc = ifp->if_softc;
2190
2191 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2192 "GEM_MAC_RX_CONFIG %x\n",
2193 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2194 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2195 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2196
2197 log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
2198 ++ifp->if_oerrors;
2199
2200 /* Try to get more packets going. */
2201 gem_start(ifp);
2202 }
2203
2204 /*
2205 * Initialize the MII Management Interface
2206 */
2207 void
2208 gem_mifinit(sc)
2209 struct gem_softc *sc;
2210 {
2211 bus_space_tag_t t = sc->sc_bustag;
2212 bus_space_handle_t mif = sc->sc_h1;
2213
2214 /* Configure the MIF in frame mode */
2215 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2216 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2217 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2218 }
2219
2220 /*
2221 * MII interface
2222 *
2223 * The GEM MII interface supports at least three different operating modes:
2224 *
2225 * Bitbang mode is implemented using data, clock and output enable registers.
2226 *
2227 * Frame mode is implemented by loading a complete frame into the frame
2228 * register and polling the valid bit for completion.
2229 *
2230 * Polling mode uses the frame register but completion is indicated by
2231 * an interrupt.
2232 *
2233 */
2234 static int
2235 gem_mii_readreg(self, phy, reg)
2236 struct device *self;
2237 int phy, reg;
2238 {
2239 struct gem_softc *sc = (void *)self;
2240 bus_space_tag_t t = sc->sc_bustag;
2241 bus_space_handle_t mif = sc->sc_h1;
2242 int n;
2243 u_int32_t v;
2244
2245 #ifdef GEM_DEBUG1
2246 if (sc->sc_debug)
2247 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2248 #endif
2249
2250 /* Construct the frame command */
2251 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2252 GEM_MIF_FRAME_READ;
2253
2254 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2255 for (n = 0; n < 100; n++) {
2256 DELAY(1);
2257 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2258 if (v & GEM_MIF_FRAME_TA0)
2259 return (v & GEM_MIF_FRAME_DATA);
2260 }
2261
2262 printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
2263 return (0);
2264 }
2265
2266 static void
2267 gem_mii_writereg(self, phy, reg, val)
2268 struct device *self;
2269 int phy, reg, val;
2270 {
2271 struct gem_softc *sc = (void *)self;
2272 bus_space_tag_t t = sc->sc_bustag;
2273 bus_space_handle_t mif = sc->sc_h1;
2274 int n;
2275 u_int32_t v;
2276
2277 #ifdef GEM_DEBUG1
2278 if (sc->sc_debug)
2279 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2280 phy, reg, val);
2281 #endif
2282
2283 /* Construct the frame command */
2284 v = GEM_MIF_FRAME_WRITE |
2285 (phy << GEM_MIF_PHY_SHIFT) |
2286 (reg << GEM_MIF_REG_SHIFT) |
2287 (val & GEM_MIF_FRAME_DATA);
2288
2289 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2290 for (n = 0; n < 100; n++) {
2291 DELAY(1);
2292 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2293 if (v & GEM_MIF_FRAME_TA0)
2294 return;
2295 }
2296
2297 printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
2298 }
2299
2300 static void
2301 gem_mii_statchg(dev)
2302 struct device *dev;
2303 {
2304 struct gem_softc *sc = (void *)dev;
2305 #ifdef GEM_DEBUG
2306 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2307 #endif
2308
2309 #ifdef GEM_DEBUG
2310 if (sc->sc_debug)
2311 printf("gem_mii_statchg: status change: phy = %d\n",
2312 sc->sc_phys[instance]);
2313 #endif
2314 gem_statuschange(sc);
2315 }
2316
2317 /*
2318 * Common status change for gem_mii_statchg() and gem_pint()
2319 */
2320 void
2321 gem_statuschange(struct gem_softc* sc)
2322 {
2323 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2324 bus_space_tag_t t = sc->sc_bustag;
2325 bus_space_handle_t mac = sc->sc_h1;
2326 int gigabit;
2327 u_int32_t rxcfg, txcfg, v;
2328
2329 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2330 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2331 sc->sc_flags |= GEM_LINK;
2332 else
2333 sc->sc_flags &= ~GEM_LINK;
2334
2335 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2336 gigabit = 1;
2337 else
2338 gigabit = 0;
2339
2340 /*
2341 * The configuration done here corresponds to the steps F) and
2342 * G) and as far as enabling of RX and TX MAC goes also step H)
2343 * of the initialization sequence outlined in section 3.2.1 of
2344 * the GEM Gigabit Ethernet ASIC Specification.
2345 */
2346
2347 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2348 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2349 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2350 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2351 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2352 else if (gigabit) {
2353 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2354 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2355 }
2356 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2357 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2358 BUS_SPACE_BARRIER_WRITE);
2359 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2360 aprint_normal_dev(&sc->sc_dev, "cannot disable TX MAC\n");
2361 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2362 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2363 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2364 BUS_SPACE_BARRIER_WRITE);
2365 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2366 aprint_normal_dev(&sc->sc_dev, "cannot disable RX MAC\n");
2367 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2368
2369 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2370 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2371 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2372
2373 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2374 gigabit != 0)
2375 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2376 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2377 else
2378 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2379 GEM_MAC_SLOT_TIME_NORMAL);
2380
2381 /* XIF Configuration */
2382 if (sc->sc_flags & GEM_LINK)
2383 v = GEM_MAC_XIF_LINK_LED;
2384 else
2385 v = 0;
2386 v |= GEM_MAC_XIF_TX_MII_ENA;
2387
2388 /* If an external transceiver is connected, enable its MII drivers */
2389 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2390 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2391 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2392 /* External MII needs echo disable if half duplex. */
2393 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2394 IFM_FDX) != 0)
2395 /* turn on full duplex LED */
2396 v |= GEM_MAC_XIF_FDPLX_LED;
2397 else
2398 /* half duplex -- disable echo */
2399 v |= GEM_MAC_XIF_ECHO_DISABL;
2400 if (gigabit)
2401 v |= GEM_MAC_XIF_GMII_MODE;
2402 else
2403 v &= ~GEM_MAC_XIF_GMII_MODE;
2404 } else
2405 /* Internal MII needs buf enable */
2406 v |= GEM_MAC_XIF_MII_BUF_ENA;
2407 } else {
2408 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2409 v |= GEM_MAC_XIF_FDPLX_LED;
2410 v |= GEM_MAC_XIF_GMII_MODE;
2411 }
2412 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2413
2414 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2415 (sc->sc_flags & GEM_LINK) != 0) {
2416 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2417 txcfg | GEM_MAC_TX_ENABLE);
2418 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2419 rxcfg | GEM_MAC_RX_ENABLE);
2420 }
2421 }
2422
2423 int
2424 gem_ser_mediachange(struct ifnet *ifp)
2425 {
2426 struct gem_softc *sc = ifp->if_softc;
2427 u_int s, t;
2428
2429 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2430 return EINVAL;
2431
2432 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2433 if (s == IFM_AUTO) {
2434 if (sc->sc_mii_media != s) {
2435 #ifdef GEM_DEBUG
2436 aprint_debug_dev(&sc->sc_dev, "setting media to auto\n");
2437 #endif
2438 sc->sc_mii_media = s;
2439 if (ifp->if_flags & IFF_UP) {
2440 gem_pcs_stop(sc, 0);
2441 gem_pcs_start(sc);
2442 }
2443 }
2444 return 0;
2445 }
2446 if (s == IFM_1000_SX) {
2447 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2448 if (t == IFM_FDX || t == IFM_HDX) {
2449 if (sc->sc_mii_media != t) {
2450 sc->sc_mii_media = t;
2451 #ifdef GEM_DEBUG
2452 aprint_debug_dev(&sc->sc_dev,
2453 "setting media to 1000baseSX-%s\n",
2454 t == IFM_FDX ? "FDX" : "HDX");
2455 #endif
2456 if (ifp->if_flags & IFF_UP) {
2457 gem_pcs_stop(sc, 0);
2458 gem_pcs_start(sc);
2459 }
2460 }
2461 return 0;
2462 }
2463 }
2464 return EINVAL;
2465 }
2466
2467 void
2468 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2469 {
2470 struct gem_softc *sc = ifp->if_softc;
2471
2472 if ((ifp->if_flags & IFF_UP) == 0)
2473 return;
2474 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2475 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2476 }
2477
2478 static int
2479 gem_ifflags_cb(struct ethercom *ec)
2480 {
2481 struct ifnet *ifp = &ec->ec_if;
2482 struct gem_softc *sc = ifp->if_softc;
2483 int change = ifp->if_flags ^ sc->sc_if_flags;
2484
2485 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2486 return ENETRESET;
2487 else if ((change & IFF_PROMISC) != 0)
2488 gem_setladrf(sc);
2489 return 0;
2490 }
2491
2492 /*
2493 * Process an ioctl request.
2494 */
2495 int
2496 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2497 {
2498 struct gem_softc *sc = ifp->if_softc;
2499 int s, error = 0;
2500
2501 s = splnet();
2502
2503 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2504 error = 0;
2505 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2506 ;
2507 else if (ifp->if_flags & IFF_RUNNING) {
2508 /*
2509 * Multicast list has changed; set the hardware filter
2510 * accordingly.
2511 */
2512 gem_setladrf(sc);
2513 }
2514 }
2515
2516 /* Try to get things going again */
2517 if (ifp->if_flags & IFF_UP)
2518 gem_start(ifp);
2519 splx(s);
2520 return (error);
2521 }
2522
2523
2524 void
2525 gem_shutdown(arg)
2526 void *arg;
2527 {
2528 struct gem_softc *sc = (struct gem_softc *)arg;
2529 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2530
2531 gem_stop(ifp, 1);
2532 }
2533
2534 /*
2535 * Set up the logical address filter.
2536 */
2537 void
2538 gem_setladrf(sc)
2539 struct gem_softc *sc;
2540 {
2541 struct ethercom *ec = &sc->sc_ethercom;
2542 struct ifnet *ifp = &ec->ec_if;
2543 struct ether_multi *enm;
2544 struct ether_multistep step;
2545 bus_space_tag_t t = sc->sc_bustag;
2546 bus_space_handle_t h = sc->sc_h1;
2547 u_int32_t crc;
2548 u_int32_t hash[16];
2549 u_int32_t v;
2550 int i;
2551
2552 /* Get current RX configuration */
2553 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2554
2555 /*
2556 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2557 * and hash filter. Depending on the case, the right bit will be
2558 * enabled.
2559 */
2560 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2561 GEM_MAC_RX_PROMISC_GRP);
2562
2563 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2564 /* Turn on promiscuous mode */
2565 v |= GEM_MAC_RX_PROMISCUOUS;
2566 ifp->if_flags |= IFF_ALLMULTI;
2567 goto chipit;
2568 }
2569
2570 /*
2571 * Set up multicast address filter by passing all multicast addresses
2572 * through a crc generator, and then using the high order 8 bits as an
2573 * index into the 256 bit logical address filter. The high order 4
2574 * bits selects the word, while the other 4 bits select the bit within
2575 * the word (where bit 0 is the MSB).
2576 */
2577
2578 /* Clear hash table */
2579 memset(hash, 0, sizeof(hash));
2580
2581 ETHER_FIRST_MULTI(step, ec, enm);
2582 while (enm != NULL) {
2583 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2584 /*
2585 * We must listen to a range of multicast addresses.
2586 * For now, just accept all multicasts, rather than
2587 * trying to set only those filter bits needed to match
2588 * the range. (At this time, the only use of address
2589 * ranges is for IP multicast routing, for which the
2590 * range is big enough to require all bits set.)
2591 * XXX should use the address filters for this
2592 */
2593 ifp->if_flags |= IFF_ALLMULTI;
2594 v |= GEM_MAC_RX_PROMISC_GRP;
2595 goto chipit;
2596 }
2597
2598 /* Get the LE CRC32 of the address */
2599 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2600
2601 /* Just want the 8 most significant bits. */
2602 crc >>= 24;
2603
2604 /* Set the corresponding bit in the filter. */
2605 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2606
2607 ETHER_NEXT_MULTI(step, enm);
2608 }
2609
2610 v |= GEM_MAC_RX_HASH_FILTER;
2611 ifp->if_flags &= ~IFF_ALLMULTI;
2612
2613 /* Now load the hash table into the chip (if we are using it) */
2614 for (i = 0; i < 16; i++) {
2615 bus_space_write_4(t, h,
2616 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2617 hash[i]);
2618 }
2619
2620 chipit:
2621 sc->sc_if_flags = ifp->if_flags;
2622 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2623 }
2624
2625 #if notyet
2626
2627 /*
2628 * gem_power:
2629 *
2630 * Power management (suspend/resume) hook.
2631 */
2632 void
2633 gem_power(why, arg)
2634 int why;
2635 void *arg;
2636 {
2637 struct gem_softc *sc = arg;
2638 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2639 int s;
2640
2641 s = splnet();
2642 switch (why) {
2643 case PWR_SUSPEND:
2644 case PWR_STANDBY:
2645 gem_stop(ifp, 1);
2646 if (sc->sc_power != NULL)
2647 (*sc->sc_power)(sc, why);
2648 break;
2649 case PWR_RESUME:
2650 if (ifp->if_flags & IFF_UP) {
2651 if (sc->sc_power != NULL)
2652 (*sc->sc_power)(sc, why);
2653 gem_init(ifp);
2654 }
2655 break;
2656 case PWR_SOFTSUSPEND:
2657 case PWR_SOFTSTANDBY:
2658 case PWR_SOFTRESUME:
2659 break;
2660 }
2661 splx(s);
2662 }
2663 #endif
2664