Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.81
      1 /*	$NetBSD: gem.c,v 1.81 2009/03/14 15:36:17 dsl Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * Copyright (c) 2001-2003 Thomas Moestl
      7  * All rights reserved.
      8  *
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 /*
     34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
     35  * See `GEM Gigabit Ethernet ASIC Specification'
     36  *   http://www.sun.com/processors/manuals/ge.pdf
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.81 2009/03/14 15:36:17 dsl Exp $");
     41 
     42 #include "opt_inet.h"
     43 #include "bpfilter.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/callout.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/malloc.h>
     51 #include <sys/kernel.h>
     52 #include <sys/socket.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #include <sys/device.h>
     56 
     57 #include <machine/endian.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 #include <net/if.h>
     62 #include <net/if_dl.h>
     63 #include <net/if_media.h>
     64 #include <net/if_ether.h>
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/in_var.h>
     70 #include <netinet/ip.h>
     71 #include <netinet/tcp.h>
     72 #include <netinet/udp.h>
     73 #endif
     74 
     75 #if NBPFILTER > 0
     76 #include <net/bpf.h>
     77 #endif
     78 
     79 #include <sys/bus.h>
     80 #include <sys/intr.h>
     81 
     82 #include <dev/mii/mii.h>
     83 #include <dev/mii/miivar.h>
     84 #include <dev/mii/mii_bitbang.h>
     85 
     86 #include <dev/ic/gemreg.h>
     87 #include <dev/ic/gemvar.h>
     88 
     89 #define TRIES	10000
     90 
     91 static void	gem_start(struct ifnet *);
     92 static void	gem_stop(struct ifnet *, int);
     93 int		gem_ioctl(struct ifnet *, u_long, void *);
     94 void		gem_tick(void *);
     95 void		gem_watchdog(struct ifnet *);
     96 void		gem_shutdown(void *);
     97 void		gem_pcs_start(struct gem_softc *sc);
     98 void		gem_pcs_stop(struct gem_softc *sc, int);
     99 int		gem_init(struct ifnet *);
    100 void		gem_init_regs(struct gem_softc *sc);
    101 static int	gem_ringsize(int sz);
    102 static int	gem_meminit(struct gem_softc *);
    103 void		gem_mifinit(struct gem_softc *);
    104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
    105 		    u_int32_t, u_int32_t);
    106 void		gem_reset(struct gem_softc *);
    107 int		gem_reset_rx(struct gem_softc *sc);
    108 static void	gem_reset_rxdma(struct gem_softc *sc);
    109 static void	gem_rx_common(struct gem_softc *sc);
    110 int		gem_reset_tx(struct gem_softc *sc);
    111 int		gem_disable_rx(struct gem_softc *sc);
    112 int		gem_disable_tx(struct gem_softc *sc);
    113 static void	gem_rxdrain(struct gem_softc *sc);
    114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    115 void		gem_setladrf(struct gem_softc *);
    116 
    117 /* MII methods & callbacks */
    118 static int	gem_mii_readreg(struct device *, int, int);
    119 static void	gem_mii_writereg(struct device *, int, int, int);
    120 static void	gem_mii_statchg(struct device *);
    121 
    122 static int	gem_ifflags_cb(struct ethercom *);
    123 
    124 void		gem_statuschange(struct gem_softc *);
    125 
    126 int		gem_ser_mediachange(struct ifnet *);
    127 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
    128 
    129 struct mbuf	*gem_get(struct gem_softc *, int, int);
    130 int		gem_put(struct gem_softc *, int, struct mbuf *);
    131 void		gem_read(struct gem_softc *, int, int);
    132 int		gem_pint(struct gem_softc *);
    133 int		gem_eint(struct gem_softc *, u_int);
    134 int		gem_rint(struct gem_softc *);
    135 int		gem_tint(struct gem_softc *);
    136 void		gem_power(int, void *);
    137 
    138 #ifdef GEM_DEBUG
    139 static void gem_txsoft_print(const struct gem_softc *, int, int);
    140 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    141 				printf x
    142 #else
    143 #define	DPRINTF(sc, x)	/* nothing */
    144 #endif
    145 
    146 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    147 
    148 
    149 /*
    150  * gem_attach:
    151  *
    152  *	Attach a Gem interface to the system.
    153  */
    154 void
    155 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
    156 {
    157 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    158 	struct mii_data *mii = &sc->sc_mii;
    159 	bus_space_tag_t t = sc->sc_bustag;
    160 	bus_space_handle_t h = sc->sc_h1;
    161 	struct ifmedia_entry *ifm;
    162 	int i, error;
    163 	u_int32_t v;
    164 	char *nullbuf;
    165 
    166 	/* Make sure the chip is stopped. */
    167 	ifp->if_softc = sc;
    168 	gem_reset(sc);
    169 
    170 	/*
    171 	 * Allocate the control data structures, and create and load the
    172 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    173 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    174 	 */
    175 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    176 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    177 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    178 		aprint_error_dev(&sc->sc_dev,
    179 		   "unable to allocate control data, error = %d\n",
    180 		    error);
    181 		goto fail_0;
    182 	}
    183 
    184 	/* XXX should map this in with correct endianness */
    185 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    186 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
    187 	    BUS_DMA_COHERENT)) != 0) {
    188 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    189 		    error);
    190 		goto fail_1;
    191 	}
    192 
    193 	nullbuf =
    194 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    195 
    196 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    197 	    sizeof(struct gem_control_data), 1,
    198 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    199 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    200 		    "error = %d\n", error);
    201 		goto fail_2;
    202 	}
    203 
    204 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    205 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    206 	    0)) != 0) {
    207 		aprint_error_dev(&sc->sc_dev,
    208 		    "unable to load control data DMA map, error = %d\n",
    209 		    error);
    210 		goto fail_3;
    211 	}
    212 
    213 	memset(nullbuf, 0, ETHER_MIN_TX);
    214 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    215 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    216 		aprint_error_dev(&sc->sc_dev, "unable to create padding DMA map, "
    217 		    "error = %d\n", error);
    218 		goto fail_4;
    219 	}
    220 
    221 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    222 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    223 		aprint_error_dev(&sc->sc_dev,
    224 		    "unable to load padding DMA map, error = %d\n",
    225 		    error);
    226 		goto fail_5;
    227 	}
    228 
    229 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    230 	    BUS_DMASYNC_PREWRITE);
    231 
    232 	/*
    233 	 * Initialize the transmit job descriptors.
    234 	 */
    235 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    236 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    237 
    238 	/*
    239 	 * Create the transmit buffer DMA maps.
    240 	 */
    241 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    242 		struct gem_txsoft *txs;
    243 
    244 		txs = &sc->sc_txsoft[i];
    245 		txs->txs_mbuf = NULL;
    246 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    247 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    248 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    249 		    &txs->txs_dmamap)) != 0) {
    250 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
    251 			    "error = %d\n", i, error);
    252 			goto fail_6;
    253 		}
    254 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    255 	}
    256 
    257 	/*
    258 	 * Create the receive buffer DMA maps.
    259 	 */
    260 	for (i = 0; i < GEM_NRXDESC; i++) {
    261 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    262 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    263 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
    264 			    "error = %d\n", i, error);
    265 			goto fail_7;
    266 		}
    267 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    268 	}
    269 
    270 	/* Initialize ifmedia structures and MII info */
    271 	mii->mii_ifp = ifp;
    272 	mii->mii_readreg = gem_mii_readreg;
    273 	mii->mii_writereg = gem_mii_writereg;
    274 	mii->mii_statchg = gem_mii_statchg;
    275 
    276 	sc->sc_ethercom.ec_mii = mii;
    277 
    278 	/*
    279 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
    280 	 * Section 3.2.1 `Initialization Sequence'.
    281 	 * However, we can't assume SERDES or Serialink if neither
    282 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
    283 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
    284 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
    285 	 * Also, for Apple variants with 2 PHY's, we prefer the external
    286 	 * PHY over the internal PHY.
    287 	 */
    288 	gem_mifinit(sc);
    289 
    290 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
    291 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    292 		    ether_mediastatus);
    293 		mii_attach(&sc->sc_dev, mii, 0xffffffff,
    294 		    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    295 		if (LIST_EMPTY(&mii->mii_phys)) {
    296 				/* No PHY attached */
    297 				aprint_error_dev(&sc->sc_dev, "PHY probe failed\n");
    298 				goto fail_7;
    299 		} else {
    300 			struct mii_softc *child;
    301 
    302 			/*
    303 			 * Walk along the list of attached MII devices and
    304 			 * establish an `MII instance' to `PHY number'
    305 			 * mapping.
    306 			 */
    307 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
    308 				/*
    309 				 * Note: we support just one PHY: the internal
    310 				 * or external MII is already selected for us
    311 				 * by the GEM_MIF_CONFIG  register.
    312 				 */
    313 				if (child->mii_phy > 1 || child->mii_inst > 0) {
    314 					aprint_error_dev(&sc->sc_dev,
    315 					    "cannot accommodate MII device"
    316 					    " %s at PHY %d, instance %d\n",
    317 					       device_xname(child->mii_dev),
    318 					       child->mii_phy, child->mii_inst);
    319 					continue;
    320 				}
    321 				sc->sc_phys[child->mii_inst] = child->mii_phy;
    322 			}
    323 
    324 			/*
    325 			 * Now select and activate the PHY we will use.
    326 			 *
    327 			 * The order of preference is External (MDI1),
    328 			 * then Internal (MDI0),
    329 			 */
    330 			if (sc->sc_phys[1]) {
    331 #ifdef GEM_DEBUG
    332 				aprint_debug_dev(&sc->sc_dev, "using external PHY\n");
    333 #endif
    334 				sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    335 			} else {
    336 #ifdef GEM_DEBUG
    337 				aprint_debug_dev(&sc->sc_dev, "using internal PHY\n");
    338 				sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    339 #endif
    340 			}
    341 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    342 			    sc->sc_mif_config);
    343 			if (sc->sc_variant != GEM_SUN_ERI)
    344 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    345 				    GEM_MII_DATAPATH_MII);
    346 
    347 			/*
    348 			 * XXX - we can really do the following ONLY if the
    349 			 * PHY indeed has the auto negotiation capability!!
    350 			 */
    351 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    352 		}
    353 	} else {
    354 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
    355 		    gem_ser_mediastatus);
    356 		/* SERDES or Serialink */
    357 		if (sc->sc_flags & GEM_SERDES) {
    358 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    359 			    GEM_MII_DATAPATH_SERDES);
    360 		} else {
    361 			sc->sc_flags |= GEM_SERIAL;
    362 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    363 			    GEM_MII_DATAPATH_SERIAL);
    364 		}
    365 
    366 		aprint_normal_dev(&sc->sc_dev, "using external PCS %s: ",
    367 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
    368 
    369 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    370 		/* Check for FDX and HDX capabilities */
    371 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
    372 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
    373 			ifmedia_add(&sc->sc_mii.mii_media,
    374 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
    375 			aprint_normal("1000baseSX-FDX, ");
    376 		}
    377 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
    378 			ifmedia_add(&sc->sc_mii.mii_media,
    379 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
    380 			aprint_normal("1000baseSX-HDX, ");
    381 		}
    382 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    383 		sc->sc_mii_media = IFM_AUTO;
    384 		aprint_normal("auto\n");
    385 
    386 		gem_pcs_stop(sc, 1);
    387 	}
    388 
    389 	/*
    390 	 * From this point forward, the attachment cannot fail.  A failure
    391 	 * before this point releases all resources that may have been
    392 	 * allocated.
    393 	 */
    394 
    395 	/* Announce ourselves. */
    396 	aprint_normal_dev(&sc->sc_dev, "Ethernet address %s",
    397 	    ether_sprintf(enaddr));
    398 
    399 	/* Get RX FIFO size */
    400 	sc->sc_rxfifosize = 64 *
    401 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
    402 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    403 
    404 	/* Get TX FIFO size */
    405 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
    406 	aprint_normal(", %uKB TX fifo\n", v / 16);
    407 
    408 	/* Initialize ifnet structure. */
    409 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    410 	ifp->if_softc = sc;
    411 	ifp->if_flags =
    412 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    413 	sc->sc_if_flags = ifp->if_flags;
    414 	/*
    415 	 * The GEM hardware supports basic TCP checksum offloading only.
    416 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
    417 	 * have bugs in the receive checksum, so don't enable it for now.
    418 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
    419 	    (GEM_IS_APPLE(sc) &&
    420 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
    421 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
    422 	*/
    423 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
    424 	ifp->if_start = gem_start;
    425 	ifp->if_ioctl = gem_ioctl;
    426 	ifp->if_watchdog = gem_watchdog;
    427 	ifp->if_stop = gem_stop;
    428 	ifp->if_init = gem_init;
    429 	IFQ_SET_READY(&ifp->if_snd);
    430 
    431 	/*
    432 	 * If we support GigE media, we support jumbo frames too.
    433 	 * Unless we are Apple.
    434 	 */
    435 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
    436 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    437 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    438 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    439 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    440 			if (!GEM_IS_APPLE(sc))
    441 				sc->sc_ethercom.ec_capabilities
    442 				    |= ETHERCAP_JUMBO_MTU;
    443 			sc->sc_flags |= GEM_GIGABIT;
    444 			break;
    445 		}
    446 	}
    447 
    448 	/* claim 802.1q capability */
    449 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    450 
    451 	/* Attach the interface. */
    452 	if_attach(ifp);
    453 	ether_ifattach(ifp, enaddr);
    454 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
    455 
    456 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    457 	if (sc->sc_sh == NULL)
    458 		panic("gem_config: can't establish shutdownhook");
    459 
    460 #if NRND > 0
    461 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    462 			  RND_TYPE_NET, 0);
    463 #endif
    464 
    465 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    466 	    NULL, device_xname(&sc->sc_dev), "interrupts");
    467 #ifdef GEM_COUNTERS
    468 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    469 	    &sc->sc_ev_intr, device_xname(&sc->sc_dev), "tx interrupts");
    470 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    471 	    &sc->sc_ev_intr, device_xname(&sc->sc_dev), "rx interrupts");
    472 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    473 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx ring full");
    474 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    475 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx malloc failure");
    476 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    477 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 0desc");
    478 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    479 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 1desc");
    480 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    481 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 2desc");
    482 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    483 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 3desc");
    484 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    485 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >3desc");
    486 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    487 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >7desc");
    488 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    489 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >15desc");
    490 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    491 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >31desc");
    492 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    493 	    &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >63desc");
    494 #endif
    495 
    496 #if notyet
    497 	/*
    498 	 * Add a suspend hook to make sure we come back up after a
    499 	 * resume.
    500 	 */
    501 	sc->sc_powerhook = powerhook_establish(device_xname(&sc->sc_dev),
    502 	    gem_power, sc);
    503 	if (sc->sc_powerhook == NULL)
    504 		aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish power hook\n");
    505 #endif
    506 
    507 	callout_init(&sc->sc_tick_ch, 0);
    508 	return;
    509 
    510 	/*
    511 	 * Free any resources we've allocated during the failed attach
    512 	 * attempt.  Do this in reverse order and fall through.
    513 	 */
    514  fail_7:
    515 	for (i = 0; i < GEM_NRXDESC; i++) {
    516 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    517 			bus_dmamap_destroy(sc->sc_dmatag,
    518 			    sc->sc_rxsoft[i].rxs_dmamap);
    519 	}
    520  fail_6:
    521 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    522 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    523 			bus_dmamap_destroy(sc->sc_dmatag,
    524 			    sc->sc_txsoft[i].txs_dmamap);
    525 	}
    526 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    527  fail_5:
    528 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    529  fail_4:
    530 	bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
    531  fail_3:
    532 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    533  fail_2:
    534 	bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
    535 	    sizeof(struct gem_control_data));
    536  fail_1:
    537 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    538  fail_0:
    539 	return;
    540 }
    541 
    542 
    543 void
    544 gem_tick(void *arg)
    545 {
    546 	struct gem_softc *sc = arg;
    547 	int s;
    548 
    549 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
    550 		/*
    551 		 * We have to reset everything if we failed to get a
    552 		 * PCS interrupt.  Restarting the callout is handled
    553 		 * in gem_pcs_start().
    554 		 */
    555 		gem_init(&sc->sc_ethercom.ec_if);
    556 	} else {
    557 		s = splnet();
    558 		mii_tick(&sc->sc_mii);
    559 		splx(s);
    560 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    561 	}
    562 }
    563 
    564 static int
    565 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
    566 {
    567 	int i;
    568 	u_int32_t reg;
    569 
    570 	for (i = TRIES; i--; DELAY(100)) {
    571 		reg = bus_space_read_4(sc->sc_bustag, h, r);
    572 		if ((reg & clr) == 0 && (reg & set) == set)
    573 			return (1);
    574 	}
    575 	return (0);
    576 }
    577 
    578 void
    579 gem_reset(struct gem_softc *sc)
    580 {
    581 	bus_space_tag_t t = sc->sc_bustag;
    582 	bus_space_handle_t h = sc->sc_h2;
    583 	int s;
    584 
    585 	s = splnet();
    586 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(&sc->sc_dev)));
    587 	gem_reset_rx(sc);
    588 	gem_reset_tx(sc);
    589 
    590 	/* Do a full reset */
    591 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    592 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    593 		aprint_error_dev(&sc->sc_dev, "cannot reset device\n");
    594 	splx(s);
    595 }
    596 
    597 
    598 /*
    599  * gem_rxdrain:
    600  *
    601  *	Drain the receive queue.
    602  */
    603 static void
    604 gem_rxdrain(struct gem_softc *sc)
    605 {
    606 	struct gem_rxsoft *rxs;
    607 	int i;
    608 
    609 	for (i = 0; i < GEM_NRXDESC; i++) {
    610 		rxs = &sc->sc_rxsoft[i];
    611 		if (rxs->rxs_mbuf != NULL) {
    612 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    613 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    614 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    615 			m_freem(rxs->rxs_mbuf);
    616 			rxs->rxs_mbuf = NULL;
    617 		}
    618 	}
    619 }
    620 
    621 /*
    622  * Reset the whole thing.
    623  */
    624 static void
    625 gem_stop(struct ifnet *ifp, int disable)
    626 {
    627 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    628 	struct gem_txsoft *txs;
    629 
    630 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(&sc->sc_dev)));
    631 
    632 	callout_stop(&sc->sc_tick_ch);
    633 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
    634 		gem_pcs_stop(sc, disable);
    635 	else
    636 		mii_down(&sc->sc_mii);
    637 
    638 	/* XXX - Should we reset these instead? */
    639 	gem_disable_tx(sc);
    640 	gem_disable_rx(sc);
    641 
    642 	/*
    643 	 * Release any queued transmit buffers.
    644 	 */
    645 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    646 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    647 		if (txs->txs_mbuf != NULL) {
    648 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    649 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    650 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    651 			m_freem(txs->txs_mbuf);
    652 			txs->txs_mbuf = NULL;
    653 		}
    654 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    655 	}
    656 
    657 	/*
    658 	 * Mark the interface down and cancel the watchdog timer.
    659 	 */
    660 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    661 	sc->sc_if_flags = ifp->if_flags;
    662 	ifp->if_timer = 0;
    663 
    664 	if (disable)
    665 		gem_rxdrain(sc);
    666 }
    667 
    668 
    669 /*
    670  * Reset the receiver
    671  */
    672 int
    673 gem_reset_rx(struct gem_softc *sc)
    674 {
    675 	bus_space_tag_t t = sc->sc_bustag;
    676 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    677 
    678 	/*
    679 	 * Resetting while DMA is in progress can cause a bus hang, so we
    680 	 * disable DMA first.
    681 	 */
    682 	gem_disable_rx(sc);
    683 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    684 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    685 	/* Wait till it finishes */
    686 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
    687 		aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n");
    688 
    689 	/* Finally, reset the ERX */
    690 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
    691 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    692 	/* Wait till it finishes */
    693 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
    694 		aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n");
    695 		return (1);
    696 	}
    697 	return (0);
    698 }
    699 
    700 
    701 /*
    702  * Reset the receiver DMA engine.
    703  *
    704  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
    705  * etc in order to reset the receiver DMA engine only and not do a full
    706  * reset which amongst others also downs the link and clears the FIFOs.
    707  */
    708 static void
    709 gem_reset_rxdma(struct gem_softc *sc)
    710 {
    711 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    712 	bus_space_tag_t t = sc->sc_bustag;
    713 	bus_space_handle_t h = sc->sc_h1;
    714 	int i;
    715 
    716 	if (gem_reset_rx(sc) != 0) {
    717 		gem_init(ifp);
    718 		return;
    719 	}
    720 	for (i = 0; i < GEM_NRXDESC; i++)
    721 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
    722 			GEM_UPDATE_RXDESC(sc, i);
    723 	sc->sc_rxptr = 0;
    724 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    725 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    726 
    727 	/* Reprogram Descriptor Ring Base Addresses */
    728 	/* NOTE: we use only 32-bit DMA addresses here. */
    729 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    730 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    731 
    732 	/* Redo ERX Configuration */
    733 	gem_rx_common(sc);
    734 
    735 	/* Give the reciever a swift kick */
    736 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
    737 }
    738 
    739 /*
    740  * Common RX configuration for gem_init() and gem_reset_rxdma().
    741  */
    742 static void
    743 gem_rx_common(struct gem_softc *sc)
    744 {
    745 	bus_space_tag_t t = sc->sc_bustag;
    746 	bus_space_handle_t h = sc->sc_h1;
    747 	u_int32_t v;
    748 
    749 	/* Encode Receive Descriptor ring size: four possible values */
    750 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    751 
    752 	/* Set receive h/w checksum offset */
    753 #ifdef INET
    754 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    755 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    756 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    757 #endif
    758 
    759 	/* Enable RX DMA */
    760 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    761 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
    762 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
    763 
    764 	/*
    765 	 * The following value is for an OFF Threshold of about 3/4 full
    766 	 * and an ON Threshold of 1/4 full.
    767 	 */
    768 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    769 	    (3 * sc->sc_rxfifosize / 256) |
    770 	    ((sc->sc_rxfifosize / 256) << 12));
    771 	bus_space_write_4(t, h, GEM_RX_BLANKING,
    772 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
    773 }
    774 
    775 /*
    776  * Reset the transmitter
    777  */
    778 int
    779 gem_reset_tx(struct gem_softc *sc)
    780 {
    781 	bus_space_tag_t t = sc->sc_bustag;
    782 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    783 
    784 	/*
    785 	 * Resetting while DMA is in progress can cause a bus hang, so we
    786 	 * disable DMA first.
    787 	 */
    788 	gem_disable_tx(sc);
    789 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    790 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    791 	/* Wait till it finishes */
    792 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
    793 		aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n");
    794 	/* Wait 5ms extra. */
    795 	delay(5000);
    796 
    797 	/* Finally, reset the ETX */
    798 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
    799 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    800 	/* Wait till it finishes */
    801 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
    802 		aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n");
    803 		return (1);
    804 	}
    805 	return (0);
    806 }
    807 
    808 /*
    809  * disable receiver.
    810  */
    811 int
    812 gem_disable_rx(struct gem_softc *sc)
    813 {
    814 	bus_space_tag_t t = sc->sc_bustag;
    815 	bus_space_handle_t h = sc->sc_h1;
    816 	u_int32_t cfg;
    817 
    818 	/* Flip the enable bit */
    819 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    820 	cfg &= ~GEM_MAC_RX_ENABLE;
    821 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    822 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    823 	/* Wait for it to finish */
    824 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    825 }
    826 
    827 /*
    828  * disable transmitter.
    829  */
    830 int
    831 gem_disable_tx(struct gem_softc *sc)
    832 {
    833 	bus_space_tag_t t = sc->sc_bustag;
    834 	bus_space_handle_t h = sc->sc_h1;
    835 	u_int32_t cfg;
    836 
    837 	/* Flip the enable bit */
    838 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    839 	cfg &= ~GEM_MAC_TX_ENABLE;
    840 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    841 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    842 	/* Wait for it to finish */
    843 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    844 }
    845 
    846 /*
    847  * Initialize interface.
    848  */
    849 int
    850 gem_meminit(struct gem_softc *sc)
    851 {
    852 	struct gem_rxsoft *rxs;
    853 	int i, error;
    854 
    855 	/*
    856 	 * Initialize the transmit descriptor ring.
    857 	 */
    858 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    859 	for (i = 0; i < GEM_NTXDESC; i++) {
    860 		sc->sc_txdescs[i].gd_flags = 0;
    861 		sc->sc_txdescs[i].gd_addr = 0;
    862 	}
    863 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    864 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    865 	sc->sc_txfree = GEM_NTXDESC-1;
    866 	sc->sc_txnext = 0;
    867 	sc->sc_txwin = 0;
    868 
    869 	/*
    870 	 * Initialize the receive descriptor and receive job
    871 	 * descriptor rings.
    872 	 */
    873 	for (i = 0; i < GEM_NRXDESC; i++) {
    874 		rxs = &sc->sc_rxsoft[i];
    875 		if (rxs->rxs_mbuf == NULL) {
    876 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    877 				aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
    878 				    "buffer %d, error = %d\n",
    879 				    i, error);
    880 				/*
    881 				 * XXX Should attempt to run with fewer receive
    882 				 * XXX buffers instead of just failing.
    883 				 */
    884 				gem_rxdrain(sc);
    885 				return (1);
    886 			}
    887 		} else
    888 			GEM_INIT_RXDESC(sc, i);
    889 	}
    890 	sc->sc_rxptr = 0;
    891 	sc->sc_meminited = 1;
    892 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    893 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    894 
    895 	return (0);
    896 }
    897 
    898 static int
    899 gem_ringsize(int sz)
    900 {
    901 	switch (sz) {
    902 	case 32:
    903 		return GEM_RING_SZ_32;
    904 	case 64:
    905 		return GEM_RING_SZ_64;
    906 	case 128:
    907 		return GEM_RING_SZ_128;
    908 	case 256:
    909 		return GEM_RING_SZ_256;
    910 	case 512:
    911 		return GEM_RING_SZ_512;
    912 	case 1024:
    913 		return GEM_RING_SZ_1024;
    914 	case 2048:
    915 		return GEM_RING_SZ_2048;
    916 	case 4096:
    917 		return GEM_RING_SZ_4096;
    918 	case 8192:
    919 		return GEM_RING_SZ_8192;
    920 	default:
    921 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    922 		return GEM_RING_SZ_32;
    923 	}
    924 }
    925 
    926 
    927 /*
    928  * Start PCS
    929  */
    930 void
    931 gem_pcs_start(struct gem_softc *sc)
    932 {
    933 	bus_space_tag_t t = sc->sc_bustag;
    934 	bus_space_handle_t h = sc->sc_h1;
    935 	uint32_t v;
    936 
    937 #ifdef GEM_DEBUG
    938 	aprint_debug_dev(&sc->sc_dev, "gem_pcs_start()\n");
    939 #endif
    940 
    941 	/*
    942 	 * Set up.  We must disable the MII before modifying the
    943 	 * GEM_MII_ANAR register
    944 	 */
    945 	if (sc->sc_flags & GEM_SERDES) {
    946 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    947 		    GEM_MII_DATAPATH_SERDES);
    948 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
    949 		    GEM_MII_SLINK_LOOPBACK);
    950 	} else {
    951 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    952 		    GEM_MII_DATAPATH_SERIAL);
    953 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
    954 	}
    955 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
    956 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
    957 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
    958 	if (sc->sc_mii_media == IFM_AUTO)
    959 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
    960 	else if (sc->sc_mii_media == IFM_FDX) {
    961 		v |= GEM_MII_ANEG_FUL_DUPLX;
    962 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
    963 	} else if (sc->sc_mii_media == IFM_HDX) {
    964 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
    965 		v |= GEM_MII_ANEG_HLF_DUPLX;
    966 	}
    967 
    968 	/* Configure link. */
    969 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
    970 	bus_space_write_4(t, h, GEM_MII_CONTROL,
    971 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
    972 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
    973 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
    974 
    975 	/* Start the 10 second timer */
    976 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
    977 }
    978 
    979 /*
    980  * Stop PCS
    981  */
    982 void
    983 gem_pcs_stop(struct gem_softc *sc, int disable)
    984 {
    985 	bus_space_tag_t t = sc->sc_bustag;
    986 	bus_space_handle_t h = sc->sc_h1;
    987 
    988 #ifdef GEM_DEBUG
    989 	aprint_debug_dev(&sc->sc_dev, "gem_pcs_stop()\n");
    990 #endif
    991 
    992 	/* Tell link partner that we're going away */
    993 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
    994 
    995 	/*
    996 	 * Disable PCS MII.  The documentation suggests that setting
    997 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
    998 	 * negotiation will shut down the link.  However, it appears
    999 	 * that we also need to unset the datapath mode.
   1000 	 */
   1001 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1002 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1003 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1004 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
   1005 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1006 
   1007 	if (disable) {
   1008 		if (sc->sc_flags & GEM_SERDES)
   1009 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1010 				GEM_MII_SLINK_POWER_OFF);
   1011 		else
   1012 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1013 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
   1014 	}
   1015 
   1016 	sc->sc_flags &= ~GEM_LINK;
   1017 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   1018 	sc->sc_mii.mii_media_status = IFM_AVALID;
   1019 }
   1020 
   1021 
   1022 /*
   1023  * Initialization of interface; set up initialization block
   1024  * and transmit/receive descriptor rings.
   1025  */
   1026 int
   1027 gem_init(struct ifnet *ifp)
   1028 {
   1029 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1030 	bus_space_tag_t t = sc->sc_bustag;
   1031 	bus_space_handle_t h = sc->sc_h1;
   1032 	int rc = 0, s;
   1033 	u_int max_frame_size;
   1034 	u_int32_t v;
   1035 
   1036 	s = splnet();
   1037 
   1038 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(&sc->sc_dev)));
   1039 	/*
   1040 	 * Initialization sequence. The numbered steps below correspond
   1041 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
   1042 	 * Channel Engine manual (part of the PCIO manual).
   1043 	 * See also the STP2002-STQ document from Sun Microsystems.
   1044 	 */
   1045 
   1046 	/* step 1 & 2. Reset the Ethernet Channel */
   1047 	gem_stop(ifp, 0);
   1048 	gem_reset(sc);
   1049 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(&sc->sc_dev)));
   1050 
   1051 	/* Re-initialize the MIF */
   1052 	gem_mifinit(sc);
   1053 
   1054 	/* Set up correct datapath for non-SERDES/Serialink */
   1055 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1056 	    sc->sc_variant != GEM_SUN_ERI)
   1057 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1058 		    GEM_MII_DATAPATH_MII);
   1059 
   1060 	/* Call MI reset function if any */
   1061 	if (sc->sc_hwreset)
   1062 		(*sc->sc_hwreset)(sc);
   1063 
   1064 	/* step 3. Setup data structures in host memory */
   1065 	if (gem_meminit(sc) != 0)
   1066 		return 1;
   1067 
   1068 	/* step 4. TX MAC registers & counters */
   1069 	gem_init_regs(sc);
   1070 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
   1071 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
   1072 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1073 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
   1074 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1075 	    max_frame_size|/* burst size */(0x2000<<16));
   1076 
   1077 	/* step 5. RX MAC registers & counters */
   1078 	gem_setladrf(sc);
   1079 
   1080 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
   1081 	/* NOTE: we use only 32-bit DMA addresses here. */
   1082 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
   1083 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
   1084 
   1085 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
   1086 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
   1087 
   1088 	/* step 8. Global Configuration & Interrupt Mask */
   1089 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1090 		v = GEM_INTR_PCS;
   1091 	else
   1092 		v = GEM_INTR_MIF;
   1093 	bus_space_write_4(t, h, GEM_INTMASK,
   1094 		      ~(GEM_INTR_TX_INTME |
   1095 			GEM_INTR_TX_EMPTY |
   1096 			GEM_INTR_TX_MAC |
   1097 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
   1098 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
   1099 			GEM_INTR_BERR | v));
   1100 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
   1101 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
   1102 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
   1103 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
   1104 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
   1105 
   1106 	/* step 9. ETX Configuration: use mostly default values */
   1107 
   1108 	/* Enable TX DMA */
   1109 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
   1110 	bus_space_write_4(t, h, GEM_TX_CONFIG,
   1111 		v|GEM_TX_CONFIG_TXDMA_EN|
   1112 		((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
   1113 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
   1114 
   1115 	/* step 10. ERX Configuration */
   1116 	gem_rx_common(sc);
   1117 
   1118 	/* step 11. Configure Media */
   1119 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1120 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1121 		goto out;
   1122 
   1123 	/* step 12. RX_MAC Configuration Register */
   1124 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1125 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
   1126 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1127 
   1128 	/* step 14. Issue Transmit Pending command */
   1129 
   1130 	/* Call MI initialization function if any */
   1131 	if (sc->sc_hwinit)
   1132 		(*sc->sc_hwinit)(sc);
   1133 
   1134 
   1135 	/* step 15.  Give the reciever a swift kick */
   1136 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
   1137 
   1138 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1139 		/* Configure PCS */
   1140 		gem_pcs_start(sc);
   1141 	else
   1142 		/* Start the one second timer. */
   1143 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
   1144 
   1145 	sc->sc_flags &= ~GEM_LINK;
   1146 	ifp->if_flags |= IFF_RUNNING;
   1147 	ifp->if_flags &= ~IFF_OACTIVE;
   1148 	ifp->if_timer = 0;
   1149 	sc->sc_if_flags = ifp->if_flags;
   1150 out:
   1151 	splx(s);
   1152 
   1153 	return (0);
   1154 }
   1155 
   1156 void
   1157 gem_init_regs(struct gem_softc *sc)
   1158 {
   1159 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1160 	bus_space_tag_t t = sc->sc_bustag;
   1161 	bus_space_handle_t h = sc->sc_h1;
   1162 	const u_char *laddr = CLLADDR(ifp->if_sadl);
   1163 	u_int32_t v;
   1164 
   1165 	/* These regs are not cleared on reset */
   1166 	if (!sc->sc_inited) {
   1167 
   1168 		/* Load recommended values */
   1169 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
   1170 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
   1171 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
   1172 
   1173 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
   1174 		/* Max frame and max burst size */
   1175 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1176 		    ETHER_MAX_LEN | (0x2000<<16));
   1177 
   1178 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
   1179 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
   1180 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
   1181 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
   1182 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
   1183 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
   1184 
   1185 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
   1186 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
   1187 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
   1188 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
   1189 
   1190 		/* MAC control addr set to 01:80:c2:00:00:01 */
   1191 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
   1192 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
   1193 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
   1194 
   1195 		/* MAC filter addr set to 0:0:0:0:0:0 */
   1196 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
   1197 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
   1198 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
   1199 
   1200 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
   1201 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
   1202 
   1203 		sc->sc_inited = 1;
   1204 	}
   1205 
   1206 	/* Counters need to be zeroed */
   1207 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
   1208 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
   1209 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
   1210 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
   1211 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
   1212 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
   1213 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
   1214 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1215 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1216 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1217 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1218 
   1219 	/* Set XOFF PAUSE time. */
   1220 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
   1221 
   1222 	/*
   1223 	 * Set the internal arbitration to "infinite" bursts of the
   1224 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
   1225 	 * split up in cache line size chunks. This greatly improves
   1226 	 * especially RX performance.
   1227 	 * Enable silicon bug workarounds for the Apple variants.
   1228 	 */
   1229 	bus_space_write_4(t, h, GEM_CONFIG,
   1230 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
   1231 	    ((sc->sc_flags & GEM_PCI) ?
   1232 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
   1233 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
   1234 
   1235 	/*
   1236 	 * Set the station address.
   1237 	 */
   1238 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1239 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1240 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1241 
   1242 	/*
   1243 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1244 	 */
   1245 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1246 	v = GEM_MAC_XIF_TX_MII_ENA;
   1247 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
   1248 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1249 			v |= GEM_MAC_XIF_FDPLX_LED;
   1250 				if (sc->sc_flags & GEM_GIGABIT)
   1251 					v |= GEM_MAC_XIF_GMII_MODE;
   1252 		}
   1253 	} else {
   1254 		v |= GEM_MAC_XIF_GMII_MODE;
   1255 	}
   1256 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1257 }
   1258 
   1259 #ifdef GEM_DEBUG
   1260 static void
   1261 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
   1262 {
   1263 	int i;
   1264 
   1265 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
   1266 		printf("descriptor %d:\t", i);
   1267 		printf("gd_flags:   0x%016" PRIx64 "\t",
   1268 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1269 		printf("gd_addr: 0x%016" PRIx64 "\n",
   1270 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1271 		if (i == lastdesc)
   1272 			break;
   1273 	}
   1274 }
   1275 #endif
   1276 
   1277 static void
   1278 gem_start(struct ifnet *ifp)
   1279 {
   1280 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
   1281 	struct mbuf *m0, *m;
   1282 	struct gem_txsoft *txs;
   1283 	bus_dmamap_t dmamap;
   1284 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
   1285 	uint64_t flags = 0;
   1286 
   1287 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1288 		return;
   1289 
   1290 	/*
   1291 	 * Remember the previous number of free descriptors and
   1292 	 * the first descriptor we'll use.
   1293 	 */
   1294 	ofree = sc->sc_txfree;
   1295 	firsttx = sc->sc_txnext;
   1296 
   1297 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1298 	    device_xname(&sc->sc_dev), ofree, firsttx));
   1299 
   1300 	/*
   1301 	 * Loop through the send queue, setting up transmit descriptors
   1302 	 * until we drain the queue, or use up all available transmit
   1303 	 * descriptors.
   1304 	 */
   1305 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1306 	    sc->sc_txfree != 0) {
   1307 		/*
   1308 		 * Grab a packet off the queue.
   1309 		 */
   1310 		IFQ_POLL(&ifp->if_snd, m0);
   1311 		if (m0 == NULL)
   1312 			break;
   1313 		m = NULL;
   1314 
   1315 		dmamap = txs->txs_dmamap;
   1316 
   1317 		/*
   1318 		 * Load the DMA map.  If this fails, the packet either
   1319 		 * didn't fit in the alloted number of segments, or we were
   1320 		 * short on resources.  In this case, we'll copy and try
   1321 		 * again.
   1322 		 */
   1323 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1324 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1325 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1326 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1327 			if (m0->m_pkthdr.len > MCLBYTES) {
   1328 				aprint_error_dev(&sc->sc_dev, "unable to allocate jumbo Tx "
   1329 				    "cluster\n");
   1330 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1331 				m_freem(m0);
   1332 				continue;
   1333 			}
   1334 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1335 			if (m == NULL) {
   1336 				aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
   1337 				break;
   1338 			}
   1339 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1340 			if (m0->m_pkthdr.len > MHLEN) {
   1341 				MCLGET(m, M_DONTWAIT);
   1342 				if ((m->m_flags & M_EXT) == 0) {
   1343 					aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
   1344 					    "cluster\n");
   1345 					m_freem(m);
   1346 					break;
   1347 				}
   1348 			}
   1349 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1350 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1351 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1352 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1353 			if (error) {
   1354 				aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
   1355 				    "error = %d\n", error);
   1356 				break;
   1357 			}
   1358 		}
   1359 
   1360 		/*
   1361 		 * Ensure we have enough descriptors free to describe
   1362 		 * the packet.
   1363 		 */
   1364 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1365 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1366 			/*
   1367 			 * Not enough free descriptors to transmit this
   1368 			 * packet.  We haven't committed to anything yet,
   1369 			 * so just unload the DMA map, put the packet
   1370 			 * back on the queue, and punt.  Notify the upper
   1371 			 * layer that there are no more slots left.
   1372 			 *
   1373 			 * XXX We could allocate an mbuf and copy, but
   1374 			 * XXX it is worth it?
   1375 			 */
   1376 			ifp->if_flags |= IFF_OACTIVE;
   1377 			sc->sc_if_flags = ifp->if_flags;
   1378 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1379 			if (m != NULL)
   1380 				m_freem(m);
   1381 			break;
   1382 		}
   1383 
   1384 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1385 		if (m != NULL) {
   1386 			m_freem(m0);
   1387 			m0 = m;
   1388 		}
   1389 
   1390 		/*
   1391 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1392 		 */
   1393 
   1394 		/* Sync the DMA map. */
   1395 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1396 		    BUS_DMASYNC_PREWRITE);
   1397 
   1398 		/*
   1399 		 * Initialize the transmit descriptors.
   1400 		 */
   1401 		for (nexttx = sc->sc_txnext, seg = 0;
   1402 		     seg < dmamap->dm_nsegs;
   1403 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1404 
   1405 			/*
   1406 			 * If this is the first descriptor we're
   1407 			 * enqueueing, set the start of packet flag,
   1408 			 * and the checksum stuff if we want the hardware
   1409 			 * to do it.
   1410 			 */
   1411 			sc->sc_txdescs[nexttx].gd_addr =
   1412 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1413 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1414 			if (nexttx == firsttx) {
   1415 				flags |= GEM_TD_START_OF_PACKET;
   1416 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1417 					sc->sc_txwin = 0;
   1418 					flags |= GEM_TD_INTERRUPT_ME;
   1419 				}
   1420 
   1421 #ifdef INET
   1422 				/* h/w checksum */
   1423 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
   1424 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1425 					struct ether_header *eh;
   1426 					uint16_t offset, start;
   1427 
   1428 					eh = mtod(m0, struct ether_header *);
   1429 					switch (ntohs(eh->ether_type)) {
   1430 					case ETHERTYPE_IP:
   1431 						start = ETHER_HDR_LEN;
   1432 						break;
   1433 					case ETHERTYPE_VLAN:
   1434 						start = ETHER_HDR_LEN +
   1435 							ETHER_VLAN_ENCAP_LEN;
   1436 						break;
   1437 					default:
   1438 						/* unsupported, drop it */
   1439 						m_free(m0);
   1440 						continue;
   1441 					}
   1442 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1443 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1444 					flags |= (start <<
   1445 						  GEM_TD_CXSUM_STARTSHFT) |
   1446 						 (offset <<
   1447 						  GEM_TD_CXSUM_STUFFSHFT) |
   1448 						 GEM_TD_CXSUM_ENABLE;
   1449 				}
   1450 #endif
   1451 			}
   1452 			if (seg == dmamap->dm_nsegs - 1) {
   1453 				flags |= GEM_TD_END_OF_PACKET;
   1454 			} else {
   1455 				/* last flag set outside of loop */
   1456 				sc->sc_txdescs[nexttx].gd_flags =
   1457 					GEM_DMA_WRITE(sc, flags);
   1458 			}
   1459 			lasttx = nexttx;
   1460 		}
   1461 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1462 			/* add padding buffer at end of chain */
   1463 			flags &= ~GEM_TD_END_OF_PACKET;
   1464 			sc->sc_txdescs[lasttx].gd_flags =
   1465 			    GEM_DMA_WRITE(sc, flags);
   1466 
   1467 			sc->sc_txdescs[nexttx].gd_addr =
   1468 			    GEM_DMA_WRITE(sc,
   1469 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1470 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1471 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1472 			lasttx = nexttx;
   1473 			nexttx = GEM_NEXTTX(nexttx);
   1474 			seg++;
   1475 		}
   1476 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1477 
   1478 		KASSERT(lasttx != -1);
   1479 
   1480 		/*
   1481 		 * Store a pointer to the packet so we can free it later,
   1482 		 * and remember what txdirty will be once the packet is
   1483 		 * done.
   1484 		 */
   1485 		txs->txs_mbuf = m0;
   1486 		txs->txs_firstdesc = sc->sc_txnext;
   1487 		txs->txs_lastdesc = lasttx;
   1488 		txs->txs_ndescs = seg;
   1489 
   1490 #ifdef GEM_DEBUG
   1491 		if (ifp->if_flags & IFF_DEBUG) {
   1492 			printf("     gem_start %p transmit chain:\n", txs);
   1493 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1494 			    txs->txs_lastdesc);
   1495 		}
   1496 #endif
   1497 
   1498 		/* Sync the descriptors we're using. */
   1499 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1500 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1501 
   1502 		/* Advance the tx pointer. */
   1503 		sc->sc_txfree -= txs->txs_ndescs;
   1504 		sc->sc_txnext = nexttx;
   1505 
   1506 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1507 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1508 
   1509 #if NBPFILTER > 0
   1510 		/*
   1511 		 * Pass the packet to any BPF listeners.
   1512 		 */
   1513 		if (ifp->if_bpf)
   1514 			bpf_mtap(ifp->if_bpf, m0);
   1515 #endif /* NBPFILTER > 0 */
   1516 	}
   1517 
   1518 	if (txs == NULL || sc->sc_txfree == 0) {
   1519 		/* No more slots left; notify upper layer. */
   1520 		ifp->if_flags |= IFF_OACTIVE;
   1521 		sc->sc_if_flags = ifp->if_flags;
   1522 	}
   1523 
   1524 	if (sc->sc_txfree != ofree) {
   1525 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1526 		    device_xname(&sc->sc_dev), lasttx, firsttx));
   1527 		/*
   1528 		 * The entire packet chain is set up.
   1529 		 * Kick the transmitter.
   1530 		 */
   1531 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1532 			device_xname(&sc->sc_dev), nexttx));
   1533 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
   1534 			sc->sc_txnext);
   1535 
   1536 		/* Set a watchdog timer in case the chip flakes out. */
   1537 		ifp->if_timer = 5;
   1538 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1539 			device_xname(&sc->sc_dev), ifp->if_timer));
   1540 	}
   1541 }
   1542 
   1543 /*
   1544  * Transmit interrupt.
   1545  */
   1546 int
   1547 gem_tint(struct gem_softc *sc)
   1548 {
   1549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1550 	bus_space_tag_t t = sc->sc_bustag;
   1551 	bus_space_handle_t mac = sc->sc_h1;
   1552 	struct gem_txsoft *txs;
   1553 	int txlast;
   1554 	int progress = 0;
   1555 	u_int32_t v;
   1556 
   1557 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(&sc->sc_dev)));
   1558 
   1559 	/* Unload collision counters ... */
   1560 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1561 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1562 	ifp->if_collisions += v +
   1563 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1564 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
   1565 	ifp->if_oerrors += v;
   1566 
   1567 	/* ... then clear the hardware counters. */
   1568 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1569 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1570 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1571 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1572 
   1573 	/*
   1574 	 * Go through our Tx list and free mbufs for those
   1575 	 * frames that have been transmitted.
   1576 	 */
   1577 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1578 		/*
   1579 		 * In theory, we could harvest some descriptors before
   1580 		 * the ring is empty, but that's a bit complicated.
   1581 		 *
   1582 		 * GEM_TX_COMPLETION points to the last descriptor
   1583 		 * processed +1.
   1584 		 *
   1585 		 * Let's assume that the NIC writes back to the Tx
   1586 		 * descriptors before it updates the completion
   1587 		 * register.  If the NIC has posted writes to the
   1588 		 * Tx descriptors, PCI ordering requires that the
   1589 		 * posted writes flush to RAM before the register-read
   1590 		 * finishes.  So let's read the completion register,
   1591 		 * before syncing the descriptors, so that we
   1592 		 * examine Tx descriptors that are at least as
   1593 		 * current as the completion register.
   1594 		 */
   1595 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1596 		DPRINTF(sc,
   1597 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1598 				txs->txs_lastdesc, txlast));
   1599 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1600 			if (txlast >= txs->txs_firstdesc &&
   1601 			    txlast <= txs->txs_lastdesc)
   1602 				break;
   1603 		} else if (txlast >= txs->txs_firstdesc ||
   1604 			   txlast <= txs->txs_lastdesc)
   1605 			break;
   1606 
   1607 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1608 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1609 
   1610 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
   1611 		if (ifp->if_flags & IFF_DEBUG) {
   1612 			printf("    txsoft %p transmit chain:\n", txs);
   1613 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1614 			    txs->txs_lastdesc);
   1615 		}
   1616 #endif
   1617 
   1618 
   1619 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1620 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1621 
   1622 		sc->sc_txfree += txs->txs_ndescs;
   1623 
   1624 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1625 		    0, txs->txs_dmamap->dm_mapsize,
   1626 		    BUS_DMASYNC_POSTWRITE);
   1627 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1628 		if (txs->txs_mbuf != NULL) {
   1629 			m_freem(txs->txs_mbuf);
   1630 			txs->txs_mbuf = NULL;
   1631 		}
   1632 
   1633 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1634 
   1635 		ifp->if_opackets++;
   1636 		progress = 1;
   1637 	}
   1638 
   1639 #if 0
   1640 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1641 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
   1642 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
   1643 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1644 			GEM_TX_DATA_PTR_HI) << 32) |
   1645 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1646 			GEM_TX_DATA_PTR_LO),
   1647 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
   1648 #endif
   1649 
   1650 	if (progress) {
   1651 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1652 			sc->sc_txwin = 0;
   1653 
   1654 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
   1655 		ifp->if_flags &= ~IFF_OACTIVE;
   1656 		sc->sc_if_flags = ifp->if_flags;
   1657 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
   1658 		gem_start(ifp);
   1659 	}
   1660 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1661 		device_xname(&sc->sc_dev), ifp->if_timer));
   1662 
   1663 	return (1);
   1664 }
   1665 
   1666 /*
   1667  * Receive interrupt.
   1668  */
   1669 int
   1670 gem_rint(struct gem_softc *sc)
   1671 {
   1672 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1673 	bus_space_tag_t t = sc->sc_bustag;
   1674 	bus_space_handle_t h = sc->sc_h1;
   1675 	struct gem_rxsoft *rxs;
   1676 	struct mbuf *m;
   1677 	u_int64_t rxstat;
   1678 	u_int32_t rxcomp;
   1679 	int i, len, progress = 0;
   1680 
   1681 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(&sc->sc_dev)));
   1682 
   1683 	/*
   1684 	 * Ignore spurious interrupt that sometimes occurs before
   1685 	 * we are set up when we network boot.
   1686 	 */
   1687 	if (!sc->sc_meminited)
   1688 		return 1;
   1689 
   1690 	/*
   1691 	 * Read the completion register once.  This limits
   1692 	 * how long the following loop can execute.
   1693 	 */
   1694 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1695 
   1696 	/*
   1697 	 * XXX Read the lastrx only once at the top for speed.
   1698 	 */
   1699 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1700 		sc->sc_rxptr, rxcomp));
   1701 
   1702 	/*
   1703 	 * Go into the loop at least once.
   1704 	 */
   1705 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1706 	     i = GEM_NEXTRX(i)) {
   1707 		rxs = &sc->sc_rxsoft[i];
   1708 
   1709 		GEM_CDRXSYNC(sc, i,
   1710 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1711 
   1712 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1713 
   1714 		if (rxstat & GEM_RD_OWN) {
   1715 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1716 			/*
   1717 			 * We have processed all of the receive buffers.
   1718 			 */
   1719 			break;
   1720 		}
   1721 
   1722 		progress++;
   1723 		ifp->if_ipackets++;
   1724 
   1725 		if (rxstat & GEM_RD_BAD_CRC) {
   1726 			ifp->if_ierrors++;
   1727 			aprint_error_dev(&sc->sc_dev, "receive error: CRC error\n");
   1728 			GEM_INIT_RXDESC(sc, i);
   1729 			continue;
   1730 		}
   1731 
   1732 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1733 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1734 #ifdef GEM_DEBUG
   1735 		if (ifp->if_flags & IFF_DEBUG) {
   1736 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1737 			printf("gd_flags: 0x%016llx\t", (long long)
   1738 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1739 			printf("gd_addr: 0x%016llx\n", (long long)
   1740 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1741 		}
   1742 #endif
   1743 
   1744 		/* No errors; receive the packet. */
   1745 		len = GEM_RD_BUFLEN(rxstat);
   1746 
   1747 		/*
   1748 		 * Allocate a new mbuf cluster.  If that fails, we are
   1749 		 * out of memory, and must drop the packet and recycle
   1750 		 * the buffer that's already attached to this descriptor.
   1751 		 */
   1752 		m = rxs->rxs_mbuf;
   1753 		if (gem_add_rxbuf(sc, i) != 0) {
   1754 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1755 			ifp->if_ierrors++;
   1756 			GEM_INIT_RXDESC(sc, i);
   1757 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1758 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1759 			continue;
   1760 		}
   1761 		m->m_data += 2; /* We're already off by two */
   1762 
   1763 		m->m_pkthdr.rcvif = ifp;
   1764 		m->m_pkthdr.len = m->m_len = len;
   1765 
   1766 #if NBPFILTER > 0
   1767 		/*
   1768 		 * Pass this up to any BPF listeners, but only
   1769 		 * pass it up the stack if it's for us.
   1770 		 */
   1771 		if (ifp->if_bpf)
   1772 			bpf_mtap(ifp->if_bpf, m);
   1773 #endif /* NBPFILTER > 0 */
   1774 
   1775 #ifdef INET
   1776 		/* hardware checksum */
   1777 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1778 			struct ether_header *eh;
   1779 			struct ip *ip;
   1780 			int32_t hlen, pktlen;
   1781 
   1782 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1783 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1784 					 ETHER_VLAN_ENCAP_LEN;
   1785 				eh = (struct ether_header *) (mtod(m, char *) +
   1786 					ETHER_VLAN_ENCAP_LEN);
   1787 			} else {
   1788 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1789 				eh = mtod(m, struct ether_header *);
   1790 			}
   1791 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1792 				goto swcsum;
   1793 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
   1794 
   1795 			/* IPv4 only */
   1796 			if (ip->ip_v != IPVERSION)
   1797 				goto swcsum;
   1798 
   1799 			hlen = ip->ip_hl << 2;
   1800 			if (hlen < sizeof(struct ip))
   1801 				goto swcsum;
   1802 
   1803 			/*
   1804 			 * bail if too short, has random trailing garbage,
   1805 			 * truncated, fragment, or has ethernet pad.
   1806 			 */
   1807 			if ((ntohs(ip->ip_len) < hlen) ||
   1808 			    (ntohs(ip->ip_len) != pktlen) ||
   1809 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1810 				goto swcsum;
   1811 
   1812 			switch (ip->ip_p) {
   1813 			case IPPROTO_TCP:
   1814 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1815 					goto swcsum;
   1816 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1817 					goto swcsum;
   1818 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1819 				break;
   1820 			case IPPROTO_UDP:
   1821 				/* FALLTHROUGH */
   1822 			default:
   1823 				goto swcsum;
   1824 			}
   1825 
   1826 			/* the uncomplemented sum is expected */
   1827 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1828 
   1829 			/* if the pkt had ip options, we have to deduct them */
   1830 			if (hlen > sizeof(struct ip)) {
   1831 				uint16_t *opts;
   1832 				uint32_t optsum, temp;
   1833 
   1834 				optsum = 0;
   1835 				temp = hlen - sizeof(struct ip);
   1836 				opts = (uint16_t *) ((char *) ip +
   1837 					sizeof(struct ip));
   1838 
   1839 				while (temp > 1) {
   1840 					optsum += ntohs(*opts++);
   1841 					temp -= 2;
   1842 				}
   1843 				while (optsum >> 16)
   1844 					optsum = (optsum >> 16) +
   1845 						 (optsum & 0xffff);
   1846 
   1847 				/* Deduct ip opts sum from hwsum (rfc 1624). */
   1848 				m->m_pkthdr.csum_data =
   1849 					~((~m->m_pkthdr.csum_data) - ~optsum);
   1850 
   1851 				while (m->m_pkthdr.csum_data >> 16)
   1852 					m->m_pkthdr.csum_data =
   1853 						(m->m_pkthdr.csum_data >> 16) +
   1854 						(m->m_pkthdr.csum_data &
   1855 						 0xffff);
   1856 			}
   1857 
   1858 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1859 						  M_CSUM_NO_PSEUDOHDR;
   1860 		} else
   1861 swcsum:
   1862 			m->m_pkthdr.csum_flags = 0;
   1863 #endif
   1864 		/* Pass it on. */
   1865 		(*ifp->if_input)(ifp, m);
   1866 	}
   1867 
   1868 	if (progress) {
   1869 		/* Update the receive pointer. */
   1870 		if (i == sc->sc_rxptr) {
   1871 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1872 #ifdef GEM_DEBUG
   1873 			if (ifp->if_flags & IFF_DEBUG)
   1874 				printf("%s: rint: ring wrap\n",
   1875 				    device_xname(&sc->sc_dev));
   1876 #endif
   1877 		}
   1878 		sc->sc_rxptr = i;
   1879 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1880 	}
   1881 #ifdef GEM_COUNTERS
   1882 	if (progress <= 4) {
   1883 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1884 	} else if (progress < 32) {
   1885 		if (progress < 16)
   1886 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1887 		else
   1888 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1889 
   1890 	} else {
   1891 		if (progress < 64)
   1892 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1893 		else
   1894 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1895 	}
   1896 #endif
   1897 
   1898 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1899 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1900 
   1901 	/* Read error counters ... */
   1902 	ifp->if_ierrors +=
   1903 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
   1904 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
   1905 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
   1906 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
   1907 
   1908 	/* ... then clear the hardware counters. */
   1909 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1910 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1911 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1912 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1913 
   1914 	return (1);
   1915 }
   1916 
   1917 
   1918 /*
   1919  * gem_add_rxbuf:
   1920  *
   1921  *	Add a receive buffer to the indicated descriptor.
   1922  */
   1923 int
   1924 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1925 {
   1926 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1927 	struct mbuf *m;
   1928 	int error;
   1929 
   1930 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1931 	if (m == NULL)
   1932 		return (ENOBUFS);
   1933 
   1934 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1935 	MCLGET(m, M_DONTWAIT);
   1936 	if ((m->m_flags & M_EXT) == 0) {
   1937 		m_freem(m);
   1938 		return (ENOBUFS);
   1939 	}
   1940 
   1941 #ifdef GEM_DEBUG
   1942 /* bzero the packet to check DMA */
   1943 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1944 #endif
   1945 
   1946 	if (rxs->rxs_mbuf != NULL)
   1947 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1948 
   1949 	rxs->rxs_mbuf = m;
   1950 
   1951 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1952 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1953 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1954 	if (error) {
   1955 		aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
   1956 		    idx, error);
   1957 		panic("gem_add_rxbuf");	/* XXX */
   1958 	}
   1959 
   1960 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1961 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1962 
   1963 	GEM_INIT_RXDESC(sc, idx);
   1964 
   1965 	return (0);
   1966 }
   1967 
   1968 
   1969 int
   1970 gem_eint(struct gem_softc *sc, u_int status)
   1971 {
   1972 	char bits[128];
   1973 	u_int32_t r, v;
   1974 
   1975 	if ((status & GEM_INTR_MIF) != 0) {
   1976 		printf("%s: XXXlink status changed\n", device_xname(&sc->sc_dev));
   1977 		return (1);
   1978 	}
   1979 
   1980 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
   1981 		gem_reset_rxdma(sc);
   1982 		return (1);
   1983 	}
   1984 
   1985 	if (status & GEM_INTR_BERR) {
   1986 		if (sc->sc_flags & GEM_PCI)
   1987 			r = GEM_ERROR_STATUS;
   1988 		else
   1989 			r = GEM_SBUS_ERROR_STATUS;
   1990 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   1991 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   1992 		aprint_error_dev(&sc->sc_dev, "bus error interrupt: 0x%02x\n",
   1993 		    v);
   1994 		return (1);
   1995 	}
   1996 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
   1997 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
   1998 
   1999 	return (1);
   2000 }
   2001 
   2002 
   2003 /*
   2004  * PCS interrupts.
   2005  * We should receive these when the link status changes, but sometimes
   2006  * we don't receive them for link up.  We compensate for this in the
   2007  * gem_tick() callout.
   2008  */
   2009 int
   2010 gem_pint(struct gem_softc *sc)
   2011 {
   2012 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2013 	bus_space_tag_t t = sc->sc_bustag;
   2014 	bus_space_handle_t h = sc->sc_h1;
   2015 	u_int32_t v, v2;
   2016 
   2017 	/*
   2018 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
   2019 	 * latched, so we have to read it twice.  There is only one bit in
   2020 	 * use, so the value is meaningless.
   2021 	 */
   2022 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2023 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2024 
   2025 	if ((ifp->if_flags & IFF_UP) == 0)
   2026 		return 1;
   2027 
   2028 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
   2029 		return 1;
   2030 
   2031 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2032 	/* If we see remote fault, our link partner is probably going away */
   2033 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
   2034 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
   2035 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2036 	/* Otherwise, we may need to wait after auto-negotiation completes */
   2037 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
   2038 	    GEM_MII_STATUS_ANEG_CPT) {
   2039 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
   2040 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2041 	}
   2042 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
   2043 		if (sc->sc_flags & GEM_LINK) {
   2044 			return 1;
   2045 		}
   2046 		callout_stop(&sc->sc_tick_ch);
   2047 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
   2048 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
   2049 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
   2050 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
   2051 		v &= v2;
   2052 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
   2053 			sc->sc_mii.mii_media_active |= IFM_FDX;
   2054 #ifdef GEM_DEBUG
   2055 			aprint_debug_dev(&sc->sc_dev, "link up: full duplex\n");
   2056 #endif
   2057 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
   2058 			sc->sc_mii.mii_media_active |= IFM_HDX;
   2059 #ifdef GEM_DEBUG
   2060 			aprint_debug_dev(&sc->sc_dev, "link up: half duplex\n");
   2061 #endif
   2062 		} else {
   2063 #ifdef GEM_DEBUG
   2064 			aprint_debug_dev(&sc->sc_dev, "duplex mismatch\n");
   2065 #endif
   2066 		}
   2067 		gem_statuschange(sc);
   2068 	} else {
   2069 		if ((sc->sc_flags & GEM_LINK) == 0) {
   2070 			return 1;
   2071 		}
   2072 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   2073 		sc->sc_mii.mii_media_status = IFM_AVALID;
   2074 #ifdef GEM_DEBUG
   2075 			aprint_debug_dev(&sc->sc_dev, "link down\n");
   2076 #endif
   2077 		gem_statuschange(sc);
   2078 
   2079 		/* Start the 10 second timer */
   2080 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   2081 	}
   2082 	return 1;
   2083 }
   2084 
   2085 
   2086 
   2087 int
   2088 gem_intr(void *v)
   2089 {
   2090 	struct gem_softc *sc = (struct gem_softc *)v;
   2091 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2092 	bus_space_tag_t t = sc->sc_bustag;
   2093 	bus_space_handle_t h = sc->sc_h1;
   2094 	u_int32_t status;
   2095 	int r = 0;
   2096 #ifdef GEM_DEBUG
   2097 	char bits[128];
   2098 #endif
   2099 
   2100 	/* XXX We should probably mask out interrupts until we're done */
   2101 
   2102 	sc->sc_ev_intr.ev_count++;
   2103 
   2104 	status = bus_space_read_4(t, h, GEM_STATUS);
   2105 #ifdef GEM_DEBUG
   2106 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
   2107 #endif
   2108 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   2109 		device_xname(&sc->sc_dev), (status >> 19), bits));
   2110 
   2111 
   2112 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   2113 		r |= gem_eint(sc, status);
   2114 
   2115 	/* We don't bother with GEM_INTR_TX_DONE */
   2116 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   2117 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   2118 		r |= gem_tint(sc);
   2119 	}
   2120 
   2121 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   2122 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   2123 		r |= gem_rint(sc);
   2124 	}
   2125 
   2126 	/* We should eventually do more than just print out error stats. */
   2127 	if (status & GEM_INTR_TX_MAC) {
   2128 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
   2129 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   2130 			printf("%s: MAC tx fault, status %x\n",
   2131 			    device_xname(&sc->sc_dev), txstat);
   2132 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   2133 			gem_init(ifp);
   2134 	}
   2135 	if (status & GEM_INTR_RX_MAC) {
   2136 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
   2137 		/*
   2138 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
   2139 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
   2140 		 * silicon bug so handle them silently. Moreover, it's
   2141 		 * likely that the receiver has hung so we reset it.
   2142 		 */
   2143 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
   2144 			ifp->if_ierrors++;
   2145 			gem_reset_rxdma(sc);
   2146 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   2147 			printf("%s: MAC rx fault, status 0x%02x\n",
   2148 			    device_xname(&sc->sc_dev), rxstat);
   2149 	}
   2150 	if (status & GEM_INTR_PCS) {
   2151 		r |= gem_pint(sc);
   2152 	}
   2153 
   2154 /* Do we need to do anything with these?
   2155 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
   2156 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
   2157 		if ((status2 & GEM_MAC_PAUSED) != 0)
   2158 			aprintf_debug_dev(&sc->sc_dev, "PAUSE received (%d slots)\n",
   2159 			    GEM_MAC_PAUSE_TIME(status2));
   2160 		if ((status2 & GEM_MAC_PAUSE) != 0)
   2161 			aprintf_debug_dev(&sc->sc_dev, "transited to PAUSE state\n");
   2162 		if ((status2 & GEM_MAC_RESUME) != 0)
   2163 			aprintf_debug_dev(&sc->sc_dev, "transited to non-PAUSE state\n");
   2164 	}
   2165 	if ((status & GEM_INTR_MIF) != 0)
   2166 		aprintf_debug_dev(&sc->sc_dev, "MIF interrupt\n");
   2167 */
   2168 #if NRND > 0
   2169 	rnd_add_uint32(&sc->rnd_source, status);
   2170 #endif
   2171 	return (r);
   2172 }
   2173 
   2174 
   2175 void
   2176 gem_watchdog(struct ifnet *ifp)
   2177 {
   2178 	struct gem_softc *sc = ifp->if_softc;
   2179 
   2180 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   2181 		"GEM_MAC_RX_CONFIG %x\n",
   2182 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
   2183 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
   2184 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
   2185 
   2186 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   2187 	++ifp->if_oerrors;
   2188 
   2189 	/* Try to get more packets going. */
   2190 	gem_start(ifp);
   2191 }
   2192 
   2193 /*
   2194  * Initialize the MII Management Interface
   2195  */
   2196 void
   2197 gem_mifinit(struct gem_softc *sc)
   2198 {
   2199 	bus_space_tag_t t = sc->sc_bustag;
   2200 	bus_space_handle_t mif = sc->sc_h1;
   2201 
   2202 	/* Configure the MIF in frame mode */
   2203 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   2204 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   2205 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   2206 }
   2207 
   2208 /*
   2209  * MII interface
   2210  *
   2211  * The GEM MII interface supports at least three different operating modes:
   2212  *
   2213  * Bitbang mode is implemented using data, clock and output enable registers.
   2214  *
   2215  * Frame mode is implemented by loading a complete frame into the frame
   2216  * register and polling the valid bit for completion.
   2217  *
   2218  * Polling mode uses the frame register but completion is indicated by
   2219  * an interrupt.
   2220  *
   2221  */
   2222 static int
   2223 gem_mii_readreg(self, phy, reg)
   2224 	struct device *self;
   2225 	int phy, reg;
   2226 {
   2227 	struct gem_softc *sc = (void *)self;
   2228 	bus_space_tag_t t = sc->sc_bustag;
   2229 	bus_space_handle_t mif = sc->sc_h1;
   2230 	int n;
   2231 	u_int32_t v;
   2232 
   2233 #ifdef GEM_DEBUG1
   2234 	if (sc->sc_debug)
   2235 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
   2236 #endif
   2237 
   2238 	/* Construct the frame command */
   2239 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   2240 		GEM_MIF_FRAME_READ;
   2241 
   2242 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2243 	for (n = 0; n < 100; n++) {
   2244 		DELAY(1);
   2245 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2246 		if (v & GEM_MIF_FRAME_TA0)
   2247 			return (v & GEM_MIF_FRAME_DATA);
   2248 	}
   2249 
   2250 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
   2251 	return (0);
   2252 }
   2253 
   2254 static void
   2255 gem_mii_writereg(self, phy, reg, val)
   2256 	struct device *self;
   2257 	int phy, reg, val;
   2258 {
   2259 	struct gem_softc *sc = (void *)self;
   2260 	bus_space_tag_t t = sc->sc_bustag;
   2261 	bus_space_handle_t mif = sc->sc_h1;
   2262 	int n;
   2263 	u_int32_t v;
   2264 
   2265 #ifdef GEM_DEBUG1
   2266 	if (sc->sc_debug)
   2267 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
   2268 			phy, reg, val);
   2269 #endif
   2270 
   2271 	/* Construct the frame command */
   2272 	v = GEM_MIF_FRAME_WRITE			|
   2273 	    (phy << GEM_MIF_PHY_SHIFT)		|
   2274 	    (reg << GEM_MIF_REG_SHIFT)		|
   2275 	    (val & GEM_MIF_FRAME_DATA);
   2276 
   2277 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2278 	for (n = 0; n < 100; n++) {
   2279 		DELAY(1);
   2280 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2281 		if (v & GEM_MIF_FRAME_TA0)
   2282 			return;
   2283 	}
   2284 
   2285 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
   2286 }
   2287 
   2288 static void
   2289 gem_mii_statchg(struct device *dev)
   2290 {
   2291 	struct gem_softc *sc = (void *)dev;
   2292 #ifdef GEM_DEBUG
   2293 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   2294 #endif
   2295 
   2296 #ifdef GEM_DEBUG
   2297 	if (sc->sc_debug)
   2298 		printf("gem_mii_statchg: status change: phy = %d\n",
   2299 			sc->sc_phys[instance]);
   2300 #endif
   2301 	gem_statuschange(sc);
   2302 }
   2303 
   2304 /*
   2305  * Common status change for gem_mii_statchg() and gem_pint()
   2306  */
   2307 void
   2308 gem_statuschange(struct gem_softc* sc)
   2309 {
   2310 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2311 	bus_space_tag_t t = sc->sc_bustag;
   2312 	bus_space_handle_t mac = sc->sc_h1;
   2313 	int gigabit;
   2314 	u_int32_t rxcfg, txcfg, v;
   2315 
   2316 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
   2317 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
   2318 		sc->sc_flags |= GEM_LINK;
   2319 	else
   2320 		sc->sc_flags &= ~GEM_LINK;
   2321 
   2322 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2323 		gigabit = 1;
   2324 	else
   2325 		gigabit = 0;
   2326 
   2327 	/*
   2328 	 * The configuration done here corresponds to the steps F) and
   2329 	 * G) and as far as enabling of RX and TX MAC goes also step H)
   2330 	 * of the initialization sequence outlined in section 3.2.1 of
   2331 	 * the GEM Gigabit Ethernet ASIC Specification.
   2332 	 */
   2333 
   2334 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
   2335 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
   2336 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
   2337 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2338 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
   2339 	else if (gigabit) {
   2340 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
   2341 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
   2342 	}
   2343 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   2344 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
   2345 	    BUS_SPACE_BARRIER_WRITE);
   2346 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
   2347 		aprint_normal_dev(&sc->sc_dev, "cannot disable TX MAC\n");
   2348 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
   2349 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
   2350 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
   2351 	    BUS_SPACE_BARRIER_WRITE);
   2352 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
   2353 		aprint_normal_dev(&sc->sc_dev, "cannot disable RX MAC\n");
   2354 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
   2355 
   2356 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
   2357 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
   2358 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
   2359 
   2360 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
   2361 	    gigabit != 0)
   2362 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2363 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
   2364 	else
   2365 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2366 		    GEM_MAC_SLOT_TIME_NORMAL);
   2367 
   2368 	/* XIF Configuration */
   2369 	if (sc->sc_flags & GEM_LINK)
   2370 		v = GEM_MAC_XIF_LINK_LED;
   2371 	else
   2372 		v = 0;
   2373 	v |= GEM_MAC_XIF_TX_MII_ENA;
   2374 
   2375 	/* If an external transceiver is connected, enable its MII drivers */
   2376 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   2377 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
   2378 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   2379 			/* External MII needs echo disable if half duplex. */
   2380 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
   2381 			    IFM_FDX) != 0)
   2382 				/* turn on full duplex LED */
   2383 				v |= GEM_MAC_XIF_FDPLX_LED;
   2384 			else
   2385 				/* half duplex -- disable echo */
   2386 				v |= GEM_MAC_XIF_ECHO_DISABL;
   2387 			if (gigabit)
   2388 				v |= GEM_MAC_XIF_GMII_MODE;
   2389 			else
   2390 				v &= ~GEM_MAC_XIF_GMII_MODE;
   2391 		} else
   2392 			/* Internal MII needs buf enable */
   2393 			v |= GEM_MAC_XIF_MII_BUF_ENA;
   2394 	} else {
   2395 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2396 			v |= GEM_MAC_XIF_FDPLX_LED;
   2397 		v |= GEM_MAC_XIF_GMII_MODE;
   2398 	}
   2399 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   2400 
   2401 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2402 	    (sc->sc_flags & GEM_LINK) != 0) {
   2403 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
   2404 		    txcfg | GEM_MAC_TX_ENABLE);
   2405 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
   2406 		    rxcfg | GEM_MAC_RX_ENABLE);
   2407 	}
   2408 }
   2409 
   2410 int
   2411 gem_ser_mediachange(struct ifnet *ifp)
   2412 {
   2413 	struct gem_softc *sc = ifp->if_softc;
   2414 	u_int s, t;
   2415 
   2416 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
   2417 		return EINVAL;
   2418 
   2419 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
   2420 	if (s == IFM_AUTO) {
   2421 		if (sc->sc_mii_media != s) {
   2422 #ifdef GEM_DEBUG
   2423 			aprint_debug_dev(&sc->sc_dev, "setting media to auto\n");
   2424 #endif
   2425 			sc->sc_mii_media = s;
   2426 			if (ifp->if_flags & IFF_UP) {
   2427 				gem_pcs_stop(sc, 0);
   2428 				gem_pcs_start(sc);
   2429 			}
   2430 		}
   2431 		return 0;
   2432 	}
   2433 	if (s == IFM_1000_SX) {
   2434 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
   2435 		if (t == IFM_FDX || t == IFM_HDX) {
   2436 			if (sc->sc_mii_media != t) {
   2437 				sc->sc_mii_media = t;
   2438 #ifdef GEM_DEBUG
   2439 				aprint_debug_dev(&sc->sc_dev,
   2440 				    "setting media to 1000baseSX-%s\n",
   2441 				    t == IFM_FDX ? "FDX" : "HDX");
   2442 #endif
   2443 				if (ifp->if_flags & IFF_UP) {
   2444 					gem_pcs_stop(sc, 0);
   2445 					gem_pcs_start(sc);
   2446 				}
   2447 			}
   2448 			return 0;
   2449 		}
   2450 	}
   2451 	return EINVAL;
   2452 }
   2453 
   2454 void
   2455 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2456 {
   2457 	struct gem_softc *sc = ifp->if_softc;
   2458 
   2459 	if ((ifp->if_flags & IFF_UP) == 0)
   2460 		return;
   2461 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2462 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2463 }
   2464 
   2465 static int
   2466 gem_ifflags_cb(struct ethercom *ec)
   2467 {
   2468 	struct ifnet *ifp = &ec->ec_if;
   2469 	struct gem_softc *sc = ifp->if_softc;
   2470 	int change = ifp->if_flags ^ sc->sc_if_flags;
   2471 
   2472 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   2473 		return ENETRESET;
   2474 	else if ((change & IFF_PROMISC) != 0)
   2475 		gem_setladrf(sc);
   2476 	return 0;
   2477 }
   2478 
   2479 /*
   2480  * Process an ioctl request.
   2481  */
   2482 int
   2483 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   2484 {
   2485 	struct gem_softc *sc = ifp->if_softc;
   2486 	int s, error = 0;
   2487 
   2488 	s = splnet();
   2489 
   2490 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2491 		error = 0;
   2492 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2493 			;
   2494 		else if (ifp->if_flags & IFF_RUNNING) {
   2495 			/*
   2496 			 * Multicast list has changed; set the hardware filter
   2497 			 * accordingly.
   2498 			 */
   2499 			gem_setladrf(sc);
   2500 		}
   2501 	}
   2502 
   2503 	/* Try to get things going again */
   2504 	if (ifp->if_flags & IFF_UP)
   2505 		gem_start(ifp);
   2506 	splx(s);
   2507 	return (error);
   2508 }
   2509 
   2510 
   2511 void
   2512 gem_shutdown(void *arg)
   2513 {
   2514 	struct gem_softc *sc = (struct gem_softc *)arg;
   2515 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2516 
   2517 	gem_stop(ifp, 1);
   2518 }
   2519 
   2520 /*
   2521  * Set up the logical address filter.
   2522  */
   2523 void
   2524 gem_setladrf(struct gem_softc *sc)
   2525 {
   2526 	struct ethercom *ec = &sc->sc_ethercom;
   2527 	struct ifnet *ifp = &ec->ec_if;
   2528 	struct ether_multi *enm;
   2529 	struct ether_multistep step;
   2530 	bus_space_tag_t t = sc->sc_bustag;
   2531 	bus_space_handle_t h = sc->sc_h1;
   2532 	u_int32_t crc;
   2533 	u_int32_t hash[16];
   2534 	u_int32_t v;
   2535 	int i;
   2536 
   2537 	/* Get current RX configuration */
   2538 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2539 
   2540 	/*
   2541 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2542 	 * and hash filter.  Depending on the case, the right bit will be
   2543 	 * enabled.
   2544 	 */
   2545 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2546 	    GEM_MAC_RX_PROMISC_GRP);
   2547 
   2548 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2549 		/* Turn on promiscuous mode */
   2550 		v |= GEM_MAC_RX_PROMISCUOUS;
   2551 		ifp->if_flags |= IFF_ALLMULTI;
   2552 		goto chipit;
   2553 	}
   2554 
   2555 	/*
   2556 	 * Set up multicast address filter by passing all multicast addresses
   2557 	 * through a crc generator, and then using the high order 8 bits as an
   2558 	 * index into the 256 bit logical address filter.  The high order 4
   2559 	 * bits selects the word, while the other 4 bits select the bit within
   2560 	 * the word (where bit 0 is the MSB).
   2561 	 */
   2562 
   2563 	/* Clear hash table */
   2564 	memset(hash, 0, sizeof(hash));
   2565 
   2566 	ETHER_FIRST_MULTI(step, ec, enm);
   2567 	while (enm != NULL) {
   2568 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2569 			/*
   2570 			 * We must listen to a range of multicast addresses.
   2571 			 * For now, just accept all multicasts, rather than
   2572 			 * trying to set only those filter bits needed to match
   2573 			 * the range.  (At this time, the only use of address
   2574 			 * ranges is for IP multicast routing, for which the
   2575 			 * range is big enough to require all bits set.)
   2576 			 * XXX should use the address filters for this
   2577 			 */
   2578 			ifp->if_flags |= IFF_ALLMULTI;
   2579 			v |= GEM_MAC_RX_PROMISC_GRP;
   2580 			goto chipit;
   2581 		}
   2582 
   2583 		/* Get the LE CRC32 of the address */
   2584 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2585 
   2586 		/* Just want the 8 most significant bits. */
   2587 		crc >>= 24;
   2588 
   2589 		/* Set the corresponding bit in the filter. */
   2590 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2591 
   2592 		ETHER_NEXT_MULTI(step, enm);
   2593 	}
   2594 
   2595 	v |= GEM_MAC_RX_HASH_FILTER;
   2596 	ifp->if_flags &= ~IFF_ALLMULTI;
   2597 
   2598 	/* Now load the hash table into the chip (if we are using it) */
   2599 	for (i = 0; i < 16; i++) {
   2600 		bus_space_write_4(t, h,
   2601 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2602 		    hash[i]);
   2603 	}
   2604 
   2605 chipit:
   2606 	sc->sc_if_flags = ifp->if_flags;
   2607 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2608 }
   2609 
   2610 #if notyet
   2611 
   2612 /*
   2613  * gem_power:
   2614  *
   2615  *	Power management (suspend/resume) hook.
   2616  */
   2617 void
   2618 gem_power(int why, void *arg)
   2619 {
   2620 	struct gem_softc *sc = arg;
   2621 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2622 	int s;
   2623 
   2624 	s = splnet();
   2625 	switch (why) {
   2626 	case PWR_SUSPEND:
   2627 	case PWR_STANDBY:
   2628 		gem_stop(ifp, 1);
   2629 		if (sc->sc_power != NULL)
   2630 			(*sc->sc_power)(sc, why);
   2631 		break;
   2632 	case PWR_RESUME:
   2633 		if (ifp->if_flags & IFF_UP) {
   2634 			if (sc->sc_power != NULL)
   2635 				(*sc->sc_power)(sc, why);
   2636 			gem_init(ifp);
   2637 		}
   2638 		break;
   2639 	case PWR_SOFTSUSPEND:
   2640 	case PWR_SOFTSTANDBY:
   2641 	case PWR_SOFTRESUME:
   2642 		break;
   2643 	}
   2644 	splx(s);
   2645 }
   2646 #endif
   2647