gem.c revision 1.84 1 /* $NetBSD: gem.c,v 1.84 2009/05/12 14:25:17 cegger Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.84 2009/05/12 14:25:17 cegger Exp $");
41
42 #include "opt_inet.h"
43 #include "bpfilter.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56
57 #include <machine/endian.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
78
79 #include <sys/bus.h>
80 #include <sys/intr.h>
81
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
85
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
88
89 #define TRIES 10000
90
91 static void gem_start(struct ifnet *);
92 static void gem_stop(struct ifnet *, int);
93 int gem_ioctl(struct ifnet *, u_long, void *);
94 void gem_tick(void *);
95 void gem_watchdog(struct ifnet *);
96 void gem_shutdown(void *);
97 void gem_pcs_start(struct gem_softc *sc);
98 void gem_pcs_stop(struct gem_softc *sc, int);
99 int gem_init(struct ifnet *);
100 void gem_init_regs(struct gem_softc *sc);
101 static int gem_ringsize(int sz);
102 static int gem_meminit(struct gem_softc *);
103 void gem_mifinit(struct gem_softc *);
104 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 u_int32_t, u_int32_t);
106 void gem_reset(struct gem_softc *);
107 int gem_reset_rx(struct gem_softc *sc);
108 static void gem_reset_rxdma(struct gem_softc *sc);
109 static void gem_rx_common(struct gem_softc *sc);
110 int gem_reset_tx(struct gem_softc *sc);
111 int gem_disable_rx(struct gem_softc *sc);
112 int gem_disable_tx(struct gem_softc *sc);
113 static void gem_rxdrain(struct gem_softc *sc);
114 int gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void gem_setladrf(struct gem_softc *);
116
117 /* MII methods & callbacks */
118 static int gem_mii_readreg(device_t, int, int);
119 static void gem_mii_writereg(device_t, int, int, int);
120 static void gem_mii_statchg(device_t);
121
122 static int gem_ifflags_cb(struct ethercom *);
123
124 void gem_statuschange(struct gem_softc *);
125
126 int gem_ser_mediachange(struct ifnet *);
127 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
128
129 struct mbuf *gem_get(struct gem_softc *, int, int);
130 int gem_put(struct gem_softc *, int, struct mbuf *);
131 void gem_read(struct gem_softc *, int, int);
132 int gem_pint(struct gem_softc *);
133 int gem_eint(struct gem_softc *, u_int);
134 int gem_rint(struct gem_softc *);
135 int gem_tint(struct gem_softc *);
136 void gem_power(int, void *);
137
138 #ifdef GEM_DEBUG
139 static void gem_txsoft_print(const struct gem_softc *, int, int);
140 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
141 printf x
142 #else
143 #define DPRINTF(sc, x) /* nothing */
144 #endif
145
146 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
147
148
149 /*
150 * gem_attach:
151 *
152 * Attach a Gem interface to the system.
153 */
154 void
155 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
156 {
157 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
158 struct mii_data *mii = &sc->sc_mii;
159 bus_space_tag_t t = sc->sc_bustag;
160 bus_space_handle_t h = sc->sc_h1;
161 struct ifmedia_entry *ifm;
162 int i, error;
163 u_int32_t v;
164 char *nullbuf;
165
166 /* Make sure the chip is stopped. */
167 ifp->if_softc = sc;
168 gem_reset(sc);
169
170 /*
171 * Allocate the control data structures, and create and load the
172 * DMA map for it. gem_control_data is 9216 bytes, we have space for
173 * the padding buffer in the bus_dmamem_alloc()'d memory.
174 */
175 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
176 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
177 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
178 aprint_error_dev(&sc->sc_dev,
179 "unable to allocate control data, error = %d\n",
180 error);
181 goto fail_0;
182 }
183
184 /* XXX should map this in with correct endianness */
185 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
186 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
187 BUS_DMA_COHERENT)) != 0) {
188 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
189 error);
190 goto fail_1;
191 }
192
193 nullbuf =
194 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
195
196 if ((error = bus_dmamap_create(sc->sc_dmatag,
197 sizeof(struct gem_control_data), 1,
198 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
199 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
200 "error = %d\n", error);
201 goto fail_2;
202 }
203
204 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
205 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
206 0)) != 0) {
207 aprint_error_dev(&sc->sc_dev,
208 "unable to load control data DMA map, error = %d\n",
209 error);
210 goto fail_3;
211 }
212
213 memset(nullbuf, 0, ETHER_MIN_TX);
214 if ((error = bus_dmamap_create(sc->sc_dmatag,
215 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
216 aprint_error_dev(&sc->sc_dev, "unable to create padding DMA map, "
217 "error = %d\n", error);
218 goto fail_4;
219 }
220
221 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
222 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
223 aprint_error_dev(&sc->sc_dev,
224 "unable to load padding DMA map, error = %d\n",
225 error);
226 goto fail_5;
227 }
228
229 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
230 BUS_DMASYNC_PREWRITE);
231
232 /*
233 * Initialize the transmit job descriptors.
234 */
235 SIMPLEQ_INIT(&sc->sc_txfreeq);
236 SIMPLEQ_INIT(&sc->sc_txdirtyq);
237
238 /*
239 * Create the transmit buffer DMA maps.
240 */
241 for (i = 0; i < GEM_TXQUEUELEN; i++) {
242 struct gem_txsoft *txs;
243
244 txs = &sc->sc_txsoft[i];
245 txs->txs_mbuf = NULL;
246 if ((error = bus_dmamap_create(sc->sc_dmatag,
247 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
248 ETHER_MAX_LEN_JUMBO, 0, 0,
249 &txs->txs_dmamap)) != 0) {
250 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
251 "error = %d\n", i, error);
252 goto fail_6;
253 }
254 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
255 }
256
257 /*
258 * Create the receive buffer DMA maps.
259 */
260 for (i = 0; i < GEM_NRXDESC; i++) {
261 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
262 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
263 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
264 "error = %d\n", i, error);
265 goto fail_7;
266 }
267 sc->sc_rxsoft[i].rxs_mbuf = NULL;
268 }
269
270 /* Initialize ifmedia structures and MII info */
271 mii->mii_ifp = ifp;
272 mii->mii_readreg = gem_mii_readreg;
273 mii->mii_writereg = gem_mii_writereg;
274 mii->mii_statchg = gem_mii_statchg;
275
276 sc->sc_ethercom.ec_mii = mii;
277
278 /*
279 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
280 * Section 3.2.1 `Initialization Sequence'.
281 * However, we can't assume SERDES or Serialink if neither
282 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
283 * being set, as both are set on Sun X1141A (with SERDES). So,
284 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
285 * Also, for Apple variants with 2 PHY's, we prefer the external
286 * PHY over the internal PHY.
287 */
288 gem_mifinit(sc);
289
290 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
291 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
292 ether_mediastatus);
293 mii_attach(&sc->sc_dev, mii, 0xffffffff,
294 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
295 if (LIST_EMPTY(&mii->mii_phys)) {
296 /* No PHY attached */
297 aprint_error_dev(&sc->sc_dev, "PHY probe failed\n");
298 goto fail_7;
299 } else {
300 struct mii_softc *child;
301
302 /*
303 * Walk along the list of attached MII devices and
304 * establish an `MII instance' to `PHY number'
305 * mapping.
306 */
307 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
308 /*
309 * Note: we support just one PHY: the internal
310 * or external MII is already selected for us
311 * by the GEM_MIF_CONFIG register.
312 */
313 if (child->mii_phy > 1 || child->mii_inst > 0) {
314 aprint_error_dev(&sc->sc_dev,
315 "cannot accommodate MII device"
316 " %s at PHY %d, instance %d\n",
317 device_xname(child->mii_dev),
318 child->mii_phy, child->mii_inst);
319 continue;
320 }
321 sc->sc_phys[child->mii_inst] = child->mii_phy;
322 }
323
324 /*
325 * Now select and activate the PHY we will use.
326 *
327 * The order of preference is External (MDI1),
328 * then Internal (MDI0),
329 */
330 if (sc->sc_phys[1]) {
331 #ifdef GEM_DEBUG
332 aprint_debug_dev(&sc->sc_dev, "using external PHY\n");
333 #endif
334 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
335 } else {
336 #ifdef GEM_DEBUG
337 aprint_debug_dev(&sc->sc_dev, "using internal PHY\n");
338 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
339 #endif
340 }
341 bus_space_write_4(t, h, GEM_MIF_CONFIG,
342 sc->sc_mif_config);
343 if (sc->sc_variant != GEM_SUN_ERI)
344 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
345 GEM_MII_DATAPATH_MII);
346
347 /*
348 * XXX - we can really do the following ONLY if the
349 * PHY indeed has the auto negotiation capability!!
350 */
351 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
352 }
353 } else {
354 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
355 gem_ser_mediastatus);
356 /* SERDES or Serialink */
357 if (sc->sc_flags & GEM_SERDES) {
358 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
359 GEM_MII_DATAPATH_SERDES);
360 } else {
361 sc->sc_flags |= GEM_SERIAL;
362 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
363 GEM_MII_DATAPATH_SERIAL);
364 }
365
366 aprint_normal_dev(&sc->sc_dev, "using external PCS %s: ",
367 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
368
369 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
370 /* Check for FDX and HDX capabilities */
371 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
372 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
373 ifmedia_add(&sc->sc_mii.mii_media,
374 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
375 aprint_normal("1000baseSX-FDX, ");
376 }
377 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
378 ifmedia_add(&sc->sc_mii.mii_media,
379 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
380 aprint_normal("1000baseSX-HDX, ");
381 }
382 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
383 sc->sc_mii_media = IFM_AUTO;
384 aprint_normal("auto\n");
385
386 gem_pcs_stop(sc, 1);
387 }
388
389 /*
390 * From this point forward, the attachment cannot fail. A failure
391 * before this point releases all resources that may have been
392 * allocated.
393 */
394
395 /* Announce ourselves. */
396 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s",
397 ether_sprintf(enaddr));
398
399 /* Get RX FIFO size */
400 sc->sc_rxfifosize = 64 *
401 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
402 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
403
404 /* Get TX FIFO size */
405 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
406 aprint_normal(", %uKB TX fifo\n", v / 16);
407
408 /* Initialize ifnet structure. */
409 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
410 ifp->if_softc = sc;
411 ifp->if_flags =
412 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
413 sc->sc_if_flags = ifp->if_flags;
414 /*
415 * The GEM hardware supports basic TCP checksum offloading only.
416 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
417 * have bugs in the receive checksum, so don't enable it for now.
418 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
419 (GEM_IS_APPLE(sc) &&
420 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
421 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
422 */
423 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
424 ifp->if_start = gem_start;
425 ifp->if_ioctl = gem_ioctl;
426 ifp->if_watchdog = gem_watchdog;
427 ifp->if_stop = gem_stop;
428 ifp->if_init = gem_init;
429 IFQ_SET_READY(&ifp->if_snd);
430
431 /*
432 * If we support GigE media, we support jumbo frames too.
433 * Unless we are Apple.
434 */
435 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
436 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
437 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
438 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
439 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
440 if (!GEM_IS_APPLE(sc))
441 sc->sc_ethercom.ec_capabilities
442 |= ETHERCAP_JUMBO_MTU;
443 sc->sc_flags |= GEM_GIGABIT;
444 break;
445 }
446 }
447
448 /* claim 802.1q capability */
449 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
450
451 /* Attach the interface. */
452 if_attach(ifp);
453 ether_ifattach(ifp, enaddr);
454 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
455
456 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
457 if (sc->sc_sh == NULL)
458 panic("gem_config: can't establish shutdownhook");
459
460 #if NRND > 0
461 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
462 RND_TYPE_NET, 0);
463 #endif
464
465 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
466 NULL, device_xname(&sc->sc_dev), "interrupts");
467 #ifdef GEM_COUNTERS
468 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
469 &sc->sc_ev_intr, device_xname(&sc->sc_dev), "tx interrupts");
470 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
471 &sc->sc_ev_intr, device_xname(&sc->sc_dev), "rx interrupts");
472 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
473 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx ring full");
474 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
475 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx malloc failure");
476 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
477 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 0desc");
478 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
479 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 1desc");
480 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
481 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 2desc");
482 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
483 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx 3desc");
484 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
485 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >3desc");
486 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
487 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >7desc");
488 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
489 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >15desc");
490 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
491 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >31desc");
492 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
493 &sc->sc_ev_rxint, device_xname(&sc->sc_dev), "rx >63desc");
494 #endif
495
496 #if notyet
497 /*
498 * Add a suspend hook to make sure we come back up after a
499 * resume.
500 */
501 sc->sc_powerhook = powerhook_establish(device_xname(&sc->sc_dev),
502 gem_power, sc);
503 if (sc->sc_powerhook == NULL)
504 aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish power hook\n");
505 #endif
506
507 callout_init(&sc->sc_tick_ch, 0);
508 return;
509
510 /*
511 * Free any resources we've allocated during the failed attach
512 * attempt. Do this in reverse order and fall through.
513 */
514 fail_7:
515 for (i = 0; i < GEM_NRXDESC; i++) {
516 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
517 bus_dmamap_destroy(sc->sc_dmatag,
518 sc->sc_rxsoft[i].rxs_dmamap);
519 }
520 fail_6:
521 for (i = 0; i < GEM_TXQUEUELEN; i++) {
522 if (sc->sc_txsoft[i].txs_dmamap != NULL)
523 bus_dmamap_destroy(sc->sc_dmatag,
524 sc->sc_txsoft[i].txs_dmamap);
525 }
526 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
527 fail_5:
528 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
529 fail_4:
530 bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
531 fail_3:
532 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
533 fail_2:
534 bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
535 sizeof(struct gem_control_data));
536 fail_1:
537 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
538 fail_0:
539 return;
540 }
541
542
543 void
544 gem_tick(void *arg)
545 {
546 struct gem_softc *sc = arg;
547 int s;
548
549 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
550 /*
551 * We have to reset everything if we failed to get a
552 * PCS interrupt. Restarting the callout is handled
553 * in gem_pcs_start().
554 */
555 gem_init(&sc->sc_ethercom.ec_if);
556 } else {
557 s = splnet();
558 mii_tick(&sc->sc_mii);
559 splx(s);
560 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
561 }
562 }
563
564 static int
565 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
566 {
567 int i;
568 u_int32_t reg;
569
570 for (i = TRIES; i--; DELAY(100)) {
571 reg = bus_space_read_4(sc->sc_bustag, h, r);
572 if ((reg & clr) == 0 && (reg & set) == set)
573 return (1);
574 }
575 return (0);
576 }
577
578 void
579 gem_reset(struct gem_softc *sc)
580 {
581 bus_space_tag_t t = sc->sc_bustag;
582 bus_space_handle_t h = sc->sc_h2;
583 int s;
584
585 s = splnet();
586 DPRINTF(sc, ("%s: gem_reset\n", device_xname(&sc->sc_dev)));
587 gem_reset_rx(sc);
588 gem_reset_tx(sc);
589
590 /* Do a full reset */
591 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
592 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
593 aprint_error_dev(&sc->sc_dev, "cannot reset device\n");
594 splx(s);
595 }
596
597
598 /*
599 * gem_rxdrain:
600 *
601 * Drain the receive queue.
602 */
603 static void
604 gem_rxdrain(struct gem_softc *sc)
605 {
606 struct gem_rxsoft *rxs;
607 int i;
608
609 for (i = 0; i < GEM_NRXDESC; i++) {
610 rxs = &sc->sc_rxsoft[i];
611 if (rxs->rxs_mbuf != NULL) {
612 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
613 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
614 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
615 m_freem(rxs->rxs_mbuf);
616 rxs->rxs_mbuf = NULL;
617 }
618 }
619 }
620
621 /*
622 * Reset the whole thing.
623 */
624 static void
625 gem_stop(struct ifnet *ifp, int disable)
626 {
627 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
628 struct gem_txsoft *txs;
629
630 DPRINTF(sc, ("%s: gem_stop\n", device_xname(&sc->sc_dev)));
631
632 callout_stop(&sc->sc_tick_ch);
633 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
634 gem_pcs_stop(sc, disable);
635 else
636 mii_down(&sc->sc_mii);
637
638 /* XXX - Should we reset these instead? */
639 gem_disable_tx(sc);
640 gem_disable_rx(sc);
641
642 /*
643 * Release any queued transmit buffers.
644 */
645 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
646 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
647 if (txs->txs_mbuf != NULL) {
648 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
649 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
650 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
651 m_freem(txs->txs_mbuf);
652 txs->txs_mbuf = NULL;
653 }
654 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
655 }
656
657 /*
658 * Mark the interface down and cancel the watchdog timer.
659 */
660 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
661 sc->sc_if_flags = ifp->if_flags;
662 ifp->if_timer = 0;
663
664 if (disable)
665 gem_rxdrain(sc);
666 }
667
668
669 /*
670 * Reset the receiver
671 */
672 int
673 gem_reset_rx(struct gem_softc *sc)
674 {
675 bus_space_tag_t t = sc->sc_bustag;
676 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
677
678 /*
679 * Resetting while DMA is in progress can cause a bus hang, so we
680 * disable DMA first.
681 */
682 gem_disable_rx(sc);
683 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
684 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
685 /* Wait till it finishes */
686 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
687 aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n");
688
689 /* Finally, reset the ERX */
690 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
691 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
692 /* Wait till it finishes */
693 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
694 aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n");
695 return (1);
696 }
697 return (0);
698 }
699
700
701 /*
702 * Reset the receiver DMA engine.
703 *
704 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
705 * etc in order to reset the receiver DMA engine only and not do a full
706 * reset which amongst others also downs the link and clears the FIFOs.
707 */
708 static void
709 gem_reset_rxdma(struct gem_softc *sc)
710 {
711 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
712 bus_space_tag_t t = sc->sc_bustag;
713 bus_space_handle_t h = sc->sc_h1;
714 int i;
715
716 if (gem_reset_rx(sc) != 0) {
717 gem_init(ifp);
718 return;
719 }
720 for (i = 0; i < GEM_NRXDESC; i++)
721 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
722 GEM_UPDATE_RXDESC(sc, i);
723 sc->sc_rxptr = 0;
724 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
725 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
726
727 /* Reprogram Descriptor Ring Base Addresses */
728 /* NOTE: we use only 32-bit DMA addresses here. */
729 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
730 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
731
732 /* Redo ERX Configuration */
733 gem_rx_common(sc);
734
735 /* Give the reciever a swift kick */
736 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
737 }
738
739 /*
740 * Common RX configuration for gem_init() and gem_reset_rxdma().
741 */
742 static void
743 gem_rx_common(struct gem_softc *sc)
744 {
745 bus_space_tag_t t = sc->sc_bustag;
746 bus_space_handle_t h = sc->sc_h1;
747 u_int32_t v;
748
749 /* Encode Receive Descriptor ring size: four possible values */
750 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
751
752 /* Set receive h/w checksum offset */
753 #ifdef INET
754 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
755 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
756 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
757 #endif
758
759 /* Enable RX DMA */
760 bus_space_write_4(t, h, GEM_RX_CONFIG,
761 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
762 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
763
764 /*
765 * The following value is for an OFF Threshold of about 3/4 full
766 * and an ON Threshold of 1/4 full.
767 */
768 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
769 (3 * sc->sc_rxfifosize / 256) |
770 ((sc->sc_rxfifosize / 256) << 12));
771 bus_space_write_4(t, h, GEM_RX_BLANKING,
772 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
773 }
774
775 /*
776 * Reset the transmitter
777 */
778 int
779 gem_reset_tx(struct gem_softc *sc)
780 {
781 bus_space_tag_t t = sc->sc_bustag;
782 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
783
784 /*
785 * Resetting while DMA is in progress can cause a bus hang, so we
786 * disable DMA first.
787 */
788 gem_disable_tx(sc);
789 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
790 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
791 /* Wait till it finishes */
792 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
793 aprint_error_dev(&sc->sc_dev, "cannot disable read dma\n");
794 /* Wait 5ms extra. */
795 delay(5000);
796
797 /* Finally, reset the ETX */
798 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
799 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
800 /* Wait till it finishes */
801 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
802 aprint_error_dev(&sc->sc_dev, "cannot reset receiver\n");
803 return (1);
804 }
805 return (0);
806 }
807
808 /*
809 * disable receiver.
810 */
811 int
812 gem_disable_rx(struct gem_softc *sc)
813 {
814 bus_space_tag_t t = sc->sc_bustag;
815 bus_space_handle_t h = sc->sc_h1;
816 u_int32_t cfg;
817
818 /* Flip the enable bit */
819 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
820 cfg &= ~GEM_MAC_RX_ENABLE;
821 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
822 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
823 /* Wait for it to finish */
824 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
825 }
826
827 /*
828 * disable transmitter.
829 */
830 int
831 gem_disable_tx(struct gem_softc *sc)
832 {
833 bus_space_tag_t t = sc->sc_bustag;
834 bus_space_handle_t h = sc->sc_h1;
835 u_int32_t cfg;
836
837 /* Flip the enable bit */
838 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
839 cfg &= ~GEM_MAC_TX_ENABLE;
840 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
841 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
842 /* Wait for it to finish */
843 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
844 }
845
846 /*
847 * Initialize interface.
848 */
849 int
850 gem_meminit(struct gem_softc *sc)
851 {
852 struct gem_rxsoft *rxs;
853 int i, error;
854
855 /*
856 * Initialize the transmit descriptor ring.
857 */
858 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
859 for (i = 0; i < GEM_NTXDESC; i++) {
860 sc->sc_txdescs[i].gd_flags = 0;
861 sc->sc_txdescs[i].gd_addr = 0;
862 }
863 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
864 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
865 sc->sc_txfree = GEM_NTXDESC-1;
866 sc->sc_txnext = 0;
867 sc->sc_txwin = 0;
868
869 /*
870 * Initialize the receive descriptor and receive job
871 * descriptor rings.
872 */
873 for (i = 0; i < GEM_NRXDESC; i++) {
874 rxs = &sc->sc_rxsoft[i];
875 if (rxs->rxs_mbuf == NULL) {
876 if ((error = gem_add_rxbuf(sc, i)) != 0) {
877 aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
878 "buffer %d, error = %d\n",
879 i, error);
880 /*
881 * XXX Should attempt to run with fewer receive
882 * XXX buffers instead of just failing.
883 */
884 gem_rxdrain(sc);
885 return (1);
886 }
887 } else
888 GEM_INIT_RXDESC(sc, i);
889 }
890 sc->sc_rxptr = 0;
891 sc->sc_meminited = 1;
892 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
893 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
894
895 return (0);
896 }
897
898 static int
899 gem_ringsize(int sz)
900 {
901 switch (sz) {
902 case 32:
903 return GEM_RING_SZ_32;
904 case 64:
905 return GEM_RING_SZ_64;
906 case 128:
907 return GEM_RING_SZ_128;
908 case 256:
909 return GEM_RING_SZ_256;
910 case 512:
911 return GEM_RING_SZ_512;
912 case 1024:
913 return GEM_RING_SZ_1024;
914 case 2048:
915 return GEM_RING_SZ_2048;
916 case 4096:
917 return GEM_RING_SZ_4096;
918 case 8192:
919 return GEM_RING_SZ_8192;
920 default:
921 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
922 return GEM_RING_SZ_32;
923 }
924 }
925
926
927 /*
928 * Start PCS
929 */
930 void
931 gem_pcs_start(struct gem_softc *sc)
932 {
933 bus_space_tag_t t = sc->sc_bustag;
934 bus_space_handle_t h = sc->sc_h1;
935 uint32_t v;
936
937 #ifdef GEM_DEBUG
938 aprint_debug_dev(&sc->sc_dev, "gem_pcs_start()\n");
939 #endif
940
941 /*
942 * Set up. We must disable the MII before modifying the
943 * GEM_MII_ANAR register
944 */
945 if (sc->sc_flags & GEM_SERDES) {
946 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
947 GEM_MII_DATAPATH_SERDES);
948 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
949 GEM_MII_SLINK_LOOPBACK);
950 } else {
951 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
952 GEM_MII_DATAPATH_SERIAL);
953 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
954 }
955 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
956 v = bus_space_read_4(t, h, GEM_MII_ANAR);
957 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
958 if (sc->sc_mii_media == IFM_AUTO)
959 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
960 else if (sc->sc_mii_media == IFM_FDX) {
961 v |= GEM_MII_ANEG_FUL_DUPLX;
962 v &= ~GEM_MII_ANEG_HLF_DUPLX;
963 } else if (sc->sc_mii_media == IFM_HDX) {
964 v &= ~GEM_MII_ANEG_FUL_DUPLX;
965 v |= GEM_MII_ANEG_HLF_DUPLX;
966 }
967
968 /* Configure link. */
969 bus_space_write_4(t, h, GEM_MII_ANAR, v);
970 bus_space_write_4(t, h, GEM_MII_CONTROL,
971 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
972 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
973 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
974
975 /* Start the 10 second timer */
976 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
977 }
978
979 /*
980 * Stop PCS
981 */
982 void
983 gem_pcs_stop(struct gem_softc *sc, int disable)
984 {
985 bus_space_tag_t t = sc->sc_bustag;
986 bus_space_handle_t h = sc->sc_h1;
987
988 #ifdef GEM_DEBUG
989 aprint_debug_dev(&sc->sc_dev, "gem_pcs_stop()\n");
990 #endif
991
992 /* Tell link partner that we're going away */
993 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
994
995 /*
996 * Disable PCS MII. The documentation suggests that setting
997 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
998 * negotiation will shut down the link. However, it appears
999 * that we also need to unset the datapath mode.
1000 */
1001 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1002 bus_space_write_4(t, h, GEM_MII_CONTROL,
1003 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1004 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1005 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1006
1007 if (disable) {
1008 if (sc->sc_flags & GEM_SERDES)
1009 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1010 GEM_MII_SLINK_POWER_OFF);
1011 else
1012 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1013 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1014 }
1015
1016 sc->sc_flags &= ~GEM_LINK;
1017 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1018 sc->sc_mii.mii_media_status = IFM_AVALID;
1019 }
1020
1021
1022 /*
1023 * Initialization of interface; set up initialization block
1024 * and transmit/receive descriptor rings.
1025 */
1026 int
1027 gem_init(struct ifnet *ifp)
1028 {
1029 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1030 bus_space_tag_t t = sc->sc_bustag;
1031 bus_space_handle_t h = sc->sc_h1;
1032 int rc = 0, s;
1033 u_int max_frame_size;
1034 u_int32_t v;
1035
1036 s = splnet();
1037
1038 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(&sc->sc_dev)));
1039 /*
1040 * Initialization sequence. The numbered steps below correspond
1041 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1042 * Channel Engine manual (part of the PCIO manual).
1043 * See also the STP2002-STQ document from Sun Microsystems.
1044 */
1045
1046 /* step 1 & 2. Reset the Ethernet Channel */
1047 gem_stop(ifp, 0);
1048 gem_reset(sc);
1049 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(&sc->sc_dev)));
1050
1051 /* Re-initialize the MIF */
1052 gem_mifinit(sc);
1053
1054 /* Set up correct datapath for non-SERDES/Serialink */
1055 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1056 sc->sc_variant != GEM_SUN_ERI)
1057 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1058 GEM_MII_DATAPATH_MII);
1059
1060 /* Call MI reset function if any */
1061 if (sc->sc_hwreset)
1062 (*sc->sc_hwreset)(sc);
1063
1064 /* step 3. Setup data structures in host memory */
1065 if (gem_meminit(sc) != 0)
1066 return 1;
1067
1068 /* step 4. TX MAC registers & counters */
1069 gem_init_regs(sc);
1070 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1071 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1072 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1073 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1074 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1075 max_frame_size|/* burst size */(0x2000<<16));
1076
1077 /* step 5. RX MAC registers & counters */
1078 gem_setladrf(sc);
1079
1080 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1081 /* NOTE: we use only 32-bit DMA addresses here. */
1082 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1083 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1084
1085 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1086 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1087
1088 /* step 8. Global Configuration & Interrupt Mask */
1089 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1090 v = GEM_INTR_PCS;
1091 else
1092 v = GEM_INTR_MIF;
1093 bus_space_write_4(t, h, GEM_INTMASK,
1094 ~(GEM_INTR_TX_INTME |
1095 GEM_INTR_TX_EMPTY |
1096 GEM_INTR_TX_MAC |
1097 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
1098 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
1099 GEM_INTR_BERR | v));
1100 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1101 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1102 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1103 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1104 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1105
1106 /* step 9. ETX Configuration: use mostly default values */
1107
1108 /* Enable TX DMA */
1109 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1110 bus_space_write_4(t, h, GEM_TX_CONFIG,
1111 v|GEM_TX_CONFIG_TXDMA_EN|
1112 ((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
1113 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1114
1115 /* step 10. ERX Configuration */
1116 gem_rx_common(sc);
1117
1118 /* step 11. Configure Media */
1119 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1120 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1121 goto out;
1122
1123 /* step 12. RX_MAC Configuration Register */
1124 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1125 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1126 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1127
1128 /* step 14. Issue Transmit Pending command */
1129
1130 /* Call MI initialization function if any */
1131 if (sc->sc_hwinit)
1132 (*sc->sc_hwinit)(sc);
1133
1134
1135 /* step 15. Give the reciever a swift kick */
1136 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1137
1138 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1139 /* Configure PCS */
1140 gem_pcs_start(sc);
1141 else
1142 /* Start the one second timer. */
1143 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1144
1145 sc->sc_flags &= ~GEM_LINK;
1146 ifp->if_flags |= IFF_RUNNING;
1147 ifp->if_flags &= ~IFF_OACTIVE;
1148 ifp->if_timer = 0;
1149 sc->sc_if_flags = ifp->if_flags;
1150 out:
1151 splx(s);
1152
1153 return (0);
1154 }
1155
1156 void
1157 gem_init_regs(struct gem_softc *sc)
1158 {
1159 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1160 bus_space_tag_t t = sc->sc_bustag;
1161 bus_space_handle_t h = sc->sc_h1;
1162 const u_char *laddr = CLLADDR(ifp->if_sadl);
1163 u_int32_t v;
1164
1165 /* These regs are not cleared on reset */
1166 if (!sc->sc_inited) {
1167
1168 /* Load recommended values */
1169 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1170 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1171 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1172
1173 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1174 /* Max frame and max burst size */
1175 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1176 ETHER_MAX_LEN | (0x2000<<16));
1177
1178 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1179 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1180 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1181 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1182 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1183 ((laddr[5]<<8)|laddr[4])&0x3ff);
1184
1185 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1186 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1187 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1188 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1189
1190 /* MAC control addr set to 01:80:c2:00:00:01 */
1191 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1192 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1193 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1194
1195 /* MAC filter addr set to 0:0:0:0:0:0 */
1196 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1197 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1198 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1199
1200 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1201 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1202
1203 sc->sc_inited = 1;
1204 }
1205
1206 /* Counters need to be zeroed */
1207 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1208 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1209 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1210 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1211 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1212 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1213 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1214 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1215 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1216 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1217 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1218
1219 /* Set XOFF PAUSE time. */
1220 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1221
1222 /*
1223 * Set the internal arbitration to "infinite" bursts of the
1224 * maximum length of 31 * 64 bytes so DMA transfers aren't
1225 * split up in cache line size chunks. This greatly improves
1226 * especially RX performance.
1227 * Enable silicon bug workarounds for the Apple variants.
1228 */
1229 bus_space_write_4(t, h, GEM_CONFIG,
1230 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1231 ((sc->sc_flags & GEM_PCI) ?
1232 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1233 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1234
1235 /*
1236 * Set the station address.
1237 */
1238 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1239 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1240 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1241
1242 /*
1243 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1244 */
1245 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1246 v = GEM_MAC_XIF_TX_MII_ENA;
1247 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1248 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1249 v |= GEM_MAC_XIF_FDPLX_LED;
1250 if (sc->sc_flags & GEM_GIGABIT)
1251 v |= GEM_MAC_XIF_GMII_MODE;
1252 }
1253 } else {
1254 v |= GEM_MAC_XIF_GMII_MODE;
1255 }
1256 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1257 }
1258
1259 #ifdef GEM_DEBUG
1260 static void
1261 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1262 {
1263 int i;
1264
1265 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1266 printf("descriptor %d:\t", i);
1267 printf("gd_flags: 0x%016" PRIx64 "\t",
1268 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1269 printf("gd_addr: 0x%016" PRIx64 "\n",
1270 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1271 if (i == lastdesc)
1272 break;
1273 }
1274 }
1275 #endif
1276
1277 static void
1278 gem_start(struct ifnet *ifp)
1279 {
1280 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1281 struct mbuf *m0, *m;
1282 struct gem_txsoft *txs;
1283 bus_dmamap_t dmamap;
1284 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1285 uint64_t flags = 0;
1286
1287 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1288 return;
1289
1290 /*
1291 * Remember the previous number of free descriptors and
1292 * the first descriptor we'll use.
1293 */
1294 ofree = sc->sc_txfree;
1295 firsttx = sc->sc_txnext;
1296
1297 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1298 device_xname(&sc->sc_dev), ofree, firsttx));
1299
1300 /*
1301 * Loop through the send queue, setting up transmit descriptors
1302 * until we drain the queue, or use up all available transmit
1303 * descriptors.
1304 */
1305 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1306 sc->sc_txfree != 0) {
1307 /*
1308 * Grab a packet off the queue.
1309 */
1310 IFQ_POLL(&ifp->if_snd, m0);
1311 if (m0 == NULL)
1312 break;
1313 m = NULL;
1314
1315 dmamap = txs->txs_dmamap;
1316
1317 /*
1318 * Load the DMA map. If this fails, the packet either
1319 * didn't fit in the alloted number of segments, or we were
1320 * short on resources. In this case, we'll copy and try
1321 * again.
1322 */
1323 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1324 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1325 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1326 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1327 if (m0->m_pkthdr.len > MCLBYTES) {
1328 aprint_error_dev(&sc->sc_dev, "unable to allocate jumbo Tx "
1329 "cluster\n");
1330 IFQ_DEQUEUE(&ifp->if_snd, m0);
1331 m_freem(m0);
1332 continue;
1333 }
1334 MGETHDR(m, M_DONTWAIT, MT_DATA);
1335 if (m == NULL) {
1336 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
1337 break;
1338 }
1339 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1340 if (m0->m_pkthdr.len > MHLEN) {
1341 MCLGET(m, M_DONTWAIT);
1342 if ((m->m_flags & M_EXT) == 0) {
1343 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
1344 "cluster\n");
1345 m_freem(m);
1346 break;
1347 }
1348 }
1349 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1350 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1351 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1352 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1353 if (error) {
1354 aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
1355 "error = %d\n", error);
1356 break;
1357 }
1358 }
1359
1360 /*
1361 * Ensure we have enough descriptors free to describe
1362 * the packet.
1363 */
1364 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1365 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1366 /*
1367 * Not enough free descriptors to transmit this
1368 * packet. We haven't committed to anything yet,
1369 * so just unload the DMA map, put the packet
1370 * back on the queue, and punt. Notify the upper
1371 * layer that there are no more slots left.
1372 *
1373 * XXX We could allocate an mbuf and copy, but
1374 * XXX it is worth it?
1375 */
1376 ifp->if_flags |= IFF_OACTIVE;
1377 sc->sc_if_flags = ifp->if_flags;
1378 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1379 if (m != NULL)
1380 m_freem(m);
1381 break;
1382 }
1383
1384 IFQ_DEQUEUE(&ifp->if_snd, m0);
1385 if (m != NULL) {
1386 m_freem(m0);
1387 m0 = m;
1388 }
1389
1390 /*
1391 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1392 */
1393
1394 /* Sync the DMA map. */
1395 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1396 BUS_DMASYNC_PREWRITE);
1397
1398 /*
1399 * Initialize the transmit descriptors.
1400 */
1401 for (nexttx = sc->sc_txnext, seg = 0;
1402 seg < dmamap->dm_nsegs;
1403 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1404
1405 /*
1406 * If this is the first descriptor we're
1407 * enqueueing, set the start of packet flag,
1408 * and the checksum stuff if we want the hardware
1409 * to do it.
1410 */
1411 sc->sc_txdescs[nexttx].gd_addr =
1412 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1413 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1414 if (nexttx == firsttx) {
1415 flags |= GEM_TD_START_OF_PACKET;
1416 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1417 sc->sc_txwin = 0;
1418 flags |= GEM_TD_INTERRUPT_ME;
1419 }
1420
1421 #ifdef INET
1422 /* h/w checksum */
1423 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1424 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1425 struct ether_header *eh;
1426 uint16_t offset, start;
1427
1428 eh = mtod(m0, struct ether_header *);
1429 switch (ntohs(eh->ether_type)) {
1430 case ETHERTYPE_IP:
1431 start = ETHER_HDR_LEN;
1432 break;
1433 case ETHERTYPE_VLAN:
1434 start = ETHER_HDR_LEN +
1435 ETHER_VLAN_ENCAP_LEN;
1436 break;
1437 default:
1438 /* unsupported, drop it */
1439 m_free(m0);
1440 continue;
1441 }
1442 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1443 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1444 flags |= (start <<
1445 GEM_TD_CXSUM_STARTSHFT) |
1446 (offset <<
1447 GEM_TD_CXSUM_STUFFSHFT) |
1448 GEM_TD_CXSUM_ENABLE;
1449 }
1450 #endif
1451 }
1452 if (seg == dmamap->dm_nsegs - 1) {
1453 flags |= GEM_TD_END_OF_PACKET;
1454 } else {
1455 /* last flag set outside of loop */
1456 sc->sc_txdescs[nexttx].gd_flags =
1457 GEM_DMA_WRITE(sc, flags);
1458 }
1459 lasttx = nexttx;
1460 }
1461 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1462 /* add padding buffer at end of chain */
1463 flags &= ~GEM_TD_END_OF_PACKET;
1464 sc->sc_txdescs[lasttx].gd_flags =
1465 GEM_DMA_WRITE(sc, flags);
1466
1467 sc->sc_txdescs[nexttx].gd_addr =
1468 GEM_DMA_WRITE(sc,
1469 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1470 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1471 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1472 lasttx = nexttx;
1473 nexttx = GEM_NEXTTX(nexttx);
1474 seg++;
1475 }
1476 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1477
1478 KASSERT(lasttx != -1);
1479
1480 /*
1481 * Store a pointer to the packet so we can free it later,
1482 * and remember what txdirty will be once the packet is
1483 * done.
1484 */
1485 txs->txs_mbuf = m0;
1486 txs->txs_firstdesc = sc->sc_txnext;
1487 txs->txs_lastdesc = lasttx;
1488 txs->txs_ndescs = seg;
1489
1490 #ifdef GEM_DEBUG
1491 if (ifp->if_flags & IFF_DEBUG) {
1492 printf(" gem_start %p transmit chain:\n", txs);
1493 gem_txsoft_print(sc, txs->txs_firstdesc,
1494 txs->txs_lastdesc);
1495 }
1496 #endif
1497
1498 /* Sync the descriptors we're using. */
1499 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1500 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1501
1502 /* Advance the tx pointer. */
1503 sc->sc_txfree -= txs->txs_ndescs;
1504 sc->sc_txnext = nexttx;
1505
1506 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1507 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1508
1509 #if NBPFILTER > 0
1510 /*
1511 * Pass the packet to any BPF listeners.
1512 */
1513 if (ifp->if_bpf)
1514 bpf_mtap(ifp->if_bpf, m0);
1515 #endif /* NBPFILTER > 0 */
1516 }
1517
1518 if (txs == NULL || sc->sc_txfree == 0) {
1519 /* No more slots left; notify upper layer. */
1520 ifp->if_flags |= IFF_OACTIVE;
1521 sc->sc_if_flags = ifp->if_flags;
1522 }
1523
1524 if (sc->sc_txfree != ofree) {
1525 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1526 device_xname(&sc->sc_dev), lasttx, firsttx));
1527 /*
1528 * The entire packet chain is set up.
1529 * Kick the transmitter.
1530 */
1531 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1532 device_xname(&sc->sc_dev), nexttx));
1533 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1534 sc->sc_txnext);
1535
1536 /* Set a watchdog timer in case the chip flakes out. */
1537 ifp->if_timer = 5;
1538 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1539 device_xname(&sc->sc_dev), ifp->if_timer));
1540 }
1541 }
1542
1543 /*
1544 * Transmit interrupt.
1545 */
1546 int
1547 gem_tint(struct gem_softc *sc)
1548 {
1549 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1550 bus_space_tag_t t = sc->sc_bustag;
1551 bus_space_handle_t mac = sc->sc_h1;
1552 struct gem_txsoft *txs;
1553 int txlast;
1554 int progress = 0;
1555 u_int32_t v;
1556
1557 DPRINTF(sc, ("%s: gem_tint\n", device_xname(&sc->sc_dev)));
1558
1559 /* Unload collision counters ... */
1560 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1561 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1562 ifp->if_collisions += v +
1563 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1564 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1565 ifp->if_oerrors += v;
1566
1567 /* ... then clear the hardware counters. */
1568 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1569 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1570 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1571 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1572
1573 /*
1574 * Go through our Tx list and free mbufs for those
1575 * frames that have been transmitted.
1576 */
1577 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1578 /*
1579 * In theory, we could harvest some descriptors before
1580 * the ring is empty, but that's a bit complicated.
1581 *
1582 * GEM_TX_COMPLETION points to the last descriptor
1583 * processed +1.
1584 *
1585 * Let's assume that the NIC writes back to the Tx
1586 * descriptors before it updates the completion
1587 * register. If the NIC has posted writes to the
1588 * Tx descriptors, PCI ordering requires that the
1589 * posted writes flush to RAM before the register-read
1590 * finishes. So let's read the completion register,
1591 * before syncing the descriptors, so that we
1592 * examine Tx descriptors that are at least as
1593 * current as the completion register.
1594 */
1595 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1596 DPRINTF(sc,
1597 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1598 txs->txs_lastdesc, txlast));
1599 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1600 if (txlast >= txs->txs_firstdesc &&
1601 txlast <= txs->txs_lastdesc)
1602 break;
1603 } else if (txlast >= txs->txs_firstdesc ||
1604 txlast <= txs->txs_lastdesc)
1605 break;
1606
1607 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1608 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1609
1610 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1611 if (ifp->if_flags & IFF_DEBUG) {
1612 printf(" txsoft %p transmit chain:\n", txs);
1613 gem_txsoft_print(sc, txs->txs_firstdesc,
1614 txs->txs_lastdesc);
1615 }
1616 #endif
1617
1618
1619 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1620 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1621
1622 sc->sc_txfree += txs->txs_ndescs;
1623
1624 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1625 0, txs->txs_dmamap->dm_mapsize,
1626 BUS_DMASYNC_POSTWRITE);
1627 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1628 if (txs->txs_mbuf != NULL) {
1629 m_freem(txs->txs_mbuf);
1630 txs->txs_mbuf = NULL;
1631 }
1632
1633 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1634
1635 ifp->if_opackets++;
1636 progress = 1;
1637 }
1638
1639 #if 0
1640 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1641 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1642 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1643 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1644 GEM_TX_DATA_PTR_HI) << 32) |
1645 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1646 GEM_TX_DATA_PTR_LO),
1647 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1648 #endif
1649
1650 if (progress) {
1651 if (sc->sc_txfree == GEM_NTXDESC - 1)
1652 sc->sc_txwin = 0;
1653
1654 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1655 ifp->if_flags &= ~IFF_OACTIVE;
1656 sc->sc_if_flags = ifp->if_flags;
1657 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1658 gem_start(ifp);
1659 }
1660 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1661 device_xname(&sc->sc_dev), ifp->if_timer));
1662
1663 return (1);
1664 }
1665
1666 /*
1667 * Receive interrupt.
1668 */
1669 int
1670 gem_rint(struct gem_softc *sc)
1671 {
1672 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1673 bus_space_tag_t t = sc->sc_bustag;
1674 bus_space_handle_t h = sc->sc_h1;
1675 struct gem_rxsoft *rxs;
1676 struct mbuf *m;
1677 u_int64_t rxstat;
1678 u_int32_t rxcomp;
1679 int i, len, progress = 0;
1680
1681 DPRINTF(sc, ("%s: gem_rint\n", device_xname(&sc->sc_dev)));
1682
1683 /*
1684 * Ignore spurious interrupt that sometimes occurs before
1685 * we are set up when we network boot.
1686 */
1687 if (!sc->sc_meminited)
1688 return 1;
1689
1690 /*
1691 * Read the completion register once. This limits
1692 * how long the following loop can execute.
1693 */
1694 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1695
1696 /*
1697 * XXX Read the lastrx only once at the top for speed.
1698 */
1699 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1700 sc->sc_rxptr, rxcomp));
1701
1702 /*
1703 * Go into the loop at least once.
1704 */
1705 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1706 i = GEM_NEXTRX(i)) {
1707 rxs = &sc->sc_rxsoft[i];
1708
1709 GEM_CDRXSYNC(sc, i,
1710 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1711
1712 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1713
1714 if (rxstat & GEM_RD_OWN) {
1715 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1716 /*
1717 * We have processed all of the receive buffers.
1718 */
1719 break;
1720 }
1721
1722 progress++;
1723 ifp->if_ipackets++;
1724
1725 if (rxstat & GEM_RD_BAD_CRC) {
1726 ifp->if_ierrors++;
1727 aprint_error_dev(&sc->sc_dev, "receive error: CRC error\n");
1728 GEM_INIT_RXDESC(sc, i);
1729 continue;
1730 }
1731
1732 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1733 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1734 #ifdef GEM_DEBUG
1735 if (ifp->if_flags & IFF_DEBUG) {
1736 printf(" rxsoft %p descriptor %d: ", rxs, i);
1737 printf("gd_flags: 0x%016llx\t", (long long)
1738 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1739 printf("gd_addr: 0x%016llx\n", (long long)
1740 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1741 }
1742 #endif
1743
1744 /* No errors; receive the packet. */
1745 len = GEM_RD_BUFLEN(rxstat);
1746
1747 /*
1748 * Allocate a new mbuf cluster. If that fails, we are
1749 * out of memory, and must drop the packet and recycle
1750 * the buffer that's already attached to this descriptor.
1751 */
1752 m = rxs->rxs_mbuf;
1753 if (gem_add_rxbuf(sc, i) != 0) {
1754 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1755 ifp->if_ierrors++;
1756 GEM_INIT_RXDESC(sc, i);
1757 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1758 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1759 continue;
1760 }
1761 m->m_data += 2; /* We're already off by two */
1762
1763 m->m_pkthdr.rcvif = ifp;
1764 m->m_pkthdr.len = m->m_len = len;
1765
1766 #if NBPFILTER > 0
1767 /*
1768 * Pass this up to any BPF listeners, but only
1769 * pass it up the stack if it's for us.
1770 */
1771 if (ifp->if_bpf)
1772 bpf_mtap(ifp->if_bpf, m);
1773 #endif /* NBPFILTER > 0 */
1774
1775 #ifdef INET
1776 /* hardware checksum */
1777 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1778 struct ether_header *eh;
1779 struct ip *ip;
1780 int32_t hlen, pktlen;
1781
1782 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1783 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1784 ETHER_VLAN_ENCAP_LEN;
1785 eh = (struct ether_header *) (mtod(m, char *) +
1786 ETHER_VLAN_ENCAP_LEN);
1787 } else {
1788 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1789 eh = mtod(m, struct ether_header *);
1790 }
1791 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1792 goto swcsum;
1793 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1794
1795 /* IPv4 only */
1796 if (ip->ip_v != IPVERSION)
1797 goto swcsum;
1798
1799 hlen = ip->ip_hl << 2;
1800 if (hlen < sizeof(struct ip))
1801 goto swcsum;
1802
1803 /*
1804 * bail if too short, has random trailing garbage,
1805 * truncated, fragment, or has ethernet pad.
1806 */
1807 if ((ntohs(ip->ip_len) < hlen) ||
1808 (ntohs(ip->ip_len) != pktlen) ||
1809 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1810 goto swcsum;
1811
1812 switch (ip->ip_p) {
1813 case IPPROTO_TCP:
1814 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1815 goto swcsum;
1816 if (pktlen < (hlen + sizeof(struct tcphdr)))
1817 goto swcsum;
1818 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1819 break;
1820 case IPPROTO_UDP:
1821 /* FALLTHROUGH */
1822 default:
1823 goto swcsum;
1824 }
1825
1826 /* the uncomplemented sum is expected */
1827 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1828
1829 /* if the pkt had ip options, we have to deduct them */
1830 if (hlen > sizeof(struct ip)) {
1831 uint16_t *opts;
1832 uint32_t optsum, temp;
1833
1834 optsum = 0;
1835 temp = hlen - sizeof(struct ip);
1836 opts = (uint16_t *) ((char *) ip +
1837 sizeof(struct ip));
1838
1839 while (temp > 1) {
1840 optsum += ntohs(*opts++);
1841 temp -= 2;
1842 }
1843 while (optsum >> 16)
1844 optsum = (optsum >> 16) +
1845 (optsum & 0xffff);
1846
1847 /* Deduct ip opts sum from hwsum. */
1848 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1849
1850 while (m->m_pkthdr.csum_data >> 16)
1851 m->m_pkthdr.csum_data =
1852 (m->m_pkthdr.csum_data >> 16) +
1853 (m->m_pkthdr.csum_data &
1854 0xffff);
1855 }
1856
1857 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1858 M_CSUM_NO_PSEUDOHDR;
1859 } else
1860 swcsum:
1861 m->m_pkthdr.csum_flags = 0;
1862 #endif
1863 /* Pass it on. */
1864 (*ifp->if_input)(ifp, m);
1865 }
1866
1867 if (progress) {
1868 /* Update the receive pointer. */
1869 if (i == sc->sc_rxptr) {
1870 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1871 #ifdef GEM_DEBUG
1872 if (ifp->if_flags & IFF_DEBUG)
1873 printf("%s: rint: ring wrap\n",
1874 device_xname(&sc->sc_dev));
1875 #endif
1876 }
1877 sc->sc_rxptr = i;
1878 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1879 }
1880 #ifdef GEM_COUNTERS
1881 if (progress <= 4) {
1882 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1883 } else if (progress < 32) {
1884 if (progress < 16)
1885 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1886 else
1887 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1888
1889 } else {
1890 if (progress < 64)
1891 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1892 else
1893 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1894 }
1895 #endif
1896
1897 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1898 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1899
1900 /* Read error counters ... */
1901 ifp->if_ierrors +=
1902 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1903 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1904 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1905 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1906
1907 /* ... then clear the hardware counters. */
1908 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1909 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1910 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1911 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1912
1913 return (1);
1914 }
1915
1916
1917 /*
1918 * gem_add_rxbuf:
1919 *
1920 * Add a receive buffer to the indicated descriptor.
1921 */
1922 int
1923 gem_add_rxbuf(struct gem_softc *sc, int idx)
1924 {
1925 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1926 struct mbuf *m;
1927 int error;
1928
1929 MGETHDR(m, M_DONTWAIT, MT_DATA);
1930 if (m == NULL)
1931 return (ENOBUFS);
1932
1933 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1934 MCLGET(m, M_DONTWAIT);
1935 if ((m->m_flags & M_EXT) == 0) {
1936 m_freem(m);
1937 return (ENOBUFS);
1938 }
1939
1940 #ifdef GEM_DEBUG
1941 /* bzero the packet to check DMA */
1942 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1943 #endif
1944
1945 if (rxs->rxs_mbuf != NULL)
1946 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1947
1948 rxs->rxs_mbuf = m;
1949
1950 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1951 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1952 BUS_DMA_READ|BUS_DMA_NOWAIT);
1953 if (error) {
1954 aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
1955 idx, error);
1956 panic("gem_add_rxbuf"); /* XXX */
1957 }
1958
1959 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1960 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1961
1962 GEM_INIT_RXDESC(sc, idx);
1963
1964 return (0);
1965 }
1966
1967
1968 int
1969 gem_eint(struct gem_softc *sc, u_int status)
1970 {
1971 char bits[128];
1972 u_int32_t r, v;
1973
1974 if ((status & GEM_INTR_MIF) != 0) {
1975 printf("%s: XXXlink status changed\n", device_xname(&sc->sc_dev));
1976 return (1);
1977 }
1978
1979 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
1980 gem_reset_rxdma(sc);
1981 return (1);
1982 }
1983
1984 if (status & GEM_INTR_BERR) {
1985 if (sc->sc_flags & GEM_PCI)
1986 r = GEM_ERROR_STATUS;
1987 else
1988 r = GEM_SBUS_ERROR_STATUS;
1989 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
1990 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
1991 aprint_error_dev(&sc->sc_dev, "bus error interrupt: 0x%02x\n",
1992 v);
1993 return (1);
1994 }
1995 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
1996 printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
1997
1998 return (1);
1999 }
2000
2001
2002 /*
2003 * PCS interrupts.
2004 * We should receive these when the link status changes, but sometimes
2005 * we don't receive them for link up. We compensate for this in the
2006 * gem_tick() callout.
2007 */
2008 int
2009 gem_pint(struct gem_softc *sc)
2010 {
2011 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2012 bus_space_tag_t t = sc->sc_bustag;
2013 bus_space_handle_t h = sc->sc_h1;
2014 u_int32_t v, v2;
2015
2016 /*
2017 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2018 * latched, so we have to read it twice. There is only one bit in
2019 * use, so the value is meaningless.
2020 */
2021 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2022 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2023
2024 if ((ifp->if_flags & IFF_UP) == 0)
2025 return 1;
2026
2027 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2028 return 1;
2029
2030 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2031 /* If we see remote fault, our link partner is probably going away */
2032 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2033 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2034 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2035 /* Otherwise, we may need to wait after auto-negotiation completes */
2036 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2037 GEM_MII_STATUS_ANEG_CPT) {
2038 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2039 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2040 }
2041 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2042 if (sc->sc_flags & GEM_LINK) {
2043 return 1;
2044 }
2045 callout_stop(&sc->sc_tick_ch);
2046 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2047 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2048 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2049 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2050 v &= v2;
2051 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2052 sc->sc_mii.mii_media_active |= IFM_FDX;
2053 #ifdef GEM_DEBUG
2054 aprint_debug_dev(&sc->sc_dev, "link up: full duplex\n");
2055 #endif
2056 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2057 sc->sc_mii.mii_media_active |= IFM_HDX;
2058 #ifdef GEM_DEBUG
2059 aprint_debug_dev(&sc->sc_dev, "link up: half duplex\n");
2060 #endif
2061 } else {
2062 #ifdef GEM_DEBUG
2063 aprint_debug_dev(&sc->sc_dev, "duplex mismatch\n");
2064 #endif
2065 }
2066 gem_statuschange(sc);
2067 } else {
2068 if ((sc->sc_flags & GEM_LINK) == 0) {
2069 return 1;
2070 }
2071 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2072 sc->sc_mii.mii_media_status = IFM_AVALID;
2073 #ifdef GEM_DEBUG
2074 aprint_debug_dev(&sc->sc_dev, "link down\n");
2075 #endif
2076 gem_statuschange(sc);
2077
2078 /* Start the 10 second timer */
2079 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2080 }
2081 return 1;
2082 }
2083
2084
2085
2086 int
2087 gem_intr(void *v)
2088 {
2089 struct gem_softc *sc = (struct gem_softc *)v;
2090 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2091 bus_space_tag_t t = sc->sc_bustag;
2092 bus_space_handle_t h = sc->sc_h1;
2093 u_int32_t status;
2094 int r = 0;
2095 #ifdef GEM_DEBUG
2096 char bits[128];
2097 #endif
2098
2099 /* XXX We should probably mask out interrupts until we're done */
2100
2101 sc->sc_ev_intr.ev_count++;
2102
2103 status = bus_space_read_4(t, h, GEM_STATUS);
2104 #ifdef GEM_DEBUG
2105 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2106 #endif
2107 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2108 device_xname(&sc->sc_dev), (status >> 19), bits));
2109
2110
2111 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2112 r |= gem_eint(sc, status);
2113
2114 /* We don't bother with GEM_INTR_TX_DONE */
2115 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2116 GEM_COUNTER_INCR(sc, sc_ev_txint);
2117 r |= gem_tint(sc);
2118 }
2119
2120 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2121 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2122 r |= gem_rint(sc);
2123 }
2124
2125 /* We should eventually do more than just print out error stats. */
2126 if (status & GEM_INTR_TX_MAC) {
2127 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2128 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2129 printf("%s: MAC tx fault, status %x\n",
2130 device_xname(&sc->sc_dev), txstat);
2131 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2132 gem_init(ifp);
2133 }
2134 if (status & GEM_INTR_RX_MAC) {
2135 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2136 /*
2137 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2138 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2139 * silicon bug so handle them silently. Moreover, it's
2140 * likely that the receiver has hung so we reset it.
2141 */
2142 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2143 ifp->if_ierrors++;
2144 gem_reset_rxdma(sc);
2145 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2146 printf("%s: MAC rx fault, status 0x%02x\n",
2147 device_xname(&sc->sc_dev), rxstat);
2148 }
2149 if (status & GEM_INTR_PCS) {
2150 r |= gem_pint(sc);
2151 }
2152
2153 /* Do we need to do anything with these?
2154 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2155 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2156 if ((status2 & GEM_MAC_PAUSED) != 0)
2157 aprintf_debug_dev(&sc->sc_dev, "PAUSE received (%d slots)\n",
2158 GEM_MAC_PAUSE_TIME(status2));
2159 if ((status2 & GEM_MAC_PAUSE) != 0)
2160 aprintf_debug_dev(&sc->sc_dev, "transited to PAUSE state\n");
2161 if ((status2 & GEM_MAC_RESUME) != 0)
2162 aprintf_debug_dev(&sc->sc_dev, "transited to non-PAUSE state\n");
2163 }
2164 if ((status & GEM_INTR_MIF) != 0)
2165 aprintf_debug_dev(&sc->sc_dev, "MIF interrupt\n");
2166 */
2167 #if NRND > 0
2168 rnd_add_uint32(&sc->rnd_source, status);
2169 #endif
2170 return (r);
2171 }
2172
2173
2174 void
2175 gem_watchdog(struct ifnet *ifp)
2176 {
2177 struct gem_softc *sc = ifp->if_softc;
2178
2179 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2180 "GEM_MAC_RX_CONFIG %x\n",
2181 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2182 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2183 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2184
2185 log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
2186 ++ifp->if_oerrors;
2187
2188 /* Try to get more packets going. */
2189 gem_start(ifp);
2190 }
2191
2192 /*
2193 * Initialize the MII Management Interface
2194 */
2195 void
2196 gem_mifinit(struct gem_softc *sc)
2197 {
2198 bus_space_tag_t t = sc->sc_bustag;
2199 bus_space_handle_t mif = sc->sc_h1;
2200
2201 /* Configure the MIF in frame mode */
2202 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2203 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2204 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2205 }
2206
2207 /*
2208 * MII interface
2209 *
2210 * The GEM MII interface supports at least three different operating modes:
2211 *
2212 * Bitbang mode is implemented using data, clock and output enable registers.
2213 *
2214 * Frame mode is implemented by loading a complete frame into the frame
2215 * register and polling the valid bit for completion.
2216 *
2217 * Polling mode uses the frame register but completion is indicated by
2218 * an interrupt.
2219 *
2220 */
2221 static int
2222 gem_mii_readreg(device_t self, int phy, int reg)
2223 {
2224 struct gem_softc *sc = (void *)self;
2225 bus_space_tag_t t = sc->sc_bustag;
2226 bus_space_handle_t mif = sc->sc_h1;
2227 int n;
2228 u_int32_t v;
2229
2230 #ifdef GEM_DEBUG1
2231 if (sc->sc_debug)
2232 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2233 #endif
2234
2235 /* Construct the frame command */
2236 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2237 GEM_MIF_FRAME_READ;
2238
2239 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2240 for (n = 0; n < 100; n++) {
2241 DELAY(1);
2242 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2243 if (v & GEM_MIF_FRAME_TA0)
2244 return (v & GEM_MIF_FRAME_DATA);
2245 }
2246
2247 printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
2248 return (0);
2249 }
2250
2251 static void
2252 gem_mii_writereg(device_t self, int phy, int reg, int val)
2253 {
2254 struct gem_softc *sc = (void *)self;
2255 bus_space_tag_t t = sc->sc_bustag;
2256 bus_space_handle_t mif = sc->sc_h1;
2257 int n;
2258 u_int32_t v;
2259
2260 #ifdef GEM_DEBUG1
2261 if (sc->sc_debug)
2262 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2263 phy, reg, val);
2264 #endif
2265
2266 /* Construct the frame command */
2267 v = GEM_MIF_FRAME_WRITE |
2268 (phy << GEM_MIF_PHY_SHIFT) |
2269 (reg << GEM_MIF_REG_SHIFT) |
2270 (val & GEM_MIF_FRAME_DATA);
2271
2272 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2273 for (n = 0; n < 100; n++) {
2274 DELAY(1);
2275 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2276 if (v & GEM_MIF_FRAME_TA0)
2277 return;
2278 }
2279
2280 printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
2281 }
2282
2283 static void
2284 gem_mii_statchg(device_t dev)
2285 {
2286 struct gem_softc *sc = (void *)dev;
2287 #ifdef GEM_DEBUG
2288 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2289 #endif
2290
2291 #ifdef GEM_DEBUG
2292 if (sc->sc_debug)
2293 printf("gem_mii_statchg: status change: phy = %d\n",
2294 sc->sc_phys[instance]);
2295 #endif
2296 gem_statuschange(sc);
2297 }
2298
2299 /*
2300 * Common status change for gem_mii_statchg() and gem_pint()
2301 */
2302 void
2303 gem_statuschange(struct gem_softc* sc)
2304 {
2305 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2306 bus_space_tag_t t = sc->sc_bustag;
2307 bus_space_handle_t mac = sc->sc_h1;
2308 int gigabit;
2309 u_int32_t rxcfg, txcfg, v;
2310
2311 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2312 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2313 sc->sc_flags |= GEM_LINK;
2314 else
2315 sc->sc_flags &= ~GEM_LINK;
2316
2317 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2318 gigabit = 1;
2319 else
2320 gigabit = 0;
2321
2322 /*
2323 * The configuration done here corresponds to the steps F) and
2324 * G) and as far as enabling of RX and TX MAC goes also step H)
2325 * of the initialization sequence outlined in section 3.2.1 of
2326 * the GEM Gigabit Ethernet ASIC Specification.
2327 */
2328
2329 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2330 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2331 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2332 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2333 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2334 else if (gigabit) {
2335 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2336 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2337 }
2338 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2339 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2340 BUS_SPACE_BARRIER_WRITE);
2341 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2342 aprint_normal_dev(&sc->sc_dev, "cannot disable TX MAC\n");
2343 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2344 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2345 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2346 BUS_SPACE_BARRIER_WRITE);
2347 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2348 aprint_normal_dev(&sc->sc_dev, "cannot disable RX MAC\n");
2349 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2350
2351 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2352 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2353 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2354
2355 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2356 gigabit != 0)
2357 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2358 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2359 else
2360 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2361 GEM_MAC_SLOT_TIME_NORMAL);
2362
2363 /* XIF Configuration */
2364 if (sc->sc_flags & GEM_LINK)
2365 v = GEM_MAC_XIF_LINK_LED;
2366 else
2367 v = 0;
2368 v |= GEM_MAC_XIF_TX_MII_ENA;
2369
2370 /* If an external transceiver is connected, enable its MII drivers */
2371 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2372 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2373 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2374 /* External MII needs echo disable if half duplex. */
2375 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2376 IFM_FDX) != 0)
2377 /* turn on full duplex LED */
2378 v |= GEM_MAC_XIF_FDPLX_LED;
2379 else
2380 /* half duplex -- disable echo */
2381 v |= GEM_MAC_XIF_ECHO_DISABL;
2382 if (gigabit)
2383 v |= GEM_MAC_XIF_GMII_MODE;
2384 else
2385 v &= ~GEM_MAC_XIF_GMII_MODE;
2386 } else
2387 /* Internal MII needs buf enable */
2388 v |= GEM_MAC_XIF_MII_BUF_ENA;
2389 } else {
2390 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2391 v |= GEM_MAC_XIF_FDPLX_LED;
2392 v |= GEM_MAC_XIF_GMII_MODE;
2393 }
2394 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2395
2396 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2397 (sc->sc_flags & GEM_LINK) != 0) {
2398 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2399 txcfg | GEM_MAC_TX_ENABLE);
2400 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2401 rxcfg | GEM_MAC_RX_ENABLE);
2402 }
2403 }
2404
2405 int
2406 gem_ser_mediachange(struct ifnet *ifp)
2407 {
2408 struct gem_softc *sc = ifp->if_softc;
2409 u_int s, t;
2410
2411 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2412 return EINVAL;
2413
2414 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2415 if (s == IFM_AUTO) {
2416 if (sc->sc_mii_media != s) {
2417 #ifdef GEM_DEBUG
2418 aprint_debug_dev(&sc->sc_dev, "setting media to auto\n");
2419 #endif
2420 sc->sc_mii_media = s;
2421 if (ifp->if_flags & IFF_UP) {
2422 gem_pcs_stop(sc, 0);
2423 gem_pcs_start(sc);
2424 }
2425 }
2426 return 0;
2427 }
2428 if (s == IFM_1000_SX) {
2429 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2430 if (t == IFM_FDX || t == IFM_HDX) {
2431 if (sc->sc_mii_media != t) {
2432 sc->sc_mii_media = t;
2433 #ifdef GEM_DEBUG
2434 aprint_debug_dev(&sc->sc_dev,
2435 "setting media to 1000baseSX-%s\n",
2436 t == IFM_FDX ? "FDX" : "HDX");
2437 #endif
2438 if (ifp->if_flags & IFF_UP) {
2439 gem_pcs_stop(sc, 0);
2440 gem_pcs_start(sc);
2441 }
2442 }
2443 return 0;
2444 }
2445 }
2446 return EINVAL;
2447 }
2448
2449 void
2450 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2451 {
2452 struct gem_softc *sc = ifp->if_softc;
2453
2454 if ((ifp->if_flags & IFF_UP) == 0)
2455 return;
2456 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2457 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2458 }
2459
2460 static int
2461 gem_ifflags_cb(struct ethercom *ec)
2462 {
2463 struct ifnet *ifp = &ec->ec_if;
2464 struct gem_softc *sc = ifp->if_softc;
2465 int change = ifp->if_flags ^ sc->sc_if_flags;
2466
2467 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2468 return ENETRESET;
2469 else if ((change & IFF_PROMISC) != 0)
2470 gem_setladrf(sc);
2471 return 0;
2472 }
2473
2474 /*
2475 * Process an ioctl request.
2476 */
2477 int
2478 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2479 {
2480 struct gem_softc *sc = ifp->if_softc;
2481 int s, error = 0;
2482
2483 s = splnet();
2484
2485 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2486 error = 0;
2487 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2488 ;
2489 else if (ifp->if_flags & IFF_RUNNING) {
2490 /*
2491 * Multicast list has changed; set the hardware filter
2492 * accordingly.
2493 */
2494 gem_setladrf(sc);
2495 }
2496 }
2497
2498 /* Try to get things going again */
2499 if (ifp->if_flags & IFF_UP)
2500 gem_start(ifp);
2501 splx(s);
2502 return (error);
2503 }
2504
2505
2506 void
2507 gem_shutdown(void *arg)
2508 {
2509 struct gem_softc *sc = (struct gem_softc *)arg;
2510 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2511
2512 gem_stop(ifp, 1);
2513 }
2514
2515 /*
2516 * Set up the logical address filter.
2517 */
2518 void
2519 gem_setladrf(struct gem_softc *sc)
2520 {
2521 struct ethercom *ec = &sc->sc_ethercom;
2522 struct ifnet *ifp = &ec->ec_if;
2523 struct ether_multi *enm;
2524 struct ether_multistep step;
2525 bus_space_tag_t t = sc->sc_bustag;
2526 bus_space_handle_t h = sc->sc_h1;
2527 u_int32_t crc;
2528 u_int32_t hash[16];
2529 u_int32_t v;
2530 int i;
2531
2532 /* Get current RX configuration */
2533 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2534
2535 /*
2536 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2537 * and hash filter. Depending on the case, the right bit will be
2538 * enabled.
2539 */
2540 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2541 GEM_MAC_RX_PROMISC_GRP);
2542
2543 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2544 /* Turn on promiscuous mode */
2545 v |= GEM_MAC_RX_PROMISCUOUS;
2546 ifp->if_flags |= IFF_ALLMULTI;
2547 goto chipit;
2548 }
2549
2550 /*
2551 * Set up multicast address filter by passing all multicast addresses
2552 * through a crc generator, and then using the high order 8 bits as an
2553 * index into the 256 bit logical address filter. The high order 4
2554 * bits selects the word, while the other 4 bits select the bit within
2555 * the word (where bit 0 is the MSB).
2556 */
2557
2558 /* Clear hash table */
2559 memset(hash, 0, sizeof(hash));
2560
2561 ETHER_FIRST_MULTI(step, ec, enm);
2562 while (enm != NULL) {
2563 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2564 /*
2565 * We must listen to a range of multicast addresses.
2566 * For now, just accept all multicasts, rather than
2567 * trying to set only those filter bits needed to match
2568 * the range. (At this time, the only use of address
2569 * ranges is for IP multicast routing, for which the
2570 * range is big enough to require all bits set.)
2571 * XXX should use the address filters for this
2572 */
2573 ifp->if_flags |= IFF_ALLMULTI;
2574 v |= GEM_MAC_RX_PROMISC_GRP;
2575 goto chipit;
2576 }
2577
2578 /* Get the LE CRC32 of the address */
2579 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2580
2581 /* Just want the 8 most significant bits. */
2582 crc >>= 24;
2583
2584 /* Set the corresponding bit in the filter. */
2585 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2586
2587 ETHER_NEXT_MULTI(step, enm);
2588 }
2589
2590 v |= GEM_MAC_RX_HASH_FILTER;
2591 ifp->if_flags &= ~IFF_ALLMULTI;
2592
2593 /* Now load the hash table into the chip (if we are using it) */
2594 for (i = 0; i < 16; i++) {
2595 bus_space_write_4(t, h,
2596 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2597 hash[i]);
2598 }
2599
2600 chipit:
2601 sc->sc_if_flags = ifp->if_flags;
2602 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2603 }
2604
2605 #if notyet
2606
2607 /*
2608 * gem_power:
2609 *
2610 * Power management (suspend/resume) hook.
2611 */
2612 void
2613 gem_power(int why, void *arg)
2614 {
2615 struct gem_softc *sc = arg;
2616 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2617 int s;
2618
2619 s = splnet();
2620 switch (why) {
2621 case PWR_SUSPEND:
2622 case PWR_STANDBY:
2623 gem_stop(ifp, 1);
2624 if (sc->sc_power != NULL)
2625 (*sc->sc_power)(sc, why);
2626 break;
2627 case PWR_RESUME:
2628 if (ifp->if_flags & IFF_UP) {
2629 if (sc->sc_power != NULL)
2630 (*sc->sc_power)(sc, why);
2631 gem_init(ifp);
2632 }
2633 break;
2634 case PWR_SOFTSUSPEND:
2635 case PWR_SOFTSTANDBY:
2636 case PWR_SOFTRESUME:
2637 break;
2638 }
2639 splx(s);
2640 }
2641 #endif
2642