Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.85
      1 /*	$NetBSD: gem.c,v 1.85 2009/07/27 18:10:53 dyoung Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * Copyright (c) 2001-2003 Thomas Moestl
      7  * All rights reserved.
      8  *
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 /*
     34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
     35  * See `GEM Gigabit Ethernet ASIC Specification'
     36  *   http://www.sun.com/processors/manuals/ge.pdf
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.85 2009/07/27 18:10:53 dyoung Exp $");
     41 
     42 #include "opt_inet.h"
     43 #include "bpfilter.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/callout.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/malloc.h>
     51 #include <sys/kernel.h>
     52 #include <sys/socket.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #include <sys/device.h>
     56 
     57 #include <machine/endian.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 #include <net/if.h>
     62 #include <net/if_dl.h>
     63 #include <net/if_media.h>
     64 #include <net/if_ether.h>
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/in_var.h>
     70 #include <netinet/ip.h>
     71 #include <netinet/tcp.h>
     72 #include <netinet/udp.h>
     73 #endif
     74 
     75 #if NBPFILTER > 0
     76 #include <net/bpf.h>
     77 #endif
     78 
     79 #include <sys/bus.h>
     80 #include <sys/intr.h>
     81 
     82 #include <dev/mii/mii.h>
     83 #include <dev/mii/miivar.h>
     84 #include <dev/mii/mii_bitbang.h>
     85 
     86 #include <dev/ic/gemreg.h>
     87 #include <dev/ic/gemvar.h>
     88 
     89 #define TRIES	10000
     90 
     91 static void	gem_inten(struct gem_softc *);
     92 static void	gem_start(struct ifnet *);
     93 static void	gem_stop(struct ifnet *, int);
     94 int		gem_ioctl(struct ifnet *, u_long, void *);
     95 void		gem_tick(void *);
     96 void		gem_watchdog(struct ifnet *);
     97 void		gem_pcs_start(struct gem_softc *sc);
     98 void		gem_pcs_stop(struct gem_softc *sc, int);
     99 int		gem_init(struct ifnet *);
    100 void		gem_init_regs(struct gem_softc *sc);
    101 static int	gem_ringsize(int sz);
    102 static int	gem_meminit(struct gem_softc *);
    103 void		gem_mifinit(struct gem_softc *);
    104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
    105 		    u_int32_t, u_int32_t);
    106 void		gem_reset(struct gem_softc *);
    107 int		gem_reset_rx(struct gem_softc *sc);
    108 static void	gem_reset_rxdma(struct gem_softc *sc);
    109 static void	gem_rx_common(struct gem_softc *sc);
    110 int		gem_reset_tx(struct gem_softc *sc);
    111 int		gem_disable_rx(struct gem_softc *sc);
    112 int		gem_disable_tx(struct gem_softc *sc);
    113 static void	gem_rxdrain(struct gem_softc *sc);
    114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    115 void		gem_setladrf(struct gem_softc *);
    116 
    117 /* MII methods & callbacks */
    118 static int	gem_mii_readreg(device_t, int, int);
    119 static void	gem_mii_writereg(device_t, int, int, int);
    120 static void	gem_mii_statchg(device_t);
    121 
    122 static int	gem_ifflags_cb(struct ethercom *);
    123 
    124 void		gem_statuschange(struct gem_softc *);
    125 
    126 int		gem_ser_mediachange(struct ifnet *);
    127 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
    128 
    129 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
    130 
    131 struct mbuf	*gem_get(struct gem_softc *, int, int);
    132 int		gem_put(struct gem_softc *, int, struct mbuf *);
    133 void		gem_read(struct gem_softc *, int, int);
    134 int		gem_pint(struct gem_softc *);
    135 int		gem_eint(struct gem_softc *, u_int);
    136 int		gem_rint(struct gem_softc *);
    137 int		gem_tint(struct gem_softc *);
    138 void		gem_power(int, void *);
    139 
    140 #ifdef GEM_DEBUG
    141 static void gem_txsoft_print(const struct gem_softc *, int, int);
    142 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    143 				printf x
    144 #else
    145 #define	DPRINTF(sc, x)	/* nothing */
    146 #endif
    147 
    148 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    149 
    150 int
    151 gem_detach(struct gem_softc *sc, int flags)
    152 {
    153 	char *nullbuf;
    154 	int i, rc;
    155 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    156 
    157 	nullbuf =
    158 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    159 
    160 	/*
    161 	 * Free any resources we've allocated during the attach.
    162 	 * Do this in reverse order and fall through.
    163 	 */
    164 	switch (sc->sc_att_stage) {
    165 	case GEM_ATT_BACKEND_2:
    166 	case GEM_ATT_BACKEND_1:
    167 	case GEM_ATT_FINISHED:
    168 		gem_stop(&sc->sc_ethercom.ec_if, 1);
    169 
    170 #ifdef GEM_COUNTERS
    171 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
    172 			evcnt_detach(&sc->sc_ev_rxhist[i]);
    173 		evcnt_detach(&sc->sc_ev_rxnobuf);
    174 		evcnt_detach(&sc->sc_ev_rxfull);
    175 		evcnt_detach(&sc->sc_ev_rxint);
    176 		evcnt_detach(&sc->sc_ev_txint);
    177 #endif
    178 		evcnt_detach(&sc->sc_ev_intr);
    179 
    180 		callout_destroy(&sc->sc_tick_ch);
    181 #if NRND > 0
    182 		rnd_detach_source(&sc->rnd_source);
    183 #endif
    184 		ether_ifdetach(ifp);
    185 		if_detach(ifp);
    186 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
    187 		/*FALLTHROUGH*/
    188 	case GEM_ATT_MII:
    189 		sc->sc_att_stage = GEM_ATT_MII;
    190 		if ((rc = config_detach_children(sc->sc_dev, flags)) != 0)
    191 			return rc;
    192 		/*FALLTHROUGH*/
    193 	case GEM_ATT_7:
    194 		for (i = 0; i < GEM_NRXDESC; i++) {
    195 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    196 				bus_dmamap_destroy(sc->sc_dmatag,
    197 				    sc->sc_rxsoft[i].rxs_dmamap);
    198 		}
    199 		/*FALLTHROUGH*/
    200 	case GEM_ATT_6:
    201 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
    202 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    203 				bus_dmamap_destroy(sc->sc_dmatag,
    204 				    sc->sc_txsoft[i].txs_dmamap);
    205 		}
    206 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    207 		/*FALLTHROUGH*/
    208 	case GEM_ATT_5:
    209 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    210 		/*FALLTHROUGH*/
    211 	case GEM_ATT_4:
    212 		bus_dmamem_unmap(sc->sc_dmatag, nullbuf, ETHER_MIN_TX);
    213 		/*FALLTHROUGH*/
    214 	case GEM_ATT_3:
    215 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    216 		/*FALLTHROUGH*/
    217 	case GEM_ATT_2:
    218 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
    219 		    sizeof(struct gem_control_data));
    220 		/*FALLTHROUGH*/
    221 	case GEM_ATT_1:
    222 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    223 		/*FALLTHROUGH*/
    224 	case GEM_ATT_0:
    225 		sc->sc_att_stage = GEM_ATT_0;
    226 		/*FALLTHROUGH*/
    227 	case GEM_ATT_BACKEND_0:
    228 		break;
    229 	}
    230 	return 0;
    231 }
    232 
    233 static void
    234 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
    235 {
    236 	cfattach_t ca = device_cfattach(sc->sc_dev);
    237 
    238 	sc->sc_att_stage = stage;
    239 	(*ca->ca_detach)(sc->sc_dev, 0);
    240 }
    241 
    242 /*
    243  * gem_attach:
    244  *
    245  *	Attach a Gem interface to the system.
    246  */
    247 void
    248 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
    249 {
    250 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    251 	struct mii_data *mii = &sc->sc_mii;
    252 	bus_space_tag_t t = sc->sc_bustag;
    253 	bus_space_handle_t h = sc->sc_h1;
    254 	struct ifmedia_entry *ifm;
    255 	int i, error;
    256 	u_int32_t v;
    257 	char *nullbuf;
    258 
    259 	/* Make sure the chip is stopped. */
    260 	ifp->if_softc = sc;
    261 	gem_reset(sc);
    262 
    263 	/*
    264 	 * Allocate the control data structures, and create and load the
    265 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    266 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    267 	 */
    268 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    269 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    270 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    271 		aprint_error_dev(sc->sc_dev,
    272 		   "unable to allocate control data, error = %d\n",
    273 		    error);
    274 		gem_partial_detach(sc, GEM_ATT_0);
    275 		return;
    276 	}
    277 
    278 	/* XXX should map this in with correct endianness */
    279 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    280 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
    281 	    BUS_DMA_COHERENT)) != 0) {
    282 		aprint_error_dev(sc->sc_dev,
    283 		    "unable to map control data, error = %d\n", error);
    284 		gem_partial_detach(sc, GEM_ATT_1);
    285 		return;
    286 	}
    287 
    288 	nullbuf =
    289 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    290 
    291 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    292 	    sizeof(struct gem_control_data), 1,
    293 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    294 		aprint_error_dev(sc->sc_dev,
    295 		    "unable to create control data DMA map, error = %d\n",
    296 		    error);
    297 		gem_partial_detach(sc, GEM_ATT_2);
    298 		return;
    299 	}
    300 
    301 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    302 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    303 	    0)) != 0) {
    304 		aprint_error_dev(sc->sc_dev,
    305 		    "unable to load control data DMA map, error = %d\n",
    306 		    error);
    307 		gem_partial_detach(sc, GEM_ATT_3);
    308 		return;
    309 	}
    310 
    311 	memset(nullbuf, 0, ETHER_MIN_TX);
    312 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    313 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    314 		aprint_error_dev(sc->sc_dev,
    315 		    "unable to create padding DMA map, error = %d\n", error);
    316 		gem_partial_detach(sc, GEM_ATT_4);
    317 		return;
    318 	}
    319 
    320 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    321 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    322 		aprint_error_dev(sc->sc_dev,
    323 		    "unable to load padding DMA map, error = %d\n", error);
    324 		gem_partial_detach(sc, GEM_ATT_5);
    325 		return;
    326 	}
    327 
    328 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    329 	    BUS_DMASYNC_PREWRITE);
    330 
    331 	/*
    332 	 * Initialize the transmit job descriptors.
    333 	 */
    334 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    335 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    336 
    337 	/*
    338 	 * Create the transmit buffer DMA maps.
    339 	 */
    340 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    341 		struct gem_txsoft *txs;
    342 
    343 		txs = &sc->sc_txsoft[i];
    344 		txs->txs_mbuf = NULL;
    345 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    346 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    347 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    348 		    &txs->txs_dmamap)) != 0) {
    349 			aprint_error_dev(sc->sc_dev,
    350 			    "unable to create tx DMA map %d, error = %d\n",
    351 			    i, error);
    352 			gem_partial_detach(sc, GEM_ATT_6);
    353 			return;
    354 		}
    355 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    356 	}
    357 
    358 	/*
    359 	 * Create the receive buffer DMA maps.
    360 	 */
    361 	for (i = 0; i < GEM_NRXDESC; i++) {
    362 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    363 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    364 			aprint_error_dev(sc->sc_dev,
    365 			    "unable to create rx DMA map %d, error = %d\n",
    366 			    i, error);
    367 			gem_partial_detach(sc, GEM_ATT_7);
    368 			return;
    369 		}
    370 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    371 	}
    372 
    373 	/* Initialize ifmedia structures and MII info */
    374 	mii->mii_ifp = ifp;
    375 	mii->mii_readreg = gem_mii_readreg;
    376 	mii->mii_writereg = gem_mii_writereg;
    377 	mii->mii_statchg = gem_mii_statchg;
    378 
    379 	sc->sc_ethercom.ec_mii = mii;
    380 
    381 	/*
    382 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
    383 	 * Section 3.2.1 `Initialization Sequence'.
    384 	 * However, we can't assume SERDES or Serialink if neither
    385 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
    386 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
    387 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
    388 	 * Also, for Apple variants with 2 PHY's, we prefer the external
    389 	 * PHY over the internal PHY.
    390 	 */
    391 	gem_mifinit(sc);
    392 
    393 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
    394 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    395 		    ether_mediastatus);
    396 		mii_attach(sc->sc_dev, mii, 0xffffffff,
    397 		    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    398 		if (LIST_EMPTY(&mii->mii_phys)) {
    399 				/* No PHY attached */
    400 				aprint_error_dev(sc->sc_dev,
    401 				    "PHY probe failed\n");
    402 				gem_partial_detach(sc, GEM_ATT_MII);
    403 				return;
    404 		} else {
    405 			struct mii_softc *child;
    406 
    407 			/*
    408 			 * Walk along the list of attached MII devices and
    409 			 * establish an `MII instance' to `PHY number'
    410 			 * mapping.
    411 			 */
    412 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
    413 				/*
    414 				 * Note: we support just one PHY: the internal
    415 				 * or external MII is already selected for us
    416 				 * by the GEM_MIF_CONFIG  register.
    417 				 */
    418 				if (child->mii_phy > 1 || child->mii_inst > 0) {
    419 					aprint_error_dev(sc->sc_dev,
    420 					    "cannot accommodate MII device"
    421 					    " %s at PHY %d, instance %d\n",
    422 					       device_xname(child->mii_dev),
    423 					       child->mii_phy, child->mii_inst);
    424 					continue;
    425 				}
    426 				sc->sc_phys[child->mii_inst] = child->mii_phy;
    427 			}
    428 
    429 			/*
    430 			 * Now select and activate the PHY we will use.
    431 			 *
    432 			 * The order of preference is External (MDI1),
    433 			 * then Internal (MDI0),
    434 			 */
    435 			if (sc->sc_phys[1]) {
    436 #ifdef GEM_DEBUG
    437 				aprint_debug_dev(sc->sc_dev,
    438 				    "using external PHY\n");
    439 #endif
    440 				sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    441 			} else {
    442 #ifdef GEM_DEBUG
    443 				aprint_debug_dev(sc->sc_dev,
    444 				    "using internal PHY\n");
    445 				sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    446 #endif
    447 			}
    448 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    449 			    sc->sc_mif_config);
    450 			if (sc->sc_variant != GEM_SUN_ERI)
    451 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    452 				    GEM_MII_DATAPATH_MII);
    453 
    454 			/*
    455 			 * XXX - we can really do the following ONLY if the
    456 			 * PHY indeed has the auto negotiation capability!!
    457 			 */
    458 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    459 		}
    460 	} else {
    461 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
    462 		    gem_ser_mediastatus);
    463 		/* SERDES or Serialink */
    464 		if (sc->sc_flags & GEM_SERDES) {
    465 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    466 			    GEM_MII_DATAPATH_SERDES);
    467 		} else {
    468 			sc->sc_flags |= GEM_SERIAL;
    469 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    470 			    GEM_MII_DATAPATH_SERIAL);
    471 		}
    472 
    473 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
    474 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
    475 
    476 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    477 		/* Check for FDX and HDX capabilities */
    478 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
    479 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
    480 			ifmedia_add(&sc->sc_mii.mii_media,
    481 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
    482 			aprint_normal("1000baseSX-FDX, ");
    483 		}
    484 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
    485 			ifmedia_add(&sc->sc_mii.mii_media,
    486 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
    487 			aprint_normal("1000baseSX-HDX, ");
    488 		}
    489 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    490 		sc->sc_mii_media = IFM_AUTO;
    491 		aprint_normal("auto\n");
    492 
    493 		gem_pcs_stop(sc, 1);
    494 	}
    495 
    496 	/*
    497 	 * From this point forward, the attachment cannot fail.  A failure
    498 	 * before this point releases all resources that may have been
    499 	 * allocated.
    500 	 */
    501 
    502 	/* Announce ourselves. */
    503 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
    504 	    ether_sprintf(enaddr));
    505 
    506 	/* Get RX FIFO size */
    507 	sc->sc_rxfifosize = 64 *
    508 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
    509 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    510 
    511 	/* Get TX FIFO size */
    512 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
    513 	aprint_normal(", %uKB TX fifo\n", v / 16);
    514 
    515 	/* Initialize ifnet structure. */
    516 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    517 	ifp->if_softc = sc;
    518 	ifp->if_flags =
    519 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    520 	sc->sc_if_flags = ifp->if_flags;
    521 #if 0
    522 	/*
    523 	 * The GEM hardware supports basic TCP checksum offloading only.
    524 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
    525 	 * have bugs in the receive checksum, so don't enable it for now.
    526 	 */
    527 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
    528 	    (GEM_IS_APPLE(sc) &&
    529 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
    530 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
    531 #endif
    532 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
    533 	ifp->if_start = gem_start;
    534 	ifp->if_ioctl = gem_ioctl;
    535 	ifp->if_watchdog = gem_watchdog;
    536 	ifp->if_stop = gem_stop;
    537 	ifp->if_init = gem_init;
    538 	IFQ_SET_READY(&ifp->if_snd);
    539 
    540 	/*
    541 	 * If we support GigE media, we support jumbo frames too.
    542 	 * Unless we are Apple.
    543 	 */
    544 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
    545 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    546 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    547 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    548 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    549 			if (!GEM_IS_APPLE(sc))
    550 				sc->sc_ethercom.ec_capabilities
    551 				    |= ETHERCAP_JUMBO_MTU;
    552 			sc->sc_flags |= GEM_GIGABIT;
    553 			break;
    554 		}
    555 	}
    556 
    557 	/* claim 802.1q capability */
    558 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    559 
    560 	/* Attach the interface. */
    561 	if_attach(ifp);
    562 	ether_ifattach(ifp, enaddr);
    563 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
    564 
    565 #if NRND > 0
    566 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    567 			  RND_TYPE_NET, 0);
    568 #endif
    569 
    570 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    571 	    NULL, device_xname(sc->sc_dev), "interrupts");
    572 #ifdef GEM_COUNTERS
    573 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    574 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
    575 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    576 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
    577 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    578 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
    579 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    580 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
    581 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    582 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
    583 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    584 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
    585 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    586 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
    587 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    588 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
    589 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    590 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
    591 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    592 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
    593 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    594 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
    595 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
    597 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
    599 #endif
    600 
    601 	callout_init(&sc->sc_tick_ch, 0);
    602 
    603 	sc->sc_att_stage = GEM_ATT_FINISHED;
    604 
    605 	return;
    606 }
    607 
    608 void
    609 gem_tick(void *arg)
    610 {
    611 	struct gem_softc *sc = arg;
    612 	int s;
    613 
    614 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
    615 		/*
    616 		 * We have to reset everything if we failed to get a
    617 		 * PCS interrupt.  Restarting the callout is handled
    618 		 * in gem_pcs_start().
    619 		 */
    620 		gem_init(&sc->sc_ethercom.ec_if);
    621 	} else {
    622 		s = splnet();
    623 		mii_tick(&sc->sc_mii);
    624 		splx(s);
    625 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    626 	}
    627 }
    628 
    629 static int
    630 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
    631 {
    632 	int i;
    633 	u_int32_t reg;
    634 
    635 	for (i = TRIES; i--; DELAY(100)) {
    636 		reg = bus_space_read_4(sc->sc_bustag, h, r);
    637 		if ((reg & clr) == 0 && (reg & set) == set)
    638 			return (1);
    639 	}
    640 	return (0);
    641 }
    642 
    643 void
    644 gem_reset(struct gem_softc *sc)
    645 {
    646 	bus_space_tag_t t = sc->sc_bustag;
    647 	bus_space_handle_t h = sc->sc_h2;
    648 	int s;
    649 
    650 	s = splnet();
    651 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
    652 	gem_reset_rx(sc);
    653 	gem_reset_tx(sc);
    654 
    655 	/* Do a full reset */
    656 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    657 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    658 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
    659 	splx(s);
    660 }
    661 
    662 
    663 /*
    664  * gem_rxdrain:
    665  *
    666  *	Drain the receive queue.
    667  */
    668 static void
    669 gem_rxdrain(struct gem_softc *sc)
    670 {
    671 	struct gem_rxsoft *rxs;
    672 	int i;
    673 
    674 	for (i = 0; i < GEM_NRXDESC; i++) {
    675 		rxs = &sc->sc_rxsoft[i];
    676 		if (rxs->rxs_mbuf != NULL) {
    677 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    678 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    679 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    680 			m_freem(rxs->rxs_mbuf);
    681 			rxs->rxs_mbuf = NULL;
    682 		}
    683 	}
    684 }
    685 
    686 /*
    687  * Reset the whole thing.
    688  */
    689 static void
    690 gem_stop(struct ifnet *ifp, int disable)
    691 {
    692 	struct gem_softc *sc = ifp->if_softc;
    693 	struct gem_txsoft *txs;
    694 
    695 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
    696 
    697 	callout_stop(&sc->sc_tick_ch);
    698 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
    699 		gem_pcs_stop(sc, disable);
    700 	else
    701 		mii_down(&sc->sc_mii);
    702 
    703 	/* XXX - Should we reset these instead? */
    704 	gem_disable_tx(sc);
    705 	gem_disable_rx(sc);
    706 
    707 	/*
    708 	 * Release any queued transmit buffers.
    709 	 */
    710 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    711 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    712 		if (txs->txs_mbuf != NULL) {
    713 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    714 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    715 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    716 			m_freem(txs->txs_mbuf);
    717 			txs->txs_mbuf = NULL;
    718 		}
    719 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    720 	}
    721 
    722 	/*
    723 	 * Mark the interface down and cancel the watchdog timer.
    724 	 */
    725 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    726 	sc->sc_if_flags = ifp->if_flags;
    727 	ifp->if_timer = 0;
    728 
    729 	if (disable)
    730 		gem_rxdrain(sc);
    731 }
    732 
    733 
    734 /*
    735  * Reset the receiver
    736  */
    737 int
    738 gem_reset_rx(struct gem_softc *sc)
    739 {
    740 	bus_space_tag_t t = sc->sc_bustag;
    741 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    742 
    743 	/*
    744 	 * Resetting while DMA is in progress can cause a bus hang, so we
    745 	 * disable DMA first.
    746 	 */
    747 	gem_disable_rx(sc);
    748 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    749 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    750 	/* Wait till it finishes */
    751 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
    752 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
    753 
    754 	/* Finally, reset the ERX */
    755 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
    756 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    757 	/* Wait till it finishes */
    758 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
    759 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
    760 		return (1);
    761 	}
    762 	return (0);
    763 }
    764 
    765 
    766 /*
    767  * Reset the receiver DMA engine.
    768  *
    769  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
    770  * etc in order to reset the receiver DMA engine only and not do a full
    771  * reset which amongst others also downs the link and clears the FIFOs.
    772  */
    773 static void
    774 gem_reset_rxdma(struct gem_softc *sc)
    775 {
    776 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    777 	bus_space_tag_t t = sc->sc_bustag;
    778 	bus_space_handle_t h = sc->sc_h1;
    779 	int i;
    780 
    781 	if (gem_reset_rx(sc) != 0) {
    782 		gem_init(ifp);
    783 		return;
    784 	}
    785 	for (i = 0; i < GEM_NRXDESC; i++)
    786 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
    787 			GEM_UPDATE_RXDESC(sc, i);
    788 	sc->sc_rxptr = 0;
    789 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    790 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    791 
    792 	/* Reprogram Descriptor Ring Base Addresses */
    793 	/* NOTE: we use only 32-bit DMA addresses here. */
    794 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    795 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    796 
    797 	/* Redo ERX Configuration */
    798 	gem_rx_common(sc);
    799 
    800 	/* Give the reciever a swift kick */
    801 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
    802 }
    803 
    804 /*
    805  * Common RX configuration for gem_init() and gem_reset_rxdma().
    806  */
    807 static void
    808 gem_rx_common(struct gem_softc *sc)
    809 {
    810 	bus_space_tag_t t = sc->sc_bustag;
    811 	bus_space_handle_t h = sc->sc_h1;
    812 	u_int32_t v;
    813 
    814 	/* Encode Receive Descriptor ring size: four possible values */
    815 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    816 
    817 	/* Set receive h/w checksum offset */
    818 #ifdef INET
    819 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    820 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    821 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    822 #endif
    823 
    824 	/* Enable RX DMA */
    825 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    826 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
    827 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
    828 
    829 	/*
    830 	 * The following value is for an OFF Threshold of about 3/4 full
    831 	 * and an ON Threshold of 1/4 full.
    832 	 */
    833 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    834 	    (3 * sc->sc_rxfifosize / 256) |
    835 	    ((sc->sc_rxfifosize / 256) << 12));
    836 	bus_space_write_4(t, h, GEM_RX_BLANKING,
    837 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
    838 }
    839 
    840 /*
    841  * Reset the transmitter
    842  */
    843 int
    844 gem_reset_tx(struct gem_softc *sc)
    845 {
    846 	bus_space_tag_t t = sc->sc_bustag;
    847 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    848 
    849 	/*
    850 	 * Resetting while DMA is in progress can cause a bus hang, so we
    851 	 * disable DMA first.
    852 	 */
    853 	gem_disable_tx(sc);
    854 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    855 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    856 	/* Wait till it finishes */
    857 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
    858 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
    859 	/* Wait 5ms extra. */
    860 	delay(5000);
    861 
    862 	/* Finally, reset the ETX */
    863 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
    864 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    865 	/* Wait till it finishes */
    866 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
    867 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
    868 		return (1);
    869 	}
    870 	return (0);
    871 }
    872 
    873 /*
    874  * disable receiver.
    875  */
    876 int
    877 gem_disable_rx(struct gem_softc *sc)
    878 {
    879 	bus_space_tag_t t = sc->sc_bustag;
    880 	bus_space_handle_t h = sc->sc_h1;
    881 	u_int32_t cfg;
    882 
    883 	/* Flip the enable bit */
    884 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    885 	cfg &= ~GEM_MAC_RX_ENABLE;
    886 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    887 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    888 	/* Wait for it to finish */
    889 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    890 }
    891 
    892 /*
    893  * disable transmitter.
    894  */
    895 int
    896 gem_disable_tx(struct gem_softc *sc)
    897 {
    898 	bus_space_tag_t t = sc->sc_bustag;
    899 	bus_space_handle_t h = sc->sc_h1;
    900 	u_int32_t cfg;
    901 
    902 	/* Flip the enable bit */
    903 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    904 	cfg &= ~GEM_MAC_TX_ENABLE;
    905 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    906 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    907 	/* Wait for it to finish */
    908 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    909 }
    910 
    911 /*
    912  * Initialize interface.
    913  */
    914 int
    915 gem_meminit(struct gem_softc *sc)
    916 {
    917 	struct gem_rxsoft *rxs;
    918 	int i, error;
    919 
    920 	/*
    921 	 * Initialize the transmit descriptor ring.
    922 	 */
    923 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    924 	for (i = 0; i < GEM_NTXDESC; i++) {
    925 		sc->sc_txdescs[i].gd_flags = 0;
    926 		sc->sc_txdescs[i].gd_addr = 0;
    927 	}
    928 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    929 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    930 	sc->sc_txfree = GEM_NTXDESC-1;
    931 	sc->sc_txnext = 0;
    932 	sc->sc_txwin = 0;
    933 
    934 	/*
    935 	 * Initialize the receive descriptor and receive job
    936 	 * descriptor rings.
    937 	 */
    938 	for (i = 0; i < GEM_NRXDESC; i++) {
    939 		rxs = &sc->sc_rxsoft[i];
    940 		if (rxs->rxs_mbuf == NULL) {
    941 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    942 				aprint_error_dev(sc->sc_dev,
    943 				    "unable to allocate or map rx "
    944 				    "buffer %d, error = %d\n",
    945 				    i, error);
    946 				/*
    947 				 * XXX Should attempt to run with fewer receive
    948 				 * XXX buffers instead of just failing.
    949 				 */
    950 				gem_rxdrain(sc);
    951 				return (1);
    952 			}
    953 		} else
    954 			GEM_INIT_RXDESC(sc, i);
    955 	}
    956 	sc->sc_rxptr = 0;
    957 	sc->sc_meminited = 1;
    958 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    959 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    960 
    961 	return (0);
    962 }
    963 
    964 static int
    965 gem_ringsize(int sz)
    966 {
    967 	switch (sz) {
    968 	case 32:
    969 		return GEM_RING_SZ_32;
    970 	case 64:
    971 		return GEM_RING_SZ_64;
    972 	case 128:
    973 		return GEM_RING_SZ_128;
    974 	case 256:
    975 		return GEM_RING_SZ_256;
    976 	case 512:
    977 		return GEM_RING_SZ_512;
    978 	case 1024:
    979 		return GEM_RING_SZ_1024;
    980 	case 2048:
    981 		return GEM_RING_SZ_2048;
    982 	case 4096:
    983 		return GEM_RING_SZ_4096;
    984 	case 8192:
    985 		return GEM_RING_SZ_8192;
    986 	default:
    987 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
    988 		return GEM_RING_SZ_32;
    989 	}
    990 }
    991 
    992 
    993 /*
    994  * Start PCS
    995  */
    996 void
    997 gem_pcs_start(struct gem_softc *sc)
    998 {
    999 	bus_space_tag_t t = sc->sc_bustag;
   1000 	bus_space_handle_t h = sc->sc_h1;
   1001 	uint32_t v;
   1002 
   1003 #ifdef GEM_DEBUG
   1004 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
   1005 #endif
   1006 
   1007 	/*
   1008 	 * Set up.  We must disable the MII before modifying the
   1009 	 * GEM_MII_ANAR register
   1010 	 */
   1011 	if (sc->sc_flags & GEM_SERDES) {
   1012 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1013 		    GEM_MII_DATAPATH_SERDES);
   1014 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1015 		    GEM_MII_SLINK_LOOPBACK);
   1016 	} else {
   1017 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1018 		    GEM_MII_DATAPATH_SERIAL);
   1019 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
   1020 	}
   1021 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1022 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
   1023 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
   1024 	if (sc->sc_mii_media == IFM_AUTO)
   1025 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
   1026 	else if (sc->sc_mii_media == IFM_FDX) {
   1027 		v |= GEM_MII_ANEG_FUL_DUPLX;
   1028 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
   1029 	} else if (sc->sc_mii_media == IFM_HDX) {
   1030 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
   1031 		v |= GEM_MII_ANEG_HLF_DUPLX;
   1032 	}
   1033 
   1034 	/* Configure link. */
   1035 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
   1036 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1037 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1038 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
   1039 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
   1040 
   1041 	/* Start the 10 second timer */
   1042 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   1043 }
   1044 
   1045 /*
   1046  * Stop PCS
   1047  */
   1048 void
   1049 gem_pcs_stop(struct gem_softc *sc, int disable)
   1050 {
   1051 	bus_space_tag_t t = sc->sc_bustag;
   1052 	bus_space_handle_t h = sc->sc_h1;
   1053 
   1054 #ifdef GEM_DEBUG
   1055 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
   1056 #endif
   1057 
   1058 	/* Tell link partner that we're going away */
   1059 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
   1060 
   1061 	/*
   1062 	 * Disable PCS MII.  The documentation suggests that setting
   1063 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
   1064 	 * negotiation will shut down the link.  However, it appears
   1065 	 * that we also need to unset the datapath mode.
   1066 	 */
   1067 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1068 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1069 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1070 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
   1071 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1072 
   1073 	if (disable) {
   1074 		if (sc->sc_flags & GEM_SERDES)
   1075 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1076 				GEM_MII_SLINK_POWER_OFF);
   1077 		else
   1078 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1079 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
   1080 	}
   1081 
   1082 	sc->sc_flags &= ~GEM_LINK;
   1083 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   1084 	sc->sc_mii.mii_media_status = IFM_AVALID;
   1085 }
   1086 
   1087 
   1088 /*
   1089  * Initialization of interface; set up initialization block
   1090  * and transmit/receive descriptor rings.
   1091  */
   1092 int
   1093 gem_init(struct ifnet *ifp)
   1094 {
   1095 	struct gem_softc *sc = ifp->if_softc;
   1096 	bus_space_tag_t t = sc->sc_bustag;
   1097 	bus_space_handle_t h = sc->sc_h1;
   1098 	int rc = 0, s;
   1099 	u_int max_frame_size;
   1100 	u_int32_t v;
   1101 
   1102 	s = splnet();
   1103 
   1104 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
   1105 	/*
   1106 	 * Initialization sequence. The numbered steps below correspond
   1107 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
   1108 	 * Channel Engine manual (part of the PCIO manual).
   1109 	 * See also the STP2002-STQ document from Sun Microsystems.
   1110 	 */
   1111 
   1112 	/* step 1 & 2. Reset the Ethernet Channel */
   1113 	gem_stop(ifp, 0);
   1114 	gem_reset(sc);
   1115 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
   1116 
   1117 	/* Re-initialize the MIF */
   1118 	gem_mifinit(sc);
   1119 
   1120 	/* Set up correct datapath for non-SERDES/Serialink */
   1121 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1122 	    sc->sc_variant != GEM_SUN_ERI)
   1123 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1124 		    GEM_MII_DATAPATH_MII);
   1125 
   1126 	/* Call MI reset function if any */
   1127 	if (sc->sc_hwreset)
   1128 		(*sc->sc_hwreset)(sc);
   1129 
   1130 	/* step 3. Setup data structures in host memory */
   1131 	if (gem_meminit(sc) != 0)
   1132 		return 1;
   1133 
   1134 	/* step 4. TX MAC registers & counters */
   1135 	gem_init_regs(sc);
   1136 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
   1137 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
   1138 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1139 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
   1140 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1141 	    max_frame_size|/* burst size */(0x2000<<16));
   1142 
   1143 	/* step 5. RX MAC registers & counters */
   1144 	gem_setladrf(sc);
   1145 
   1146 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
   1147 	/* NOTE: we use only 32-bit DMA addresses here. */
   1148 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
   1149 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
   1150 
   1151 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
   1152 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
   1153 
   1154 	/* step 8. Global Configuration & Interrupt Mask */
   1155 	gem_inten(sc);
   1156 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
   1157 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
   1158 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
   1159 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
   1160 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
   1161 
   1162 	/* step 9. ETX Configuration: use mostly default values */
   1163 
   1164 	/* Enable TX DMA */
   1165 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
   1166 	bus_space_write_4(t, h, GEM_TX_CONFIG,
   1167 		v|GEM_TX_CONFIG_TXDMA_EN|
   1168 		((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
   1169 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
   1170 
   1171 	/* step 10. ERX Configuration */
   1172 	gem_rx_common(sc);
   1173 
   1174 	/* step 11. Configure Media */
   1175 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1176 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1177 		goto out;
   1178 
   1179 	/* step 12. RX_MAC Configuration Register */
   1180 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1181 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
   1182 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1183 
   1184 	/* step 14. Issue Transmit Pending command */
   1185 
   1186 	/* Call MI initialization function if any */
   1187 	if (sc->sc_hwinit)
   1188 		(*sc->sc_hwinit)(sc);
   1189 
   1190 
   1191 	/* step 15.  Give the reciever a swift kick */
   1192 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
   1193 
   1194 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1195 		/* Configure PCS */
   1196 		gem_pcs_start(sc);
   1197 	else
   1198 		/* Start the one second timer. */
   1199 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
   1200 
   1201 	sc->sc_flags &= ~GEM_LINK;
   1202 	ifp->if_flags |= IFF_RUNNING;
   1203 	ifp->if_flags &= ~IFF_OACTIVE;
   1204 	ifp->if_timer = 0;
   1205 	sc->sc_if_flags = ifp->if_flags;
   1206 out:
   1207 	splx(s);
   1208 
   1209 	return (0);
   1210 }
   1211 
   1212 void
   1213 gem_init_regs(struct gem_softc *sc)
   1214 {
   1215 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1216 	bus_space_tag_t t = sc->sc_bustag;
   1217 	bus_space_handle_t h = sc->sc_h1;
   1218 	const u_char *laddr = CLLADDR(ifp->if_sadl);
   1219 	u_int32_t v;
   1220 
   1221 	/* These regs are not cleared on reset */
   1222 	if (!sc->sc_inited) {
   1223 
   1224 		/* Load recommended values */
   1225 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
   1226 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
   1227 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
   1228 
   1229 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
   1230 		/* Max frame and max burst size */
   1231 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1232 		    ETHER_MAX_LEN | (0x2000<<16));
   1233 
   1234 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
   1235 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
   1236 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
   1237 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
   1238 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
   1239 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
   1240 
   1241 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
   1242 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
   1243 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
   1244 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
   1245 
   1246 		/* MAC control addr set to 01:80:c2:00:00:01 */
   1247 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
   1248 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
   1249 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
   1250 
   1251 		/* MAC filter addr set to 0:0:0:0:0:0 */
   1252 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
   1253 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
   1254 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
   1255 
   1256 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
   1257 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
   1258 
   1259 		sc->sc_inited = 1;
   1260 	}
   1261 
   1262 	/* Counters need to be zeroed */
   1263 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
   1264 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
   1265 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
   1266 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
   1267 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
   1268 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
   1269 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
   1270 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1271 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1272 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1273 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1274 
   1275 	/* Set XOFF PAUSE time. */
   1276 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
   1277 
   1278 	/*
   1279 	 * Set the internal arbitration to "infinite" bursts of the
   1280 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
   1281 	 * split up in cache line size chunks. This greatly improves
   1282 	 * especially RX performance.
   1283 	 * Enable silicon bug workarounds for the Apple variants.
   1284 	 */
   1285 	bus_space_write_4(t, h, GEM_CONFIG,
   1286 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
   1287 	    ((sc->sc_flags & GEM_PCI) ?
   1288 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
   1289 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
   1290 
   1291 	/*
   1292 	 * Set the station address.
   1293 	 */
   1294 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1295 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1296 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1297 
   1298 	/*
   1299 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1300 	 */
   1301 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1302 	v = GEM_MAC_XIF_TX_MII_ENA;
   1303 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
   1304 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1305 			v |= GEM_MAC_XIF_FDPLX_LED;
   1306 				if (sc->sc_flags & GEM_GIGABIT)
   1307 					v |= GEM_MAC_XIF_GMII_MODE;
   1308 		}
   1309 	} else {
   1310 		v |= GEM_MAC_XIF_GMII_MODE;
   1311 	}
   1312 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1313 }
   1314 
   1315 #ifdef GEM_DEBUG
   1316 static void
   1317 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
   1318 {
   1319 	int i;
   1320 
   1321 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
   1322 		printf("descriptor %d:\t", i);
   1323 		printf("gd_flags:   0x%016" PRIx64 "\t",
   1324 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1325 		printf("gd_addr: 0x%016" PRIx64 "\n",
   1326 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1327 		if (i == lastdesc)
   1328 			break;
   1329 	}
   1330 }
   1331 #endif
   1332 
   1333 static void
   1334 gem_start(struct ifnet *ifp)
   1335 {
   1336 	struct gem_softc *sc = ifp->if_softc;
   1337 	struct mbuf *m0, *m;
   1338 	struct gem_txsoft *txs;
   1339 	bus_dmamap_t dmamap;
   1340 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
   1341 	uint64_t flags = 0;
   1342 
   1343 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1344 		return;
   1345 
   1346 	/*
   1347 	 * Remember the previous number of free descriptors and
   1348 	 * the first descriptor we'll use.
   1349 	 */
   1350 	ofree = sc->sc_txfree;
   1351 	firsttx = sc->sc_txnext;
   1352 
   1353 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1354 	    device_xname(sc->sc_dev), ofree, firsttx));
   1355 
   1356 	/*
   1357 	 * Loop through the send queue, setting up transmit descriptors
   1358 	 * until we drain the queue, or use up all available transmit
   1359 	 * descriptors.
   1360 	 */
   1361 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1362 	    sc->sc_txfree != 0) {
   1363 		/*
   1364 		 * Grab a packet off the queue.
   1365 		 */
   1366 		IFQ_POLL(&ifp->if_snd, m0);
   1367 		if (m0 == NULL)
   1368 			break;
   1369 		m = NULL;
   1370 
   1371 		dmamap = txs->txs_dmamap;
   1372 
   1373 		/*
   1374 		 * Load the DMA map.  If this fails, the packet either
   1375 		 * didn't fit in the alloted number of segments, or we were
   1376 		 * short on resources.  In this case, we'll copy and try
   1377 		 * again.
   1378 		 */
   1379 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1380 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1381 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1382 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1383 			if (m0->m_pkthdr.len > MCLBYTES) {
   1384 				aprint_error_dev(sc->sc_dev,
   1385 				    "unable to allocate jumbo Tx cluster\n");
   1386 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1387 				m_freem(m0);
   1388 				continue;
   1389 			}
   1390 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1391 			if (m == NULL) {
   1392 				aprint_error_dev(sc->sc_dev,
   1393 				    "unable to allocate Tx mbuf\n");
   1394 				break;
   1395 			}
   1396 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1397 			if (m0->m_pkthdr.len > MHLEN) {
   1398 				MCLGET(m, M_DONTWAIT);
   1399 				if ((m->m_flags & M_EXT) == 0) {
   1400 					aprint_error_dev(sc->sc_dev,
   1401 					    "unable to allocate Tx cluster\n");
   1402 					m_freem(m);
   1403 					break;
   1404 				}
   1405 			}
   1406 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1407 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1408 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1409 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1410 			if (error) {
   1411 				aprint_error_dev(sc->sc_dev,
   1412 				    "unable to load Tx buffer, error = %d\n",
   1413 				    error);
   1414 				break;
   1415 			}
   1416 		}
   1417 
   1418 		/*
   1419 		 * Ensure we have enough descriptors free to describe
   1420 		 * the packet.
   1421 		 */
   1422 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1423 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1424 			/*
   1425 			 * Not enough free descriptors to transmit this
   1426 			 * packet.  We haven't committed to anything yet,
   1427 			 * so just unload the DMA map, put the packet
   1428 			 * back on the queue, and punt.  Notify the upper
   1429 			 * layer that there are no more slots left.
   1430 			 *
   1431 			 * XXX We could allocate an mbuf and copy, but
   1432 			 * XXX it is worth it?
   1433 			 */
   1434 			ifp->if_flags |= IFF_OACTIVE;
   1435 			sc->sc_if_flags = ifp->if_flags;
   1436 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1437 			if (m != NULL)
   1438 				m_freem(m);
   1439 			break;
   1440 		}
   1441 
   1442 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1443 		if (m != NULL) {
   1444 			m_freem(m0);
   1445 			m0 = m;
   1446 		}
   1447 
   1448 		/*
   1449 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1450 		 */
   1451 
   1452 		/* Sync the DMA map. */
   1453 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1454 		    BUS_DMASYNC_PREWRITE);
   1455 
   1456 		/*
   1457 		 * Initialize the transmit descriptors.
   1458 		 */
   1459 		for (nexttx = sc->sc_txnext, seg = 0;
   1460 		     seg < dmamap->dm_nsegs;
   1461 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1462 
   1463 			/*
   1464 			 * If this is the first descriptor we're
   1465 			 * enqueueing, set the start of packet flag,
   1466 			 * and the checksum stuff if we want the hardware
   1467 			 * to do it.
   1468 			 */
   1469 			sc->sc_txdescs[nexttx].gd_addr =
   1470 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1471 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1472 			if (nexttx == firsttx) {
   1473 				flags |= GEM_TD_START_OF_PACKET;
   1474 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1475 					sc->sc_txwin = 0;
   1476 					flags |= GEM_TD_INTERRUPT_ME;
   1477 				}
   1478 
   1479 #ifdef INET
   1480 				/* h/w checksum */
   1481 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
   1482 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1483 					struct ether_header *eh;
   1484 					uint16_t offset, start;
   1485 
   1486 					eh = mtod(m0, struct ether_header *);
   1487 					switch (ntohs(eh->ether_type)) {
   1488 					case ETHERTYPE_IP:
   1489 						start = ETHER_HDR_LEN;
   1490 						break;
   1491 					case ETHERTYPE_VLAN:
   1492 						start = ETHER_HDR_LEN +
   1493 							ETHER_VLAN_ENCAP_LEN;
   1494 						break;
   1495 					default:
   1496 						/* unsupported, drop it */
   1497 						m_free(m0);
   1498 						continue;
   1499 					}
   1500 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1501 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1502 					flags |= (start <<
   1503 						  GEM_TD_CXSUM_STARTSHFT) |
   1504 						 (offset <<
   1505 						  GEM_TD_CXSUM_STUFFSHFT) |
   1506 						 GEM_TD_CXSUM_ENABLE;
   1507 				}
   1508 #endif
   1509 			}
   1510 			if (seg == dmamap->dm_nsegs - 1) {
   1511 				flags |= GEM_TD_END_OF_PACKET;
   1512 			} else {
   1513 				/* last flag set outside of loop */
   1514 				sc->sc_txdescs[nexttx].gd_flags =
   1515 					GEM_DMA_WRITE(sc, flags);
   1516 			}
   1517 			lasttx = nexttx;
   1518 		}
   1519 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1520 			/* add padding buffer at end of chain */
   1521 			flags &= ~GEM_TD_END_OF_PACKET;
   1522 			sc->sc_txdescs[lasttx].gd_flags =
   1523 			    GEM_DMA_WRITE(sc, flags);
   1524 
   1525 			sc->sc_txdescs[nexttx].gd_addr =
   1526 			    GEM_DMA_WRITE(sc,
   1527 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1528 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1529 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1530 			lasttx = nexttx;
   1531 			nexttx = GEM_NEXTTX(nexttx);
   1532 			seg++;
   1533 		}
   1534 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1535 
   1536 		KASSERT(lasttx != -1);
   1537 
   1538 		/*
   1539 		 * Store a pointer to the packet so we can free it later,
   1540 		 * and remember what txdirty will be once the packet is
   1541 		 * done.
   1542 		 */
   1543 		txs->txs_mbuf = m0;
   1544 		txs->txs_firstdesc = sc->sc_txnext;
   1545 		txs->txs_lastdesc = lasttx;
   1546 		txs->txs_ndescs = seg;
   1547 
   1548 #ifdef GEM_DEBUG
   1549 		if (ifp->if_flags & IFF_DEBUG) {
   1550 			printf("     gem_start %p transmit chain:\n", txs);
   1551 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1552 			    txs->txs_lastdesc);
   1553 		}
   1554 #endif
   1555 
   1556 		/* Sync the descriptors we're using. */
   1557 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1558 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1559 
   1560 		/* Advance the tx pointer. */
   1561 		sc->sc_txfree -= txs->txs_ndescs;
   1562 		sc->sc_txnext = nexttx;
   1563 
   1564 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1565 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1566 
   1567 #if NBPFILTER > 0
   1568 		/*
   1569 		 * Pass the packet to any BPF listeners.
   1570 		 */
   1571 		if (ifp->if_bpf)
   1572 			bpf_mtap(ifp->if_bpf, m0);
   1573 #endif /* NBPFILTER > 0 */
   1574 	}
   1575 
   1576 	if (txs == NULL || sc->sc_txfree == 0) {
   1577 		/* No more slots left; notify upper layer. */
   1578 		ifp->if_flags |= IFF_OACTIVE;
   1579 		sc->sc_if_flags = ifp->if_flags;
   1580 	}
   1581 
   1582 	if (sc->sc_txfree != ofree) {
   1583 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1584 		    device_xname(sc->sc_dev), lasttx, firsttx));
   1585 		/*
   1586 		 * The entire packet chain is set up.
   1587 		 * Kick the transmitter.
   1588 		 */
   1589 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1590 			device_xname(sc->sc_dev), nexttx));
   1591 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
   1592 			sc->sc_txnext);
   1593 
   1594 		/* Set a watchdog timer in case the chip flakes out. */
   1595 		ifp->if_timer = 5;
   1596 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1597 			device_xname(sc->sc_dev), ifp->if_timer));
   1598 	}
   1599 }
   1600 
   1601 /*
   1602  * Transmit interrupt.
   1603  */
   1604 int
   1605 gem_tint(struct gem_softc *sc)
   1606 {
   1607 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1608 	bus_space_tag_t t = sc->sc_bustag;
   1609 	bus_space_handle_t mac = sc->sc_h1;
   1610 	struct gem_txsoft *txs;
   1611 	int txlast;
   1612 	int progress = 0;
   1613 	u_int32_t v;
   1614 
   1615 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
   1616 
   1617 	/* Unload collision counters ... */
   1618 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1619 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1620 	ifp->if_collisions += v +
   1621 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1622 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
   1623 	ifp->if_oerrors += v;
   1624 
   1625 	/* ... then clear the hardware counters. */
   1626 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1627 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1628 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1629 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1630 
   1631 	/*
   1632 	 * Go through our Tx list and free mbufs for those
   1633 	 * frames that have been transmitted.
   1634 	 */
   1635 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1636 		/*
   1637 		 * In theory, we could harvest some descriptors before
   1638 		 * the ring is empty, but that's a bit complicated.
   1639 		 *
   1640 		 * GEM_TX_COMPLETION points to the last descriptor
   1641 		 * processed +1.
   1642 		 *
   1643 		 * Let's assume that the NIC writes back to the Tx
   1644 		 * descriptors before it updates the completion
   1645 		 * register.  If the NIC has posted writes to the
   1646 		 * Tx descriptors, PCI ordering requires that the
   1647 		 * posted writes flush to RAM before the register-read
   1648 		 * finishes.  So let's read the completion register,
   1649 		 * before syncing the descriptors, so that we
   1650 		 * examine Tx descriptors that are at least as
   1651 		 * current as the completion register.
   1652 		 */
   1653 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1654 		DPRINTF(sc,
   1655 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1656 				txs->txs_lastdesc, txlast));
   1657 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1658 			if (txlast >= txs->txs_firstdesc &&
   1659 			    txlast <= txs->txs_lastdesc)
   1660 				break;
   1661 		} else if (txlast >= txs->txs_firstdesc ||
   1662 			   txlast <= txs->txs_lastdesc)
   1663 			break;
   1664 
   1665 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1666 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1667 
   1668 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
   1669 		if (ifp->if_flags & IFF_DEBUG) {
   1670 			printf("    txsoft %p transmit chain:\n", txs);
   1671 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1672 			    txs->txs_lastdesc);
   1673 		}
   1674 #endif
   1675 
   1676 
   1677 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1678 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1679 
   1680 		sc->sc_txfree += txs->txs_ndescs;
   1681 
   1682 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1683 		    0, txs->txs_dmamap->dm_mapsize,
   1684 		    BUS_DMASYNC_POSTWRITE);
   1685 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1686 		if (txs->txs_mbuf != NULL) {
   1687 			m_freem(txs->txs_mbuf);
   1688 			txs->txs_mbuf = NULL;
   1689 		}
   1690 
   1691 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1692 
   1693 		ifp->if_opackets++;
   1694 		progress = 1;
   1695 	}
   1696 
   1697 #if 0
   1698 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1699 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
   1700 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
   1701 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1702 			GEM_TX_DATA_PTR_HI) << 32) |
   1703 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1704 			GEM_TX_DATA_PTR_LO),
   1705 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
   1706 #endif
   1707 
   1708 	if (progress) {
   1709 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1710 			sc->sc_txwin = 0;
   1711 
   1712 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
   1713 		ifp->if_flags &= ~IFF_OACTIVE;
   1714 		sc->sc_if_flags = ifp->if_flags;
   1715 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
   1716 		gem_start(ifp);
   1717 	}
   1718 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1719 		device_xname(sc->sc_dev), ifp->if_timer));
   1720 
   1721 	return (1);
   1722 }
   1723 
   1724 /*
   1725  * Receive interrupt.
   1726  */
   1727 int
   1728 gem_rint(struct gem_softc *sc)
   1729 {
   1730 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1731 	bus_space_tag_t t = sc->sc_bustag;
   1732 	bus_space_handle_t h = sc->sc_h1;
   1733 	struct gem_rxsoft *rxs;
   1734 	struct mbuf *m;
   1735 	u_int64_t rxstat;
   1736 	u_int32_t rxcomp;
   1737 	int i, len, progress = 0;
   1738 
   1739 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
   1740 
   1741 	/*
   1742 	 * Ignore spurious interrupt that sometimes occurs before
   1743 	 * we are set up when we network boot.
   1744 	 */
   1745 	if (!sc->sc_meminited)
   1746 		return 1;
   1747 
   1748 	/*
   1749 	 * Read the completion register once.  This limits
   1750 	 * how long the following loop can execute.
   1751 	 */
   1752 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1753 
   1754 	/*
   1755 	 * XXX Read the lastrx only once at the top for speed.
   1756 	 */
   1757 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1758 		sc->sc_rxptr, rxcomp));
   1759 
   1760 	/*
   1761 	 * Go into the loop at least once.
   1762 	 */
   1763 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1764 	     i = GEM_NEXTRX(i)) {
   1765 		rxs = &sc->sc_rxsoft[i];
   1766 
   1767 		GEM_CDRXSYNC(sc, i,
   1768 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1769 
   1770 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1771 
   1772 		if (rxstat & GEM_RD_OWN) {
   1773 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1774 			/*
   1775 			 * We have processed all of the receive buffers.
   1776 			 */
   1777 			break;
   1778 		}
   1779 
   1780 		progress++;
   1781 		ifp->if_ipackets++;
   1782 
   1783 		if (rxstat & GEM_RD_BAD_CRC) {
   1784 			ifp->if_ierrors++;
   1785 			aprint_error_dev(sc->sc_dev,
   1786 			    "receive error: CRC error\n");
   1787 			GEM_INIT_RXDESC(sc, i);
   1788 			continue;
   1789 		}
   1790 
   1791 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1792 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1793 #ifdef GEM_DEBUG
   1794 		if (ifp->if_flags & IFF_DEBUG) {
   1795 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1796 			printf("gd_flags: 0x%016llx\t", (long long)
   1797 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1798 			printf("gd_addr: 0x%016llx\n", (long long)
   1799 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1800 		}
   1801 #endif
   1802 
   1803 		/* No errors; receive the packet. */
   1804 		len = GEM_RD_BUFLEN(rxstat);
   1805 
   1806 		/*
   1807 		 * Allocate a new mbuf cluster.  If that fails, we are
   1808 		 * out of memory, and must drop the packet and recycle
   1809 		 * the buffer that's already attached to this descriptor.
   1810 		 */
   1811 		m = rxs->rxs_mbuf;
   1812 		if (gem_add_rxbuf(sc, i) != 0) {
   1813 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1814 			ifp->if_ierrors++;
   1815 			GEM_INIT_RXDESC(sc, i);
   1816 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1817 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1818 			continue;
   1819 		}
   1820 		m->m_data += 2; /* We're already off by two */
   1821 
   1822 		m->m_pkthdr.rcvif = ifp;
   1823 		m->m_pkthdr.len = m->m_len = len;
   1824 
   1825 #if NBPFILTER > 0
   1826 		/*
   1827 		 * Pass this up to any BPF listeners, but only
   1828 		 * pass it up the stack if it's for us.
   1829 		 */
   1830 		if (ifp->if_bpf)
   1831 			bpf_mtap(ifp->if_bpf, m);
   1832 #endif /* NBPFILTER > 0 */
   1833 
   1834 #ifdef INET
   1835 		/* hardware checksum */
   1836 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1837 			struct ether_header *eh;
   1838 			struct ip *ip;
   1839 			int32_t hlen, pktlen;
   1840 
   1841 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1842 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1843 					 ETHER_VLAN_ENCAP_LEN;
   1844 				eh = (struct ether_header *) (mtod(m, char *) +
   1845 					ETHER_VLAN_ENCAP_LEN);
   1846 			} else {
   1847 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1848 				eh = mtod(m, struct ether_header *);
   1849 			}
   1850 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1851 				goto swcsum;
   1852 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
   1853 
   1854 			/* IPv4 only */
   1855 			if (ip->ip_v != IPVERSION)
   1856 				goto swcsum;
   1857 
   1858 			hlen = ip->ip_hl << 2;
   1859 			if (hlen < sizeof(struct ip))
   1860 				goto swcsum;
   1861 
   1862 			/*
   1863 			 * bail if too short, has random trailing garbage,
   1864 			 * truncated, fragment, or has ethernet pad.
   1865 			 */
   1866 			if ((ntohs(ip->ip_len) < hlen) ||
   1867 			    (ntohs(ip->ip_len) != pktlen) ||
   1868 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1869 				goto swcsum;
   1870 
   1871 			switch (ip->ip_p) {
   1872 			case IPPROTO_TCP:
   1873 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1874 					goto swcsum;
   1875 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1876 					goto swcsum;
   1877 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1878 				break;
   1879 			case IPPROTO_UDP:
   1880 				/* FALLTHROUGH */
   1881 			default:
   1882 				goto swcsum;
   1883 			}
   1884 
   1885 			/* the uncomplemented sum is expected */
   1886 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1887 
   1888 			/* if the pkt had ip options, we have to deduct them */
   1889 			if (hlen > sizeof(struct ip)) {
   1890 				uint16_t *opts;
   1891 				uint32_t optsum, temp;
   1892 
   1893 				optsum = 0;
   1894 				temp = hlen - sizeof(struct ip);
   1895 				opts = (uint16_t *) ((char *) ip +
   1896 					sizeof(struct ip));
   1897 
   1898 				while (temp > 1) {
   1899 					optsum += ntohs(*opts++);
   1900 					temp -= 2;
   1901 				}
   1902 				while (optsum >> 16)
   1903 					optsum = (optsum >> 16) +
   1904 						 (optsum & 0xffff);
   1905 
   1906 				/* Deduct ip opts sum from hwsum. */
   1907 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
   1908 
   1909 				while (m->m_pkthdr.csum_data >> 16)
   1910 					m->m_pkthdr.csum_data =
   1911 						(m->m_pkthdr.csum_data >> 16) +
   1912 						(m->m_pkthdr.csum_data &
   1913 						 0xffff);
   1914 			}
   1915 
   1916 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1917 						  M_CSUM_NO_PSEUDOHDR;
   1918 		} else
   1919 swcsum:
   1920 			m->m_pkthdr.csum_flags = 0;
   1921 #endif
   1922 		/* Pass it on. */
   1923 		(*ifp->if_input)(ifp, m);
   1924 	}
   1925 
   1926 	if (progress) {
   1927 		/* Update the receive pointer. */
   1928 		if (i == sc->sc_rxptr) {
   1929 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1930 #ifdef GEM_DEBUG
   1931 			if (ifp->if_flags & IFF_DEBUG)
   1932 				printf("%s: rint: ring wrap\n",
   1933 				    device_xname(sc->sc_dev));
   1934 #endif
   1935 		}
   1936 		sc->sc_rxptr = i;
   1937 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1938 	}
   1939 #ifdef GEM_COUNTERS
   1940 	if (progress <= 4) {
   1941 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1942 	} else if (progress < 32) {
   1943 		if (progress < 16)
   1944 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1945 		else
   1946 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1947 
   1948 	} else {
   1949 		if (progress < 64)
   1950 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1951 		else
   1952 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1953 	}
   1954 #endif
   1955 
   1956 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1957 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1958 
   1959 	/* Read error counters ... */
   1960 	ifp->if_ierrors +=
   1961 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
   1962 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
   1963 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
   1964 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
   1965 
   1966 	/* ... then clear the hardware counters. */
   1967 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1968 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1969 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1970 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1971 
   1972 	return (1);
   1973 }
   1974 
   1975 
   1976 /*
   1977  * gem_add_rxbuf:
   1978  *
   1979  *	Add a receive buffer to the indicated descriptor.
   1980  */
   1981 int
   1982 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1983 {
   1984 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1985 	struct mbuf *m;
   1986 	int error;
   1987 
   1988 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1989 	if (m == NULL)
   1990 		return (ENOBUFS);
   1991 
   1992 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1993 	MCLGET(m, M_DONTWAIT);
   1994 	if ((m->m_flags & M_EXT) == 0) {
   1995 		m_freem(m);
   1996 		return (ENOBUFS);
   1997 	}
   1998 
   1999 #ifdef GEM_DEBUG
   2000 /* bzero the packet to check DMA */
   2001 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   2002 #endif
   2003 
   2004 	if (rxs->rxs_mbuf != NULL)
   2005 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   2006 
   2007 	rxs->rxs_mbuf = m;
   2008 
   2009 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   2010 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2011 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2012 	if (error) {
   2013 		aprint_error_dev(sc->sc_dev,
   2014 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   2015 		panic("gem_add_rxbuf");	/* XXX */
   2016 	}
   2017 
   2018 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   2019 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2020 
   2021 	GEM_INIT_RXDESC(sc, idx);
   2022 
   2023 	return (0);
   2024 }
   2025 
   2026 
   2027 int
   2028 gem_eint(struct gem_softc *sc, u_int status)
   2029 {
   2030 	char bits[128];
   2031 	u_int32_t r, v;
   2032 
   2033 	if ((status & GEM_INTR_MIF) != 0) {
   2034 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
   2035 		return (1);
   2036 	}
   2037 
   2038 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
   2039 		gem_reset_rxdma(sc);
   2040 		return (1);
   2041 	}
   2042 
   2043 	if (status & GEM_INTR_BERR) {
   2044 		if (sc->sc_flags & GEM_PCI)
   2045 			r = GEM_ERROR_STATUS;
   2046 		else
   2047 			r = GEM_SBUS_ERROR_STATUS;
   2048 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   2049 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   2050 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
   2051 		    v);
   2052 		return (1);
   2053 	}
   2054 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
   2055 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   2056 
   2057 	return (1);
   2058 }
   2059 
   2060 
   2061 /*
   2062  * PCS interrupts.
   2063  * We should receive these when the link status changes, but sometimes
   2064  * we don't receive them for link up.  We compensate for this in the
   2065  * gem_tick() callout.
   2066  */
   2067 int
   2068 gem_pint(struct gem_softc *sc)
   2069 {
   2070 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2071 	bus_space_tag_t t = sc->sc_bustag;
   2072 	bus_space_handle_t h = sc->sc_h1;
   2073 	u_int32_t v, v2;
   2074 
   2075 	/*
   2076 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
   2077 	 * latched, so we have to read it twice.  There is only one bit in
   2078 	 * use, so the value is meaningless.
   2079 	 */
   2080 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2081 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2082 
   2083 	if ((ifp->if_flags & IFF_UP) == 0)
   2084 		return 1;
   2085 
   2086 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
   2087 		return 1;
   2088 
   2089 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2090 	/* If we see remote fault, our link partner is probably going away */
   2091 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
   2092 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
   2093 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2094 	/* Otherwise, we may need to wait after auto-negotiation completes */
   2095 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
   2096 	    GEM_MII_STATUS_ANEG_CPT) {
   2097 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
   2098 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2099 	}
   2100 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
   2101 		if (sc->sc_flags & GEM_LINK) {
   2102 			return 1;
   2103 		}
   2104 		callout_stop(&sc->sc_tick_ch);
   2105 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
   2106 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
   2107 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
   2108 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
   2109 		v &= v2;
   2110 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
   2111 			sc->sc_mii.mii_media_active |= IFM_FDX;
   2112 #ifdef GEM_DEBUG
   2113 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
   2114 #endif
   2115 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
   2116 			sc->sc_mii.mii_media_active |= IFM_HDX;
   2117 #ifdef GEM_DEBUG
   2118 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
   2119 #endif
   2120 		} else {
   2121 #ifdef GEM_DEBUG
   2122 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
   2123 #endif
   2124 		}
   2125 		gem_statuschange(sc);
   2126 	} else {
   2127 		if ((sc->sc_flags & GEM_LINK) == 0) {
   2128 			return 1;
   2129 		}
   2130 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   2131 		sc->sc_mii.mii_media_status = IFM_AVALID;
   2132 #ifdef GEM_DEBUG
   2133 			aprint_debug_dev(sc->sc_dev, "link down\n");
   2134 #endif
   2135 		gem_statuschange(sc);
   2136 
   2137 		/* Start the 10 second timer */
   2138 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   2139 	}
   2140 	return 1;
   2141 }
   2142 
   2143 
   2144 
   2145 int
   2146 gem_intr(void *v)
   2147 {
   2148 	struct gem_softc *sc = v;
   2149 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2150 	bus_space_tag_t t = sc->sc_bustag;
   2151 	bus_space_handle_t h = sc->sc_h1;
   2152 	u_int32_t status;
   2153 	int r = 0;
   2154 #ifdef GEM_DEBUG
   2155 	char bits[128];
   2156 #endif
   2157 
   2158 	/* XXX We should probably mask out interrupts until we're done */
   2159 
   2160 	sc->sc_ev_intr.ev_count++;
   2161 
   2162 	status = bus_space_read_4(t, h, GEM_STATUS);
   2163 #ifdef GEM_DEBUG
   2164 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
   2165 #endif
   2166 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   2167 		device_xname(sc->sc_dev), (status >> 19), bits));
   2168 
   2169 
   2170 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   2171 		r |= gem_eint(sc, status);
   2172 
   2173 	/* We don't bother with GEM_INTR_TX_DONE */
   2174 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   2175 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   2176 		r |= gem_tint(sc);
   2177 	}
   2178 
   2179 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   2180 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   2181 		r |= gem_rint(sc);
   2182 	}
   2183 
   2184 	/* We should eventually do more than just print out error stats. */
   2185 	if (status & GEM_INTR_TX_MAC) {
   2186 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
   2187 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   2188 			printf("%s: MAC tx fault, status %x\n",
   2189 			    device_xname(sc->sc_dev), txstat);
   2190 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   2191 			gem_init(ifp);
   2192 	}
   2193 	if (status & GEM_INTR_RX_MAC) {
   2194 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
   2195 		/*
   2196 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
   2197 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
   2198 		 * silicon bug so handle them silently. Moreover, it's
   2199 		 * likely that the receiver has hung so we reset it.
   2200 		 */
   2201 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
   2202 			ifp->if_ierrors++;
   2203 			gem_reset_rxdma(sc);
   2204 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   2205 			printf("%s: MAC rx fault, status 0x%02x\n",
   2206 			    device_xname(sc->sc_dev), rxstat);
   2207 	}
   2208 	if (status & GEM_INTR_PCS) {
   2209 		r |= gem_pint(sc);
   2210 	}
   2211 
   2212 /* Do we need to do anything with these?
   2213 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
   2214 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
   2215 		if ((status2 & GEM_MAC_PAUSED) != 0)
   2216 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
   2217 			    GEM_MAC_PAUSE_TIME(status2));
   2218 		if ((status2 & GEM_MAC_PAUSE) != 0)
   2219 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
   2220 		if ((status2 & GEM_MAC_RESUME) != 0)
   2221 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
   2222 	}
   2223 	if ((status & GEM_INTR_MIF) != 0)
   2224 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
   2225 */
   2226 #if NRND > 0
   2227 	rnd_add_uint32(&sc->rnd_source, status);
   2228 #endif
   2229 	return (r);
   2230 }
   2231 
   2232 
   2233 void
   2234 gem_watchdog(struct ifnet *ifp)
   2235 {
   2236 	struct gem_softc *sc = ifp->if_softc;
   2237 
   2238 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   2239 		"GEM_MAC_RX_CONFIG %x\n",
   2240 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
   2241 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
   2242 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
   2243 
   2244 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   2245 	++ifp->if_oerrors;
   2246 
   2247 	/* Try to get more packets going. */
   2248 	gem_start(ifp);
   2249 }
   2250 
   2251 /*
   2252  * Initialize the MII Management Interface
   2253  */
   2254 void
   2255 gem_mifinit(struct gem_softc *sc)
   2256 {
   2257 	bus_space_tag_t t = sc->sc_bustag;
   2258 	bus_space_handle_t mif = sc->sc_h1;
   2259 
   2260 	/* Configure the MIF in frame mode */
   2261 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   2262 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   2263 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   2264 }
   2265 
   2266 /*
   2267  * MII interface
   2268  *
   2269  * The GEM MII interface supports at least three different operating modes:
   2270  *
   2271  * Bitbang mode is implemented using data, clock and output enable registers.
   2272  *
   2273  * Frame mode is implemented by loading a complete frame into the frame
   2274  * register and polling the valid bit for completion.
   2275  *
   2276  * Polling mode uses the frame register but completion is indicated by
   2277  * an interrupt.
   2278  *
   2279  */
   2280 static int
   2281 gem_mii_readreg(device_t self, int phy, int reg)
   2282 {
   2283 	struct gem_softc *sc = device_private(self);
   2284 	bus_space_tag_t t = sc->sc_bustag;
   2285 	bus_space_handle_t mif = sc->sc_h1;
   2286 	int n;
   2287 	u_int32_t v;
   2288 
   2289 #ifdef GEM_DEBUG1
   2290 	if (sc->sc_debug)
   2291 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
   2292 #endif
   2293 
   2294 	/* Construct the frame command */
   2295 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   2296 		GEM_MIF_FRAME_READ;
   2297 
   2298 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2299 	for (n = 0; n < 100; n++) {
   2300 		DELAY(1);
   2301 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2302 		if (v & GEM_MIF_FRAME_TA0)
   2303 			return (v & GEM_MIF_FRAME_DATA);
   2304 	}
   2305 
   2306 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   2307 	return (0);
   2308 }
   2309 
   2310 static void
   2311 gem_mii_writereg(device_t self, int phy, int reg, int val)
   2312 {
   2313 	struct gem_softc *sc = device_private(self);
   2314 	bus_space_tag_t t = sc->sc_bustag;
   2315 	bus_space_handle_t mif = sc->sc_h1;
   2316 	int n;
   2317 	u_int32_t v;
   2318 
   2319 #ifdef GEM_DEBUG1
   2320 	if (sc->sc_debug)
   2321 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
   2322 			phy, reg, val);
   2323 #endif
   2324 
   2325 	/* Construct the frame command */
   2326 	v = GEM_MIF_FRAME_WRITE			|
   2327 	    (phy << GEM_MIF_PHY_SHIFT)		|
   2328 	    (reg << GEM_MIF_REG_SHIFT)		|
   2329 	    (val & GEM_MIF_FRAME_DATA);
   2330 
   2331 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2332 	for (n = 0; n < 100; n++) {
   2333 		DELAY(1);
   2334 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2335 		if (v & GEM_MIF_FRAME_TA0)
   2336 			return;
   2337 	}
   2338 
   2339 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   2340 }
   2341 
   2342 static void
   2343 gem_mii_statchg(device_t self)
   2344 {
   2345 	struct gem_softc *sc = device_private(self);
   2346 #ifdef GEM_DEBUG
   2347 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   2348 #endif
   2349 
   2350 #ifdef GEM_DEBUG
   2351 	if (sc->sc_debug)
   2352 		printf("gem_mii_statchg: status change: phy = %d\n",
   2353 			sc->sc_phys[instance]);
   2354 #endif
   2355 	gem_statuschange(sc);
   2356 }
   2357 
   2358 /*
   2359  * Common status change for gem_mii_statchg() and gem_pint()
   2360  */
   2361 void
   2362 gem_statuschange(struct gem_softc* sc)
   2363 {
   2364 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2365 	bus_space_tag_t t = sc->sc_bustag;
   2366 	bus_space_handle_t mac = sc->sc_h1;
   2367 	int gigabit;
   2368 	u_int32_t rxcfg, txcfg, v;
   2369 
   2370 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
   2371 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
   2372 		sc->sc_flags |= GEM_LINK;
   2373 	else
   2374 		sc->sc_flags &= ~GEM_LINK;
   2375 
   2376 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2377 		gigabit = 1;
   2378 	else
   2379 		gigabit = 0;
   2380 
   2381 	/*
   2382 	 * The configuration done here corresponds to the steps F) and
   2383 	 * G) and as far as enabling of RX and TX MAC goes also step H)
   2384 	 * of the initialization sequence outlined in section 3.2.1 of
   2385 	 * the GEM Gigabit Ethernet ASIC Specification.
   2386 	 */
   2387 
   2388 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
   2389 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
   2390 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
   2391 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2392 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
   2393 	else if (gigabit) {
   2394 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
   2395 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
   2396 	}
   2397 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   2398 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
   2399 	    BUS_SPACE_BARRIER_WRITE);
   2400 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
   2401 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
   2402 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
   2403 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
   2404 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
   2405 	    BUS_SPACE_BARRIER_WRITE);
   2406 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
   2407 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
   2408 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
   2409 
   2410 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
   2411 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
   2412 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
   2413 
   2414 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
   2415 	    gigabit != 0)
   2416 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2417 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
   2418 	else
   2419 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2420 		    GEM_MAC_SLOT_TIME_NORMAL);
   2421 
   2422 	/* XIF Configuration */
   2423 	if (sc->sc_flags & GEM_LINK)
   2424 		v = GEM_MAC_XIF_LINK_LED;
   2425 	else
   2426 		v = 0;
   2427 	v |= GEM_MAC_XIF_TX_MII_ENA;
   2428 
   2429 	/* If an external transceiver is connected, enable its MII drivers */
   2430 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   2431 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
   2432 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   2433 			/* External MII needs echo disable if half duplex. */
   2434 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
   2435 			    IFM_FDX) != 0)
   2436 				/* turn on full duplex LED */
   2437 				v |= GEM_MAC_XIF_FDPLX_LED;
   2438 			else
   2439 				/* half duplex -- disable echo */
   2440 				v |= GEM_MAC_XIF_ECHO_DISABL;
   2441 			if (gigabit)
   2442 				v |= GEM_MAC_XIF_GMII_MODE;
   2443 			else
   2444 				v &= ~GEM_MAC_XIF_GMII_MODE;
   2445 		} else
   2446 			/* Internal MII needs buf enable */
   2447 			v |= GEM_MAC_XIF_MII_BUF_ENA;
   2448 	} else {
   2449 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2450 			v |= GEM_MAC_XIF_FDPLX_LED;
   2451 		v |= GEM_MAC_XIF_GMII_MODE;
   2452 	}
   2453 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   2454 
   2455 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2456 	    (sc->sc_flags & GEM_LINK) != 0) {
   2457 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
   2458 		    txcfg | GEM_MAC_TX_ENABLE);
   2459 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
   2460 		    rxcfg | GEM_MAC_RX_ENABLE);
   2461 	}
   2462 }
   2463 
   2464 int
   2465 gem_ser_mediachange(struct ifnet *ifp)
   2466 {
   2467 	struct gem_softc *sc = ifp->if_softc;
   2468 	u_int s, t;
   2469 
   2470 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
   2471 		return EINVAL;
   2472 
   2473 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
   2474 	if (s == IFM_AUTO) {
   2475 		if (sc->sc_mii_media != s) {
   2476 #ifdef GEM_DEBUG
   2477 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
   2478 #endif
   2479 			sc->sc_mii_media = s;
   2480 			if (ifp->if_flags & IFF_UP) {
   2481 				gem_pcs_stop(sc, 0);
   2482 				gem_pcs_start(sc);
   2483 			}
   2484 		}
   2485 		return 0;
   2486 	}
   2487 	if (s == IFM_1000_SX) {
   2488 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
   2489 		if (t == IFM_FDX || t == IFM_HDX) {
   2490 			if (sc->sc_mii_media != t) {
   2491 				sc->sc_mii_media = t;
   2492 #ifdef GEM_DEBUG
   2493 				aprint_debug_dev(sc->sc_dev,
   2494 				    "setting media to 1000baseSX-%s\n",
   2495 				    t == IFM_FDX ? "FDX" : "HDX");
   2496 #endif
   2497 				if (ifp->if_flags & IFF_UP) {
   2498 					gem_pcs_stop(sc, 0);
   2499 					gem_pcs_start(sc);
   2500 				}
   2501 			}
   2502 			return 0;
   2503 		}
   2504 	}
   2505 	return EINVAL;
   2506 }
   2507 
   2508 void
   2509 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2510 {
   2511 	struct gem_softc *sc = ifp->if_softc;
   2512 
   2513 	if ((ifp->if_flags & IFF_UP) == 0)
   2514 		return;
   2515 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2516 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2517 }
   2518 
   2519 static int
   2520 gem_ifflags_cb(struct ethercom *ec)
   2521 {
   2522 	struct ifnet *ifp = &ec->ec_if;
   2523 	struct gem_softc *sc = ifp->if_softc;
   2524 	int change = ifp->if_flags ^ sc->sc_if_flags;
   2525 
   2526 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   2527 		return ENETRESET;
   2528 	else if ((change & IFF_PROMISC) != 0)
   2529 		gem_setladrf(sc);
   2530 	return 0;
   2531 }
   2532 
   2533 /*
   2534  * Process an ioctl request.
   2535  */
   2536 int
   2537 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   2538 {
   2539 	struct gem_softc *sc = ifp->if_softc;
   2540 	int s, error = 0;
   2541 
   2542 	s = splnet();
   2543 
   2544 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2545 		error = 0;
   2546 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2547 			;
   2548 		else if (ifp->if_flags & IFF_RUNNING) {
   2549 			/*
   2550 			 * Multicast list has changed; set the hardware filter
   2551 			 * accordingly.
   2552 			 */
   2553 			gem_setladrf(sc);
   2554 		}
   2555 	}
   2556 
   2557 	/* Try to get things going again */
   2558 	if (ifp->if_flags & IFF_UP)
   2559 		gem_start(ifp);
   2560 	splx(s);
   2561 	return (error);
   2562 }
   2563 
   2564 static void
   2565 gem_inten(struct gem_softc *sc)
   2566 {
   2567 	bus_space_tag_t t = sc->sc_bustag;
   2568 	bus_space_handle_t h = sc->sc_h1;
   2569 	uint32_t v;
   2570 
   2571 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   2572 		v = GEM_INTR_PCS;
   2573 	else
   2574 		v = GEM_INTR_MIF;
   2575 	bus_space_write_4(t, h, GEM_INTMASK,
   2576 		      ~(GEM_INTR_TX_INTME |
   2577 			GEM_INTR_TX_EMPTY |
   2578 			GEM_INTR_TX_MAC |
   2579 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
   2580 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
   2581 			GEM_INTR_BERR | v));
   2582 }
   2583 
   2584 bool
   2585 gem_resume(device_t self PMF_FN_ARGS)
   2586 {
   2587 	struct gem_softc *sc = device_private(self);
   2588 
   2589 	gem_inten(sc);
   2590 
   2591 	return true;
   2592 }
   2593 
   2594 bool
   2595 gem_suspend(device_t self PMF_FN_ARGS)
   2596 {
   2597 	struct gem_softc *sc = device_private(self);
   2598 	bus_space_tag_t t = sc->sc_bustag;
   2599 	bus_space_handle_t h = sc->sc_h1;
   2600 
   2601 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
   2602 
   2603 	return true;
   2604 }
   2605 
   2606 bool
   2607 gem_shutdown(device_t self, int howto)
   2608 {
   2609 	struct gem_softc *sc = device_private(self);
   2610 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2611 
   2612 	gem_stop(ifp, 1);
   2613 
   2614 	return true;
   2615 }
   2616 
   2617 /*
   2618  * Set up the logical address filter.
   2619  */
   2620 void
   2621 gem_setladrf(struct gem_softc *sc)
   2622 {
   2623 	struct ethercom *ec = &sc->sc_ethercom;
   2624 	struct ifnet *ifp = &ec->ec_if;
   2625 	struct ether_multi *enm;
   2626 	struct ether_multistep step;
   2627 	bus_space_tag_t t = sc->sc_bustag;
   2628 	bus_space_handle_t h = sc->sc_h1;
   2629 	u_int32_t crc;
   2630 	u_int32_t hash[16];
   2631 	u_int32_t v;
   2632 	int i;
   2633 
   2634 	/* Get current RX configuration */
   2635 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2636 
   2637 	/*
   2638 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2639 	 * and hash filter.  Depending on the case, the right bit will be
   2640 	 * enabled.
   2641 	 */
   2642 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2643 	    GEM_MAC_RX_PROMISC_GRP);
   2644 
   2645 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2646 		/* Turn on promiscuous mode */
   2647 		v |= GEM_MAC_RX_PROMISCUOUS;
   2648 		ifp->if_flags |= IFF_ALLMULTI;
   2649 		goto chipit;
   2650 	}
   2651 
   2652 	/*
   2653 	 * Set up multicast address filter by passing all multicast addresses
   2654 	 * through a crc generator, and then using the high order 8 bits as an
   2655 	 * index into the 256 bit logical address filter.  The high order 4
   2656 	 * bits selects the word, while the other 4 bits select the bit within
   2657 	 * the word (where bit 0 is the MSB).
   2658 	 */
   2659 
   2660 	/* Clear hash table */
   2661 	memset(hash, 0, sizeof(hash));
   2662 
   2663 	ETHER_FIRST_MULTI(step, ec, enm);
   2664 	while (enm != NULL) {
   2665 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2666 			/*
   2667 			 * We must listen to a range of multicast addresses.
   2668 			 * For now, just accept all multicasts, rather than
   2669 			 * trying to set only those filter bits needed to match
   2670 			 * the range.  (At this time, the only use of address
   2671 			 * ranges is for IP multicast routing, for which the
   2672 			 * range is big enough to require all bits set.)
   2673 			 * XXX should use the address filters for this
   2674 			 */
   2675 			ifp->if_flags |= IFF_ALLMULTI;
   2676 			v |= GEM_MAC_RX_PROMISC_GRP;
   2677 			goto chipit;
   2678 		}
   2679 
   2680 		/* Get the LE CRC32 of the address */
   2681 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2682 
   2683 		/* Just want the 8 most significant bits. */
   2684 		crc >>= 24;
   2685 
   2686 		/* Set the corresponding bit in the filter. */
   2687 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2688 
   2689 		ETHER_NEXT_MULTI(step, enm);
   2690 	}
   2691 
   2692 	v |= GEM_MAC_RX_HASH_FILTER;
   2693 	ifp->if_flags &= ~IFF_ALLMULTI;
   2694 
   2695 	/* Now load the hash table into the chip (if we are using it) */
   2696 	for (i = 0; i < 16; i++) {
   2697 		bus_space_write_4(t, h,
   2698 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2699 		    hash[i]);
   2700 	}
   2701 
   2702 chipit:
   2703 	sc->sc_if_flags = ifp->if_flags;
   2704 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2705 }
   2706