gem.c revision 1.85 1 /* $NetBSD: gem.c,v 1.85 2009/07/27 18:10:53 dyoung Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.85 2009/07/27 18:10:53 dyoung Exp $");
41
42 #include "opt_inet.h"
43 #include "bpfilter.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56
57 #include <machine/endian.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
78
79 #include <sys/bus.h>
80 #include <sys/intr.h>
81
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
85
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
88
89 #define TRIES 10000
90
91 static void gem_inten(struct gem_softc *);
92 static void gem_start(struct ifnet *);
93 static void gem_stop(struct ifnet *, int);
94 int gem_ioctl(struct ifnet *, u_long, void *);
95 void gem_tick(void *);
96 void gem_watchdog(struct ifnet *);
97 void gem_pcs_start(struct gem_softc *sc);
98 void gem_pcs_stop(struct gem_softc *sc, int);
99 int gem_init(struct ifnet *);
100 void gem_init_regs(struct gem_softc *sc);
101 static int gem_ringsize(int sz);
102 static int gem_meminit(struct gem_softc *);
103 void gem_mifinit(struct gem_softc *);
104 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 u_int32_t, u_int32_t);
106 void gem_reset(struct gem_softc *);
107 int gem_reset_rx(struct gem_softc *sc);
108 static void gem_reset_rxdma(struct gem_softc *sc);
109 static void gem_rx_common(struct gem_softc *sc);
110 int gem_reset_tx(struct gem_softc *sc);
111 int gem_disable_rx(struct gem_softc *sc);
112 int gem_disable_tx(struct gem_softc *sc);
113 static void gem_rxdrain(struct gem_softc *sc);
114 int gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void gem_setladrf(struct gem_softc *);
116
117 /* MII methods & callbacks */
118 static int gem_mii_readreg(device_t, int, int);
119 static void gem_mii_writereg(device_t, int, int, int);
120 static void gem_mii_statchg(device_t);
121
122 static int gem_ifflags_cb(struct ethercom *);
123
124 void gem_statuschange(struct gem_softc *);
125
126 int gem_ser_mediachange(struct ifnet *);
127 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
128
129 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
130
131 struct mbuf *gem_get(struct gem_softc *, int, int);
132 int gem_put(struct gem_softc *, int, struct mbuf *);
133 void gem_read(struct gem_softc *, int, int);
134 int gem_pint(struct gem_softc *);
135 int gem_eint(struct gem_softc *, u_int);
136 int gem_rint(struct gem_softc *);
137 int gem_tint(struct gem_softc *);
138 void gem_power(int, void *);
139
140 #ifdef GEM_DEBUG
141 static void gem_txsoft_print(const struct gem_softc *, int, int);
142 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
143 printf x
144 #else
145 #define DPRINTF(sc, x) /* nothing */
146 #endif
147
148 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
149
150 int
151 gem_detach(struct gem_softc *sc, int flags)
152 {
153 char *nullbuf;
154 int i, rc;
155 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
156
157 nullbuf =
158 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
159
160 /*
161 * Free any resources we've allocated during the attach.
162 * Do this in reverse order and fall through.
163 */
164 switch (sc->sc_att_stage) {
165 case GEM_ATT_BACKEND_2:
166 case GEM_ATT_BACKEND_1:
167 case GEM_ATT_FINISHED:
168 gem_stop(&sc->sc_ethercom.ec_if, 1);
169
170 #ifdef GEM_COUNTERS
171 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
172 evcnt_detach(&sc->sc_ev_rxhist[i]);
173 evcnt_detach(&sc->sc_ev_rxnobuf);
174 evcnt_detach(&sc->sc_ev_rxfull);
175 evcnt_detach(&sc->sc_ev_rxint);
176 evcnt_detach(&sc->sc_ev_txint);
177 #endif
178 evcnt_detach(&sc->sc_ev_intr);
179
180 callout_destroy(&sc->sc_tick_ch);
181 #if NRND > 0
182 rnd_detach_source(&sc->rnd_source);
183 #endif
184 ether_ifdetach(ifp);
185 if_detach(ifp);
186 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
187 /*FALLTHROUGH*/
188 case GEM_ATT_MII:
189 sc->sc_att_stage = GEM_ATT_MII;
190 if ((rc = config_detach_children(sc->sc_dev, flags)) != 0)
191 return rc;
192 /*FALLTHROUGH*/
193 case GEM_ATT_7:
194 for (i = 0; i < GEM_NRXDESC; i++) {
195 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
196 bus_dmamap_destroy(sc->sc_dmatag,
197 sc->sc_rxsoft[i].rxs_dmamap);
198 }
199 /*FALLTHROUGH*/
200 case GEM_ATT_6:
201 for (i = 0; i < GEM_TXQUEUELEN; i++) {
202 if (sc->sc_txsoft[i].txs_dmamap != NULL)
203 bus_dmamap_destroy(sc->sc_dmatag,
204 sc->sc_txsoft[i].txs_dmamap);
205 }
206 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
207 /*FALLTHROUGH*/
208 case GEM_ATT_5:
209 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
210 /*FALLTHROUGH*/
211 case GEM_ATT_4:
212 bus_dmamem_unmap(sc->sc_dmatag, nullbuf, ETHER_MIN_TX);
213 /*FALLTHROUGH*/
214 case GEM_ATT_3:
215 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
216 /*FALLTHROUGH*/
217 case GEM_ATT_2:
218 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
219 sizeof(struct gem_control_data));
220 /*FALLTHROUGH*/
221 case GEM_ATT_1:
222 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
223 /*FALLTHROUGH*/
224 case GEM_ATT_0:
225 sc->sc_att_stage = GEM_ATT_0;
226 /*FALLTHROUGH*/
227 case GEM_ATT_BACKEND_0:
228 break;
229 }
230 return 0;
231 }
232
233 static void
234 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
235 {
236 cfattach_t ca = device_cfattach(sc->sc_dev);
237
238 sc->sc_att_stage = stage;
239 (*ca->ca_detach)(sc->sc_dev, 0);
240 }
241
242 /*
243 * gem_attach:
244 *
245 * Attach a Gem interface to the system.
246 */
247 void
248 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
249 {
250 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
251 struct mii_data *mii = &sc->sc_mii;
252 bus_space_tag_t t = sc->sc_bustag;
253 bus_space_handle_t h = sc->sc_h1;
254 struct ifmedia_entry *ifm;
255 int i, error;
256 u_int32_t v;
257 char *nullbuf;
258
259 /* Make sure the chip is stopped. */
260 ifp->if_softc = sc;
261 gem_reset(sc);
262
263 /*
264 * Allocate the control data structures, and create and load the
265 * DMA map for it. gem_control_data is 9216 bytes, we have space for
266 * the padding buffer in the bus_dmamem_alloc()'d memory.
267 */
268 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
269 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
270 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
271 aprint_error_dev(sc->sc_dev,
272 "unable to allocate control data, error = %d\n",
273 error);
274 gem_partial_detach(sc, GEM_ATT_0);
275 return;
276 }
277
278 /* XXX should map this in with correct endianness */
279 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
280 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
281 BUS_DMA_COHERENT)) != 0) {
282 aprint_error_dev(sc->sc_dev,
283 "unable to map control data, error = %d\n", error);
284 gem_partial_detach(sc, GEM_ATT_1);
285 return;
286 }
287
288 nullbuf =
289 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
290
291 if ((error = bus_dmamap_create(sc->sc_dmatag,
292 sizeof(struct gem_control_data), 1,
293 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
294 aprint_error_dev(sc->sc_dev,
295 "unable to create control data DMA map, error = %d\n",
296 error);
297 gem_partial_detach(sc, GEM_ATT_2);
298 return;
299 }
300
301 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
302 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
303 0)) != 0) {
304 aprint_error_dev(sc->sc_dev,
305 "unable to load control data DMA map, error = %d\n",
306 error);
307 gem_partial_detach(sc, GEM_ATT_3);
308 return;
309 }
310
311 memset(nullbuf, 0, ETHER_MIN_TX);
312 if ((error = bus_dmamap_create(sc->sc_dmatag,
313 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
314 aprint_error_dev(sc->sc_dev,
315 "unable to create padding DMA map, error = %d\n", error);
316 gem_partial_detach(sc, GEM_ATT_4);
317 return;
318 }
319
320 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
321 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
322 aprint_error_dev(sc->sc_dev,
323 "unable to load padding DMA map, error = %d\n", error);
324 gem_partial_detach(sc, GEM_ATT_5);
325 return;
326 }
327
328 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
329 BUS_DMASYNC_PREWRITE);
330
331 /*
332 * Initialize the transmit job descriptors.
333 */
334 SIMPLEQ_INIT(&sc->sc_txfreeq);
335 SIMPLEQ_INIT(&sc->sc_txdirtyq);
336
337 /*
338 * Create the transmit buffer DMA maps.
339 */
340 for (i = 0; i < GEM_TXQUEUELEN; i++) {
341 struct gem_txsoft *txs;
342
343 txs = &sc->sc_txsoft[i];
344 txs->txs_mbuf = NULL;
345 if ((error = bus_dmamap_create(sc->sc_dmatag,
346 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
347 ETHER_MAX_LEN_JUMBO, 0, 0,
348 &txs->txs_dmamap)) != 0) {
349 aprint_error_dev(sc->sc_dev,
350 "unable to create tx DMA map %d, error = %d\n",
351 i, error);
352 gem_partial_detach(sc, GEM_ATT_6);
353 return;
354 }
355 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
356 }
357
358 /*
359 * Create the receive buffer DMA maps.
360 */
361 for (i = 0; i < GEM_NRXDESC; i++) {
362 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
363 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
364 aprint_error_dev(sc->sc_dev,
365 "unable to create rx DMA map %d, error = %d\n",
366 i, error);
367 gem_partial_detach(sc, GEM_ATT_7);
368 return;
369 }
370 sc->sc_rxsoft[i].rxs_mbuf = NULL;
371 }
372
373 /* Initialize ifmedia structures and MII info */
374 mii->mii_ifp = ifp;
375 mii->mii_readreg = gem_mii_readreg;
376 mii->mii_writereg = gem_mii_writereg;
377 mii->mii_statchg = gem_mii_statchg;
378
379 sc->sc_ethercom.ec_mii = mii;
380
381 /*
382 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
383 * Section 3.2.1 `Initialization Sequence'.
384 * However, we can't assume SERDES or Serialink if neither
385 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
386 * being set, as both are set on Sun X1141A (with SERDES). So,
387 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
388 * Also, for Apple variants with 2 PHY's, we prefer the external
389 * PHY over the internal PHY.
390 */
391 gem_mifinit(sc);
392
393 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
394 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
395 ether_mediastatus);
396 mii_attach(sc->sc_dev, mii, 0xffffffff,
397 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
398 if (LIST_EMPTY(&mii->mii_phys)) {
399 /* No PHY attached */
400 aprint_error_dev(sc->sc_dev,
401 "PHY probe failed\n");
402 gem_partial_detach(sc, GEM_ATT_MII);
403 return;
404 } else {
405 struct mii_softc *child;
406
407 /*
408 * Walk along the list of attached MII devices and
409 * establish an `MII instance' to `PHY number'
410 * mapping.
411 */
412 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
413 /*
414 * Note: we support just one PHY: the internal
415 * or external MII is already selected for us
416 * by the GEM_MIF_CONFIG register.
417 */
418 if (child->mii_phy > 1 || child->mii_inst > 0) {
419 aprint_error_dev(sc->sc_dev,
420 "cannot accommodate MII device"
421 " %s at PHY %d, instance %d\n",
422 device_xname(child->mii_dev),
423 child->mii_phy, child->mii_inst);
424 continue;
425 }
426 sc->sc_phys[child->mii_inst] = child->mii_phy;
427 }
428
429 /*
430 * Now select and activate the PHY we will use.
431 *
432 * The order of preference is External (MDI1),
433 * then Internal (MDI0),
434 */
435 if (sc->sc_phys[1]) {
436 #ifdef GEM_DEBUG
437 aprint_debug_dev(sc->sc_dev,
438 "using external PHY\n");
439 #endif
440 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
441 } else {
442 #ifdef GEM_DEBUG
443 aprint_debug_dev(sc->sc_dev,
444 "using internal PHY\n");
445 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
446 #endif
447 }
448 bus_space_write_4(t, h, GEM_MIF_CONFIG,
449 sc->sc_mif_config);
450 if (sc->sc_variant != GEM_SUN_ERI)
451 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
452 GEM_MII_DATAPATH_MII);
453
454 /*
455 * XXX - we can really do the following ONLY if the
456 * PHY indeed has the auto negotiation capability!!
457 */
458 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
459 }
460 } else {
461 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
462 gem_ser_mediastatus);
463 /* SERDES or Serialink */
464 if (sc->sc_flags & GEM_SERDES) {
465 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
466 GEM_MII_DATAPATH_SERDES);
467 } else {
468 sc->sc_flags |= GEM_SERIAL;
469 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
470 GEM_MII_DATAPATH_SERIAL);
471 }
472
473 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
474 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
475
476 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
477 /* Check for FDX and HDX capabilities */
478 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
479 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
480 ifmedia_add(&sc->sc_mii.mii_media,
481 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
482 aprint_normal("1000baseSX-FDX, ");
483 }
484 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
485 ifmedia_add(&sc->sc_mii.mii_media,
486 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
487 aprint_normal("1000baseSX-HDX, ");
488 }
489 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
490 sc->sc_mii_media = IFM_AUTO;
491 aprint_normal("auto\n");
492
493 gem_pcs_stop(sc, 1);
494 }
495
496 /*
497 * From this point forward, the attachment cannot fail. A failure
498 * before this point releases all resources that may have been
499 * allocated.
500 */
501
502 /* Announce ourselves. */
503 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
504 ether_sprintf(enaddr));
505
506 /* Get RX FIFO size */
507 sc->sc_rxfifosize = 64 *
508 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
509 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
510
511 /* Get TX FIFO size */
512 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
513 aprint_normal(", %uKB TX fifo\n", v / 16);
514
515 /* Initialize ifnet structure. */
516 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
517 ifp->if_softc = sc;
518 ifp->if_flags =
519 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
520 sc->sc_if_flags = ifp->if_flags;
521 #if 0
522 /*
523 * The GEM hardware supports basic TCP checksum offloading only.
524 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
525 * have bugs in the receive checksum, so don't enable it for now.
526 */
527 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
528 (GEM_IS_APPLE(sc) &&
529 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
530 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
531 #endif
532 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
533 ifp->if_start = gem_start;
534 ifp->if_ioctl = gem_ioctl;
535 ifp->if_watchdog = gem_watchdog;
536 ifp->if_stop = gem_stop;
537 ifp->if_init = gem_init;
538 IFQ_SET_READY(&ifp->if_snd);
539
540 /*
541 * If we support GigE media, we support jumbo frames too.
542 * Unless we are Apple.
543 */
544 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
545 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
546 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
547 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
548 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
549 if (!GEM_IS_APPLE(sc))
550 sc->sc_ethercom.ec_capabilities
551 |= ETHERCAP_JUMBO_MTU;
552 sc->sc_flags |= GEM_GIGABIT;
553 break;
554 }
555 }
556
557 /* claim 802.1q capability */
558 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
559
560 /* Attach the interface. */
561 if_attach(ifp);
562 ether_ifattach(ifp, enaddr);
563 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
564
565 #if NRND > 0
566 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
567 RND_TYPE_NET, 0);
568 #endif
569
570 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
571 NULL, device_xname(sc->sc_dev), "interrupts");
572 #ifdef GEM_COUNTERS
573 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
574 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
575 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
576 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
577 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
578 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
579 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
580 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
581 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
582 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
583 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
584 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
585 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
586 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
587 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
588 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
589 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
590 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
591 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
592 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
593 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
594 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
595 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
596 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
597 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
599 #endif
600
601 callout_init(&sc->sc_tick_ch, 0);
602
603 sc->sc_att_stage = GEM_ATT_FINISHED;
604
605 return;
606 }
607
608 void
609 gem_tick(void *arg)
610 {
611 struct gem_softc *sc = arg;
612 int s;
613
614 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
615 /*
616 * We have to reset everything if we failed to get a
617 * PCS interrupt. Restarting the callout is handled
618 * in gem_pcs_start().
619 */
620 gem_init(&sc->sc_ethercom.ec_if);
621 } else {
622 s = splnet();
623 mii_tick(&sc->sc_mii);
624 splx(s);
625 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
626 }
627 }
628
629 static int
630 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
631 {
632 int i;
633 u_int32_t reg;
634
635 for (i = TRIES; i--; DELAY(100)) {
636 reg = bus_space_read_4(sc->sc_bustag, h, r);
637 if ((reg & clr) == 0 && (reg & set) == set)
638 return (1);
639 }
640 return (0);
641 }
642
643 void
644 gem_reset(struct gem_softc *sc)
645 {
646 bus_space_tag_t t = sc->sc_bustag;
647 bus_space_handle_t h = sc->sc_h2;
648 int s;
649
650 s = splnet();
651 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
652 gem_reset_rx(sc);
653 gem_reset_tx(sc);
654
655 /* Do a full reset */
656 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
657 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
658 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
659 splx(s);
660 }
661
662
663 /*
664 * gem_rxdrain:
665 *
666 * Drain the receive queue.
667 */
668 static void
669 gem_rxdrain(struct gem_softc *sc)
670 {
671 struct gem_rxsoft *rxs;
672 int i;
673
674 for (i = 0; i < GEM_NRXDESC; i++) {
675 rxs = &sc->sc_rxsoft[i];
676 if (rxs->rxs_mbuf != NULL) {
677 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
678 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
679 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
680 m_freem(rxs->rxs_mbuf);
681 rxs->rxs_mbuf = NULL;
682 }
683 }
684 }
685
686 /*
687 * Reset the whole thing.
688 */
689 static void
690 gem_stop(struct ifnet *ifp, int disable)
691 {
692 struct gem_softc *sc = ifp->if_softc;
693 struct gem_txsoft *txs;
694
695 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
696
697 callout_stop(&sc->sc_tick_ch);
698 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
699 gem_pcs_stop(sc, disable);
700 else
701 mii_down(&sc->sc_mii);
702
703 /* XXX - Should we reset these instead? */
704 gem_disable_tx(sc);
705 gem_disable_rx(sc);
706
707 /*
708 * Release any queued transmit buffers.
709 */
710 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
711 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
712 if (txs->txs_mbuf != NULL) {
713 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
714 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
715 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
716 m_freem(txs->txs_mbuf);
717 txs->txs_mbuf = NULL;
718 }
719 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
720 }
721
722 /*
723 * Mark the interface down and cancel the watchdog timer.
724 */
725 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
726 sc->sc_if_flags = ifp->if_flags;
727 ifp->if_timer = 0;
728
729 if (disable)
730 gem_rxdrain(sc);
731 }
732
733
734 /*
735 * Reset the receiver
736 */
737 int
738 gem_reset_rx(struct gem_softc *sc)
739 {
740 bus_space_tag_t t = sc->sc_bustag;
741 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
742
743 /*
744 * Resetting while DMA is in progress can cause a bus hang, so we
745 * disable DMA first.
746 */
747 gem_disable_rx(sc);
748 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
749 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
750 /* Wait till it finishes */
751 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
752 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
753
754 /* Finally, reset the ERX */
755 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
756 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
757 /* Wait till it finishes */
758 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
759 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
760 return (1);
761 }
762 return (0);
763 }
764
765
766 /*
767 * Reset the receiver DMA engine.
768 *
769 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
770 * etc in order to reset the receiver DMA engine only and not do a full
771 * reset which amongst others also downs the link and clears the FIFOs.
772 */
773 static void
774 gem_reset_rxdma(struct gem_softc *sc)
775 {
776 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
777 bus_space_tag_t t = sc->sc_bustag;
778 bus_space_handle_t h = sc->sc_h1;
779 int i;
780
781 if (gem_reset_rx(sc) != 0) {
782 gem_init(ifp);
783 return;
784 }
785 for (i = 0; i < GEM_NRXDESC; i++)
786 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
787 GEM_UPDATE_RXDESC(sc, i);
788 sc->sc_rxptr = 0;
789 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
790 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
791
792 /* Reprogram Descriptor Ring Base Addresses */
793 /* NOTE: we use only 32-bit DMA addresses here. */
794 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
795 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
796
797 /* Redo ERX Configuration */
798 gem_rx_common(sc);
799
800 /* Give the reciever a swift kick */
801 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
802 }
803
804 /*
805 * Common RX configuration for gem_init() and gem_reset_rxdma().
806 */
807 static void
808 gem_rx_common(struct gem_softc *sc)
809 {
810 bus_space_tag_t t = sc->sc_bustag;
811 bus_space_handle_t h = sc->sc_h1;
812 u_int32_t v;
813
814 /* Encode Receive Descriptor ring size: four possible values */
815 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
816
817 /* Set receive h/w checksum offset */
818 #ifdef INET
819 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
820 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
821 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
822 #endif
823
824 /* Enable RX DMA */
825 bus_space_write_4(t, h, GEM_RX_CONFIG,
826 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
827 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
828
829 /*
830 * The following value is for an OFF Threshold of about 3/4 full
831 * and an ON Threshold of 1/4 full.
832 */
833 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
834 (3 * sc->sc_rxfifosize / 256) |
835 ((sc->sc_rxfifosize / 256) << 12));
836 bus_space_write_4(t, h, GEM_RX_BLANKING,
837 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
838 }
839
840 /*
841 * Reset the transmitter
842 */
843 int
844 gem_reset_tx(struct gem_softc *sc)
845 {
846 bus_space_tag_t t = sc->sc_bustag;
847 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
848
849 /*
850 * Resetting while DMA is in progress can cause a bus hang, so we
851 * disable DMA first.
852 */
853 gem_disable_tx(sc);
854 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
855 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
856 /* Wait till it finishes */
857 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
858 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
859 /* Wait 5ms extra. */
860 delay(5000);
861
862 /* Finally, reset the ETX */
863 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
864 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
865 /* Wait till it finishes */
866 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
867 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
868 return (1);
869 }
870 return (0);
871 }
872
873 /*
874 * disable receiver.
875 */
876 int
877 gem_disable_rx(struct gem_softc *sc)
878 {
879 bus_space_tag_t t = sc->sc_bustag;
880 bus_space_handle_t h = sc->sc_h1;
881 u_int32_t cfg;
882
883 /* Flip the enable bit */
884 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
885 cfg &= ~GEM_MAC_RX_ENABLE;
886 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
887 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
888 /* Wait for it to finish */
889 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
890 }
891
892 /*
893 * disable transmitter.
894 */
895 int
896 gem_disable_tx(struct gem_softc *sc)
897 {
898 bus_space_tag_t t = sc->sc_bustag;
899 bus_space_handle_t h = sc->sc_h1;
900 u_int32_t cfg;
901
902 /* Flip the enable bit */
903 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
904 cfg &= ~GEM_MAC_TX_ENABLE;
905 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
906 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
907 /* Wait for it to finish */
908 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
909 }
910
911 /*
912 * Initialize interface.
913 */
914 int
915 gem_meminit(struct gem_softc *sc)
916 {
917 struct gem_rxsoft *rxs;
918 int i, error;
919
920 /*
921 * Initialize the transmit descriptor ring.
922 */
923 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
924 for (i = 0; i < GEM_NTXDESC; i++) {
925 sc->sc_txdescs[i].gd_flags = 0;
926 sc->sc_txdescs[i].gd_addr = 0;
927 }
928 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
929 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
930 sc->sc_txfree = GEM_NTXDESC-1;
931 sc->sc_txnext = 0;
932 sc->sc_txwin = 0;
933
934 /*
935 * Initialize the receive descriptor and receive job
936 * descriptor rings.
937 */
938 for (i = 0; i < GEM_NRXDESC; i++) {
939 rxs = &sc->sc_rxsoft[i];
940 if (rxs->rxs_mbuf == NULL) {
941 if ((error = gem_add_rxbuf(sc, i)) != 0) {
942 aprint_error_dev(sc->sc_dev,
943 "unable to allocate or map rx "
944 "buffer %d, error = %d\n",
945 i, error);
946 /*
947 * XXX Should attempt to run with fewer receive
948 * XXX buffers instead of just failing.
949 */
950 gem_rxdrain(sc);
951 return (1);
952 }
953 } else
954 GEM_INIT_RXDESC(sc, i);
955 }
956 sc->sc_rxptr = 0;
957 sc->sc_meminited = 1;
958 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
959 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
960
961 return (0);
962 }
963
964 static int
965 gem_ringsize(int sz)
966 {
967 switch (sz) {
968 case 32:
969 return GEM_RING_SZ_32;
970 case 64:
971 return GEM_RING_SZ_64;
972 case 128:
973 return GEM_RING_SZ_128;
974 case 256:
975 return GEM_RING_SZ_256;
976 case 512:
977 return GEM_RING_SZ_512;
978 case 1024:
979 return GEM_RING_SZ_1024;
980 case 2048:
981 return GEM_RING_SZ_2048;
982 case 4096:
983 return GEM_RING_SZ_4096;
984 case 8192:
985 return GEM_RING_SZ_8192;
986 default:
987 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
988 return GEM_RING_SZ_32;
989 }
990 }
991
992
993 /*
994 * Start PCS
995 */
996 void
997 gem_pcs_start(struct gem_softc *sc)
998 {
999 bus_space_tag_t t = sc->sc_bustag;
1000 bus_space_handle_t h = sc->sc_h1;
1001 uint32_t v;
1002
1003 #ifdef GEM_DEBUG
1004 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1005 #endif
1006
1007 /*
1008 * Set up. We must disable the MII before modifying the
1009 * GEM_MII_ANAR register
1010 */
1011 if (sc->sc_flags & GEM_SERDES) {
1012 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1013 GEM_MII_DATAPATH_SERDES);
1014 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1015 GEM_MII_SLINK_LOOPBACK);
1016 } else {
1017 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1018 GEM_MII_DATAPATH_SERIAL);
1019 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1020 }
1021 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1022 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1023 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1024 if (sc->sc_mii_media == IFM_AUTO)
1025 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1026 else if (sc->sc_mii_media == IFM_FDX) {
1027 v |= GEM_MII_ANEG_FUL_DUPLX;
1028 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1029 } else if (sc->sc_mii_media == IFM_HDX) {
1030 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1031 v |= GEM_MII_ANEG_HLF_DUPLX;
1032 }
1033
1034 /* Configure link. */
1035 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1036 bus_space_write_4(t, h, GEM_MII_CONTROL,
1037 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1038 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1039 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1040
1041 /* Start the 10 second timer */
1042 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1043 }
1044
1045 /*
1046 * Stop PCS
1047 */
1048 void
1049 gem_pcs_stop(struct gem_softc *sc, int disable)
1050 {
1051 bus_space_tag_t t = sc->sc_bustag;
1052 bus_space_handle_t h = sc->sc_h1;
1053
1054 #ifdef GEM_DEBUG
1055 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1056 #endif
1057
1058 /* Tell link partner that we're going away */
1059 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1060
1061 /*
1062 * Disable PCS MII. The documentation suggests that setting
1063 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1064 * negotiation will shut down the link. However, it appears
1065 * that we also need to unset the datapath mode.
1066 */
1067 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1068 bus_space_write_4(t, h, GEM_MII_CONTROL,
1069 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1070 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1071 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1072
1073 if (disable) {
1074 if (sc->sc_flags & GEM_SERDES)
1075 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1076 GEM_MII_SLINK_POWER_OFF);
1077 else
1078 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1079 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1080 }
1081
1082 sc->sc_flags &= ~GEM_LINK;
1083 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1084 sc->sc_mii.mii_media_status = IFM_AVALID;
1085 }
1086
1087
1088 /*
1089 * Initialization of interface; set up initialization block
1090 * and transmit/receive descriptor rings.
1091 */
1092 int
1093 gem_init(struct ifnet *ifp)
1094 {
1095 struct gem_softc *sc = ifp->if_softc;
1096 bus_space_tag_t t = sc->sc_bustag;
1097 bus_space_handle_t h = sc->sc_h1;
1098 int rc = 0, s;
1099 u_int max_frame_size;
1100 u_int32_t v;
1101
1102 s = splnet();
1103
1104 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1105 /*
1106 * Initialization sequence. The numbered steps below correspond
1107 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1108 * Channel Engine manual (part of the PCIO manual).
1109 * See also the STP2002-STQ document from Sun Microsystems.
1110 */
1111
1112 /* step 1 & 2. Reset the Ethernet Channel */
1113 gem_stop(ifp, 0);
1114 gem_reset(sc);
1115 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1116
1117 /* Re-initialize the MIF */
1118 gem_mifinit(sc);
1119
1120 /* Set up correct datapath for non-SERDES/Serialink */
1121 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1122 sc->sc_variant != GEM_SUN_ERI)
1123 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1124 GEM_MII_DATAPATH_MII);
1125
1126 /* Call MI reset function if any */
1127 if (sc->sc_hwreset)
1128 (*sc->sc_hwreset)(sc);
1129
1130 /* step 3. Setup data structures in host memory */
1131 if (gem_meminit(sc) != 0)
1132 return 1;
1133
1134 /* step 4. TX MAC registers & counters */
1135 gem_init_regs(sc);
1136 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1137 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1138 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1139 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1140 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1141 max_frame_size|/* burst size */(0x2000<<16));
1142
1143 /* step 5. RX MAC registers & counters */
1144 gem_setladrf(sc);
1145
1146 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1147 /* NOTE: we use only 32-bit DMA addresses here. */
1148 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1149 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1150
1151 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1152 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1153
1154 /* step 8. Global Configuration & Interrupt Mask */
1155 gem_inten(sc);
1156 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1157 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1158 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1159 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1160 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1161
1162 /* step 9. ETX Configuration: use mostly default values */
1163
1164 /* Enable TX DMA */
1165 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1166 bus_space_write_4(t, h, GEM_TX_CONFIG,
1167 v|GEM_TX_CONFIG_TXDMA_EN|
1168 ((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
1169 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1170
1171 /* step 10. ERX Configuration */
1172 gem_rx_common(sc);
1173
1174 /* step 11. Configure Media */
1175 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1176 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1177 goto out;
1178
1179 /* step 12. RX_MAC Configuration Register */
1180 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1181 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1182 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1183
1184 /* step 14. Issue Transmit Pending command */
1185
1186 /* Call MI initialization function if any */
1187 if (sc->sc_hwinit)
1188 (*sc->sc_hwinit)(sc);
1189
1190
1191 /* step 15. Give the reciever a swift kick */
1192 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1193
1194 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1195 /* Configure PCS */
1196 gem_pcs_start(sc);
1197 else
1198 /* Start the one second timer. */
1199 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1200
1201 sc->sc_flags &= ~GEM_LINK;
1202 ifp->if_flags |= IFF_RUNNING;
1203 ifp->if_flags &= ~IFF_OACTIVE;
1204 ifp->if_timer = 0;
1205 sc->sc_if_flags = ifp->if_flags;
1206 out:
1207 splx(s);
1208
1209 return (0);
1210 }
1211
1212 void
1213 gem_init_regs(struct gem_softc *sc)
1214 {
1215 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1216 bus_space_tag_t t = sc->sc_bustag;
1217 bus_space_handle_t h = sc->sc_h1;
1218 const u_char *laddr = CLLADDR(ifp->if_sadl);
1219 u_int32_t v;
1220
1221 /* These regs are not cleared on reset */
1222 if (!sc->sc_inited) {
1223
1224 /* Load recommended values */
1225 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1226 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1227 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1228
1229 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1230 /* Max frame and max burst size */
1231 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1232 ETHER_MAX_LEN | (0x2000<<16));
1233
1234 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1235 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1236 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1237 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1238 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1239 ((laddr[5]<<8)|laddr[4])&0x3ff);
1240
1241 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1242 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1243 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1244 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1245
1246 /* MAC control addr set to 01:80:c2:00:00:01 */
1247 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1248 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1249 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1250
1251 /* MAC filter addr set to 0:0:0:0:0:0 */
1252 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1253 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1254 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1255
1256 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1257 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1258
1259 sc->sc_inited = 1;
1260 }
1261
1262 /* Counters need to be zeroed */
1263 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1264 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1265 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1266 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1267 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1268 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1269 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1270 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1271 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1272 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1273 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1274
1275 /* Set XOFF PAUSE time. */
1276 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1277
1278 /*
1279 * Set the internal arbitration to "infinite" bursts of the
1280 * maximum length of 31 * 64 bytes so DMA transfers aren't
1281 * split up in cache line size chunks. This greatly improves
1282 * especially RX performance.
1283 * Enable silicon bug workarounds for the Apple variants.
1284 */
1285 bus_space_write_4(t, h, GEM_CONFIG,
1286 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1287 ((sc->sc_flags & GEM_PCI) ?
1288 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1289 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1290
1291 /*
1292 * Set the station address.
1293 */
1294 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1295 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1296 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1297
1298 /*
1299 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1300 */
1301 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1302 v = GEM_MAC_XIF_TX_MII_ENA;
1303 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1304 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1305 v |= GEM_MAC_XIF_FDPLX_LED;
1306 if (sc->sc_flags & GEM_GIGABIT)
1307 v |= GEM_MAC_XIF_GMII_MODE;
1308 }
1309 } else {
1310 v |= GEM_MAC_XIF_GMII_MODE;
1311 }
1312 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1313 }
1314
1315 #ifdef GEM_DEBUG
1316 static void
1317 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1318 {
1319 int i;
1320
1321 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1322 printf("descriptor %d:\t", i);
1323 printf("gd_flags: 0x%016" PRIx64 "\t",
1324 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1325 printf("gd_addr: 0x%016" PRIx64 "\n",
1326 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1327 if (i == lastdesc)
1328 break;
1329 }
1330 }
1331 #endif
1332
1333 static void
1334 gem_start(struct ifnet *ifp)
1335 {
1336 struct gem_softc *sc = ifp->if_softc;
1337 struct mbuf *m0, *m;
1338 struct gem_txsoft *txs;
1339 bus_dmamap_t dmamap;
1340 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1341 uint64_t flags = 0;
1342
1343 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1344 return;
1345
1346 /*
1347 * Remember the previous number of free descriptors and
1348 * the first descriptor we'll use.
1349 */
1350 ofree = sc->sc_txfree;
1351 firsttx = sc->sc_txnext;
1352
1353 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1354 device_xname(sc->sc_dev), ofree, firsttx));
1355
1356 /*
1357 * Loop through the send queue, setting up transmit descriptors
1358 * until we drain the queue, or use up all available transmit
1359 * descriptors.
1360 */
1361 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1362 sc->sc_txfree != 0) {
1363 /*
1364 * Grab a packet off the queue.
1365 */
1366 IFQ_POLL(&ifp->if_snd, m0);
1367 if (m0 == NULL)
1368 break;
1369 m = NULL;
1370
1371 dmamap = txs->txs_dmamap;
1372
1373 /*
1374 * Load the DMA map. If this fails, the packet either
1375 * didn't fit in the alloted number of segments, or we were
1376 * short on resources. In this case, we'll copy and try
1377 * again.
1378 */
1379 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1380 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1381 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1382 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1383 if (m0->m_pkthdr.len > MCLBYTES) {
1384 aprint_error_dev(sc->sc_dev,
1385 "unable to allocate jumbo Tx cluster\n");
1386 IFQ_DEQUEUE(&ifp->if_snd, m0);
1387 m_freem(m0);
1388 continue;
1389 }
1390 MGETHDR(m, M_DONTWAIT, MT_DATA);
1391 if (m == NULL) {
1392 aprint_error_dev(sc->sc_dev,
1393 "unable to allocate Tx mbuf\n");
1394 break;
1395 }
1396 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1397 if (m0->m_pkthdr.len > MHLEN) {
1398 MCLGET(m, M_DONTWAIT);
1399 if ((m->m_flags & M_EXT) == 0) {
1400 aprint_error_dev(sc->sc_dev,
1401 "unable to allocate Tx cluster\n");
1402 m_freem(m);
1403 break;
1404 }
1405 }
1406 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1407 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1408 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1409 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1410 if (error) {
1411 aprint_error_dev(sc->sc_dev,
1412 "unable to load Tx buffer, error = %d\n",
1413 error);
1414 break;
1415 }
1416 }
1417
1418 /*
1419 * Ensure we have enough descriptors free to describe
1420 * the packet.
1421 */
1422 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1423 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1424 /*
1425 * Not enough free descriptors to transmit this
1426 * packet. We haven't committed to anything yet,
1427 * so just unload the DMA map, put the packet
1428 * back on the queue, and punt. Notify the upper
1429 * layer that there are no more slots left.
1430 *
1431 * XXX We could allocate an mbuf and copy, but
1432 * XXX it is worth it?
1433 */
1434 ifp->if_flags |= IFF_OACTIVE;
1435 sc->sc_if_flags = ifp->if_flags;
1436 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1437 if (m != NULL)
1438 m_freem(m);
1439 break;
1440 }
1441
1442 IFQ_DEQUEUE(&ifp->if_snd, m0);
1443 if (m != NULL) {
1444 m_freem(m0);
1445 m0 = m;
1446 }
1447
1448 /*
1449 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1450 */
1451
1452 /* Sync the DMA map. */
1453 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1454 BUS_DMASYNC_PREWRITE);
1455
1456 /*
1457 * Initialize the transmit descriptors.
1458 */
1459 for (nexttx = sc->sc_txnext, seg = 0;
1460 seg < dmamap->dm_nsegs;
1461 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1462
1463 /*
1464 * If this is the first descriptor we're
1465 * enqueueing, set the start of packet flag,
1466 * and the checksum stuff if we want the hardware
1467 * to do it.
1468 */
1469 sc->sc_txdescs[nexttx].gd_addr =
1470 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1471 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1472 if (nexttx == firsttx) {
1473 flags |= GEM_TD_START_OF_PACKET;
1474 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1475 sc->sc_txwin = 0;
1476 flags |= GEM_TD_INTERRUPT_ME;
1477 }
1478
1479 #ifdef INET
1480 /* h/w checksum */
1481 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1482 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1483 struct ether_header *eh;
1484 uint16_t offset, start;
1485
1486 eh = mtod(m0, struct ether_header *);
1487 switch (ntohs(eh->ether_type)) {
1488 case ETHERTYPE_IP:
1489 start = ETHER_HDR_LEN;
1490 break;
1491 case ETHERTYPE_VLAN:
1492 start = ETHER_HDR_LEN +
1493 ETHER_VLAN_ENCAP_LEN;
1494 break;
1495 default:
1496 /* unsupported, drop it */
1497 m_free(m0);
1498 continue;
1499 }
1500 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1501 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1502 flags |= (start <<
1503 GEM_TD_CXSUM_STARTSHFT) |
1504 (offset <<
1505 GEM_TD_CXSUM_STUFFSHFT) |
1506 GEM_TD_CXSUM_ENABLE;
1507 }
1508 #endif
1509 }
1510 if (seg == dmamap->dm_nsegs - 1) {
1511 flags |= GEM_TD_END_OF_PACKET;
1512 } else {
1513 /* last flag set outside of loop */
1514 sc->sc_txdescs[nexttx].gd_flags =
1515 GEM_DMA_WRITE(sc, flags);
1516 }
1517 lasttx = nexttx;
1518 }
1519 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1520 /* add padding buffer at end of chain */
1521 flags &= ~GEM_TD_END_OF_PACKET;
1522 sc->sc_txdescs[lasttx].gd_flags =
1523 GEM_DMA_WRITE(sc, flags);
1524
1525 sc->sc_txdescs[nexttx].gd_addr =
1526 GEM_DMA_WRITE(sc,
1527 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1528 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1529 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1530 lasttx = nexttx;
1531 nexttx = GEM_NEXTTX(nexttx);
1532 seg++;
1533 }
1534 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1535
1536 KASSERT(lasttx != -1);
1537
1538 /*
1539 * Store a pointer to the packet so we can free it later,
1540 * and remember what txdirty will be once the packet is
1541 * done.
1542 */
1543 txs->txs_mbuf = m0;
1544 txs->txs_firstdesc = sc->sc_txnext;
1545 txs->txs_lastdesc = lasttx;
1546 txs->txs_ndescs = seg;
1547
1548 #ifdef GEM_DEBUG
1549 if (ifp->if_flags & IFF_DEBUG) {
1550 printf(" gem_start %p transmit chain:\n", txs);
1551 gem_txsoft_print(sc, txs->txs_firstdesc,
1552 txs->txs_lastdesc);
1553 }
1554 #endif
1555
1556 /* Sync the descriptors we're using. */
1557 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1558 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1559
1560 /* Advance the tx pointer. */
1561 sc->sc_txfree -= txs->txs_ndescs;
1562 sc->sc_txnext = nexttx;
1563
1564 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1565 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1566
1567 #if NBPFILTER > 0
1568 /*
1569 * Pass the packet to any BPF listeners.
1570 */
1571 if (ifp->if_bpf)
1572 bpf_mtap(ifp->if_bpf, m0);
1573 #endif /* NBPFILTER > 0 */
1574 }
1575
1576 if (txs == NULL || sc->sc_txfree == 0) {
1577 /* No more slots left; notify upper layer. */
1578 ifp->if_flags |= IFF_OACTIVE;
1579 sc->sc_if_flags = ifp->if_flags;
1580 }
1581
1582 if (sc->sc_txfree != ofree) {
1583 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1584 device_xname(sc->sc_dev), lasttx, firsttx));
1585 /*
1586 * The entire packet chain is set up.
1587 * Kick the transmitter.
1588 */
1589 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1590 device_xname(sc->sc_dev), nexttx));
1591 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1592 sc->sc_txnext);
1593
1594 /* Set a watchdog timer in case the chip flakes out. */
1595 ifp->if_timer = 5;
1596 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1597 device_xname(sc->sc_dev), ifp->if_timer));
1598 }
1599 }
1600
1601 /*
1602 * Transmit interrupt.
1603 */
1604 int
1605 gem_tint(struct gem_softc *sc)
1606 {
1607 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1608 bus_space_tag_t t = sc->sc_bustag;
1609 bus_space_handle_t mac = sc->sc_h1;
1610 struct gem_txsoft *txs;
1611 int txlast;
1612 int progress = 0;
1613 u_int32_t v;
1614
1615 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1616
1617 /* Unload collision counters ... */
1618 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1619 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1620 ifp->if_collisions += v +
1621 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1622 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1623 ifp->if_oerrors += v;
1624
1625 /* ... then clear the hardware counters. */
1626 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1627 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1628 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1629 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1630
1631 /*
1632 * Go through our Tx list and free mbufs for those
1633 * frames that have been transmitted.
1634 */
1635 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1636 /*
1637 * In theory, we could harvest some descriptors before
1638 * the ring is empty, but that's a bit complicated.
1639 *
1640 * GEM_TX_COMPLETION points to the last descriptor
1641 * processed +1.
1642 *
1643 * Let's assume that the NIC writes back to the Tx
1644 * descriptors before it updates the completion
1645 * register. If the NIC has posted writes to the
1646 * Tx descriptors, PCI ordering requires that the
1647 * posted writes flush to RAM before the register-read
1648 * finishes. So let's read the completion register,
1649 * before syncing the descriptors, so that we
1650 * examine Tx descriptors that are at least as
1651 * current as the completion register.
1652 */
1653 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1654 DPRINTF(sc,
1655 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1656 txs->txs_lastdesc, txlast));
1657 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1658 if (txlast >= txs->txs_firstdesc &&
1659 txlast <= txs->txs_lastdesc)
1660 break;
1661 } else if (txlast >= txs->txs_firstdesc ||
1662 txlast <= txs->txs_lastdesc)
1663 break;
1664
1665 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1666 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1667
1668 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1669 if (ifp->if_flags & IFF_DEBUG) {
1670 printf(" txsoft %p transmit chain:\n", txs);
1671 gem_txsoft_print(sc, txs->txs_firstdesc,
1672 txs->txs_lastdesc);
1673 }
1674 #endif
1675
1676
1677 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1678 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1679
1680 sc->sc_txfree += txs->txs_ndescs;
1681
1682 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1683 0, txs->txs_dmamap->dm_mapsize,
1684 BUS_DMASYNC_POSTWRITE);
1685 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1686 if (txs->txs_mbuf != NULL) {
1687 m_freem(txs->txs_mbuf);
1688 txs->txs_mbuf = NULL;
1689 }
1690
1691 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1692
1693 ifp->if_opackets++;
1694 progress = 1;
1695 }
1696
1697 #if 0
1698 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1699 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1700 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1701 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1702 GEM_TX_DATA_PTR_HI) << 32) |
1703 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1704 GEM_TX_DATA_PTR_LO),
1705 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1706 #endif
1707
1708 if (progress) {
1709 if (sc->sc_txfree == GEM_NTXDESC - 1)
1710 sc->sc_txwin = 0;
1711
1712 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1713 ifp->if_flags &= ~IFF_OACTIVE;
1714 sc->sc_if_flags = ifp->if_flags;
1715 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1716 gem_start(ifp);
1717 }
1718 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1719 device_xname(sc->sc_dev), ifp->if_timer));
1720
1721 return (1);
1722 }
1723
1724 /*
1725 * Receive interrupt.
1726 */
1727 int
1728 gem_rint(struct gem_softc *sc)
1729 {
1730 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1731 bus_space_tag_t t = sc->sc_bustag;
1732 bus_space_handle_t h = sc->sc_h1;
1733 struct gem_rxsoft *rxs;
1734 struct mbuf *m;
1735 u_int64_t rxstat;
1736 u_int32_t rxcomp;
1737 int i, len, progress = 0;
1738
1739 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1740
1741 /*
1742 * Ignore spurious interrupt that sometimes occurs before
1743 * we are set up when we network boot.
1744 */
1745 if (!sc->sc_meminited)
1746 return 1;
1747
1748 /*
1749 * Read the completion register once. This limits
1750 * how long the following loop can execute.
1751 */
1752 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1753
1754 /*
1755 * XXX Read the lastrx only once at the top for speed.
1756 */
1757 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1758 sc->sc_rxptr, rxcomp));
1759
1760 /*
1761 * Go into the loop at least once.
1762 */
1763 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1764 i = GEM_NEXTRX(i)) {
1765 rxs = &sc->sc_rxsoft[i];
1766
1767 GEM_CDRXSYNC(sc, i,
1768 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1769
1770 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1771
1772 if (rxstat & GEM_RD_OWN) {
1773 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1774 /*
1775 * We have processed all of the receive buffers.
1776 */
1777 break;
1778 }
1779
1780 progress++;
1781 ifp->if_ipackets++;
1782
1783 if (rxstat & GEM_RD_BAD_CRC) {
1784 ifp->if_ierrors++;
1785 aprint_error_dev(sc->sc_dev,
1786 "receive error: CRC error\n");
1787 GEM_INIT_RXDESC(sc, i);
1788 continue;
1789 }
1790
1791 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1792 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1793 #ifdef GEM_DEBUG
1794 if (ifp->if_flags & IFF_DEBUG) {
1795 printf(" rxsoft %p descriptor %d: ", rxs, i);
1796 printf("gd_flags: 0x%016llx\t", (long long)
1797 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1798 printf("gd_addr: 0x%016llx\n", (long long)
1799 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1800 }
1801 #endif
1802
1803 /* No errors; receive the packet. */
1804 len = GEM_RD_BUFLEN(rxstat);
1805
1806 /*
1807 * Allocate a new mbuf cluster. If that fails, we are
1808 * out of memory, and must drop the packet and recycle
1809 * the buffer that's already attached to this descriptor.
1810 */
1811 m = rxs->rxs_mbuf;
1812 if (gem_add_rxbuf(sc, i) != 0) {
1813 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1814 ifp->if_ierrors++;
1815 GEM_INIT_RXDESC(sc, i);
1816 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1817 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1818 continue;
1819 }
1820 m->m_data += 2; /* We're already off by two */
1821
1822 m->m_pkthdr.rcvif = ifp;
1823 m->m_pkthdr.len = m->m_len = len;
1824
1825 #if NBPFILTER > 0
1826 /*
1827 * Pass this up to any BPF listeners, but only
1828 * pass it up the stack if it's for us.
1829 */
1830 if (ifp->if_bpf)
1831 bpf_mtap(ifp->if_bpf, m);
1832 #endif /* NBPFILTER > 0 */
1833
1834 #ifdef INET
1835 /* hardware checksum */
1836 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1837 struct ether_header *eh;
1838 struct ip *ip;
1839 int32_t hlen, pktlen;
1840
1841 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1842 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1843 ETHER_VLAN_ENCAP_LEN;
1844 eh = (struct ether_header *) (mtod(m, char *) +
1845 ETHER_VLAN_ENCAP_LEN);
1846 } else {
1847 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1848 eh = mtod(m, struct ether_header *);
1849 }
1850 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1851 goto swcsum;
1852 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1853
1854 /* IPv4 only */
1855 if (ip->ip_v != IPVERSION)
1856 goto swcsum;
1857
1858 hlen = ip->ip_hl << 2;
1859 if (hlen < sizeof(struct ip))
1860 goto swcsum;
1861
1862 /*
1863 * bail if too short, has random trailing garbage,
1864 * truncated, fragment, or has ethernet pad.
1865 */
1866 if ((ntohs(ip->ip_len) < hlen) ||
1867 (ntohs(ip->ip_len) != pktlen) ||
1868 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1869 goto swcsum;
1870
1871 switch (ip->ip_p) {
1872 case IPPROTO_TCP:
1873 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1874 goto swcsum;
1875 if (pktlen < (hlen + sizeof(struct tcphdr)))
1876 goto swcsum;
1877 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1878 break;
1879 case IPPROTO_UDP:
1880 /* FALLTHROUGH */
1881 default:
1882 goto swcsum;
1883 }
1884
1885 /* the uncomplemented sum is expected */
1886 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1887
1888 /* if the pkt had ip options, we have to deduct them */
1889 if (hlen > sizeof(struct ip)) {
1890 uint16_t *opts;
1891 uint32_t optsum, temp;
1892
1893 optsum = 0;
1894 temp = hlen - sizeof(struct ip);
1895 opts = (uint16_t *) ((char *) ip +
1896 sizeof(struct ip));
1897
1898 while (temp > 1) {
1899 optsum += ntohs(*opts++);
1900 temp -= 2;
1901 }
1902 while (optsum >> 16)
1903 optsum = (optsum >> 16) +
1904 (optsum & 0xffff);
1905
1906 /* Deduct ip opts sum from hwsum. */
1907 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1908
1909 while (m->m_pkthdr.csum_data >> 16)
1910 m->m_pkthdr.csum_data =
1911 (m->m_pkthdr.csum_data >> 16) +
1912 (m->m_pkthdr.csum_data &
1913 0xffff);
1914 }
1915
1916 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1917 M_CSUM_NO_PSEUDOHDR;
1918 } else
1919 swcsum:
1920 m->m_pkthdr.csum_flags = 0;
1921 #endif
1922 /* Pass it on. */
1923 (*ifp->if_input)(ifp, m);
1924 }
1925
1926 if (progress) {
1927 /* Update the receive pointer. */
1928 if (i == sc->sc_rxptr) {
1929 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1930 #ifdef GEM_DEBUG
1931 if (ifp->if_flags & IFF_DEBUG)
1932 printf("%s: rint: ring wrap\n",
1933 device_xname(sc->sc_dev));
1934 #endif
1935 }
1936 sc->sc_rxptr = i;
1937 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1938 }
1939 #ifdef GEM_COUNTERS
1940 if (progress <= 4) {
1941 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1942 } else if (progress < 32) {
1943 if (progress < 16)
1944 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1945 else
1946 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1947
1948 } else {
1949 if (progress < 64)
1950 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1951 else
1952 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1953 }
1954 #endif
1955
1956 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1957 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1958
1959 /* Read error counters ... */
1960 ifp->if_ierrors +=
1961 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1962 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1963 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1964 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1965
1966 /* ... then clear the hardware counters. */
1967 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1968 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1969 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1970 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1971
1972 return (1);
1973 }
1974
1975
1976 /*
1977 * gem_add_rxbuf:
1978 *
1979 * Add a receive buffer to the indicated descriptor.
1980 */
1981 int
1982 gem_add_rxbuf(struct gem_softc *sc, int idx)
1983 {
1984 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1985 struct mbuf *m;
1986 int error;
1987
1988 MGETHDR(m, M_DONTWAIT, MT_DATA);
1989 if (m == NULL)
1990 return (ENOBUFS);
1991
1992 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1993 MCLGET(m, M_DONTWAIT);
1994 if ((m->m_flags & M_EXT) == 0) {
1995 m_freem(m);
1996 return (ENOBUFS);
1997 }
1998
1999 #ifdef GEM_DEBUG
2000 /* bzero the packet to check DMA */
2001 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2002 #endif
2003
2004 if (rxs->rxs_mbuf != NULL)
2005 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2006
2007 rxs->rxs_mbuf = m;
2008
2009 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2010 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2011 BUS_DMA_READ|BUS_DMA_NOWAIT);
2012 if (error) {
2013 aprint_error_dev(sc->sc_dev,
2014 "can't load rx DMA map %d, error = %d\n", idx, error);
2015 panic("gem_add_rxbuf"); /* XXX */
2016 }
2017
2018 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2019 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2020
2021 GEM_INIT_RXDESC(sc, idx);
2022
2023 return (0);
2024 }
2025
2026
2027 int
2028 gem_eint(struct gem_softc *sc, u_int status)
2029 {
2030 char bits[128];
2031 u_int32_t r, v;
2032
2033 if ((status & GEM_INTR_MIF) != 0) {
2034 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2035 return (1);
2036 }
2037
2038 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2039 gem_reset_rxdma(sc);
2040 return (1);
2041 }
2042
2043 if (status & GEM_INTR_BERR) {
2044 if (sc->sc_flags & GEM_PCI)
2045 r = GEM_ERROR_STATUS;
2046 else
2047 r = GEM_SBUS_ERROR_STATUS;
2048 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2049 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2050 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2051 v);
2052 return (1);
2053 }
2054 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2055 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2056
2057 return (1);
2058 }
2059
2060
2061 /*
2062 * PCS interrupts.
2063 * We should receive these when the link status changes, but sometimes
2064 * we don't receive them for link up. We compensate for this in the
2065 * gem_tick() callout.
2066 */
2067 int
2068 gem_pint(struct gem_softc *sc)
2069 {
2070 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2071 bus_space_tag_t t = sc->sc_bustag;
2072 bus_space_handle_t h = sc->sc_h1;
2073 u_int32_t v, v2;
2074
2075 /*
2076 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2077 * latched, so we have to read it twice. There is only one bit in
2078 * use, so the value is meaningless.
2079 */
2080 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2081 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2082
2083 if ((ifp->if_flags & IFF_UP) == 0)
2084 return 1;
2085
2086 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2087 return 1;
2088
2089 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2090 /* If we see remote fault, our link partner is probably going away */
2091 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2092 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2093 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2094 /* Otherwise, we may need to wait after auto-negotiation completes */
2095 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2096 GEM_MII_STATUS_ANEG_CPT) {
2097 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2098 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2099 }
2100 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2101 if (sc->sc_flags & GEM_LINK) {
2102 return 1;
2103 }
2104 callout_stop(&sc->sc_tick_ch);
2105 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2106 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2107 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2108 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2109 v &= v2;
2110 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2111 sc->sc_mii.mii_media_active |= IFM_FDX;
2112 #ifdef GEM_DEBUG
2113 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2114 #endif
2115 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2116 sc->sc_mii.mii_media_active |= IFM_HDX;
2117 #ifdef GEM_DEBUG
2118 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2119 #endif
2120 } else {
2121 #ifdef GEM_DEBUG
2122 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2123 #endif
2124 }
2125 gem_statuschange(sc);
2126 } else {
2127 if ((sc->sc_flags & GEM_LINK) == 0) {
2128 return 1;
2129 }
2130 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2131 sc->sc_mii.mii_media_status = IFM_AVALID;
2132 #ifdef GEM_DEBUG
2133 aprint_debug_dev(sc->sc_dev, "link down\n");
2134 #endif
2135 gem_statuschange(sc);
2136
2137 /* Start the 10 second timer */
2138 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2139 }
2140 return 1;
2141 }
2142
2143
2144
2145 int
2146 gem_intr(void *v)
2147 {
2148 struct gem_softc *sc = v;
2149 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2150 bus_space_tag_t t = sc->sc_bustag;
2151 bus_space_handle_t h = sc->sc_h1;
2152 u_int32_t status;
2153 int r = 0;
2154 #ifdef GEM_DEBUG
2155 char bits[128];
2156 #endif
2157
2158 /* XXX We should probably mask out interrupts until we're done */
2159
2160 sc->sc_ev_intr.ev_count++;
2161
2162 status = bus_space_read_4(t, h, GEM_STATUS);
2163 #ifdef GEM_DEBUG
2164 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2165 #endif
2166 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2167 device_xname(sc->sc_dev), (status >> 19), bits));
2168
2169
2170 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2171 r |= gem_eint(sc, status);
2172
2173 /* We don't bother with GEM_INTR_TX_DONE */
2174 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2175 GEM_COUNTER_INCR(sc, sc_ev_txint);
2176 r |= gem_tint(sc);
2177 }
2178
2179 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2180 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2181 r |= gem_rint(sc);
2182 }
2183
2184 /* We should eventually do more than just print out error stats. */
2185 if (status & GEM_INTR_TX_MAC) {
2186 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2187 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2188 printf("%s: MAC tx fault, status %x\n",
2189 device_xname(sc->sc_dev), txstat);
2190 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2191 gem_init(ifp);
2192 }
2193 if (status & GEM_INTR_RX_MAC) {
2194 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2195 /*
2196 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2197 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2198 * silicon bug so handle them silently. Moreover, it's
2199 * likely that the receiver has hung so we reset it.
2200 */
2201 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2202 ifp->if_ierrors++;
2203 gem_reset_rxdma(sc);
2204 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2205 printf("%s: MAC rx fault, status 0x%02x\n",
2206 device_xname(sc->sc_dev), rxstat);
2207 }
2208 if (status & GEM_INTR_PCS) {
2209 r |= gem_pint(sc);
2210 }
2211
2212 /* Do we need to do anything with these?
2213 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2214 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2215 if ((status2 & GEM_MAC_PAUSED) != 0)
2216 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2217 GEM_MAC_PAUSE_TIME(status2));
2218 if ((status2 & GEM_MAC_PAUSE) != 0)
2219 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2220 if ((status2 & GEM_MAC_RESUME) != 0)
2221 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2222 }
2223 if ((status & GEM_INTR_MIF) != 0)
2224 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2225 */
2226 #if NRND > 0
2227 rnd_add_uint32(&sc->rnd_source, status);
2228 #endif
2229 return (r);
2230 }
2231
2232
2233 void
2234 gem_watchdog(struct ifnet *ifp)
2235 {
2236 struct gem_softc *sc = ifp->if_softc;
2237
2238 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2239 "GEM_MAC_RX_CONFIG %x\n",
2240 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2241 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2242 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2243
2244 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2245 ++ifp->if_oerrors;
2246
2247 /* Try to get more packets going. */
2248 gem_start(ifp);
2249 }
2250
2251 /*
2252 * Initialize the MII Management Interface
2253 */
2254 void
2255 gem_mifinit(struct gem_softc *sc)
2256 {
2257 bus_space_tag_t t = sc->sc_bustag;
2258 bus_space_handle_t mif = sc->sc_h1;
2259
2260 /* Configure the MIF in frame mode */
2261 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2262 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2263 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2264 }
2265
2266 /*
2267 * MII interface
2268 *
2269 * The GEM MII interface supports at least three different operating modes:
2270 *
2271 * Bitbang mode is implemented using data, clock and output enable registers.
2272 *
2273 * Frame mode is implemented by loading a complete frame into the frame
2274 * register and polling the valid bit for completion.
2275 *
2276 * Polling mode uses the frame register but completion is indicated by
2277 * an interrupt.
2278 *
2279 */
2280 static int
2281 gem_mii_readreg(device_t self, int phy, int reg)
2282 {
2283 struct gem_softc *sc = device_private(self);
2284 bus_space_tag_t t = sc->sc_bustag;
2285 bus_space_handle_t mif = sc->sc_h1;
2286 int n;
2287 u_int32_t v;
2288
2289 #ifdef GEM_DEBUG1
2290 if (sc->sc_debug)
2291 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2292 #endif
2293
2294 /* Construct the frame command */
2295 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2296 GEM_MIF_FRAME_READ;
2297
2298 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2299 for (n = 0; n < 100; n++) {
2300 DELAY(1);
2301 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2302 if (v & GEM_MIF_FRAME_TA0)
2303 return (v & GEM_MIF_FRAME_DATA);
2304 }
2305
2306 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2307 return (0);
2308 }
2309
2310 static void
2311 gem_mii_writereg(device_t self, int phy, int reg, int val)
2312 {
2313 struct gem_softc *sc = device_private(self);
2314 bus_space_tag_t t = sc->sc_bustag;
2315 bus_space_handle_t mif = sc->sc_h1;
2316 int n;
2317 u_int32_t v;
2318
2319 #ifdef GEM_DEBUG1
2320 if (sc->sc_debug)
2321 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2322 phy, reg, val);
2323 #endif
2324
2325 /* Construct the frame command */
2326 v = GEM_MIF_FRAME_WRITE |
2327 (phy << GEM_MIF_PHY_SHIFT) |
2328 (reg << GEM_MIF_REG_SHIFT) |
2329 (val & GEM_MIF_FRAME_DATA);
2330
2331 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2332 for (n = 0; n < 100; n++) {
2333 DELAY(1);
2334 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2335 if (v & GEM_MIF_FRAME_TA0)
2336 return;
2337 }
2338
2339 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2340 }
2341
2342 static void
2343 gem_mii_statchg(device_t self)
2344 {
2345 struct gem_softc *sc = device_private(self);
2346 #ifdef GEM_DEBUG
2347 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2348 #endif
2349
2350 #ifdef GEM_DEBUG
2351 if (sc->sc_debug)
2352 printf("gem_mii_statchg: status change: phy = %d\n",
2353 sc->sc_phys[instance]);
2354 #endif
2355 gem_statuschange(sc);
2356 }
2357
2358 /*
2359 * Common status change for gem_mii_statchg() and gem_pint()
2360 */
2361 void
2362 gem_statuschange(struct gem_softc* sc)
2363 {
2364 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2365 bus_space_tag_t t = sc->sc_bustag;
2366 bus_space_handle_t mac = sc->sc_h1;
2367 int gigabit;
2368 u_int32_t rxcfg, txcfg, v;
2369
2370 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2371 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2372 sc->sc_flags |= GEM_LINK;
2373 else
2374 sc->sc_flags &= ~GEM_LINK;
2375
2376 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2377 gigabit = 1;
2378 else
2379 gigabit = 0;
2380
2381 /*
2382 * The configuration done here corresponds to the steps F) and
2383 * G) and as far as enabling of RX and TX MAC goes also step H)
2384 * of the initialization sequence outlined in section 3.2.1 of
2385 * the GEM Gigabit Ethernet ASIC Specification.
2386 */
2387
2388 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2389 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2390 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2391 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2392 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2393 else if (gigabit) {
2394 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2395 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2396 }
2397 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2398 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2399 BUS_SPACE_BARRIER_WRITE);
2400 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2401 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2402 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2403 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2404 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2405 BUS_SPACE_BARRIER_WRITE);
2406 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2407 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2408 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2409
2410 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2411 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2412 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2413
2414 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2415 gigabit != 0)
2416 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2417 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2418 else
2419 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2420 GEM_MAC_SLOT_TIME_NORMAL);
2421
2422 /* XIF Configuration */
2423 if (sc->sc_flags & GEM_LINK)
2424 v = GEM_MAC_XIF_LINK_LED;
2425 else
2426 v = 0;
2427 v |= GEM_MAC_XIF_TX_MII_ENA;
2428
2429 /* If an external transceiver is connected, enable its MII drivers */
2430 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2431 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2432 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2433 /* External MII needs echo disable if half duplex. */
2434 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2435 IFM_FDX) != 0)
2436 /* turn on full duplex LED */
2437 v |= GEM_MAC_XIF_FDPLX_LED;
2438 else
2439 /* half duplex -- disable echo */
2440 v |= GEM_MAC_XIF_ECHO_DISABL;
2441 if (gigabit)
2442 v |= GEM_MAC_XIF_GMII_MODE;
2443 else
2444 v &= ~GEM_MAC_XIF_GMII_MODE;
2445 } else
2446 /* Internal MII needs buf enable */
2447 v |= GEM_MAC_XIF_MII_BUF_ENA;
2448 } else {
2449 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2450 v |= GEM_MAC_XIF_FDPLX_LED;
2451 v |= GEM_MAC_XIF_GMII_MODE;
2452 }
2453 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2454
2455 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2456 (sc->sc_flags & GEM_LINK) != 0) {
2457 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2458 txcfg | GEM_MAC_TX_ENABLE);
2459 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2460 rxcfg | GEM_MAC_RX_ENABLE);
2461 }
2462 }
2463
2464 int
2465 gem_ser_mediachange(struct ifnet *ifp)
2466 {
2467 struct gem_softc *sc = ifp->if_softc;
2468 u_int s, t;
2469
2470 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2471 return EINVAL;
2472
2473 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2474 if (s == IFM_AUTO) {
2475 if (sc->sc_mii_media != s) {
2476 #ifdef GEM_DEBUG
2477 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2478 #endif
2479 sc->sc_mii_media = s;
2480 if (ifp->if_flags & IFF_UP) {
2481 gem_pcs_stop(sc, 0);
2482 gem_pcs_start(sc);
2483 }
2484 }
2485 return 0;
2486 }
2487 if (s == IFM_1000_SX) {
2488 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2489 if (t == IFM_FDX || t == IFM_HDX) {
2490 if (sc->sc_mii_media != t) {
2491 sc->sc_mii_media = t;
2492 #ifdef GEM_DEBUG
2493 aprint_debug_dev(sc->sc_dev,
2494 "setting media to 1000baseSX-%s\n",
2495 t == IFM_FDX ? "FDX" : "HDX");
2496 #endif
2497 if (ifp->if_flags & IFF_UP) {
2498 gem_pcs_stop(sc, 0);
2499 gem_pcs_start(sc);
2500 }
2501 }
2502 return 0;
2503 }
2504 }
2505 return EINVAL;
2506 }
2507
2508 void
2509 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2510 {
2511 struct gem_softc *sc = ifp->if_softc;
2512
2513 if ((ifp->if_flags & IFF_UP) == 0)
2514 return;
2515 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2516 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2517 }
2518
2519 static int
2520 gem_ifflags_cb(struct ethercom *ec)
2521 {
2522 struct ifnet *ifp = &ec->ec_if;
2523 struct gem_softc *sc = ifp->if_softc;
2524 int change = ifp->if_flags ^ sc->sc_if_flags;
2525
2526 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2527 return ENETRESET;
2528 else if ((change & IFF_PROMISC) != 0)
2529 gem_setladrf(sc);
2530 return 0;
2531 }
2532
2533 /*
2534 * Process an ioctl request.
2535 */
2536 int
2537 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2538 {
2539 struct gem_softc *sc = ifp->if_softc;
2540 int s, error = 0;
2541
2542 s = splnet();
2543
2544 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2545 error = 0;
2546 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2547 ;
2548 else if (ifp->if_flags & IFF_RUNNING) {
2549 /*
2550 * Multicast list has changed; set the hardware filter
2551 * accordingly.
2552 */
2553 gem_setladrf(sc);
2554 }
2555 }
2556
2557 /* Try to get things going again */
2558 if (ifp->if_flags & IFF_UP)
2559 gem_start(ifp);
2560 splx(s);
2561 return (error);
2562 }
2563
2564 static void
2565 gem_inten(struct gem_softc *sc)
2566 {
2567 bus_space_tag_t t = sc->sc_bustag;
2568 bus_space_handle_t h = sc->sc_h1;
2569 uint32_t v;
2570
2571 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2572 v = GEM_INTR_PCS;
2573 else
2574 v = GEM_INTR_MIF;
2575 bus_space_write_4(t, h, GEM_INTMASK,
2576 ~(GEM_INTR_TX_INTME |
2577 GEM_INTR_TX_EMPTY |
2578 GEM_INTR_TX_MAC |
2579 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2580 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2581 GEM_INTR_BERR | v));
2582 }
2583
2584 bool
2585 gem_resume(device_t self PMF_FN_ARGS)
2586 {
2587 struct gem_softc *sc = device_private(self);
2588
2589 gem_inten(sc);
2590
2591 return true;
2592 }
2593
2594 bool
2595 gem_suspend(device_t self PMF_FN_ARGS)
2596 {
2597 struct gem_softc *sc = device_private(self);
2598 bus_space_tag_t t = sc->sc_bustag;
2599 bus_space_handle_t h = sc->sc_h1;
2600
2601 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2602
2603 return true;
2604 }
2605
2606 bool
2607 gem_shutdown(device_t self, int howto)
2608 {
2609 struct gem_softc *sc = device_private(self);
2610 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2611
2612 gem_stop(ifp, 1);
2613
2614 return true;
2615 }
2616
2617 /*
2618 * Set up the logical address filter.
2619 */
2620 void
2621 gem_setladrf(struct gem_softc *sc)
2622 {
2623 struct ethercom *ec = &sc->sc_ethercom;
2624 struct ifnet *ifp = &ec->ec_if;
2625 struct ether_multi *enm;
2626 struct ether_multistep step;
2627 bus_space_tag_t t = sc->sc_bustag;
2628 bus_space_handle_t h = sc->sc_h1;
2629 u_int32_t crc;
2630 u_int32_t hash[16];
2631 u_int32_t v;
2632 int i;
2633
2634 /* Get current RX configuration */
2635 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2636
2637 /*
2638 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2639 * and hash filter. Depending on the case, the right bit will be
2640 * enabled.
2641 */
2642 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2643 GEM_MAC_RX_PROMISC_GRP);
2644
2645 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2646 /* Turn on promiscuous mode */
2647 v |= GEM_MAC_RX_PROMISCUOUS;
2648 ifp->if_flags |= IFF_ALLMULTI;
2649 goto chipit;
2650 }
2651
2652 /*
2653 * Set up multicast address filter by passing all multicast addresses
2654 * through a crc generator, and then using the high order 8 bits as an
2655 * index into the 256 bit logical address filter. The high order 4
2656 * bits selects the word, while the other 4 bits select the bit within
2657 * the word (where bit 0 is the MSB).
2658 */
2659
2660 /* Clear hash table */
2661 memset(hash, 0, sizeof(hash));
2662
2663 ETHER_FIRST_MULTI(step, ec, enm);
2664 while (enm != NULL) {
2665 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2666 /*
2667 * We must listen to a range of multicast addresses.
2668 * For now, just accept all multicasts, rather than
2669 * trying to set only those filter bits needed to match
2670 * the range. (At this time, the only use of address
2671 * ranges is for IP multicast routing, for which the
2672 * range is big enough to require all bits set.)
2673 * XXX should use the address filters for this
2674 */
2675 ifp->if_flags |= IFF_ALLMULTI;
2676 v |= GEM_MAC_RX_PROMISC_GRP;
2677 goto chipit;
2678 }
2679
2680 /* Get the LE CRC32 of the address */
2681 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2682
2683 /* Just want the 8 most significant bits. */
2684 crc >>= 24;
2685
2686 /* Set the corresponding bit in the filter. */
2687 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2688
2689 ETHER_NEXT_MULTI(step, enm);
2690 }
2691
2692 v |= GEM_MAC_RX_HASH_FILTER;
2693 ifp->if_flags &= ~IFF_ALLMULTI;
2694
2695 /* Now load the hash table into the chip (if we are using it) */
2696 for (i = 0; i < 16; i++) {
2697 bus_space_write_4(t, h,
2698 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2699 hash[i]);
2700 }
2701
2702 chipit:
2703 sc->sc_if_flags = ifp->if_flags;
2704 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2705 }
2706