gem.c revision 1.9 1 /* $NetBSD: gem.c,v 1.9 2001/10/21 20:45:15 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include "bpfilter.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/mbuf.h>
42 #include <sys/syslog.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/ioctl.h>
47 #include <sys/errno.h>
48 #include <sys/device.h>
49
50 #include <machine/endian.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58
59 #if NBPFILTER > 0
60 #include <net/bpf.h>
61 #endif
62
63 #include <machine/bus.h>
64 #include <machine/intr.h>
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 #include <dev/mii/mii_bitbang.h>
69
70 #include <dev/ic/gemreg.h>
71 #include <dev/ic/gemvar.h>
72
73 #define TRIES 10000
74
75 void gem_start __P((struct ifnet *));
76 void gem_stop __P((struct ifnet *, int));
77 int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
78 void gem_tick __P((void *));
79 void gem_watchdog __P((struct ifnet *));
80 void gem_shutdown __P((void *));
81 int gem_init __P((struct ifnet *));
82 void gem_init_regs(struct gem_softc *sc);
83 static int gem_ringsize(int sz);
84 int gem_meminit __P((struct gem_softc *));
85 void gem_mifinit __P((struct gem_softc *));
86 void gem_reset __P((struct gem_softc *));
87 int gem_reset_rx(struct gem_softc *sc);
88 int gem_reset_tx(struct gem_softc *sc);
89 int gem_disable_rx(struct gem_softc *sc);
90 int gem_disable_tx(struct gem_softc *sc);
91 void gem_rxdrain(struct gem_softc *sc);
92 int gem_add_rxbuf(struct gem_softc *sc, int idx);
93 void gem_setladrf __P((struct gem_softc *));
94
95 /* MII methods & callbacks */
96 static int gem_mii_readreg __P((struct device *, int, int));
97 static void gem_mii_writereg __P((struct device *, int, int, int));
98 static void gem_mii_statchg __P((struct device *));
99
100 int gem_mediachange __P((struct ifnet *));
101 void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
102
103 struct mbuf *gem_get __P((struct gem_softc *, int, int));
104 int gem_put __P((struct gem_softc *, int, struct mbuf *));
105 void gem_read __P((struct gem_softc *, int, int));
106 int gem_eint __P((struct gem_softc *, u_int));
107 int gem_rint __P((struct gem_softc *));
108 int gem_tint __P((struct gem_softc *));
109 void gem_power __P((int, void *));
110
111 #ifdef GEM_DEBUG
112 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
113 printf x
114 #else
115 #define DPRINTF(sc, x) /* nothing */
116 #endif
117
118
119 /*
120 * gem_attach:
121 *
122 * Attach a Gem interface to the system.
123 */
124 void
125 gem_attach(sc, enaddr)
126 struct gem_softc *sc;
127 const uint8_t *enaddr;
128 {
129 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
130 struct mii_data *mii = &sc->sc_mii;
131 struct mii_softc *child;
132 int i, error;
133
134 /* Make sure the chip is stopped. */
135 ifp->if_softc = sc;
136 gem_reset(sc);
137
138 /*
139 * Allocate the control data structures, and create and load the
140 * DMA map for it.
141 */
142 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
143 sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
144 1, &sc->sc_cdnseg, 0)) != 0) {
145 printf("%s: unable to allocate control data, error = %d\n",
146 sc->sc_dev.dv_xname, error);
147 goto fail_0;
148 }
149
150 /* XXX should map this in with correct endianness */
151 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
152 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
153 BUS_DMA_COHERENT)) != 0) {
154 printf("%s: unable to map control data, error = %d\n",
155 sc->sc_dev.dv_xname, error);
156 goto fail_1;
157 }
158
159 if ((error = bus_dmamap_create(sc->sc_dmatag,
160 sizeof(struct gem_control_data), 1,
161 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
162 printf("%s: unable to create control data DMA map, "
163 "error = %d\n", sc->sc_dev.dv_xname, error);
164 goto fail_2;
165 }
166
167 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
168 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
169 0)) != 0) {
170 printf("%s: unable to load control data DMA map, error = %d\n",
171 sc->sc_dev.dv_xname, error);
172 goto fail_3;
173 }
174
175 /*
176 * Initialize the transmit job descriptors.
177 */
178 SIMPLEQ_INIT(&sc->sc_txfreeq);
179 SIMPLEQ_INIT(&sc->sc_txdirtyq);
180
181 /*
182 * Create the transmit buffer DMA maps.
183 */
184 for (i = 0; i < GEM_TXQUEUELEN; i++) {
185 struct gem_txsoft *txs;
186
187 txs = &sc->sc_txsoft[i];
188 txs->txs_mbuf = NULL;
189 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
190 GEM_NTXSEGS, MCLBYTES, 0, 0,
191 &txs->txs_dmamap)) != 0) {
192 printf("%s: unable to create tx DMA map %d, "
193 "error = %d\n", sc->sc_dev.dv_xname, i, error);
194 goto fail_4;
195 }
196 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
197 }
198
199 /*
200 * Create the receive buffer DMA maps.
201 */
202 for (i = 0; i < GEM_NRXDESC; i++) {
203 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
204 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
205 printf("%s: unable to create rx DMA map %d, "
206 "error = %d\n", sc->sc_dev.dv_xname, i, error);
207 goto fail_5;
208 }
209 sc->sc_rxsoft[i].rxs_mbuf = NULL;
210 }
211
212 /*
213 * From this point forward, the attachment cannot fail. A failure
214 * before this point releases all resources that may have been
215 * allocated.
216 */
217
218 /* Announce ourselves. */
219 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
220 ether_sprintf(enaddr));
221
222 /* Initialize ifnet structure. */
223 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
224 ifp->if_softc = sc;
225 ifp->if_flags =
226 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
227 ifp->if_start = gem_start;
228 ifp->if_ioctl = gem_ioctl;
229 ifp->if_watchdog = gem_watchdog;
230 ifp->if_stop = gem_stop;
231 ifp->if_init = gem_init;
232 IFQ_SET_READY(&ifp->if_snd);
233
234 /* Initialize ifmedia structures and MII info */
235 mii->mii_ifp = ifp;
236 mii->mii_readreg = gem_mii_readreg;
237 mii->mii_writereg = gem_mii_writereg;
238 mii->mii_statchg = gem_mii_statchg;
239
240 ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
241
242 gem_mifinit(sc);
243
244 mii_attach(&sc->sc_dev, mii, 0xffffffff,
245 MII_PHY_ANY, MII_OFFSET_ANY, 0);
246
247 child = LIST_FIRST(&mii->mii_phys);
248 if (child == NULL) {
249 /* No PHY attached */
250 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
251 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
252 } else {
253 /*
254 * Walk along the list of attached MII devices and
255 * establish an `MII instance' to `phy number'
256 * mapping. We'll use this mapping in media change
257 * requests to determine which phy to use to program
258 * the MIF configuration register.
259 */
260 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
261 /*
262 * Note: we support just two PHYs: the built-in
263 * internal device and an external on the MII
264 * connector.
265 */
266 if (child->mii_phy > 1 || child->mii_inst > 1) {
267 printf("%s: cannot accomodate MII device %s"
268 " at phy %d, instance %d\n",
269 sc->sc_dev.dv_xname,
270 child->mii_dev.dv_xname,
271 child->mii_phy, child->mii_inst);
272 continue;
273 }
274
275 sc->sc_phys[child->mii_inst] = child->mii_phy;
276 }
277
278 /*
279 * Now select and activate the PHY we will use.
280 *
281 * The order of preference is External (MDI1),
282 * Internal (MDI0), Serial Link (no MII).
283 */
284 if (sc->sc_phys[1]) {
285 #ifdef DEBUG
286 printf("using external phy\n");
287 #endif
288 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
289 } else {
290 #ifdef DEBUG
291 printf("using internal phy\n");
292 #endif
293 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
294 }
295 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
296 sc->sc_mif_config);
297
298 /*
299 * XXX - we can really do the following ONLY if the
300 * phy indeed has the auto negotiation capability!!
301 */
302 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
303 }
304
305 /* claim 802.1q capability */
306 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
307
308 /* Attach the interface. */
309 if_attach(ifp);
310 ether_ifattach(ifp, enaddr);
311
312 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
313 if (sc->sc_sh == NULL)
314 panic("gem_config: can't establish shutdownhook");
315
316 #if NRND > 0
317 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
318 RND_TYPE_NET, 0);
319 #endif
320
321
322 #if notyet
323 /*
324 * Add a suspend hook to make sure we come back up after a
325 * resume.
326 */
327 sc->sc_powerhook = powerhook_establish(gem_power, sc);
328 if (sc->sc_powerhook == NULL)
329 printf("%s: WARNING: unable to establish power hook\n",
330 sc->sc_dev.dv_xname);
331 #endif
332
333 callout_init(&sc->sc_tick_ch);
334 return;
335
336 /*
337 * Free any resources we've allocated during the failed attach
338 * attempt. Do this in reverse order and fall through.
339 */
340 fail_5:
341 for (i = 0; i < GEM_NRXDESC; i++) {
342 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
343 bus_dmamap_destroy(sc->sc_dmatag,
344 sc->sc_rxsoft[i].rxs_dmamap);
345 }
346 fail_4:
347 for (i = 0; i < GEM_TXQUEUELEN; i++) {
348 if (sc->sc_txsoft[i].txs_dmamap != NULL)
349 bus_dmamap_destroy(sc->sc_dmatag,
350 sc->sc_txsoft[i].txs_dmamap);
351 }
352 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
353 fail_3:
354 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
355 fail_2:
356 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
357 sizeof(struct gem_control_data));
358 fail_1:
359 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
360 fail_0:
361 return;
362 }
363
364
365 void
366 gem_tick(arg)
367 void *arg;
368 {
369 struct gem_softc *sc = arg;
370 int s;
371
372 s = splnet();
373 mii_tick(&sc->sc_mii);
374 splx(s);
375
376 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
377
378 }
379
380 void
381 gem_reset(sc)
382 struct gem_softc *sc;
383 {
384 bus_space_tag_t t = sc->sc_bustag;
385 bus_space_handle_t h = sc->sc_h;
386 int i;
387 int s;
388
389 s = splnet();
390 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
391 gem_reset_rx(sc);
392 gem_reset_tx(sc);
393
394 /* Do a full reset */
395 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
396 for (i=TRIES; i--; delay(100))
397 if ((bus_space_read_4(t, h, GEM_RESET) &
398 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
399 break;
400 if ((bus_space_read_4(t, h, GEM_RESET) &
401 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
402 printf("%s: cannot reset device\n",
403 sc->sc_dev.dv_xname);
404 }
405 splx(s);
406 }
407
408
409 /*
410 * gem_rxdrain:
411 *
412 * Drain the receive queue.
413 */
414 void
415 gem_rxdrain(struct gem_softc *sc)
416 {
417 struct gem_rxsoft *rxs;
418 int i;
419
420 for (i = 0; i < GEM_NRXDESC; i++) {
421 rxs = &sc->sc_rxsoft[i];
422 if (rxs->rxs_mbuf != NULL) {
423 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
424 m_freem(rxs->rxs_mbuf);
425 rxs->rxs_mbuf = NULL;
426 }
427 }
428 }
429
430 /*
431 * Reset the whole thing.
432 */
433 void
434 gem_stop(struct ifnet *ifp, int disable)
435 {
436 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
437 struct gem_txsoft *txs;
438
439 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
440
441 callout_stop(&sc->sc_tick_ch);
442 mii_down(&sc->sc_mii);
443
444 /* XXX - Should we reset these instead? */
445 gem_disable_rx(sc);
446 gem_disable_rx(sc);
447
448 /*
449 * Release any queued transmit buffers.
450 */
451 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
452 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
453 if (txs->txs_mbuf != NULL) {
454 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
455 m_freem(txs->txs_mbuf);
456 txs->txs_mbuf = NULL;
457 }
458 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
459 }
460
461 if (disable) {
462 gem_rxdrain(sc);
463 }
464
465 /*
466 * Mark the interface down and cancel the watchdog timer.
467 */
468 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
469 ifp->if_timer = 0;
470 }
471
472
473 /*
474 * Reset the receiver
475 */
476 int
477 gem_reset_rx(struct gem_softc *sc)
478 {
479 bus_space_tag_t t = sc->sc_bustag;
480 bus_space_handle_t h = sc->sc_h;
481 int i;
482
483
484 /*
485 * Resetting while DMA is in progress can cause a bus hang, so we
486 * disable DMA first.
487 */
488 gem_disable_rx(sc);
489 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
490 /* Wait till it finishes */
491 for (i=TRIES; i--; delay(100))
492 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
493 break;
494 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
495 printf("%s: cannot disable read dma\n",
496 sc->sc_dev.dv_xname);
497
498 /* Wait 5ms extra. */
499 delay(5000);
500
501 /* Finally, reset the ERX */
502 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
503 /* Wait till it finishes */
504 for (i=TRIES; i--; delay(100))
505 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
506 break;
507 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
508 printf("%s: cannot reset receiver\n",
509 sc->sc_dev.dv_xname);
510 return (1);
511 }
512 return (0);
513 }
514
515
516 /*
517 * Reset the transmitter
518 */
519 int
520 gem_reset_tx(struct gem_softc *sc)
521 {
522 bus_space_tag_t t = sc->sc_bustag;
523 bus_space_handle_t h = sc->sc_h;
524 int i;
525
526 /*
527 * Resetting while DMA is in progress can cause a bus hang, so we
528 * disable DMA first.
529 */
530 gem_disable_tx(sc);
531 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
532 /* Wait till it finishes */
533 for (i=TRIES; i--; delay(100))
534 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
535 break;
536 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
537 printf("%s: cannot disable read dma\n",
538 sc->sc_dev.dv_xname);
539
540 /* Wait 5ms extra. */
541 delay(5000);
542
543 /* Finally, reset the ETX */
544 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
545 /* Wait till it finishes */
546 for (i=TRIES; i--; delay(100))
547 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
548 break;
549 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
550 printf("%s: cannot reset receiver\n",
551 sc->sc_dev.dv_xname);
552 return (1);
553 }
554 return (0);
555 }
556
557 /*
558 * disable receiver.
559 */
560 int
561 gem_disable_rx(struct gem_softc *sc)
562 {
563 bus_space_tag_t t = sc->sc_bustag;
564 bus_space_handle_t h = sc->sc_h;
565 int i;
566 u_int32_t cfg;
567
568 /* Flip the enable bit */
569 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
570 cfg &= ~GEM_MAC_RX_ENABLE;
571 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
572
573 /* Wait for it to finish */
574 for (i=TRIES; i--; delay(100))
575 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
576 GEM_MAC_RX_ENABLE) == 0)
577 return (0);
578 return (1);
579 }
580
581 /*
582 * disable transmitter.
583 */
584 int
585 gem_disable_tx(struct gem_softc *sc)
586 {
587 bus_space_tag_t t = sc->sc_bustag;
588 bus_space_handle_t h = sc->sc_h;
589 int i;
590 u_int32_t cfg;
591
592 /* Flip the enable bit */
593 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
594 cfg &= ~GEM_MAC_TX_ENABLE;
595 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
596
597 /* Wait for it to finish */
598 for (i=TRIES; i--; delay(100))
599 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
600 GEM_MAC_TX_ENABLE) == 0)
601 return (0);
602 return (1);
603 }
604
605 /*
606 * Initialize interface.
607 */
608 int
609 gem_meminit(struct gem_softc *sc)
610 {
611 struct gem_rxsoft *rxs;
612 int i, error;
613
614 /*
615 * Initialize the transmit descriptor ring.
616 */
617 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
618 for (i = 0; i < GEM_NTXDESC; i++) {
619 sc->sc_txdescs[i].gd_flags = 0;
620 sc->sc_txdescs[i].gd_addr = 0;
621 }
622 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
623 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
624 sc->sc_txfree = GEM_NTXDESC;
625 sc->sc_txnext = 0;
626
627 /*
628 * Initialize the receive descriptor and receive job
629 * descriptor rings.
630 */
631 for (i = 0; i < GEM_NRXDESC; i++) {
632 rxs = &sc->sc_rxsoft[i];
633 if (rxs->rxs_mbuf == NULL) {
634 if ((error = gem_add_rxbuf(sc, i)) != 0) {
635 printf("%s: unable to allocate or map rx "
636 "buffer %d, error = %d\n",
637 sc->sc_dev.dv_xname, i, error);
638 /*
639 * XXX Should attempt to run with fewer receive
640 * XXX buffers instead of just failing.
641 */
642 gem_rxdrain(sc);
643 return (1);
644 }
645 } else
646 GEM_INIT_RXDESC(sc, i);
647 }
648 sc->sc_rxptr = 0;
649
650 return (0);
651 }
652
653 static int
654 gem_ringsize(int sz)
655 {
656 int v;
657
658 switch (sz) {
659 case 32:
660 v = GEM_RING_SZ_32;
661 break;
662 case 64:
663 v = GEM_RING_SZ_64;
664 break;
665 case 128:
666 v = GEM_RING_SZ_128;
667 break;
668 case 256:
669 v = GEM_RING_SZ_256;
670 break;
671 case 512:
672 v = GEM_RING_SZ_512;
673 break;
674 case 1024:
675 v = GEM_RING_SZ_1024;
676 break;
677 case 2048:
678 v = GEM_RING_SZ_2048;
679 break;
680 case 4096:
681 v = GEM_RING_SZ_4096;
682 break;
683 case 8192:
684 v = GEM_RING_SZ_8192;
685 break;
686 default:
687 printf("gem: invalid Receive Descriptor ring size\n");
688 break;
689 }
690 return (v);
691 }
692
693 /*
694 * Initialization of interface; set up initialization block
695 * and transmit/receive descriptor rings.
696 */
697 int
698 gem_init(struct ifnet *ifp)
699 {
700 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
701 bus_space_tag_t t = sc->sc_bustag;
702 bus_space_handle_t h = sc->sc_h;
703 int s;
704 u_int32_t v;
705
706 s = splnet();
707
708 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
709 /*
710 * Initialization sequence. The numbered steps below correspond
711 * to the sequence outlined in section 6.3.5.1 in the Ethernet
712 * Channel Engine manual (part of the PCIO manual).
713 * See also the STP2002-STQ document from Sun Microsystems.
714 */
715
716 /* step 1 & 2. Reset the Ethernet Channel */
717 gem_stop(ifp, 0);
718 gem_reset(sc);
719 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
720
721 /* Re-initialize the MIF */
722 gem_mifinit(sc);
723
724 /* Call MI reset function if any */
725 if (sc->sc_hwreset)
726 (*sc->sc_hwreset)(sc);
727
728 /* step 3. Setup data structures in host memory */
729 gem_meminit(sc);
730
731 /* step 4. TX MAC registers & counters */
732 gem_init_regs(sc);
733 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
734 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
735 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN + sizeof(struct ether_header):
736 ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
737
738 /* step 5. RX MAC registers & counters */
739 gem_setladrf(sc);
740
741 /* step 6 & 7. Program Descriptor Ring Base Addresses */
742 /* NOTE: we use only 32-bit DMA addresses here. */
743 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
744 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
745
746 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
747 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
748
749 /* step 8. Global Configuration & Interrupt Mask */
750 bus_space_write_4(t, h, GEM_INTMASK,
751 ~(GEM_INTR_TX_INTME|
752 GEM_INTR_TX_EMPTY|
753 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
754 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
755 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
756 GEM_INTR_BERR));
757 bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
758 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
759 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
760
761 /* step 9. ETX Configuration: use mostly default values */
762
763 /* Enable DMA */
764 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
765 bus_space_write_4(t, h, GEM_TX_CONFIG,
766 v|GEM_TX_CONFIG_TXDMA_EN|
767 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
768 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
769
770 /* step 10. ERX Configuration */
771
772 /* Encode Receive Descriptor ring size: four possible values */
773 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
774
775 /* Enable DMA */
776 bus_space_write_4(t, h, GEM_RX_CONFIG,
777 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
778 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
779 (0<<GEM_RX_CONFIG_CXM_START_SHFT));
780 /*
781 * The following value is for an OFF Threshold of about 15.5 Kbytes
782 * and an ON Threshold of 4K bytes.
783 */
784 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
785 bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
786
787 /* step 11. Configure Media */
788 (void) gem_mediachange(ifp);
789
790 /* step 12. RX_MAC Configuration Register */
791 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
792 v |= GEM_MAC_RX_ENABLE;
793 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
794
795 /* step 14. Issue Transmit Pending command */
796
797 /* Call MI initialization function if any */
798 if (sc->sc_hwinit)
799 (*sc->sc_hwinit)(sc);
800
801
802 /* step 15. Give the reciever a swift kick */
803 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
804
805 /* Start the one second timer. */
806 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
807
808 ifp->if_flags |= IFF_RUNNING;
809 ifp->if_flags &= ~IFF_OACTIVE;
810 ifp->if_timer = 0;
811 splx(s);
812
813 return (0);
814 }
815
816 void
817 gem_init_regs(struct gem_softc *sc)
818 {
819 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
820 bus_space_tag_t t = sc->sc_bustag;
821 bus_space_handle_t h = sc->sc_h;
822
823 /* These regs are not cleared on reset */
824 sc->sc_inited = 0;
825 if (!sc->sc_inited) {
826
827 /* Wooo. Magic values. */
828 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
829 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
830 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
831
832 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
833 /* Max frame and max burst size */
834 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
835 (ifp->if_mtu+18) | (0x2000<<16)/* Burst size */);
836 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
837 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
838 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
839 /* Dunno.... */
840 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
841 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
842 ((LLADDR(ifp->if_sadl)[5]<<8)|
843 LLADDR(ifp->if_sadl)[4])&0x3ff);
844 /* Secondary MAC addr set to 0:0:0:0:0:0 */
845 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
846 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
847 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
848 /* MAC control addr set to 0:1:c2:0:1:80 */
849 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
850 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
851 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
852
853 /* MAC filter addr set to 0:0:0:0:0:0 */
854 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
855 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
856 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
857
858 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
859 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
860
861 sc->sc_inited = 1;
862 }
863
864 /* Counters need to be zeroed */
865 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
866 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
867 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
868 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
869 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
870 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
871 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
872 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
873 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
874 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
875 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
876
877 /* Un-pause stuff */
878 #if 0
879 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
880 #else
881 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
882 #endif
883
884 /*
885 * Set the station address.
886 */
887 bus_space_write_4(t, h, GEM_MAC_ADDR0,
888 (LLADDR(ifp->if_sadl)[4]<<8) | LLADDR(ifp->if_sadl)[5]);
889 bus_space_write_4(t, h, GEM_MAC_ADDR1,
890 (LLADDR(ifp->if_sadl)[2]<<8) | LLADDR(ifp->if_sadl)[3]);
891 bus_space_write_4(t, h, GEM_MAC_ADDR2,
892 (LLADDR(ifp->if_sadl)[0]<<8) | LLADDR(ifp->if_sadl)[1]);
893
894 }
895
896
897
898 void
899 gem_start(ifp)
900 struct ifnet *ifp;
901 {
902 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
903 struct mbuf *m0, *m;
904 struct gem_txsoft *txs, *last_txs;
905 bus_dmamap_t dmamap;
906 int error, firsttx, nexttx, lasttx, ofree, seg;
907
908 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
909 return;
910
911 /*
912 * Remember the previous number of free descriptors and
913 * the first descriptor we'll use.
914 */
915 ofree = sc->sc_txfree;
916 firsttx = sc->sc_txnext;
917
918 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
919 sc->sc_dev.dv_xname, ofree, firsttx));
920
921 /*
922 * Loop through the send queue, setting up transmit descriptors
923 * until we drain the queue, or use up all available transmit
924 * descriptors.
925 */
926 for (;;) {
927 /*
928 * Grab a packet off the queue.
929 */
930 IFQ_POLL(&ifp->if_snd, m0);
931 if (m0 == NULL)
932 break;
933 m = NULL;
934
935 /* Get a work queue entry. */
936 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
937 /* We've run out. */
938 break;
939 }
940
941 dmamap = txs->txs_dmamap;
942
943 /*
944 * Load the DMA map. If this fails, the packet either
945 * didn't fit in the alloted number of segments, or we were
946 * short on resources. In this case, we'll copy and try
947 * again.
948 */
949 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
950 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
951 MGETHDR(m, M_DONTWAIT, MT_DATA);
952 if (m == NULL) {
953 printf("%s: unable to allocate Tx mbuf\n",
954 sc->sc_dev.dv_xname);
955 break;
956 }
957 if (m0->m_pkthdr.len > MHLEN) {
958 MCLGET(m, M_DONTWAIT);
959 if ((m->m_flags & M_EXT) == 0) {
960 printf("%s: unable to allocate Tx "
961 "cluster\n", sc->sc_dev.dv_xname);
962 m_freem(m);
963 break;
964 }
965 }
966 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
967 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
968 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
969 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
970 if (error) {
971 printf("%s: unable to load Tx buffer, "
972 "error = %d\n", sc->sc_dev.dv_xname, error);
973 break;
974 }
975 }
976
977 /*
978 * Ensure we have enough descriptors free to describe
979 * the packet. Note, we always reserve one descriptor
980 * at the end of the ring as a termination point, to
981 * prevent wrap-around.
982 */
983 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
984 /*
985 * Not enough free descriptors to transmit this
986 * packet. We haven't committed to anything yet,
987 * so just unload the DMA map, put the packet
988 * back on the queue, and punt. Notify the upper
989 * layer that there are no more slots left.
990 *
991 * XXX We could allocate an mbuf and copy, but
992 * XXX it is worth it?
993 */
994 ifp->if_flags |= IFF_OACTIVE;
995 bus_dmamap_unload(sc->sc_dmatag, dmamap);
996 if (m != NULL)
997 m_freem(m);
998 break;
999 }
1000
1001 IFQ_DEQUEUE(&ifp->if_snd, m0);
1002 if (m != NULL) {
1003 m_freem(m0);
1004 m0 = m;
1005 }
1006
1007 /*
1008 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1009 */
1010
1011 /* Sync the DMA map. */
1012 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1013 BUS_DMASYNC_PREWRITE);
1014
1015 /*
1016 * Initialize the transmit descriptors.
1017 */
1018 for (nexttx = sc->sc_txnext, seg = 0;
1019 seg < dmamap->dm_nsegs;
1020 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1021 uint64_t flags;
1022
1023 /*
1024 * If this is the first descriptor we're
1025 * enqueueing, set the start of packet flag,
1026 * and the checksum stuff if we want the hardware
1027 * to do it.
1028 */
1029 sc->sc_txdescs[nexttx].gd_addr =
1030 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1031 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1032 if (nexttx == firsttx) {
1033 flags |= GEM_TD_START_OF_PACKET;
1034 }
1035 if (seg == dmamap->dm_nsegs - 1) {
1036 flags |= GEM_TD_END_OF_PACKET;
1037 }
1038 sc->sc_txdescs[nexttx].gd_flags =
1039 GEM_DMA_WRITE(sc, flags);
1040 lasttx = nexttx;
1041 }
1042
1043 #ifdef GEM_DEBUG
1044 if (ifp->if_flags & IFF_DEBUG) {
1045 printf(" gem_start %p transmit chain:\n", txs);
1046 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1047 printf("descriptor %d:\t", seg);
1048 printf("gd_flags: 0x%016llx\t", (long long)
1049 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1050 printf("gd_addr: 0x%016llx\n", (long long)
1051 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1052 if (seg == lasttx)
1053 break;
1054 }
1055 }
1056 #endif
1057
1058 /* Sync the descriptors we're using. */
1059 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1060 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1061
1062 /*
1063 * Store a pointer to the packet so we can free it later,
1064 * and remember what txdirty will be once the packet is
1065 * done.
1066 */
1067 txs->txs_mbuf = m0;
1068 txs->txs_firstdesc = sc->sc_txnext;
1069 txs->txs_lastdesc = lasttx;
1070 txs->txs_ndescs = dmamap->dm_nsegs;
1071
1072 /* Advance the tx pointer. */
1073 sc->sc_txfree -= dmamap->dm_nsegs;
1074 sc->sc_txnext = nexttx;
1075
1076 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1077 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1078
1079 last_txs = txs;
1080
1081 #if NBPFILTER > 0
1082 /*
1083 * Pass the packet to any BPF listeners.
1084 */
1085 if (ifp->if_bpf)
1086 bpf_mtap(ifp->if_bpf, m0);
1087 #endif /* NBPFILTER > 0 */
1088 }
1089
1090 if (txs == NULL || sc->sc_txfree == 0) {
1091 /* No more slots left; notify upper layer. */
1092 ifp->if_flags |= IFF_OACTIVE;
1093 }
1094
1095 if (sc->sc_txfree != ofree) {
1096 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1097 sc->sc_dev.dv_xname, lasttx, firsttx));
1098 /*
1099 * The entire packet chain is set up.
1100 * Kick the transmitter.
1101 */
1102 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1103 sc->sc_dev.dv_xname, nexttx));
1104 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1105 sc->sc_txnext);
1106
1107 /* Set a watchdog timer in case the chip flakes out. */
1108 ifp->if_timer = 5;
1109 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1110 sc->sc_dev.dv_xname, ifp->if_timer));
1111 }
1112 }
1113
1114 /*
1115 * Transmit interrupt.
1116 */
1117 int
1118 gem_tint(sc)
1119 struct gem_softc *sc;
1120 {
1121 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1122 bus_space_tag_t t = sc->sc_bustag;
1123 bus_space_handle_t mac = sc->sc_h;
1124 struct gem_txsoft *txs;
1125 int txlast;
1126
1127
1128 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1129
1130 /*
1131 * Unload collision counters
1132 */
1133 ifp->if_collisions +=
1134 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1135 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1136 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1137 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1138
1139 /*
1140 * then clear the hardware counters.
1141 */
1142 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1143 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1144 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1145 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1146
1147 /*
1148 * Go through our Tx list and free mbufs for those
1149 * frames that have been transmitted.
1150 */
1151 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1152 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1153 txs->txs_ndescs,
1154 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1155
1156 #ifdef GEM_DEBUG
1157 if (ifp->if_flags & IFF_DEBUG) {
1158 int i;
1159 printf(" txsoft %p transmit chain:\n", txs);
1160 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1161 printf("descriptor %d: ", i);
1162 printf("gd_flags: 0x%016llx\t", (long long)
1163 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1164 printf("gd_addr: 0x%016llx\n", (long long)
1165 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1166 if (i == txs->txs_lastdesc)
1167 break;
1168 }
1169 }
1170 #endif
1171
1172 /*
1173 * In theory, we could harveast some descriptors before
1174 * the ring is empty, but that's a bit complicated.
1175 *
1176 * GEM_TX_COMPLETION points to the last descriptor
1177 * processed +1.
1178 */
1179 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1180 DPRINTF(sc,
1181 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1182 txs->txs_lastdesc, txlast));
1183 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1184 if ((txlast >= txs->txs_firstdesc) &&
1185 (txlast <= txs->txs_lastdesc))
1186 break;
1187 } else {
1188 /* Ick -- this command wraps */
1189 if ((txlast >= txs->txs_firstdesc) ||
1190 (txlast <= txs->txs_lastdesc))
1191 break;
1192 }
1193
1194 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1195 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1196
1197 sc->sc_txfree += txs->txs_ndescs;
1198
1199 if (txs->txs_mbuf == NULL) {
1200 #ifdef DIAGNOSTIC
1201 panic("gem_txintr: null mbuf");
1202 #endif
1203 }
1204
1205 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1206 0, txs->txs_dmamap->dm_mapsize,
1207 BUS_DMASYNC_POSTWRITE);
1208 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1209 m_freem(txs->txs_mbuf);
1210 txs->txs_mbuf = NULL;
1211
1212 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1213
1214 ifp->if_opackets++;
1215 }
1216
1217 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1218 "GEM_TX_DATA_PTR %llx "
1219 "GEM_TX_COMPLETION %x\n",
1220 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1221 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1222 GEM_TX_DATA_PTR_HI) << 32) |
1223 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1224 GEM_TX_DATA_PTR_LO),
1225 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1226
1227 gem_start(ifp);
1228
1229 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1230 ifp->if_timer = 0;
1231 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1232 sc->sc_dev.dv_xname, ifp->if_timer));
1233
1234 return (1);
1235 }
1236
1237 /*
1238 * Receive interrupt.
1239 */
1240 int
1241 gem_rint(sc)
1242 struct gem_softc *sc;
1243 {
1244 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1245 bus_space_tag_t t = sc->sc_bustag;
1246 bus_space_handle_t h = sc->sc_h;
1247 struct ether_header *eh;
1248 struct gem_rxsoft *rxs;
1249 struct mbuf *m;
1250 u_int64_t rxstat;
1251 int i, len;
1252
1253 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1254 /*
1255 * XXXX Read the lastrx only once at the top for speed.
1256 */
1257 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1258 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1259 for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1260 i = GEM_NEXTRX(i)) {
1261 rxs = &sc->sc_rxsoft[i];
1262
1263 GEM_CDRXSYNC(sc, i,
1264 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1265
1266 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1267
1268 if (rxstat & GEM_RD_OWN) {
1269 printf("gem_rint: completed descriptor "
1270 "still owned %d\n", i);
1271 /*
1272 * We have processed all of the receive buffers.
1273 */
1274 break;
1275 }
1276
1277 if (rxstat & GEM_RD_BAD_CRC) {
1278 printf("%s: receive error: CRC error\n",
1279 sc->sc_dev.dv_xname);
1280 GEM_INIT_RXDESC(sc, i);
1281 continue;
1282 }
1283
1284 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1285 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1286 #ifdef GEM_DEBUG
1287 if (ifp->if_flags & IFF_DEBUG) {
1288 printf(" rxsoft %p descriptor %d: ", rxs, i);
1289 printf("gd_flags: 0x%016llx\t", (long long)
1290 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1291 printf("gd_addr: 0x%016llx\n", (long long)
1292 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1293 }
1294 #endif
1295
1296 /*
1297 * No errors; receive the packet. Note the Gem
1298 * includes the CRC with every packet.
1299 */
1300 len = GEM_RD_BUFLEN(rxstat);
1301
1302 /*
1303 * Allocate a new mbuf cluster. If that fails, we are
1304 * out of memory, and must drop the packet and recycle
1305 * the buffer that's already attached to this descriptor.
1306 */
1307 m = rxs->rxs_mbuf;
1308 if (gem_add_rxbuf(sc, i) != 0) {
1309 ifp->if_ierrors++;
1310 GEM_INIT_RXDESC(sc, i);
1311 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1312 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1313 continue;
1314 }
1315 m->m_data += 2; /* We're already off by two */
1316
1317 ifp->if_ipackets++;
1318 eh = mtod(m, struct ether_header *);
1319 m->m_flags |= M_HASFCS;
1320 m->m_pkthdr.rcvif = ifp;
1321 m->m_pkthdr.len = m->m_len = len;
1322
1323 #if NBPFILTER > 0
1324 /*
1325 * Pass this up to any BPF listeners, but only
1326 * pass it up the stack if its for us.
1327 */
1328 if (ifp->if_bpf)
1329 bpf_mtap(ifp->if_bpf, m);
1330 #endif /* NPBFILTER > 0 */
1331
1332 /* Pass it on. */
1333 (*ifp->if_input)(ifp, m);
1334 }
1335
1336 /* Update the receive pointer. */
1337 sc->sc_rxptr = i;
1338 bus_space_write_4(t, h, GEM_RX_KICK, i);
1339
1340 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1341 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1342
1343 return (1);
1344 }
1345
1346
1347 /*
1348 * gem_add_rxbuf:
1349 *
1350 * Add a receive buffer to the indicated descriptor.
1351 */
1352 int
1353 gem_add_rxbuf(struct gem_softc *sc, int idx)
1354 {
1355 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1356 struct mbuf *m;
1357 int error;
1358
1359 MGETHDR(m, M_DONTWAIT, MT_DATA);
1360 if (m == NULL)
1361 return (ENOBUFS);
1362
1363 MCLGET(m, M_DONTWAIT);
1364 if ((m->m_flags & M_EXT) == 0) {
1365 m_freem(m);
1366 return (ENOBUFS);
1367 }
1368
1369 #ifdef GEM_DEBUG
1370 /* bzero the packet to check dma */
1371 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1372 #endif
1373
1374 if (rxs->rxs_mbuf != NULL)
1375 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1376
1377 rxs->rxs_mbuf = m;
1378
1379 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1380 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1381 BUS_DMA_READ|BUS_DMA_NOWAIT);
1382 if (error) {
1383 printf("%s: can't load rx DMA map %d, error = %d\n",
1384 sc->sc_dev.dv_xname, idx, error);
1385 panic("gem_add_rxbuf"); /* XXX */
1386 }
1387
1388 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1389 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1390
1391 GEM_INIT_RXDESC(sc, idx);
1392
1393 return (0);
1394 }
1395
1396
1397 int
1398 gem_eint(sc, status)
1399 struct gem_softc *sc;
1400 u_int status;
1401 {
1402 char bits[128];
1403
1404 if ((status & GEM_INTR_MIF) != 0) {
1405 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1406 return (1);
1407 }
1408
1409 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1410 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1411 return (1);
1412 }
1413
1414
1415 int
1416 gem_intr(v)
1417 void *v;
1418 {
1419 struct gem_softc *sc = (struct gem_softc *)v;
1420 bus_space_tag_t t = sc->sc_bustag;
1421 bus_space_handle_t seb = sc->sc_h;
1422 u_int32_t status;
1423 int r = 0;
1424 #ifdef GEM_DEBUG
1425 char bits[128];
1426 #endif
1427
1428 status = bus_space_read_4(t, seb, GEM_STATUS);
1429 DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1430 sc->sc_dev.dv_xname, (status>>19),
1431 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1432
1433 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1434 r |= gem_eint(sc, status);
1435
1436 if ((status &
1437 (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME))
1438 != 0)
1439 r |= gem_tint(sc);
1440
1441 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1442 r |= gem_rint(sc);
1443
1444 /* We should eventually do more than just print out error stats. */
1445 if (status & GEM_INTR_TX_MAC) {
1446 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1447 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1448 printf("MAC tx fault, status %x\n", txstat);
1449 }
1450 if (status & GEM_INTR_RX_MAC) {
1451 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1452 if (rxstat & ~GEM_MAC_RX_DONE)
1453 printf("MAC rx fault, status %x\n", rxstat);
1454 }
1455 return (r);
1456 }
1457
1458
1459 void
1460 gem_watchdog(ifp)
1461 struct ifnet *ifp;
1462 {
1463 struct gem_softc *sc = ifp->if_softc;
1464
1465 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1466 "GEM_MAC_RX_CONFIG %x\n",
1467 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1468 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1469 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1470
1471 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1472 ++ifp->if_oerrors;
1473
1474 /* Try to get more packets going. */
1475 gem_start(ifp);
1476 }
1477
1478 /*
1479 * Initialize the MII Management Interface
1480 */
1481 void
1482 gem_mifinit(sc)
1483 struct gem_softc *sc;
1484 {
1485 bus_space_tag_t t = sc->sc_bustag;
1486 bus_space_handle_t mif = sc->sc_h;
1487
1488 /* Configure the MIF in frame mode */
1489 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1490 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1491 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1492 }
1493
1494 /*
1495 * MII interface
1496 *
1497 * The GEM MII interface supports at least three different operating modes:
1498 *
1499 * Bitbang mode is implemented using data, clock and output enable registers.
1500 *
1501 * Frame mode is implemented by loading a complete frame into the frame
1502 * register and polling the valid bit for completion.
1503 *
1504 * Polling mode uses the frame register but completion is indicated by
1505 * an interrupt.
1506 *
1507 */
1508 static int
1509 gem_mii_readreg(self, phy, reg)
1510 struct device *self;
1511 int phy, reg;
1512 {
1513 struct gem_softc *sc = (void *)self;
1514 bus_space_tag_t t = sc->sc_bustag;
1515 bus_space_handle_t mif = sc->sc_h;
1516 int n;
1517 u_int32_t v;
1518
1519 #ifdef GEM_DEBUG1
1520 if (sc->sc_debug)
1521 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1522 #endif
1523
1524 #if 0
1525 /* Select the desired PHY in the MIF configuration register */
1526 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1527 /* Clear PHY select bit */
1528 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1529 if (phy == GEM_PHYAD_EXTERNAL)
1530 /* Set PHY select bit to get at external device */
1531 v |= GEM_MIF_CONFIG_PHY_SEL;
1532 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1533 #endif
1534
1535 /* Construct the frame command */
1536 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1537 GEM_MIF_FRAME_READ;
1538
1539 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1540 for (n = 0; n < 100; n++) {
1541 DELAY(1);
1542 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1543 if (v & GEM_MIF_FRAME_TA0)
1544 return (v & GEM_MIF_FRAME_DATA);
1545 }
1546
1547 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1548 return (0);
1549 }
1550
1551 static void
1552 gem_mii_writereg(self, phy, reg, val)
1553 struct device *self;
1554 int phy, reg, val;
1555 {
1556 struct gem_softc *sc = (void *)self;
1557 bus_space_tag_t t = sc->sc_bustag;
1558 bus_space_handle_t mif = sc->sc_h;
1559 int n;
1560 u_int32_t v;
1561
1562 #ifdef GEM_DEBUG1
1563 if (sc->sc_debug)
1564 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1565 phy, reg, val);
1566 #endif
1567
1568 #if 0
1569 /* Select the desired PHY in the MIF configuration register */
1570 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1571 /* Clear PHY select bit */
1572 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1573 if (phy == GEM_PHYAD_EXTERNAL)
1574 /* Set PHY select bit to get at external device */
1575 v |= GEM_MIF_CONFIG_PHY_SEL;
1576 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1577 #endif
1578 /* Construct the frame command */
1579 v = GEM_MIF_FRAME_WRITE |
1580 (phy << GEM_MIF_PHY_SHIFT) |
1581 (reg << GEM_MIF_REG_SHIFT) |
1582 (val & GEM_MIF_FRAME_DATA);
1583
1584 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1585 for (n = 0; n < 100; n++) {
1586 DELAY(1);
1587 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1588 if (v & GEM_MIF_FRAME_TA0)
1589 return;
1590 }
1591
1592 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1593 }
1594
1595 static void
1596 gem_mii_statchg(dev)
1597 struct device *dev;
1598 {
1599 struct gem_softc *sc = (void *)dev;
1600 #ifdef GEM_DEBUG
1601 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1602 #endif
1603 bus_space_tag_t t = sc->sc_bustag;
1604 bus_space_handle_t mac = sc->sc_h;
1605 u_int32_t v;
1606
1607 #ifdef GEM_DEBUG
1608 if (sc->sc_debug)
1609 printf("gem_mii_statchg: status change: phy = %d\n",
1610 sc->sc_phys[instance];);
1611 #endif
1612
1613
1614 /* Set tx full duplex options */
1615 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1616 delay(10000); /* reg must be cleared and delay before changing. */
1617 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1618 GEM_MAC_TX_ENABLE;
1619 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1620 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1621 }
1622 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1623
1624 /* XIF Configuration */
1625 /* We should really calculate all this rather than rely on defaults */
1626 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1627 v = GEM_MAC_XIF_LINK_LED;
1628 v |= GEM_MAC_XIF_TX_MII_ENA;
1629 /* If an external transceiver is connected, enable its MII drivers */
1630 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1631 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1632 /* External MII needs echo disable if half duplex. */
1633 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1634 /* turn on full duplex LED */
1635 v |= GEM_MAC_XIF_FDPLX_LED;
1636 else
1637 /* half duplex -- disable echo */
1638 v |= GEM_MAC_XIF_ECHO_DISABL;
1639 } else
1640 /* Internal MII needs buf enable */
1641 v |= GEM_MAC_XIF_MII_BUF_ENA;
1642 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1643 }
1644
1645 int
1646 gem_mediachange(ifp)
1647 struct ifnet *ifp;
1648 {
1649 struct gem_softc *sc = ifp->if_softc;
1650
1651 /* XXX Add support for serial media. */
1652
1653 return (mii_mediachg(&sc->sc_mii));
1654 }
1655
1656 void
1657 gem_mediastatus(ifp, ifmr)
1658 struct ifnet *ifp;
1659 struct ifmediareq *ifmr;
1660 {
1661 struct gem_softc *sc = ifp->if_softc;
1662
1663 if ((ifp->if_flags & IFF_UP) == 0)
1664 return;
1665
1666 mii_pollstat(&sc->sc_mii);
1667 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1668 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1669 }
1670
1671 int gem_ioctldebug = 0;
1672 /*
1673 * Process an ioctl request.
1674 */
1675 int
1676 gem_ioctl(ifp, cmd, data)
1677 struct ifnet *ifp;
1678 u_long cmd;
1679 caddr_t data;
1680 {
1681 struct gem_softc *sc = ifp->if_softc;
1682 struct ifreq *ifr = (struct ifreq *)data;
1683 int s, error = 0;
1684
1685
1686 switch (cmd) {
1687 case SIOCGIFMEDIA:
1688 case SIOCSIFMEDIA:
1689 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1690 break;
1691
1692 default:
1693 error = ether_ioctl(ifp, cmd, data);
1694 if (error == ENETRESET) {
1695 /*
1696 * Multicast list has changed; set the hardware filter
1697 * accordingly.
1698 */
1699 if (gem_ioctldebug) printf("reset1\n");
1700 gem_init(ifp);
1701 delay(50000);
1702 error = 0;
1703 }
1704 break;
1705 }
1706
1707 /* Try to get things going again */
1708 if (ifp->if_flags & IFF_UP) {
1709 if (gem_ioctldebug) printf("start\n");
1710 gem_start(ifp);
1711 }
1712 splx(s);
1713 return (error);
1714 }
1715
1716
1717 void
1718 gem_shutdown(arg)
1719 void *arg;
1720 {
1721 struct gem_softc *sc = (struct gem_softc *)arg;
1722 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1723
1724 gem_stop(ifp, 1);
1725 }
1726
1727 /*
1728 * Set up the logical address filter.
1729 */
1730 void
1731 gem_setladrf(sc)
1732 struct gem_softc *sc;
1733 {
1734 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1735 struct ether_multi *enm;
1736 struct ether_multistep step;
1737 struct ethercom *ec = &sc->sc_ethercom;
1738 bus_space_tag_t t = sc->sc_bustag;
1739 bus_space_handle_t h = sc->sc_h;
1740 u_char *cp;
1741 u_int32_t crc;
1742 u_int32_t hash[16];
1743 u_int32_t v;
1744 int len;
1745
1746 /* Clear hash table */
1747 memset(hash, 0, sizeof(hash));
1748
1749 /* Get current RX configuration */
1750 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1751
1752 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1753 /* Turn on promiscuous mode; turn off the hash filter */
1754 v |= GEM_MAC_RX_PROMISCUOUS;
1755 v &= ~GEM_MAC_RX_HASH_FILTER;
1756 ifp->if_flags |= IFF_ALLMULTI;
1757 goto chipit;
1758 }
1759
1760 /* Turn off promiscuous mode; turn on the hash filter */
1761 v &= ~GEM_MAC_RX_PROMISCUOUS;
1762 v |= GEM_MAC_RX_HASH_FILTER;
1763
1764 /*
1765 * Set up multicast address filter by passing all multicast addresses
1766 * through a crc generator, and then using the high order 6 bits as an
1767 * index into the 256 bit logical address filter. The high order bit
1768 * selects the word, while the rest of the bits select the bit within
1769 * the word.
1770 */
1771
1772 ETHER_FIRST_MULTI(step, ec, enm);
1773 while (enm != NULL) {
1774 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1775 /*
1776 * We must listen to a range of multicast addresses.
1777 * For now, just accept all multicasts, rather than
1778 * trying to set only those filter bits needed to match
1779 * the range. (At this time, the only use of address
1780 * ranges is for IP multicast routing, for which the
1781 * range is big enough to require all bits set.)
1782 */
1783 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1784 ifp->if_flags |= IFF_ALLMULTI;
1785 goto chipit;
1786 }
1787
1788 cp = enm->enm_addrlo;
1789 crc = 0xffffffff;
1790 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1791 int octet = *cp++;
1792 int i;
1793
1794 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1795 for (i = 0; i < 8; i++) {
1796 if ((crc & 1) ^ (octet & 1)) {
1797 crc >>= 1;
1798 crc ^= MC_POLY_LE;
1799 } else {
1800 crc >>= 1;
1801 }
1802 octet >>= 1;
1803 }
1804 }
1805 /* Just want the 8 most significant bits. */
1806 crc >>= 24;
1807
1808 /* Set the corresponding bit in the filter. */
1809 hash[crc >> 4] |= 1 << (crc & 0xf);
1810
1811 ETHER_NEXT_MULTI(step, enm);
1812 }
1813
1814 ifp->if_flags &= ~IFF_ALLMULTI;
1815
1816 chipit:
1817 /* Now load the hash table into the chip */
1818 bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
1819 bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
1820 bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
1821 bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
1822 bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
1823 bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
1824 bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
1825 bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
1826 bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
1827 bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
1828 bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
1829 bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
1830 bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
1831 bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
1832 bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
1833 bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
1834
1835 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1836 }
1837
1838 #if notyet
1839
1840 /*
1841 * gem_power:
1842 *
1843 * Power management (suspend/resume) hook.
1844 */
1845 void
1846 gem_power(why, arg)
1847 int why;
1848 void *arg;
1849 {
1850 struct gem_softc *sc = arg;
1851 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1852 int s;
1853
1854 s = splnet();
1855 switch (why) {
1856 case PWR_SUSPEND:
1857 case PWR_STANDBY:
1858 gem_stop(ifp, 1);
1859 if (sc->sc_power != NULL)
1860 (*sc->sc_power)(sc, why);
1861 break;
1862 case PWR_RESUME:
1863 if (ifp->if_flags & IFF_UP) {
1864 if (sc->sc_power != NULL)
1865 (*sc->sc_power)(sc, why);
1866 gem_init(ifp);
1867 }
1868 break;
1869 case PWR_SOFTSUSPEND:
1870 case PWR_SOFTSTANDBY:
1871 case PWR_SOFTRESUME:
1872 break;
1873 }
1874 splx(s);
1875 }
1876 #endif
1877