Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.91
      1 /*	$NetBSD: gem.c,v 1.91 2010/01/11 09:30:41 jdc Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * Copyright (c) 2001-2003 Thomas Moestl
      7  * All rights reserved.
      8  *
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 /*
     34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
     35  * See `GEM Gigabit Ethernet ASIC Specification'
     36  *   http://www.sun.com/processors/manuals/ge.pdf
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.91 2010/01/11 09:30:41 jdc Exp $");
     41 
     42 #include "opt_inet.h"
     43 #include "bpfilter.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/callout.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/malloc.h>
     51 #include <sys/kernel.h>
     52 #include <sys/socket.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #include <sys/device.h>
     56 
     57 #include <machine/endian.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 #include <net/if.h>
     62 #include <net/if_dl.h>
     63 #include <net/if_media.h>
     64 #include <net/if_ether.h>
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/in_var.h>
     70 #include <netinet/ip.h>
     71 #include <netinet/tcp.h>
     72 #include <netinet/udp.h>
     73 #endif
     74 
     75 #if NBPFILTER > 0
     76 #include <net/bpf.h>
     77 #endif
     78 
     79 #include <sys/bus.h>
     80 #include <sys/intr.h>
     81 
     82 #include <dev/mii/mii.h>
     83 #include <dev/mii/miivar.h>
     84 #include <dev/mii/mii_bitbang.h>
     85 
     86 #include <dev/ic/gemreg.h>
     87 #include <dev/ic/gemvar.h>
     88 
     89 #define TRIES	10000
     90 
     91 static void	gem_inten(struct gem_softc *);
     92 static void	gem_start(struct ifnet *);
     93 static void	gem_stop(struct ifnet *, int);
     94 int		gem_ioctl(struct ifnet *, u_long, void *);
     95 void		gem_tick(void *);
     96 void		gem_watchdog(struct ifnet *);
     97 void		gem_pcs_start(struct gem_softc *sc);
     98 void		gem_pcs_stop(struct gem_softc *sc, int);
     99 int		gem_init(struct ifnet *);
    100 void		gem_init_regs(struct gem_softc *sc);
    101 static int	gem_ringsize(int sz);
    102 static int	gem_meminit(struct gem_softc *);
    103 void		gem_mifinit(struct gem_softc *);
    104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
    105 		    u_int32_t, u_int32_t);
    106 void		gem_reset(struct gem_softc *);
    107 int		gem_reset_rx(struct gem_softc *sc);
    108 static void	gem_reset_rxdma(struct gem_softc *sc);
    109 static void	gem_rx_common(struct gem_softc *sc);
    110 int		gem_reset_tx(struct gem_softc *sc);
    111 int		gem_disable_rx(struct gem_softc *sc);
    112 int		gem_disable_tx(struct gem_softc *sc);
    113 static void	gem_rxdrain(struct gem_softc *sc);
    114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    115 void		gem_setladrf(struct gem_softc *);
    116 
    117 /* MII methods & callbacks */
    118 static int	gem_mii_readreg(device_t, int, int);
    119 static void	gem_mii_writereg(device_t, int, int, int);
    120 static void	gem_mii_statchg(device_t);
    121 
    122 static int	gem_ifflags_cb(struct ethercom *);
    123 
    124 void		gem_statuschange(struct gem_softc *);
    125 
    126 int		gem_ser_mediachange(struct ifnet *);
    127 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
    128 
    129 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
    130 
    131 struct mbuf	*gem_get(struct gem_softc *, int, int);
    132 int		gem_put(struct gem_softc *, int, struct mbuf *);
    133 void		gem_read(struct gem_softc *, int, int);
    134 int		gem_pint(struct gem_softc *);
    135 int		gem_eint(struct gem_softc *, u_int);
    136 int		gem_rint(struct gem_softc *);
    137 int		gem_tint(struct gem_softc *);
    138 void		gem_power(int, void *);
    139 
    140 #ifdef GEM_DEBUG
    141 static void gem_txsoft_print(const struct gem_softc *, int, int);
    142 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    143 				printf x
    144 #else
    145 #define	DPRINTF(sc, x)	/* nothing */
    146 #endif
    147 
    148 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    149 
    150 int
    151 gem_detach(struct gem_softc *sc, int flags)
    152 {
    153 	int i;
    154 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    155 	bus_space_tag_t t = sc->sc_bustag;
    156 	bus_space_handle_t h = sc->sc_h1;
    157 
    158 	/*
    159 	 * Free any resources we've allocated during the attach.
    160 	 * Do this in reverse order and fall through.
    161 	 */
    162 	switch (sc->sc_att_stage) {
    163 	case GEM_ATT_BACKEND_2:
    164 	case GEM_ATT_BACKEND_1:
    165 	case GEM_ATT_FINISHED:
    166 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
    167 		gem_stop(&sc->sc_ethercom.ec_if, 1);
    168 
    169 #ifdef GEM_COUNTERS
    170 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
    171 			evcnt_detach(&sc->sc_ev_rxhist[i]);
    172 		evcnt_detach(&sc->sc_ev_rxnobuf);
    173 		evcnt_detach(&sc->sc_ev_rxfull);
    174 		evcnt_detach(&sc->sc_ev_rxint);
    175 		evcnt_detach(&sc->sc_ev_txint);
    176 #endif
    177 		evcnt_detach(&sc->sc_ev_intr);
    178 
    179 #if NRND > 0
    180 		rnd_detach_source(&sc->rnd_source);
    181 #endif
    182 		ether_ifdetach(ifp);
    183 		if_detach(ifp);
    184 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
    185 
    186 		callout_destroy(&sc->sc_tick_ch);
    187 
    188 		/*FALLTHROUGH*/
    189 	case GEM_ATT_MII:
    190 		sc->sc_att_stage = GEM_ATT_MII;
    191 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    192 		/*FALLTHROUGH*/
    193 	case GEM_ATT_7:
    194 		for (i = 0; i < GEM_NRXDESC; i++) {
    195 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    196 				bus_dmamap_destroy(sc->sc_dmatag,
    197 				    sc->sc_rxsoft[i].rxs_dmamap);
    198 		}
    199 		/*FALLTHROUGH*/
    200 	case GEM_ATT_6:
    201 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
    202 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    203 				bus_dmamap_destroy(sc->sc_dmatag,
    204 				    sc->sc_txsoft[i].txs_dmamap);
    205 		}
    206 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    207 		/*FALLTHROUGH*/
    208 	case GEM_ATT_5:
    209 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
    210 		/*FALLTHROUGH*/
    211 	case GEM_ATT_4:
    212 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    213 		/*FALLTHROUGH*/
    214 	case GEM_ATT_3:
    215 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    216 		/*FALLTHROUGH*/
    217 	case GEM_ATT_2:
    218 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
    219 		    sizeof(struct gem_control_data));
    220 		/*FALLTHROUGH*/
    221 	case GEM_ATT_1:
    222 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    223 		/*FALLTHROUGH*/
    224 	case GEM_ATT_0:
    225 		sc->sc_att_stage = GEM_ATT_0;
    226 		/*FALLTHROUGH*/
    227 	case GEM_ATT_BACKEND_0:
    228 		break;
    229 	}
    230 	return 0;
    231 }
    232 
    233 static void
    234 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
    235 {
    236 	cfattach_t ca = device_cfattach(sc->sc_dev);
    237 
    238 	sc->sc_att_stage = stage;
    239 	(*ca->ca_detach)(sc->sc_dev, 0);
    240 }
    241 
    242 /*
    243  * gem_attach:
    244  *
    245  *	Attach a Gem interface to the system.
    246  */
    247 void
    248 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
    249 {
    250 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    251 	struct mii_data *mii = &sc->sc_mii;
    252 	bus_space_tag_t t = sc->sc_bustag;
    253 	bus_space_handle_t h = sc->sc_h1;
    254 	struct ifmedia_entry *ifm;
    255 	int i, error, phyaddr;
    256 	u_int32_t v;
    257 	char *nullbuf;
    258 
    259 	/* Make sure the chip is stopped. */
    260 	ifp->if_softc = sc;
    261 	gem_reset(sc);
    262 
    263 	/*
    264 	 * Allocate the control data structures, and create and load the
    265 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    266 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    267 	 */
    268 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    269 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    270 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    271 		aprint_error_dev(sc->sc_dev,
    272 		   "unable to allocate control data, error = %d\n",
    273 		    error);
    274 		gem_partial_detach(sc, GEM_ATT_0);
    275 		return;
    276 	}
    277 
    278 	/* XXX should map this in with correct endianness */
    279 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    280 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
    281 	    BUS_DMA_COHERENT)) != 0) {
    282 		aprint_error_dev(sc->sc_dev,
    283 		    "unable to map control data, error = %d\n", error);
    284 		gem_partial_detach(sc, GEM_ATT_1);
    285 		return;
    286 	}
    287 
    288 	nullbuf =
    289 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    290 
    291 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    292 	    sizeof(struct gem_control_data), 1,
    293 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    294 		aprint_error_dev(sc->sc_dev,
    295 		    "unable to create control data DMA map, error = %d\n",
    296 		    error);
    297 		gem_partial_detach(sc, GEM_ATT_2);
    298 		return;
    299 	}
    300 
    301 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    302 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    303 	    0)) != 0) {
    304 		aprint_error_dev(sc->sc_dev,
    305 		    "unable to load control data DMA map, error = %d\n",
    306 		    error);
    307 		gem_partial_detach(sc, GEM_ATT_3);
    308 		return;
    309 	}
    310 
    311 	memset(nullbuf, 0, ETHER_MIN_TX);
    312 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    313 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    314 		aprint_error_dev(sc->sc_dev,
    315 		    "unable to create padding DMA map, error = %d\n", error);
    316 		gem_partial_detach(sc, GEM_ATT_4);
    317 		return;
    318 	}
    319 
    320 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    321 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    322 		aprint_error_dev(sc->sc_dev,
    323 		    "unable to load padding DMA map, error = %d\n", error);
    324 		gem_partial_detach(sc, GEM_ATT_5);
    325 		return;
    326 	}
    327 
    328 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    329 	    BUS_DMASYNC_PREWRITE);
    330 
    331 	/*
    332 	 * Initialize the transmit job descriptors.
    333 	 */
    334 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    335 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    336 
    337 	/*
    338 	 * Create the transmit buffer DMA maps.
    339 	 */
    340 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    341 		struct gem_txsoft *txs;
    342 
    343 		txs = &sc->sc_txsoft[i];
    344 		txs->txs_mbuf = NULL;
    345 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    346 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    347 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    348 		    &txs->txs_dmamap)) != 0) {
    349 			aprint_error_dev(sc->sc_dev,
    350 			    "unable to create tx DMA map %d, error = %d\n",
    351 			    i, error);
    352 			gem_partial_detach(sc, GEM_ATT_6);
    353 			return;
    354 		}
    355 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    356 	}
    357 
    358 	/*
    359 	 * Create the receive buffer DMA maps.
    360 	 */
    361 	for (i = 0; i < GEM_NRXDESC; i++) {
    362 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    363 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    364 			aprint_error_dev(sc->sc_dev,
    365 			    "unable to create rx DMA map %d, error = %d\n",
    366 			    i, error);
    367 			gem_partial_detach(sc, GEM_ATT_7);
    368 			return;
    369 		}
    370 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    371 	}
    372 
    373 	/* Initialize ifmedia structures and MII info */
    374 	mii->mii_ifp = ifp;
    375 	mii->mii_readreg = gem_mii_readreg;
    376 	mii->mii_writereg = gem_mii_writereg;
    377 	mii->mii_statchg = gem_mii_statchg;
    378 
    379 	sc->sc_ethercom.ec_mii = mii;
    380 
    381 	/*
    382 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
    383 	 * Section 3.2.1 `Initialization Sequence'.
    384 	 * However, we can't assume SERDES or Serialink if neither
    385 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
    386 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
    387 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
    388 	 * Also, for variants that report 2 PHY's, we prefer the external
    389 	 * PHY over the internal PHY, so we look for that first.
    390 	 */
    391 	gem_mifinit(sc);
    392 
    393 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
    394 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    395 		    ether_mediastatus);
    396 		/* Look for external PHY */
    397 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
    398 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    399 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    400 			    sc->sc_mif_config);
    401 			switch (sc->sc_variant) {
    402 			case GEM_SUN_ERI:
    403 				phyaddr = GEM_PHYAD_EXTERNAL;
    404 				break;
    405 			default:
    406 				phyaddr = MII_PHY_ANY;
    407 				break;
    408 			}
    409 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
    410 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
    411 		}
    412 #ifdef GEM_DEBUG
    413 		  else
    414 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
    415 #endif
    416 		/* Look for internal PHY if no external PHY was found */
    417 		if (LIST_EMPTY(&mii->mii_phys) &&
    418 		    sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
    419 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    420 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    421 			    sc->sc_mif_config);
    422 			switch (sc->sc_variant) {
    423 			case GEM_SUN_ERI:
    424 			case GEM_APPLE_K2_GMAC:
    425 				phyaddr = GEM_PHYAD_INTERNAL;
    426 				break;
    427 			case GEM_APPLE_GMAC:
    428 				phyaddr = GEM_PHYAD_EXTERNAL;
    429 				break;
    430 			default:
    431 				phyaddr = MII_PHY_ANY;
    432 				break;
    433 			}
    434 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
    435 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
    436 #ifdef GEM_DEBUG
    437 			if (!LIST_EMPTY(&mii->mii_phys))
    438 				aprint_debug_dev(sc->sc_dev,
    439 				    "using internal PHY\n");
    440 #endif
    441 		}
    442 		if (LIST_EMPTY(&mii->mii_phys)) {
    443 				/* No PHY attached */
    444 				aprint_error_dev(sc->sc_dev,
    445 				    "PHY probe failed\n");
    446 				gem_partial_detach(sc, GEM_ATT_MII);
    447 				return;
    448 		} else {
    449 			struct mii_softc *child;
    450 
    451 			/*
    452 			 * Walk along the list of attached MII devices and
    453 			 * establish an `MII instance' to `PHY number'
    454 			 * mapping.
    455 			 */
    456 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
    457 				/*
    458 				 * Note: we support just one PHY: the internal
    459 				 * or external MII is already selected for us
    460 				 * by the GEM_MIF_CONFIG  register.
    461 				 */
    462 				if (child->mii_phy > 1 || child->mii_inst > 0) {
    463 					aprint_error_dev(sc->sc_dev,
    464 					    "cannot accommodate MII device"
    465 					    " %s at PHY %d, instance %d\n",
    466 					       device_xname(child->mii_dev),
    467 					       child->mii_phy, child->mii_inst);
    468 					continue;
    469 				}
    470 				sc->sc_phys[child->mii_inst] = child->mii_phy;
    471 			}
    472 
    473 			if (sc->sc_variant != GEM_SUN_ERI)
    474 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    475 				    GEM_MII_DATAPATH_MII);
    476 
    477 			/*
    478 			 * XXX - we can really do the following ONLY if the
    479 			 * PHY indeed has the auto negotiation capability!!
    480 			 */
    481 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    482 		}
    483 	} else {
    484 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
    485 		    gem_ser_mediastatus);
    486 		/* SERDES or Serialink */
    487 		if (sc->sc_flags & GEM_SERDES) {
    488 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    489 			    GEM_MII_DATAPATH_SERDES);
    490 		} else {
    491 			sc->sc_flags |= GEM_SERIAL;
    492 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    493 			    GEM_MII_DATAPATH_SERIAL);
    494 		}
    495 
    496 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
    497 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
    498 
    499 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    500 		/* Check for FDX and HDX capabilities */
    501 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
    502 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
    503 			ifmedia_add(&sc->sc_mii.mii_media,
    504 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
    505 			aprint_normal("1000baseSX-FDX, ");
    506 		}
    507 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
    508 			ifmedia_add(&sc->sc_mii.mii_media,
    509 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
    510 			aprint_normal("1000baseSX-HDX, ");
    511 		}
    512 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    513 		sc->sc_mii_media = IFM_AUTO;
    514 		aprint_normal("auto\n");
    515 
    516 		gem_pcs_stop(sc, 1);
    517 	}
    518 
    519 	/*
    520 	 * From this point forward, the attachment cannot fail.  A failure
    521 	 * before this point releases all resources that may have been
    522 	 * allocated.
    523 	 */
    524 
    525 	/* Announce ourselves. */
    526 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
    527 	    ether_sprintf(enaddr));
    528 
    529 	/* Get RX FIFO size */
    530 	sc->sc_rxfifosize = 64 *
    531 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
    532 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    533 
    534 	/* Get TX FIFO size */
    535 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
    536 	aprint_normal(", %uKB TX fifo\n", v / 16);
    537 
    538 	/* Initialize ifnet structure. */
    539 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    540 	ifp->if_softc = sc;
    541 	ifp->if_flags =
    542 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    543 	sc->sc_if_flags = ifp->if_flags;
    544 #if 0
    545 	/*
    546 	 * The GEM hardware supports basic TCP checksum offloading only.
    547 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
    548 	 * have bugs in the receive checksum, so don't enable it for now.
    549 	 */
    550 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
    551 	    (GEM_IS_APPLE(sc) &&
    552 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
    553 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
    554 #endif
    555 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
    556 	ifp->if_start = gem_start;
    557 	ifp->if_ioctl = gem_ioctl;
    558 	ifp->if_watchdog = gem_watchdog;
    559 	ifp->if_stop = gem_stop;
    560 	ifp->if_init = gem_init;
    561 	IFQ_SET_READY(&ifp->if_snd);
    562 
    563 	/*
    564 	 * If we support GigE media, we support jumbo frames too.
    565 	 * Unless we are Apple.
    566 	 */
    567 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
    568 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    569 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    570 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    571 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    572 			if (!GEM_IS_APPLE(sc))
    573 				sc->sc_ethercom.ec_capabilities
    574 				    |= ETHERCAP_JUMBO_MTU;
    575 			sc->sc_flags |= GEM_GIGABIT;
    576 			break;
    577 		}
    578 	}
    579 
    580 	/* claim 802.1q capability */
    581 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    582 
    583 	/* Attach the interface. */
    584 	if_attach(ifp);
    585 	ether_ifattach(ifp, enaddr);
    586 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
    587 
    588 #if NRND > 0
    589 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    590 			  RND_TYPE_NET, 0);
    591 #endif
    592 
    593 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    594 	    NULL, device_xname(sc->sc_dev), "interrupts");
    595 #ifdef GEM_COUNTERS
    596 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    597 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
    598 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    599 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
    600 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    601 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
    602 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    603 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
    604 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    605 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
    606 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    607 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
    608 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    609 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
    610 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    611 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
    612 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    613 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
    614 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    615 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
    616 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    617 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
    618 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    619 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
    620 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    621 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
    622 #endif
    623 
    624 	callout_init(&sc->sc_tick_ch, 0);
    625 
    626 	sc->sc_att_stage = GEM_ATT_FINISHED;
    627 
    628 	return;
    629 }
    630 
    631 void
    632 gem_tick(void *arg)
    633 {
    634 	struct gem_softc *sc = arg;
    635 	int s;
    636 
    637 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
    638 		/*
    639 		 * We have to reset everything if we failed to get a
    640 		 * PCS interrupt.  Restarting the callout is handled
    641 		 * in gem_pcs_start().
    642 		 */
    643 		gem_init(&sc->sc_ethercom.ec_if);
    644 	} else {
    645 		s = splnet();
    646 		mii_tick(&sc->sc_mii);
    647 		splx(s);
    648 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    649 	}
    650 }
    651 
    652 static int
    653 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
    654 {
    655 	int i;
    656 	u_int32_t reg;
    657 
    658 	for (i = TRIES; i--; DELAY(100)) {
    659 		reg = bus_space_read_4(sc->sc_bustag, h, r);
    660 		if ((reg & clr) == 0 && (reg & set) == set)
    661 			return (1);
    662 	}
    663 	return (0);
    664 }
    665 
    666 void
    667 gem_reset(struct gem_softc *sc)
    668 {
    669 	bus_space_tag_t t = sc->sc_bustag;
    670 	bus_space_handle_t h = sc->sc_h2;
    671 	int s;
    672 
    673 	s = splnet();
    674 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
    675 	gem_reset_rx(sc);
    676 	gem_reset_tx(sc);
    677 
    678 	/* Do a full reset */
    679 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    680 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    681 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
    682 	splx(s);
    683 }
    684 
    685 
    686 /*
    687  * gem_rxdrain:
    688  *
    689  *	Drain the receive queue.
    690  */
    691 static void
    692 gem_rxdrain(struct gem_softc *sc)
    693 {
    694 	struct gem_rxsoft *rxs;
    695 	int i;
    696 
    697 	for (i = 0; i < GEM_NRXDESC; i++) {
    698 		rxs = &sc->sc_rxsoft[i];
    699 		if (rxs->rxs_mbuf != NULL) {
    700 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    701 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    702 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    703 			m_freem(rxs->rxs_mbuf);
    704 			rxs->rxs_mbuf = NULL;
    705 		}
    706 	}
    707 }
    708 
    709 /*
    710  * Reset the whole thing.
    711  */
    712 static void
    713 gem_stop(struct ifnet *ifp, int disable)
    714 {
    715 	struct gem_softc *sc = ifp->if_softc;
    716 	struct gem_txsoft *txs;
    717 
    718 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
    719 
    720 	callout_stop(&sc->sc_tick_ch);
    721 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
    722 		gem_pcs_stop(sc, disable);
    723 	else
    724 		mii_down(&sc->sc_mii);
    725 
    726 	/* XXX - Should we reset these instead? */
    727 	gem_disable_tx(sc);
    728 	gem_disable_rx(sc);
    729 
    730 	/*
    731 	 * Release any queued transmit buffers.
    732 	 */
    733 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    734 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    735 		if (txs->txs_mbuf != NULL) {
    736 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    737 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    738 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    739 			m_freem(txs->txs_mbuf);
    740 			txs->txs_mbuf = NULL;
    741 		}
    742 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    743 	}
    744 
    745 	/*
    746 	 * Mark the interface down and cancel the watchdog timer.
    747 	 */
    748 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    749 	sc->sc_if_flags = ifp->if_flags;
    750 	ifp->if_timer = 0;
    751 
    752 	if (disable)
    753 		gem_rxdrain(sc);
    754 }
    755 
    756 
    757 /*
    758  * Reset the receiver
    759  */
    760 int
    761 gem_reset_rx(struct gem_softc *sc)
    762 {
    763 	bus_space_tag_t t = sc->sc_bustag;
    764 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    765 
    766 	/*
    767 	 * Resetting while DMA is in progress can cause a bus hang, so we
    768 	 * disable DMA first.
    769 	 */
    770 	gem_disable_rx(sc);
    771 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    772 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    773 	/* Wait till it finishes */
    774 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
    775 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
    776 
    777 	/* Finally, reset the ERX */
    778 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
    779 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    780 	/* Wait till it finishes */
    781 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
    782 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
    783 		return (1);
    784 	}
    785 	return (0);
    786 }
    787 
    788 
    789 /*
    790  * Reset the receiver DMA engine.
    791  *
    792  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
    793  * etc in order to reset the receiver DMA engine only and not do a full
    794  * reset which amongst others also downs the link and clears the FIFOs.
    795  */
    796 static void
    797 gem_reset_rxdma(struct gem_softc *sc)
    798 {
    799 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    800 	bus_space_tag_t t = sc->sc_bustag;
    801 	bus_space_handle_t h = sc->sc_h1;
    802 	int i;
    803 
    804 	if (gem_reset_rx(sc) != 0) {
    805 		gem_init(ifp);
    806 		return;
    807 	}
    808 	for (i = 0; i < GEM_NRXDESC; i++)
    809 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
    810 			GEM_UPDATE_RXDESC(sc, i);
    811 	sc->sc_rxptr = 0;
    812 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    813 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    814 
    815 	/* Reprogram Descriptor Ring Base Addresses */
    816 	/* NOTE: we use only 32-bit DMA addresses here. */
    817 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    818 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    819 
    820 	/* Redo ERX Configuration */
    821 	gem_rx_common(sc);
    822 
    823 	/* Give the reciever a swift kick */
    824 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
    825 }
    826 
    827 /*
    828  * Common RX configuration for gem_init() and gem_reset_rxdma().
    829  */
    830 static void
    831 gem_rx_common(struct gem_softc *sc)
    832 {
    833 	bus_space_tag_t t = sc->sc_bustag;
    834 	bus_space_handle_t h = sc->sc_h1;
    835 	u_int32_t v;
    836 
    837 	/* Encode Receive Descriptor ring size: four possible values */
    838 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    839 
    840 	/* Set receive h/w checksum offset */
    841 #ifdef INET
    842 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    843 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    844 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    845 #endif
    846 
    847 	/* Enable RX DMA */
    848 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    849 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
    850 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
    851 
    852 	/*
    853 	 * The following value is for an OFF Threshold of about 3/4 full
    854 	 * and an ON Threshold of 1/4 full.
    855 	 */
    856 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    857 	    (3 * sc->sc_rxfifosize / 256) |
    858 	    ((sc->sc_rxfifosize / 256) << 12));
    859 	bus_space_write_4(t, h, GEM_RX_BLANKING,
    860 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
    861 }
    862 
    863 /*
    864  * Reset the transmitter
    865  */
    866 int
    867 gem_reset_tx(struct gem_softc *sc)
    868 {
    869 	bus_space_tag_t t = sc->sc_bustag;
    870 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    871 
    872 	/*
    873 	 * Resetting while DMA is in progress can cause a bus hang, so we
    874 	 * disable DMA first.
    875 	 */
    876 	gem_disable_tx(sc);
    877 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    878 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    879 	/* Wait till it finishes */
    880 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
    881 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
    882 	/* Wait 5ms extra. */
    883 	delay(5000);
    884 
    885 	/* Finally, reset the ETX */
    886 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
    887 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    888 	/* Wait till it finishes */
    889 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
    890 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
    891 		return (1);
    892 	}
    893 	return (0);
    894 }
    895 
    896 /*
    897  * disable receiver.
    898  */
    899 int
    900 gem_disable_rx(struct gem_softc *sc)
    901 {
    902 	bus_space_tag_t t = sc->sc_bustag;
    903 	bus_space_handle_t h = sc->sc_h1;
    904 	u_int32_t cfg;
    905 
    906 	/* Flip the enable bit */
    907 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    908 	cfg &= ~GEM_MAC_RX_ENABLE;
    909 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    910 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    911 	/* Wait for it to finish */
    912 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    913 }
    914 
    915 /*
    916  * disable transmitter.
    917  */
    918 int
    919 gem_disable_tx(struct gem_softc *sc)
    920 {
    921 	bus_space_tag_t t = sc->sc_bustag;
    922 	bus_space_handle_t h = sc->sc_h1;
    923 	u_int32_t cfg;
    924 
    925 	/* Flip the enable bit */
    926 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    927 	cfg &= ~GEM_MAC_TX_ENABLE;
    928 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    929 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    930 	/* Wait for it to finish */
    931 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    932 }
    933 
    934 /*
    935  * Initialize interface.
    936  */
    937 int
    938 gem_meminit(struct gem_softc *sc)
    939 {
    940 	struct gem_rxsoft *rxs;
    941 	int i, error;
    942 
    943 	/*
    944 	 * Initialize the transmit descriptor ring.
    945 	 */
    946 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    947 	for (i = 0; i < GEM_NTXDESC; i++) {
    948 		sc->sc_txdescs[i].gd_flags = 0;
    949 		sc->sc_txdescs[i].gd_addr = 0;
    950 	}
    951 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    952 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    953 	sc->sc_txfree = GEM_NTXDESC-1;
    954 	sc->sc_txnext = 0;
    955 	sc->sc_txwin = 0;
    956 
    957 	/*
    958 	 * Initialize the receive descriptor and receive job
    959 	 * descriptor rings.
    960 	 */
    961 	for (i = 0; i < GEM_NRXDESC; i++) {
    962 		rxs = &sc->sc_rxsoft[i];
    963 		if (rxs->rxs_mbuf == NULL) {
    964 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    965 				aprint_error_dev(sc->sc_dev,
    966 				    "unable to allocate or map rx "
    967 				    "buffer %d, error = %d\n",
    968 				    i, error);
    969 				/*
    970 				 * XXX Should attempt to run with fewer receive
    971 				 * XXX buffers instead of just failing.
    972 				 */
    973 				gem_rxdrain(sc);
    974 				return (1);
    975 			}
    976 		} else
    977 			GEM_INIT_RXDESC(sc, i);
    978 	}
    979 	sc->sc_rxptr = 0;
    980 	sc->sc_meminited = 1;
    981 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    982 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    983 
    984 	return (0);
    985 }
    986 
    987 static int
    988 gem_ringsize(int sz)
    989 {
    990 	switch (sz) {
    991 	case 32:
    992 		return GEM_RING_SZ_32;
    993 	case 64:
    994 		return GEM_RING_SZ_64;
    995 	case 128:
    996 		return GEM_RING_SZ_128;
    997 	case 256:
    998 		return GEM_RING_SZ_256;
    999 	case 512:
   1000 		return GEM_RING_SZ_512;
   1001 	case 1024:
   1002 		return GEM_RING_SZ_1024;
   1003 	case 2048:
   1004 		return GEM_RING_SZ_2048;
   1005 	case 4096:
   1006 		return GEM_RING_SZ_4096;
   1007 	case 8192:
   1008 		return GEM_RING_SZ_8192;
   1009 	default:
   1010 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
   1011 		return GEM_RING_SZ_32;
   1012 	}
   1013 }
   1014 
   1015 
   1016 /*
   1017  * Start PCS
   1018  */
   1019 void
   1020 gem_pcs_start(struct gem_softc *sc)
   1021 {
   1022 	bus_space_tag_t t = sc->sc_bustag;
   1023 	bus_space_handle_t h = sc->sc_h1;
   1024 	uint32_t v;
   1025 
   1026 #ifdef GEM_DEBUG
   1027 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
   1028 #endif
   1029 
   1030 	/*
   1031 	 * Set up.  We must disable the MII before modifying the
   1032 	 * GEM_MII_ANAR register
   1033 	 */
   1034 	if (sc->sc_flags & GEM_SERDES) {
   1035 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1036 		    GEM_MII_DATAPATH_SERDES);
   1037 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1038 		    GEM_MII_SLINK_LOOPBACK);
   1039 	} else {
   1040 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1041 		    GEM_MII_DATAPATH_SERIAL);
   1042 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
   1043 	}
   1044 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1045 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
   1046 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
   1047 	if (sc->sc_mii_media == IFM_AUTO)
   1048 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
   1049 	else if (sc->sc_mii_media == IFM_FDX) {
   1050 		v |= GEM_MII_ANEG_FUL_DUPLX;
   1051 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
   1052 	} else if (sc->sc_mii_media == IFM_HDX) {
   1053 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
   1054 		v |= GEM_MII_ANEG_HLF_DUPLX;
   1055 	}
   1056 
   1057 	/* Configure link. */
   1058 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
   1059 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1060 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1061 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
   1062 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
   1063 
   1064 	/* Start the 10 second timer */
   1065 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   1066 }
   1067 
   1068 /*
   1069  * Stop PCS
   1070  */
   1071 void
   1072 gem_pcs_stop(struct gem_softc *sc, int disable)
   1073 {
   1074 	bus_space_tag_t t = sc->sc_bustag;
   1075 	bus_space_handle_t h = sc->sc_h1;
   1076 
   1077 #ifdef GEM_DEBUG
   1078 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
   1079 #endif
   1080 
   1081 	/* Tell link partner that we're going away */
   1082 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
   1083 
   1084 	/*
   1085 	 * Disable PCS MII.  The documentation suggests that setting
   1086 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
   1087 	 * negotiation will shut down the link.  However, it appears
   1088 	 * that we also need to unset the datapath mode.
   1089 	 */
   1090 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1091 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1092 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1093 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
   1094 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1095 
   1096 	if (disable) {
   1097 		if (sc->sc_flags & GEM_SERDES)
   1098 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1099 				GEM_MII_SLINK_POWER_OFF);
   1100 		else
   1101 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1102 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
   1103 	}
   1104 
   1105 	sc->sc_flags &= ~GEM_LINK;
   1106 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   1107 	sc->sc_mii.mii_media_status = IFM_AVALID;
   1108 }
   1109 
   1110 
   1111 /*
   1112  * Initialization of interface; set up initialization block
   1113  * and transmit/receive descriptor rings.
   1114  */
   1115 int
   1116 gem_init(struct ifnet *ifp)
   1117 {
   1118 	struct gem_softc *sc = ifp->if_softc;
   1119 	bus_space_tag_t t = sc->sc_bustag;
   1120 	bus_space_handle_t h = sc->sc_h1;
   1121 	int rc = 0, s;
   1122 	u_int max_frame_size;
   1123 	u_int32_t v;
   1124 
   1125 	s = splnet();
   1126 
   1127 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
   1128 	/*
   1129 	 * Initialization sequence. The numbered steps below correspond
   1130 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
   1131 	 * Channel Engine manual (part of the PCIO manual).
   1132 	 * See also the STP2002-STQ document from Sun Microsystems.
   1133 	 */
   1134 
   1135 	/* step 1 & 2. Reset the Ethernet Channel */
   1136 	gem_stop(ifp, 0);
   1137 	gem_reset(sc);
   1138 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
   1139 
   1140 	/* Re-initialize the MIF */
   1141 	gem_mifinit(sc);
   1142 
   1143 	/* Set up correct datapath for non-SERDES/Serialink */
   1144 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1145 	    sc->sc_variant != GEM_SUN_ERI)
   1146 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1147 		    GEM_MII_DATAPATH_MII);
   1148 
   1149 	/* Call MI reset function if any */
   1150 	if (sc->sc_hwreset)
   1151 		(*sc->sc_hwreset)(sc);
   1152 
   1153 	/* step 3. Setup data structures in host memory */
   1154 	if (gem_meminit(sc) != 0)
   1155 		return 1;
   1156 
   1157 	/* step 4. TX MAC registers & counters */
   1158 	gem_init_regs(sc);
   1159 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
   1160 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
   1161 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1162 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
   1163 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1164 	    max_frame_size|/* burst size */(0x2000<<16));
   1165 
   1166 	/* step 5. RX MAC registers & counters */
   1167 	gem_setladrf(sc);
   1168 
   1169 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
   1170 	/* NOTE: we use only 32-bit DMA addresses here. */
   1171 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
   1172 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
   1173 
   1174 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
   1175 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
   1176 
   1177 	/* step 8. Global Configuration & Interrupt Mask */
   1178 	gem_inten(sc);
   1179 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
   1180 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
   1181 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
   1182 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
   1183 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
   1184 
   1185 	/* step 9. ETX Configuration: use mostly default values */
   1186 
   1187 	/* Enable TX DMA */
   1188 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
   1189 	bus_space_write_4(t, h, GEM_TX_CONFIG,
   1190 	    v | GEM_TX_CONFIG_TXDMA_EN |
   1191 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
   1192 	    GEM_TX_CONFIG_TXFIFO_TH));
   1193 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
   1194 
   1195 	/* step 10. ERX Configuration */
   1196 	gem_rx_common(sc);
   1197 
   1198 	/* step 11. Configure Media */
   1199 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1200 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1201 		goto out;
   1202 
   1203 	/* step 12. RX_MAC Configuration Register */
   1204 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1205 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
   1206 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1207 
   1208 	/* step 14. Issue Transmit Pending command */
   1209 
   1210 	/* Call MI initialization function if any */
   1211 	if (sc->sc_hwinit)
   1212 		(*sc->sc_hwinit)(sc);
   1213 
   1214 
   1215 	/* step 15.  Give the reciever a swift kick */
   1216 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
   1217 
   1218 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1219 		/* Configure PCS */
   1220 		gem_pcs_start(sc);
   1221 	else
   1222 		/* Start the one second timer. */
   1223 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
   1224 
   1225 	sc->sc_flags &= ~GEM_LINK;
   1226 	ifp->if_flags |= IFF_RUNNING;
   1227 	ifp->if_flags &= ~IFF_OACTIVE;
   1228 	ifp->if_timer = 0;
   1229 	sc->sc_if_flags = ifp->if_flags;
   1230 out:
   1231 	splx(s);
   1232 
   1233 	return (0);
   1234 }
   1235 
   1236 void
   1237 gem_init_regs(struct gem_softc *sc)
   1238 {
   1239 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1240 	bus_space_tag_t t = sc->sc_bustag;
   1241 	bus_space_handle_t h = sc->sc_h1;
   1242 	const u_char *laddr = CLLADDR(ifp->if_sadl);
   1243 	u_int32_t v;
   1244 
   1245 	/* These regs are not cleared on reset */
   1246 	if (!sc->sc_inited) {
   1247 
   1248 		/* Load recommended values */
   1249 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
   1250 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
   1251 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
   1252 
   1253 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
   1254 		/* Max frame and max burst size */
   1255 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1256 		    ETHER_MAX_LEN | (0x2000<<16));
   1257 
   1258 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
   1259 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
   1260 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
   1261 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
   1262 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
   1263 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
   1264 
   1265 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
   1266 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
   1267 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
   1268 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
   1269 
   1270 		/* MAC control addr set to 01:80:c2:00:00:01 */
   1271 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
   1272 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
   1273 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
   1274 
   1275 		/* MAC filter addr set to 0:0:0:0:0:0 */
   1276 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
   1277 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
   1278 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
   1279 
   1280 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
   1281 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
   1282 
   1283 		sc->sc_inited = 1;
   1284 	}
   1285 
   1286 	/* Counters need to be zeroed */
   1287 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
   1288 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
   1289 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
   1290 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
   1291 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
   1292 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
   1293 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
   1294 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1295 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1296 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1297 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1298 
   1299 	/* Set XOFF PAUSE time. */
   1300 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
   1301 
   1302 	/*
   1303 	 * Set the internal arbitration to "infinite" bursts of the
   1304 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
   1305 	 * split up in cache line size chunks. This greatly improves
   1306 	 * especially RX performance.
   1307 	 * Enable silicon bug workarounds for the Apple variants.
   1308 	 */
   1309 	bus_space_write_4(t, h, GEM_CONFIG,
   1310 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
   1311 	    ((sc->sc_flags & GEM_PCI) ?
   1312 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
   1313 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
   1314 
   1315 	/*
   1316 	 * Set the station address.
   1317 	 */
   1318 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1319 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1320 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1321 
   1322 	/*
   1323 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1324 	 */
   1325 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1326 	v = GEM_MAC_XIF_TX_MII_ENA;
   1327 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
   1328 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1329 			v |= GEM_MAC_XIF_FDPLX_LED;
   1330 				if (sc->sc_flags & GEM_GIGABIT)
   1331 					v |= GEM_MAC_XIF_GMII_MODE;
   1332 		}
   1333 	} else {
   1334 		v |= GEM_MAC_XIF_GMII_MODE;
   1335 	}
   1336 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1337 }
   1338 
   1339 #ifdef GEM_DEBUG
   1340 static void
   1341 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
   1342 {
   1343 	int i;
   1344 
   1345 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
   1346 		printf("descriptor %d:\t", i);
   1347 		printf("gd_flags:   0x%016" PRIx64 "\t",
   1348 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1349 		printf("gd_addr: 0x%016" PRIx64 "\n",
   1350 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1351 		if (i == lastdesc)
   1352 			break;
   1353 	}
   1354 }
   1355 #endif
   1356 
   1357 static void
   1358 gem_start(struct ifnet *ifp)
   1359 {
   1360 	struct gem_softc *sc = ifp->if_softc;
   1361 	struct mbuf *m0, *m;
   1362 	struct gem_txsoft *txs;
   1363 	bus_dmamap_t dmamap;
   1364 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
   1365 	uint64_t flags = 0;
   1366 
   1367 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1368 		return;
   1369 
   1370 	/*
   1371 	 * Remember the previous number of free descriptors and
   1372 	 * the first descriptor we'll use.
   1373 	 */
   1374 	ofree = sc->sc_txfree;
   1375 	firsttx = sc->sc_txnext;
   1376 
   1377 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1378 	    device_xname(sc->sc_dev), ofree, firsttx));
   1379 
   1380 	/*
   1381 	 * Loop through the send queue, setting up transmit descriptors
   1382 	 * until we drain the queue, or use up all available transmit
   1383 	 * descriptors.
   1384 	 */
   1385 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1386 	    sc->sc_txfree != 0) {
   1387 		/*
   1388 		 * Grab a packet off the queue.
   1389 		 */
   1390 		IFQ_POLL(&ifp->if_snd, m0);
   1391 		if (m0 == NULL)
   1392 			break;
   1393 		m = NULL;
   1394 
   1395 		dmamap = txs->txs_dmamap;
   1396 
   1397 		/*
   1398 		 * Load the DMA map.  If this fails, the packet either
   1399 		 * didn't fit in the alloted number of segments, or we were
   1400 		 * short on resources.  In this case, we'll copy and try
   1401 		 * again.
   1402 		 */
   1403 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1404 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1405 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1406 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1407 			if (m0->m_pkthdr.len > MCLBYTES) {
   1408 				aprint_error_dev(sc->sc_dev,
   1409 				    "unable to allocate jumbo Tx cluster\n");
   1410 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1411 				m_freem(m0);
   1412 				continue;
   1413 			}
   1414 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1415 			if (m == NULL) {
   1416 				aprint_error_dev(sc->sc_dev,
   1417 				    "unable to allocate Tx mbuf\n");
   1418 				break;
   1419 			}
   1420 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1421 			if (m0->m_pkthdr.len > MHLEN) {
   1422 				MCLGET(m, M_DONTWAIT);
   1423 				if ((m->m_flags & M_EXT) == 0) {
   1424 					aprint_error_dev(sc->sc_dev,
   1425 					    "unable to allocate Tx cluster\n");
   1426 					m_freem(m);
   1427 					break;
   1428 				}
   1429 			}
   1430 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1431 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1432 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1433 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1434 			if (error) {
   1435 				aprint_error_dev(sc->sc_dev,
   1436 				    "unable to load Tx buffer, error = %d\n",
   1437 				    error);
   1438 				break;
   1439 			}
   1440 		}
   1441 
   1442 		/*
   1443 		 * Ensure we have enough descriptors free to describe
   1444 		 * the packet.
   1445 		 */
   1446 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1447 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1448 			/*
   1449 			 * Not enough free descriptors to transmit this
   1450 			 * packet.  We haven't committed to anything yet,
   1451 			 * so just unload the DMA map, put the packet
   1452 			 * back on the queue, and punt.  Notify the upper
   1453 			 * layer that there are no more slots left.
   1454 			 *
   1455 			 * XXX We could allocate an mbuf and copy, but
   1456 			 * XXX it is worth it?
   1457 			 */
   1458 			ifp->if_flags |= IFF_OACTIVE;
   1459 			sc->sc_if_flags = ifp->if_flags;
   1460 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1461 			if (m != NULL)
   1462 				m_freem(m);
   1463 			break;
   1464 		}
   1465 
   1466 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1467 		if (m != NULL) {
   1468 			m_freem(m0);
   1469 			m0 = m;
   1470 		}
   1471 
   1472 		/*
   1473 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1474 		 */
   1475 
   1476 		/* Sync the DMA map. */
   1477 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1478 		    BUS_DMASYNC_PREWRITE);
   1479 
   1480 		/*
   1481 		 * Initialize the transmit descriptors.
   1482 		 */
   1483 		for (nexttx = sc->sc_txnext, seg = 0;
   1484 		     seg < dmamap->dm_nsegs;
   1485 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1486 
   1487 			/*
   1488 			 * If this is the first descriptor we're
   1489 			 * enqueueing, set the start of packet flag,
   1490 			 * and the checksum stuff if we want the hardware
   1491 			 * to do it.
   1492 			 */
   1493 			sc->sc_txdescs[nexttx].gd_addr =
   1494 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1495 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1496 			if (nexttx == firsttx) {
   1497 				flags |= GEM_TD_START_OF_PACKET;
   1498 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1499 					sc->sc_txwin = 0;
   1500 					flags |= GEM_TD_INTERRUPT_ME;
   1501 				}
   1502 
   1503 #ifdef INET
   1504 				/* h/w checksum */
   1505 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
   1506 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1507 					struct ether_header *eh;
   1508 					uint16_t offset, start;
   1509 
   1510 					eh = mtod(m0, struct ether_header *);
   1511 					switch (ntohs(eh->ether_type)) {
   1512 					case ETHERTYPE_IP:
   1513 						start = ETHER_HDR_LEN;
   1514 						break;
   1515 					case ETHERTYPE_VLAN:
   1516 						start = ETHER_HDR_LEN +
   1517 							ETHER_VLAN_ENCAP_LEN;
   1518 						break;
   1519 					default:
   1520 						/* unsupported, drop it */
   1521 						m_free(m0);
   1522 						continue;
   1523 					}
   1524 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1525 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1526 					flags |= (start <<
   1527 						  GEM_TD_CXSUM_STARTSHFT) |
   1528 						 (offset <<
   1529 						  GEM_TD_CXSUM_STUFFSHFT) |
   1530 						 GEM_TD_CXSUM_ENABLE;
   1531 				}
   1532 #endif
   1533 			}
   1534 			if (seg == dmamap->dm_nsegs - 1) {
   1535 				flags |= GEM_TD_END_OF_PACKET;
   1536 			} else {
   1537 				/* last flag set outside of loop */
   1538 				sc->sc_txdescs[nexttx].gd_flags =
   1539 					GEM_DMA_WRITE(sc, flags);
   1540 			}
   1541 			lasttx = nexttx;
   1542 		}
   1543 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1544 			/* add padding buffer at end of chain */
   1545 			flags &= ~GEM_TD_END_OF_PACKET;
   1546 			sc->sc_txdescs[lasttx].gd_flags =
   1547 			    GEM_DMA_WRITE(sc, flags);
   1548 
   1549 			sc->sc_txdescs[nexttx].gd_addr =
   1550 			    GEM_DMA_WRITE(sc,
   1551 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1552 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1553 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1554 			lasttx = nexttx;
   1555 			nexttx = GEM_NEXTTX(nexttx);
   1556 			seg++;
   1557 		}
   1558 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1559 
   1560 		KASSERT(lasttx != -1);
   1561 
   1562 		/*
   1563 		 * Store a pointer to the packet so we can free it later,
   1564 		 * and remember what txdirty will be once the packet is
   1565 		 * done.
   1566 		 */
   1567 		txs->txs_mbuf = m0;
   1568 		txs->txs_firstdesc = sc->sc_txnext;
   1569 		txs->txs_lastdesc = lasttx;
   1570 		txs->txs_ndescs = seg;
   1571 
   1572 #ifdef GEM_DEBUG
   1573 		if (ifp->if_flags & IFF_DEBUG) {
   1574 			printf("     gem_start %p transmit chain:\n", txs);
   1575 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1576 			    txs->txs_lastdesc);
   1577 		}
   1578 #endif
   1579 
   1580 		/* Sync the descriptors we're using. */
   1581 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1582 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1583 
   1584 		/* Advance the tx pointer. */
   1585 		sc->sc_txfree -= txs->txs_ndescs;
   1586 		sc->sc_txnext = nexttx;
   1587 
   1588 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1589 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1590 
   1591 #if NBPFILTER > 0
   1592 		/*
   1593 		 * Pass the packet to any BPF listeners.
   1594 		 */
   1595 		if (ifp->if_bpf)
   1596 			bpf_mtap(ifp->if_bpf, m0);
   1597 #endif /* NBPFILTER > 0 */
   1598 	}
   1599 
   1600 	if (txs == NULL || sc->sc_txfree == 0) {
   1601 		/* No more slots left; notify upper layer. */
   1602 		ifp->if_flags |= IFF_OACTIVE;
   1603 		sc->sc_if_flags = ifp->if_flags;
   1604 	}
   1605 
   1606 	if (sc->sc_txfree != ofree) {
   1607 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1608 		    device_xname(sc->sc_dev), lasttx, firsttx));
   1609 		/*
   1610 		 * The entire packet chain is set up.
   1611 		 * Kick the transmitter.
   1612 		 */
   1613 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1614 			device_xname(sc->sc_dev), nexttx));
   1615 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
   1616 			sc->sc_txnext);
   1617 
   1618 		/* Set a watchdog timer in case the chip flakes out. */
   1619 		ifp->if_timer = 5;
   1620 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1621 			device_xname(sc->sc_dev), ifp->if_timer));
   1622 	}
   1623 }
   1624 
   1625 /*
   1626  * Transmit interrupt.
   1627  */
   1628 int
   1629 gem_tint(struct gem_softc *sc)
   1630 {
   1631 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1632 	bus_space_tag_t t = sc->sc_bustag;
   1633 	bus_space_handle_t mac = sc->sc_h1;
   1634 	struct gem_txsoft *txs;
   1635 	int txlast;
   1636 	int progress = 0;
   1637 	u_int32_t v;
   1638 
   1639 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
   1640 
   1641 	/* Unload collision counters ... */
   1642 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1643 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1644 	ifp->if_collisions += v +
   1645 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1646 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
   1647 	ifp->if_oerrors += v;
   1648 
   1649 	/* ... then clear the hardware counters. */
   1650 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1651 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1652 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1653 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1654 
   1655 	/*
   1656 	 * Go through our Tx list and free mbufs for those
   1657 	 * frames that have been transmitted.
   1658 	 */
   1659 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1660 		/*
   1661 		 * In theory, we could harvest some descriptors before
   1662 		 * the ring is empty, but that's a bit complicated.
   1663 		 *
   1664 		 * GEM_TX_COMPLETION points to the last descriptor
   1665 		 * processed +1.
   1666 		 *
   1667 		 * Let's assume that the NIC writes back to the Tx
   1668 		 * descriptors before it updates the completion
   1669 		 * register.  If the NIC has posted writes to the
   1670 		 * Tx descriptors, PCI ordering requires that the
   1671 		 * posted writes flush to RAM before the register-read
   1672 		 * finishes.  So let's read the completion register,
   1673 		 * before syncing the descriptors, so that we
   1674 		 * examine Tx descriptors that are at least as
   1675 		 * current as the completion register.
   1676 		 */
   1677 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1678 		DPRINTF(sc,
   1679 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1680 				txs->txs_lastdesc, txlast));
   1681 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1682 			if (txlast >= txs->txs_firstdesc &&
   1683 			    txlast <= txs->txs_lastdesc)
   1684 				break;
   1685 		} else if (txlast >= txs->txs_firstdesc ||
   1686 			   txlast <= txs->txs_lastdesc)
   1687 			break;
   1688 
   1689 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1690 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1691 
   1692 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
   1693 		if (ifp->if_flags & IFF_DEBUG) {
   1694 			printf("    txsoft %p transmit chain:\n", txs);
   1695 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1696 			    txs->txs_lastdesc);
   1697 		}
   1698 #endif
   1699 
   1700 
   1701 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1702 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1703 
   1704 		sc->sc_txfree += txs->txs_ndescs;
   1705 
   1706 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1707 		    0, txs->txs_dmamap->dm_mapsize,
   1708 		    BUS_DMASYNC_POSTWRITE);
   1709 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1710 		if (txs->txs_mbuf != NULL) {
   1711 			m_freem(txs->txs_mbuf);
   1712 			txs->txs_mbuf = NULL;
   1713 		}
   1714 
   1715 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1716 
   1717 		ifp->if_opackets++;
   1718 		progress = 1;
   1719 	}
   1720 
   1721 #if 0
   1722 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1723 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
   1724 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
   1725 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1726 			GEM_TX_DATA_PTR_HI) << 32) |
   1727 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1728 			GEM_TX_DATA_PTR_LO),
   1729 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
   1730 #endif
   1731 
   1732 	if (progress) {
   1733 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1734 			sc->sc_txwin = 0;
   1735 
   1736 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
   1737 		ifp->if_flags &= ~IFF_OACTIVE;
   1738 		sc->sc_if_flags = ifp->if_flags;
   1739 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
   1740 		gem_start(ifp);
   1741 	}
   1742 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1743 		device_xname(sc->sc_dev), ifp->if_timer));
   1744 
   1745 	return (1);
   1746 }
   1747 
   1748 /*
   1749  * Receive interrupt.
   1750  */
   1751 int
   1752 gem_rint(struct gem_softc *sc)
   1753 {
   1754 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1755 	bus_space_tag_t t = sc->sc_bustag;
   1756 	bus_space_handle_t h = sc->sc_h1;
   1757 	struct gem_rxsoft *rxs;
   1758 	struct mbuf *m;
   1759 	u_int64_t rxstat;
   1760 	u_int32_t rxcomp;
   1761 	int i, len, progress = 0;
   1762 
   1763 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
   1764 
   1765 	/*
   1766 	 * Ignore spurious interrupt that sometimes occurs before
   1767 	 * we are set up when we network boot.
   1768 	 */
   1769 	if (!sc->sc_meminited)
   1770 		return 1;
   1771 
   1772 	/*
   1773 	 * Read the completion register once.  This limits
   1774 	 * how long the following loop can execute.
   1775 	 */
   1776 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1777 
   1778 	/*
   1779 	 * XXX Read the lastrx only once at the top for speed.
   1780 	 */
   1781 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1782 		sc->sc_rxptr, rxcomp));
   1783 
   1784 	/*
   1785 	 * Go into the loop at least once.
   1786 	 */
   1787 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1788 	     i = GEM_NEXTRX(i)) {
   1789 		rxs = &sc->sc_rxsoft[i];
   1790 
   1791 		GEM_CDRXSYNC(sc, i,
   1792 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1793 
   1794 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1795 
   1796 		if (rxstat & GEM_RD_OWN) {
   1797 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1798 			/*
   1799 			 * We have processed all of the receive buffers.
   1800 			 */
   1801 			break;
   1802 		}
   1803 
   1804 		progress++;
   1805 		ifp->if_ipackets++;
   1806 
   1807 		if (rxstat & GEM_RD_BAD_CRC) {
   1808 			ifp->if_ierrors++;
   1809 			aprint_error_dev(sc->sc_dev,
   1810 			    "receive error: CRC error\n");
   1811 			GEM_INIT_RXDESC(sc, i);
   1812 			continue;
   1813 		}
   1814 
   1815 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1816 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1817 #ifdef GEM_DEBUG
   1818 		if (ifp->if_flags & IFF_DEBUG) {
   1819 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1820 			printf("gd_flags: 0x%016llx\t", (long long)
   1821 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1822 			printf("gd_addr: 0x%016llx\n", (long long)
   1823 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1824 		}
   1825 #endif
   1826 
   1827 		/* No errors; receive the packet. */
   1828 		len = GEM_RD_BUFLEN(rxstat);
   1829 
   1830 		/*
   1831 		 * Allocate a new mbuf cluster.  If that fails, we are
   1832 		 * out of memory, and must drop the packet and recycle
   1833 		 * the buffer that's already attached to this descriptor.
   1834 		 */
   1835 		m = rxs->rxs_mbuf;
   1836 		if (gem_add_rxbuf(sc, i) != 0) {
   1837 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1838 			ifp->if_ierrors++;
   1839 			GEM_INIT_RXDESC(sc, i);
   1840 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1841 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1842 			continue;
   1843 		}
   1844 		m->m_data += 2; /* We're already off by two */
   1845 
   1846 		m->m_pkthdr.rcvif = ifp;
   1847 		m->m_pkthdr.len = m->m_len = len;
   1848 
   1849 #if NBPFILTER > 0
   1850 		/*
   1851 		 * Pass this up to any BPF listeners, but only
   1852 		 * pass it up the stack if it's for us.
   1853 		 */
   1854 		if (ifp->if_bpf)
   1855 			bpf_mtap(ifp->if_bpf, m);
   1856 #endif /* NBPFILTER > 0 */
   1857 
   1858 #ifdef INET
   1859 		/* hardware checksum */
   1860 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1861 			struct ether_header *eh;
   1862 			struct ip *ip;
   1863 			int32_t hlen, pktlen;
   1864 
   1865 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1866 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1867 					 ETHER_VLAN_ENCAP_LEN;
   1868 				eh = (struct ether_header *) (mtod(m, char *) +
   1869 					ETHER_VLAN_ENCAP_LEN);
   1870 			} else {
   1871 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1872 				eh = mtod(m, struct ether_header *);
   1873 			}
   1874 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1875 				goto swcsum;
   1876 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
   1877 
   1878 			/* IPv4 only */
   1879 			if (ip->ip_v != IPVERSION)
   1880 				goto swcsum;
   1881 
   1882 			hlen = ip->ip_hl << 2;
   1883 			if (hlen < sizeof(struct ip))
   1884 				goto swcsum;
   1885 
   1886 			/*
   1887 			 * bail if too short, has random trailing garbage,
   1888 			 * truncated, fragment, or has ethernet pad.
   1889 			 */
   1890 			if ((ntohs(ip->ip_len) < hlen) ||
   1891 			    (ntohs(ip->ip_len) != pktlen) ||
   1892 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1893 				goto swcsum;
   1894 
   1895 			switch (ip->ip_p) {
   1896 			case IPPROTO_TCP:
   1897 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1898 					goto swcsum;
   1899 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1900 					goto swcsum;
   1901 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1902 				break;
   1903 			case IPPROTO_UDP:
   1904 				/* FALLTHROUGH */
   1905 			default:
   1906 				goto swcsum;
   1907 			}
   1908 
   1909 			/* the uncomplemented sum is expected */
   1910 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1911 
   1912 			/* if the pkt had ip options, we have to deduct them */
   1913 			if (hlen > sizeof(struct ip)) {
   1914 				uint16_t *opts;
   1915 				uint32_t optsum, temp;
   1916 
   1917 				optsum = 0;
   1918 				temp = hlen - sizeof(struct ip);
   1919 				opts = (uint16_t *) ((char *) ip +
   1920 					sizeof(struct ip));
   1921 
   1922 				while (temp > 1) {
   1923 					optsum += ntohs(*opts++);
   1924 					temp -= 2;
   1925 				}
   1926 				while (optsum >> 16)
   1927 					optsum = (optsum >> 16) +
   1928 						 (optsum & 0xffff);
   1929 
   1930 				/* Deduct ip opts sum from hwsum. */
   1931 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
   1932 
   1933 				while (m->m_pkthdr.csum_data >> 16)
   1934 					m->m_pkthdr.csum_data =
   1935 						(m->m_pkthdr.csum_data >> 16) +
   1936 						(m->m_pkthdr.csum_data &
   1937 						 0xffff);
   1938 			}
   1939 
   1940 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1941 						  M_CSUM_NO_PSEUDOHDR;
   1942 		} else
   1943 swcsum:
   1944 			m->m_pkthdr.csum_flags = 0;
   1945 #endif
   1946 		/* Pass it on. */
   1947 		(*ifp->if_input)(ifp, m);
   1948 	}
   1949 
   1950 	if (progress) {
   1951 		/* Update the receive pointer. */
   1952 		if (i == sc->sc_rxptr) {
   1953 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1954 #ifdef GEM_DEBUG
   1955 			if (ifp->if_flags & IFF_DEBUG)
   1956 				printf("%s: rint: ring wrap\n",
   1957 				    device_xname(sc->sc_dev));
   1958 #endif
   1959 		}
   1960 		sc->sc_rxptr = i;
   1961 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1962 	}
   1963 #ifdef GEM_COUNTERS
   1964 	if (progress <= 4) {
   1965 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1966 	} else if (progress < 32) {
   1967 		if (progress < 16)
   1968 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1969 		else
   1970 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1971 
   1972 	} else {
   1973 		if (progress < 64)
   1974 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1975 		else
   1976 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1977 	}
   1978 #endif
   1979 
   1980 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1981 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1982 
   1983 	/* Read error counters ... */
   1984 	ifp->if_ierrors +=
   1985 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
   1986 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
   1987 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
   1988 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
   1989 
   1990 	/* ... then clear the hardware counters. */
   1991 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1992 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1993 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1994 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1995 
   1996 	return (1);
   1997 }
   1998 
   1999 
   2000 /*
   2001  * gem_add_rxbuf:
   2002  *
   2003  *	Add a receive buffer to the indicated descriptor.
   2004  */
   2005 int
   2006 gem_add_rxbuf(struct gem_softc *sc, int idx)
   2007 {
   2008 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2009 	struct mbuf *m;
   2010 	int error;
   2011 
   2012 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2013 	if (m == NULL)
   2014 		return (ENOBUFS);
   2015 
   2016 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2017 	MCLGET(m, M_DONTWAIT);
   2018 	if ((m->m_flags & M_EXT) == 0) {
   2019 		m_freem(m);
   2020 		return (ENOBUFS);
   2021 	}
   2022 
   2023 #ifdef GEM_DEBUG
   2024 /* bzero the packet to check DMA */
   2025 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   2026 #endif
   2027 
   2028 	if (rxs->rxs_mbuf != NULL)
   2029 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   2030 
   2031 	rxs->rxs_mbuf = m;
   2032 
   2033 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   2034 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2035 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2036 	if (error) {
   2037 		aprint_error_dev(sc->sc_dev,
   2038 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   2039 		panic("gem_add_rxbuf");	/* XXX */
   2040 	}
   2041 
   2042 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   2043 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2044 
   2045 	GEM_INIT_RXDESC(sc, idx);
   2046 
   2047 	return (0);
   2048 }
   2049 
   2050 
   2051 int
   2052 gem_eint(struct gem_softc *sc, u_int status)
   2053 {
   2054 	char bits[128];
   2055 	u_int32_t r, v;
   2056 
   2057 	if ((status & GEM_INTR_MIF) != 0) {
   2058 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
   2059 		return (1);
   2060 	}
   2061 
   2062 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
   2063 		gem_reset_rxdma(sc);
   2064 		return (1);
   2065 	}
   2066 
   2067 	if (status & GEM_INTR_BERR) {
   2068 		if (sc->sc_flags & GEM_PCI)
   2069 			r = GEM_ERROR_STATUS;
   2070 		else
   2071 			r = GEM_SBUS_ERROR_STATUS;
   2072 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   2073 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   2074 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
   2075 		    v);
   2076 		return (1);
   2077 	}
   2078 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
   2079 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   2080 
   2081 	return (1);
   2082 }
   2083 
   2084 
   2085 /*
   2086  * PCS interrupts.
   2087  * We should receive these when the link status changes, but sometimes
   2088  * we don't receive them for link up.  We compensate for this in the
   2089  * gem_tick() callout.
   2090  */
   2091 int
   2092 gem_pint(struct gem_softc *sc)
   2093 {
   2094 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2095 	bus_space_tag_t t = sc->sc_bustag;
   2096 	bus_space_handle_t h = sc->sc_h1;
   2097 	u_int32_t v, v2;
   2098 
   2099 	/*
   2100 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
   2101 	 * latched, so we have to read it twice.  There is only one bit in
   2102 	 * use, so the value is meaningless.
   2103 	 */
   2104 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2105 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2106 
   2107 	if ((ifp->if_flags & IFF_UP) == 0)
   2108 		return 1;
   2109 
   2110 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
   2111 		return 1;
   2112 
   2113 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2114 	/* If we see remote fault, our link partner is probably going away */
   2115 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
   2116 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
   2117 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2118 	/* Otherwise, we may need to wait after auto-negotiation completes */
   2119 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
   2120 	    GEM_MII_STATUS_ANEG_CPT) {
   2121 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
   2122 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2123 	}
   2124 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
   2125 		if (sc->sc_flags & GEM_LINK) {
   2126 			return 1;
   2127 		}
   2128 		callout_stop(&sc->sc_tick_ch);
   2129 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
   2130 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
   2131 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
   2132 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
   2133 		v &= v2;
   2134 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
   2135 			sc->sc_mii.mii_media_active |= IFM_FDX;
   2136 #ifdef GEM_DEBUG
   2137 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
   2138 #endif
   2139 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
   2140 			sc->sc_mii.mii_media_active |= IFM_HDX;
   2141 #ifdef GEM_DEBUG
   2142 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
   2143 #endif
   2144 		} else {
   2145 #ifdef GEM_DEBUG
   2146 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
   2147 #endif
   2148 		}
   2149 		gem_statuschange(sc);
   2150 	} else {
   2151 		if ((sc->sc_flags & GEM_LINK) == 0) {
   2152 			return 1;
   2153 		}
   2154 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   2155 		sc->sc_mii.mii_media_status = IFM_AVALID;
   2156 #ifdef GEM_DEBUG
   2157 			aprint_debug_dev(sc->sc_dev, "link down\n");
   2158 #endif
   2159 		gem_statuschange(sc);
   2160 
   2161 		/* Start the 10 second timer */
   2162 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   2163 	}
   2164 	return 1;
   2165 }
   2166 
   2167 
   2168 
   2169 int
   2170 gem_intr(void *v)
   2171 {
   2172 	struct gem_softc *sc = v;
   2173 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2174 	bus_space_tag_t t = sc->sc_bustag;
   2175 	bus_space_handle_t h = sc->sc_h1;
   2176 	u_int32_t status;
   2177 	int r = 0;
   2178 #ifdef GEM_DEBUG
   2179 	char bits[128];
   2180 #endif
   2181 
   2182 	/* XXX We should probably mask out interrupts until we're done */
   2183 
   2184 	sc->sc_ev_intr.ev_count++;
   2185 
   2186 	status = bus_space_read_4(t, h, GEM_STATUS);
   2187 #ifdef GEM_DEBUG
   2188 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
   2189 #endif
   2190 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   2191 		device_xname(sc->sc_dev), (status >> 19), bits));
   2192 
   2193 
   2194 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   2195 		r |= gem_eint(sc, status);
   2196 
   2197 	/* We don't bother with GEM_INTR_TX_DONE */
   2198 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   2199 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   2200 		r |= gem_tint(sc);
   2201 	}
   2202 
   2203 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   2204 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   2205 		r |= gem_rint(sc);
   2206 	}
   2207 
   2208 	/* We should eventually do more than just print out error stats. */
   2209 	if (status & GEM_INTR_TX_MAC) {
   2210 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
   2211 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   2212 			printf("%s: MAC tx fault, status %x\n",
   2213 			    device_xname(sc->sc_dev), txstat);
   2214 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   2215 			gem_init(ifp);
   2216 	}
   2217 	if (status & GEM_INTR_RX_MAC) {
   2218 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
   2219 		/*
   2220 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
   2221 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
   2222 		 * silicon bug so handle them silently. Moreover, it's
   2223 		 * likely that the receiver has hung so we reset it.
   2224 		 */
   2225 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
   2226 			ifp->if_ierrors++;
   2227 			gem_reset_rxdma(sc);
   2228 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   2229 			printf("%s: MAC rx fault, status 0x%02x\n",
   2230 			    device_xname(sc->sc_dev), rxstat);
   2231 	}
   2232 	if (status & GEM_INTR_PCS) {
   2233 		r |= gem_pint(sc);
   2234 	}
   2235 
   2236 /* Do we need to do anything with these?
   2237 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
   2238 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
   2239 		if ((status2 & GEM_MAC_PAUSED) != 0)
   2240 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
   2241 			    GEM_MAC_PAUSE_TIME(status2));
   2242 		if ((status2 & GEM_MAC_PAUSE) != 0)
   2243 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
   2244 		if ((status2 & GEM_MAC_RESUME) != 0)
   2245 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
   2246 	}
   2247 	if ((status & GEM_INTR_MIF) != 0)
   2248 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
   2249 */
   2250 #if NRND > 0
   2251 	rnd_add_uint32(&sc->rnd_source, status);
   2252 #endif
   2253 	return (r);
   2254 }
   2255 
   2256 
   2257 void
   2258 gem_watchdog(struct ifnet *ifp)
   2259 {
   2260 	struct gem_softc *sc = ifp->if_softc;
   2261 
   2262 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   2263 		"GEM_MAC_RX_CONFIG %x\n",
   2264 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
   2265 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
   2266 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
   2267 
   2268 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   2269 	++ifp->if_oerrors;
   2270 
   2271 	/* Try to get more packets going. */
   2272 	gem_start(ifp);
   2273 }
   2274 
   2275 /*
   2276  * Initialize the MII Management Interface
   2277  */
   2278 void
   2279 gem_mifinit(struct gem_softc *sc)
   2280 {
   2281 	bus_space_tag_t t = sc->sc_bustag;
   2282 	bus_space_handle_t mif = sc->sc_h1;
   2283 
   2284 	/* Configure the MIF in frame mode */
   2285 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   2286 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   2287 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   2288 }
   2289 
   2290 /*
   2291  * MII interface
   2292  *
   2293  * The GEM MII interface supports at least three different operating modes:
   2294  *
   2295  * Bitbang mode is implemented using data, clock and output enable registers.
   2296  *
   2297  * Frame mode is implemented by loading a complete frame into the frame
   2298  * register and polling the valid bit for completion.
   2299  *
   2300  * Polling mode uses the frame register but completion is indicated by
   2301  * an interrupt.
   2302  *
   2303  */
   2304 static int
   2305 gem_mii_readreg(device_t self, int phy, int reg)
   2306 {
   2307 	struct gem_softc *sc = device_private(self);
   2308 	bus_space_tag_t t = sc->sc_bustag;
   2309 	bus_space_handle_t mif = sc->sc_h1;
   2310 	int n;
   2311 	u_int32_t v;
   2312 
   2313 #ifdef GEM_DEBUG1
   2314 	if (sc->sc_debug)
   2315 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
   2316 #endif
   2317 
   2318 	/* Construct the frame command */
   2319 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   2320 		GEM_MIF_FRAME_READ;
   2321 
   2322 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2323 	for (n = 0; n < 100; n++) {
   2324 		DELAY(1);
   2325 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2326 		if (v & GEM_MIF_FRAME_TA0)
   2327 			return (v & GEM_MIF_FRAME_DATA);
   2328 	}
   2329 
   2330 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   2331 	return (0);
   2332 }
   2333 
   2334 static void
   2335 gem_mii_writereg(device_t self, int phy, int reg, int val)
   2336 {
   2337 	struct gem_softc *sc = device_private(self);
   2338 	bus_space_tag_t t = sc->sc_bustag;
   2339 	bus_space_handle_t mif = sc->sc_h1;
   2340 	int n;
   2341 	u_int32_t v;
   2342 
   2343 #ifdef GEM_DEBUG1
   2344 	if (sc->sc_debug)
   2345 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
   2346 			phy, reg, val);
   2347 #endif
   2348 
   2349 	/* Construct the frame command */
   2350 	v = GEM_MIF_FRAME_WRITE			|
   2351 	    (phy << GEM_MIF_PHY_SHIFT)		|
   2352 	    (reg << GEM_MIF_REG_SHIFT)		|
   2353 	    (val & GEM_MIF_FRAME_DATA);
   2354 
   2355 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2356 	for (n = 0; n < 100; n++) {
   2357 		DELAY(1);
   2358 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2359 		if (v & GEM_MIF_FRAME_TA0)
   2360 			return;
   2361 	}
   2362 
   2363 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   2364 }
   2365 
   2366 static void
   2367 gem_mii_statchg(device_t self)
   2368 {
   2369 	struct gem_softc *sc = device_private(self);
   2370 #ifdef GEM_DEBUG
   2371 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   2372 #endif
   2373 
   2374 #ifdef GEM_DEBUG
   2375 	if (sc->sc_debug)
   2376 		printf("gem_mii_statchg: status change: phy = %d\n",
   2377 			sc->sc_phys[instance]);
   2378 #endif
   2379 	gem_statuschange(sc);
   2380 }
   2381 
   2382 /*
   2383  * Common status change for gem_mii_statchg() and gem_pint()
   2384  */
   2385 void
   2386 gem_statuschange(struct gem_softc* sc)
   2387 {
   2388 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2389 	bus_space_tag_t t = sc->sc_bustag;
   2390 	bus_space_handle_t mac = sc->sc_h1;
   2391 	int gigabit;
   2392 	u_int32_t rxcfg, txcfg, v;
   2393 
   2394 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
   2395 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
   2396 		sc->sc_flags |= GEM_LINK;
   2397 	else
   2398 		sc->sc_flags &= ~GEM_LINK;
   2399 
   2400 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2401 		gigabit = 1;
   2402 	else
   2403 		gigabit = 0;
   2404 
   2405 	/*
   2406 	 * The configuration done here corresponds to the steps F) and
   2407 	 * G) and as far as enabling of RX and TX MAC goes also step H)
   2408 	 * of the initialization sequence outlined in section 3.2.1 of
   2409 	 * the GEM Gigabit Ethernet ASIC Specification.
   2410 	 */
   2411 
   2412 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
   2413 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
   2414 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
   2415 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2416 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
   2417 	else if (gigabit) {
   2418 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
   2419 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
   2420 	}
   2421 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   2422 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
   2423 	    BUS_SPACE_BARRIER_WRITE);
   2424 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
   2425 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
   2426 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
   2427 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
   2428 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
   2429 	    BUS_SPACE_BARRIER_WRITE);
   2430 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
   2431 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
   2432 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
   2433 
   2434 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
   2435 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
   2436 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
   2437 
   2438 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
   2439 	    gigabit != 0)
   2440 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2441 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
   2442 	else
   2443 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2444 		    GEM_MAC_SLOT_TIME_NORMAL);
   2445 
   2446 	/* XIF Configuration */
   2447 	if (sc->sc_flags & GEM_LINK)
   2448 		v = GEM_MAC_XIF_LINK_LED;
   2449 	else
   2450 		v = 0;
   2451 	v |= GEM_MAC_XIF_TX_MII_ENA;
   2452 
   2453 	/* If an external transceiver is connected, enable its MII drivers */
   2454 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   2455 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
   2456 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   2457 			/* External MII needs echo disable if half duplex. */
   2458 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
   2459 			    IFM_FDX) != 0)
   2460 				/* turn on full duplex LED */
   2461 				v |= GEM_MAC_XIF_FDPLX_LED;
   2462 			else
   2463 				/* half duplex -- disable echo */
   2464 				v |= GEM_MAC_XIF_ECHO_DISABL;
   2465 			if (gigabit)
   2466 				v |= GEM_MAC_XIF_GMII_MODE;
   2467 			else
   2468 				v &= ~GEM_MAC_XIF_GMII_MODE;
   2469 		} else
   2470 			/* Internal MII needs buf enable */
   2471 			v |= GEM_MAC_XIF_MII_BUF_ENA;
   2472 	} else {
   2473 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2474 			v |= GEM_MAC_XIF_FDPLX_LED;
   2475 		v |= GEM_MAC_XIF_GMII_MODE;
   2476 	}
   2477 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   2478 
   2479 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2480 	    (sc->sc_flags & GEM_LINK) != 0) {
   2481 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
   2482 		    txcfg | GEM_MAC_TX_ENABLE);
   2483 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
   2484 		    rxcfg | GEM_MAC_RX_ENABLE);
   2485 	}
   2486 }
   2487 
   2488 int
   2489 gem_ser_mediachange(struct ifnet *ifp)
   2490 {
   2491 	struct gem_softc *sc = ifp->if_softc;
   2492 	u_int s, t;
   2493 
   2494 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
   2495 		return EINVAL;
   2496 
   2497 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
   2498 	if (s == IFM_AUTO) {
   2499 		if (sc->sc_mii_media != s) {
   2500 #ifdef GEM_DEBUG
   2501 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
   2502 #endif
   2503 			sc->sc_mii_media = s;
   2504 			if (ifp->if_flags & IFF_UP) {
   2505 				gem_pcs_stop(sc, 0);
   2506 				gem_pcs_start(sc);
   2507 			}
   2508 		}
   2509 		return 0;
   2510 	}
   2511 	if (s == IFM_1000_SX) {
   2512 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
   2513 		if (t == IFM_FDX || t == IFM_HDX) {
   2514 			if (sc->sc_mii_media != t) {
   2515 				sc->sc_mii_media = t;
   2516 #ifdef GEM_DEBUG
   2517 				aprint_debug_dev(sc->sc_dev,
   2518 				    "setting media to 1000baseSX-%s\n",
   2519 				    t == IFM_FDX ? "FDX" : "HDX");
   2520 #endif
   2521 				if (ifp->if_flags & IFF_UP) {
   2522 					gem_pcs_stop(sc, 0);
   2523 					gem_pcs_start(sc);
   2524 				}
   2525 			}
   2526 			return 0;
   2527 		}
   2528 	}
   2529 	return EINVAL;
   2530 }
   2531 
   2532 void
   2533 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2534 {
   2535 	struct gem_softc *sc = ifp->if_softc;
   2536 
   2537 	if ((ifp->if_flags & IFF_UP) == 0)
   2538 		return;
   2539 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2540 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2541 }
   2542 
   2543 static int
   2544 gem_ifflags_cb(struct ethercom *ec)
   2545 {
   2546 	struct ifnet *ifp = &ec->ec_if;
   2547 	struct gem_softc *sc = ifp->if_softc;
   2548 	int change = ifp->if_flags ^ sc->sc_if_flags;
   2549 
   2550 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   2551 		return ENETRESET;
   2552 	else if ((change & IFF_PROMISC) != 0)
   2553 		gem_setladrf(sc);
   2554 	return 0;
   2555 }
   2556 
   2557 /*
   2558  * Process an ioctl request.
   2559  */
   2560 int
   2561 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   2562 {
   2563 	struct gem_softc *sc = ifp->if_softc;
   2564 	int s, error = 0;
   2565 
   2566 	s = splnet();
   2567 
   2568 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2569 		error = 0;
   2570 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2571 			;
   2572 		else if (ifp->if_flags & IFF_RUNNING) {
   2573 			/*
   2574 			 * Multicast list has changed; set the hardware filter
   2575 			 * accordingly.
   2576 			 */
   2577 			gem_setladrf(sc);
   2578 		}
   2579 	}
   2580 
   2581 	/* Try to get things going again */
   2582 	if (ifp->if_flags & IFF_UP)
   2583 		gem_start(ifp);
   2584 	splx(s);
   2585 	return (error);
   2586 }
   2587 
   2588 static void
   2589 gem_inten(struct gem_softc *sc)
   2590 {
   2591 	bus_space_tag_t t = sc->sc_bustag;
   2592 	bus_space_handle_t h = sc->sc_h1;
   2593 	uint32_t v;
   2594 
   2595 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   2596 		v = GEM_INTR_PCS;
   2597 	else
   2598 		v = GEM_INTR_MIF;
   2599 	bus_space_write_4(t, h, GEM_INTMASK,
   2600 		      ~(GEM_INTR_TX_INTME |
   2601 			GEM_INTR_TX_EMPTY |
   2602 			GEM_INTR_TX_MAC |
   2603 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
   2604 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
   2605 			GEM_INTR_BERR | v));
   2606 }
   2607 
   2608 bool
   2609 gem_resume(device_t self, pmf_qual_t qual)
   2610 {
   2611 	struct gem_softc *sc = device_private(self);
   2612 
   2613 	gem_inten(sc);
   2614 
   2615 	return true;
   2616 }
   2617 
   2618 bool
   2619 gem_suspend(device_t self, pmf_qual_t qual)
   2620 {
   2621 	struct gem_softc *sc = device_private(self);
   2622 	bus_space_tag_t t = sc->sc_bustag;
   2623 	bus_space_handle_t h = sc->sc_h1;
   2624 
   2625 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
   2626 
   2627 	return true;
   2628 }
   2629 
   2630 bool
   2631 gem_shutdown(device_t self, int howto)
   2632 {
   2633 	struct gem_softc *sc = device_private(self);
   2634 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2635 
   2636 	gem_stop(ifp, 1);
   2637 
   2638 	return true;
   2639 }
   2640 
   2641 /*
   2642  * Set up the logical address filter.
   2643  */
   2644 void
   2645 gem_setladrf(struct gem_softc *sc)
   2646 {
   2647 	struct ethercom *ec = &sc->sc_ethercom;
   2648 	struct ifnet *ifp = &ec->ec_if;
   2649 	struct ether_multi *enm;
   2650 	struct ether_multistep step;
   2651 	bus_space_tag_t t = sc->sc_bustag;
   2652 	bus_space_handle_t h = sc->sc_h1;
   2653 	u_int32_t crc;
   2654 	u_int32_t hash[16];
   2655 	u_int32_t v;
   2656 	int i;
   2657 
   2658 	/* Get current RX configuration */
   2659 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2660 
   2661 	/*
   2662 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2663 	 * and hash filter.  Depending on the case, the right bit will be
   2664 	 * enabled.
   2665 	 */
   2666 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2667 	    GEM_MAC_RX_PROMISC_GRP);
   2668 
   2669 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2670 		/* Turn on promiscuous mode */
   2671 		v |= GEM_MAC_RX_PROMISCUOUS;
   2672 		ifp->if_flags |= IFF_ALLMULTI;
   2673 		goto chipit;
   2674 	}
   2675 
   2676 	/*
   2677 	 * Set up multicast address filter by passing all multicast addresses
   2678 	 * through a crc generator, and then using the high order 8 bits as an
   2679 	 * index into the 256 bit logical address filter.  The high order 4
   2680 	 * bits selects the word, while the other 4 bits select the bit within
   2681 	 * the word (where bit 0 is the MSB).
   2682 	 */
   2683 
   2684 	/* Clear hash table */
   2685 	memset(hash, 0, sizeof(hash));
   2686 
   2687 	ETHER_FIRST_MULTI(step, ec, enm);
   2688 	while (enm != NULL) {
   2689 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2690 			/*
   2691 			 * We must listen to a range of multicast addresses.
   2692 			 * For now, just accept all multicasts, rather than
   2693 			 * trying to set only those filter bits needed to match
   2694 			 * the range.  (At this time, the only use of address
   2695 			 * ranges is for IP multicast routing, for which the
   2696 			 * range is big enough to require all bits set.)
   2697 			 * XXX should use the address filters for this
   2698 			 */
   2699 			ifp->if_flags |= IFF_ALLMULTI;
   2700 			v |= GEM_MAC_RX_PROMISC_GRP;
   2701 			goto chipit;
   2702 		}
   2703 
   2704 		/* Get the LE CRC32 of the address */
   2705 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2706 
   2707 		/* Just want the 8 most significant bits. */
   2708 		crc >>= 24;
   2709 
   2710 		/* Set the corresponding bit in the filter. */
   2711 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2712 
   2713 		ETHER_NEXT_MULTI(step, enm);
   2714 	}
   2715 
   2716 	v |= GEM_MAC_RX_HASH_FILTER;
   2717 	ifp->if_flags &= ~IFF_ALLMULTI;
   2718 
   2719 	/* Now load the hash table into the chip (if we are using it) */
   2720 	for (i = 0; i < 16; i++) {
   2721 		bus_space_write_4(t, h,
   2722 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2723 		    hash[i]);
   2724 	}
   2725 
   2726 chipit:
   2727 	sc->sc_if_flags = ifp->if_flags;
   2728 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2729 }
   2730