gem.c revision 1.97 1 /* $NetBSD: gem.c,v 1.97 2011/05/22 11:19:23 jdc Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.97 2011/05/22 11:19:23 jdc Exp $");
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #include <net/bpf.h>
73
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83
84 #define TRIES 10000
85
86 static void gem_inten(struct gem_softc *);
87 static void gem_start(struct ifnet *);
88 static void gem_stop(struct ifnet *, int);
89 int gem_ioctl(struct ifnet *, u_long, void *);
90 void gem_tick(void *);
91 void gem_watchdog(struct ifnet *);
92 void gem_pcs_start(struct gem_softc *sc);
93 void gem_pcs_stop(struct gem_softc *sc, int);
94 int gem_init(struct ifnet *);
95 void gem_init_regs(struct gem_softc *sc);
96 static int gem_ringsize(int sz);
97 static int gem_meminit(struct gem_softc *);
98 void gem_mifinit(struct gem_softc *);
99 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
100 u_int32_t, u_int32_t);
101 void gem_reset(struct gem_softc *);
102 int gem_reset_rx(struct gem_softc *sc);
103 static void gem_reset_rxdma(struct gem_softc *sc);
104 static void gem_rx_common(struct gem_softc *sc);
105 int gem_reset_tx(struct gem_softc *sc);
106 int gem_disable_rx(struct gem_softc *sc);
107 int gem_disable_tx(struct gem_softc *sc);
108 static void gem_rxdrain(struct gem_softc *sc);
109 int gem_add_rxbuf(struct gem_softc *sc, int idx);
110 void gem_setladrf(struct gem_softc *);
111
112 /* MII methods & callbacks */
113 static int gem_mii_readreg(device_t, int, int);
114 static void gem_mii_writereg(device_t, int, int, int);
115 static void gem_mii_statchg(device_t);
116
117 static int gem_ifflags_cb(struct ethercom *);
118
119 void gem_statuschange(struct gem_softc *);
120
121 int gem_ser_mediachange(struct ifnet *);
122 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
123
124 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
125
126 struct mbuf *gem_get(struct gem_softc *, int, int);
127 int gem_put(struct gem_softc *, int, struct mbuf *);
128 void gem_read(struct gem_softc *, int, int);
129 int gem_pint(struct gem_softc *);
130 int gem_eint(struct gem_softc *, u_int);
131 int gem_rint(struct gem_softc *);
132 int gem_tint(struct gem_softc *);
133 void gem_power(int, void *);
134
135 #ifdef GEM_DEBUG
136 static void gem_txsoft_print(const struct gem_softc *, int, int);
137 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
138 printf x
139 #else
140 #define DPRINTF(sc, x) /* nothing */
141 #endif
142
143 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
144
145 int
146 gem_detach(struct gem_softc *sc, int flags)
147 {
148 int i;
149 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
150 bus_space_tag_t t = sc->sc_bustag;
151 bus_space_handle_t h = sc->sc_h1;
152
153 /*
154 * Free any resources we've allocated during the attach.
155 * Do this in reverse order and fall through.
156 */
157 switch (sc->sc_att_stage) {
158 case GEM_ATT_BACKEND_2:
159 case GEM_ATT_BACKEND_1:
160 case GEM_ATT_FINISHED:
161 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
162 gem_stop(&sc->sc_ethercom.ec_if, 1);
163
164 #ifdef GEM_COUNTERS
165 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
166 evcnt_detach(&sc->sc_ev_rxhist[i]);
167 evcnt_detach(&sc->sc_ev_rxnobuf);
168 evcnt_detach(&sc->sc_ev_rxfull);
169 evcnt_detach(&sc->sc_ev_rxint);
170 evcnt_detach(&sc->sc_ev_txint);
171 #endif
172 evcnt_detach(&sc->sc_ev_intr);
173
174 #if NRND > 0
175 rnd_detach_source(&sc->rnd_source);
176 #endif
177 ether_ifdetach(ifp);
178 if_detach(ifp);
179 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
180
181 callout_destroy(&sc->sc_tick_ch);
182
183 /*FALLTHROUGH*/
184 case GEM_ATT_MII:
185 sc->sc_att_stage = GEM_ATT_MII;
186 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 /*FALLTHROUGH*/
188 case GEM_ATT_7:
189 for (i = 0; i < GEM_NRXDESC; i++) {
190 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 bus_dmamap_destroy(sc->sc_dmatag,
192 sc->sc_rxsoft[i].rxs_dmamap);
193 }
194 /*FALLTHROUGH*/
195 case GEM_ATT_6:
196 for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 bus_dmamap_destroy(sc->sc_dmatag,
199 sc->sc_txsoft[i].txs_dmamap);
200 }
201 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 /*FALLTHROUGH*/
203 case GEM_ATT_5:
204 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 /*FALLTHROUGH*/
206 case GEM_ATT_4:
207 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 /*FALLTHROUGH*/
209 case GEM_ATT_3:
210 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 /*FALLTHROUGH*/
212 case GEM_ATT_2:
213 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 sizeof(struct gem_control_data));
215 /*FALLTHROUGH*/
216 case GEM_ATT_1:
217 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 /*FALLTHROUGH*/
219 case GEM_ATT_0:
220 sc->sc_att_stage = GEM_ATT_0;
221 /*FALLTHROUGH*/
222 case GEM_ATT_BACKEND_0:
223 break;
224 }
225 return 0;
226 }
227
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 cfattach_t ca = device_cfattach(sc->sc_dev);
232
233 sc->sc_att_stage = stage;
234 (*ca->ca_detach)(sc->sc_dev, 0);
235 }
236
237 /*
238 * gem_attach:
239 *
240 * Attach a Gem interface to the system.
241 */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 struct mii_data *mii = &sc->sc_mii;
247 bus_space_tag_t t = sc->sc_bustag;
248 bus_space_handle_t h = sc->sc_h1;
249 struct ifmedia_entry *ifm;
250 int i, error, phyaddr;
251 u_int32_t v;
252 char *nullbuf;
253
254 /* Make sure the chip is stopped. */
255 ifp->if_softc = sc;
256 gem_reset(sc);
257
258 /*
259 * Allocate the control data structures, and create and load the
260 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 */
263 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 aprint_error_dev(sc->sc_dev,
267 "unable to allocate control data, error = %d\n",
268 error);
269 gem_partial_detach(sc, GEM_ATT_0);
270 return;
271 }
272
273 /* XXX should map this in with correct endianness */
274 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 BUS_DMA_COHERENT)) != 0) {
277 aprint_error_dev(sc->sc_dev,
278 "unable to map control data, error = %d\n", error);
279 gem_partial_detach(sc, GEM_ATT_1);
280 return;
281 }
282
283 nullbuf =
284 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285
286 if ((error = bus_dmamap_create(sc->sc_dmatag,
287 sizeof(struct gem_control_data), 1,
288 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 aprint_error_dev(sc->sc_dev,
290 "unable to create control data DMA map, error = %d\n",
291 error);
292 gem_partial_detach(sc, GEM_ATT_2);
293 return;
294 }
295
296 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 0)) != 0) {
299 aprint_error_dev(sc->sc_dev,
300 "unable to load control data DMA map, error = %d\n",
301 error);
302 gem_partial_detach(sc, GEM_ATT_3);
303 return;
304 }
305
306 memset(nullbuf, 0, ETHER_MIN_TX);
307 if ((error = bus_dmamap_create(sc->sc_dmatag,
308 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 aprint_error_dev(sc->sc_dev,
310 "unable to create padding DMA map, error = %d\n", error);
311 gem_partial_detach(sc, GEM_ATT_4);
312 return;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 aprint_error_dev(sc->sc_dev,
318 "unable to load padding DMA map, error = %d\n", error);
319 gem_partial_detach(sc, GEM_ATT_5);
320 return;
321 }
322
323 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 BUS_DMASYNC_PREWRITE);
325
326 /*
327 * Initialize the transmit job descriptors.
328 */
329 SIMPLEQ_INIT(&sc->sc_txfreeq);
330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
331
332 /*
333 * Create the transmit buffer DMA maps.
334 */
335 for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 struct gem_txsoft *txs;
337
338 txs = &sc->sc_txsoft[i];
339 txs->txs_mbuf = NULL;
340 if ((error = bus_dmamap_create(sc->sc_dmatag,
341 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 ETHER_MAX_LEN_JUMBO, 0, 0,
343 &txs->txs_dmamap)) != 0) {
344 aprint_error_dev(sc->sc_dev,
345 "unable to create tx DMA map %d, error = %d\n",
346 i, error);
347 gem_partial_detach(sc, GEM_ATT_6);
348 return;
349 }
350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < GEM_NRXDESC; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 aprint_error_dev(sc->sc_dev,
360 "unable to create rx DMA map %d, error = %d\n",
361 i, error);
362 gem_partial_detach(sc, GEM_ATT_7);
363 return;
364 }
365 sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 }
367
368 /* Initialize ifmedia structures and MII info */
369 mii->mii_ifp = ifp;
370 mii->mii_readreg = gem_mii_readreg;
371 mii->mii_writereg = gem_mii_writereg;
372 mii->mii_statchg = gem_mii_statchg;
373
374 sc->sc_ethercom.ec_mii = mii;
375
376 /*
377 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
378 * Section 3.2.1 `Initialization Sequence'.
379 * However, we can't assume SERDES or Serialink if neither
380 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 * being set, as both are set on Sun X1141A (with SERDES). So,
382 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 * Also, for variants that report 2 PHY's, we prefer the external
384 * PHY over the internal PHY, so we look for that first.
385 */
386 gem_mifinit(sc);
387
388 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 ether_mediastatus);
391 /* Look for external PHY */
392 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 sc->sc_mif_config);
396 switch (sc->sc_variant) {
397 case GEM_SUN_ERI:
398 phyaddr = GEM_PHYAD_EXTERNAL;
399 break;
400 default:
401 phyaddr = MII_PHY_ANY;
402 break;
403 }
404 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 MII_OFFSET_ANY, MIIF_FORCEANEG);
406 }
407 #ifdef GEM_DEBUG
408 else
409 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 /* Look for internal PHY if no external PHY was found */
412 if (LIST_EMPTY(&mii->mii_phys) &&
413 sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
414 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
415 bus_space_write_4(t, h, GEM_MIF_CONFIG,
416 sc->sc_mif_config);
417 switch (sc->sc_variant) {
418 case GEM_SUN_ERI:
419 case GEM_APPLE_K2_GMAC:
420 phyaddr = GEM_PHYAD_INTERNAL;
421 break;
422 case GEM_APPLE_GMAC:
423 phyaddr = GEM_PHYAD_EXTERNAL;
424 break;
425 default:
426 phyaddr = MII_PHY_ANY;
427 break;
428 }
429 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
430 MII_OFFSET_ANY, MIIF_FORCEANEG);
431 #ifdef GEM_DEBUG
432 if (!LIST_EMPTY(&mii->mii_phys))
433 aprint_debug_dev(sc->sc_dev,
434 "using internal PHY\n");
435 #endif
436 }
437 if (LIST_EMPTY(&mii->mii_phys)) {
438 /* No PHY attached */
439 aprint_error_dev(sc->sc_dev,
440 "PHY probe failed\n");
441 gem_partial_detach(sc, GEM_ATT_MII);
442 return;
443 } else {
444 struct mii_softc *child;
445
446 /*
447 * Walk along the list of attached MII devices and
448 * establish an `MII instance' to `PHY number'
449 * mapping.
450 */
451 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
452 /*
453 * Note: we support just one PHY: the internal
454 * or external MII is already selected for us
455 * by the GEM_MIF_CONFIG register.
456 */
457 if (child->mii_phy > 1 || child->mii_inst > 0) {
458 aprint_error_dev(sc->sc_dev,
459 "cannot accommodate MII device"
460 " %s at PHY %d, instance %d\n",
461 device_xname(child->mii_dev),
462 child->mii_phy, child->mii_inst);
463 continue;
464 }
465 sc->sc_phys[child->mii_inst] = child->mii_phy;
466 }
467
468 if (sc->sc_variant != GEM_SUN_ERI)
469 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
470 GEM_MII_DATAPATH_MII);
471
472 /*
473 * XXX - we can really do the following ONLY if the
474 * PHY indeed has the auto negotiation capability!!
475 */
476 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
477 }
478 } else {
479 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
480 gem_ser_mediastatus);
481 /* SERDES or Serialink */
482 if (sc->sc_flags & GEM_SERDES) {
483 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
484 GEM_MII_DATAPATH_SERDES);
485 } else {
486 sc->sc_flags |= GEM_SERIAL;
487 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
488 GEM_MII_DATAPATH_SERIAL);
489 }
490
491 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
492 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
493
494 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
495 /* Check for FDX and HDX capabilities */
496 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
497 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
498 ifmedia_add(&sc->sc_mii.mii_media,
499 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
500 aprint_normal("1000baseSX-FDX, ");
501 }
502 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
503 ifmedia_add(&sc->sc_mii.mii_media,
504 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
505 aprint_normal("1000baseSX-HDX, ");
506 }
507 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
508 sc->sc_mii_media = IFM_AUTO;
509 aprint_normal("auto\n");
510
511 gem_pcs_stop(sc, 1);
512 }
513
514 /*
515 * From this point forward, the attachment cannot fail. A failure
516 * before this point releases all resources that may have been
517 * allocated.
518 */
519
520 /* Announce ourselves. */
521 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
522 ether_sprintf(enaddr));
523
524 /* Get RX FIFO size */
525 sc->sc_rxfifosize = 64 *
526 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
527 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
528
529 /* Get TX FIFO size */
530 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
531 aprint_normal(", %uKB TX fifo\n", v / 16);
532
533 /* Initialize ifnet structure. */
534 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
535 ifp->if_softc = sc;
536 ifp->if_flags =
537 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
538 sc->sc_if_flags = ifp->if_flags;
539 #if 0
540 /*
541 * The GEM hardware supports basic TCP checksum offloading only.
542 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 * have bugs in the receive checksum, so don't enable it for now.
544 */
545 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 (GEM_IS_APPLE(sc) &&
547 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 ifp->if_start = gem_start;
552 ifp->if_ioctl = gem_ioctl;
553 ifp->if_watchdog = gem_watchdog;
554 ifp->if_stop = gem_stop;
555 ifp->if_init = gem_init;
556 IFQ_SET_READY(&ifp->if_snd);
557
558 /*
559 * If we support GigE media, we support jumbo frames too.
560 * Unless we are Apple.
561 */
562 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
563 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
564 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
565 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
566 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
567 if (!GEM_IS_APPLE(sc))
568 sc->sc_ethercom.ec_capabilities
569 |= ETHERCAP_JUMBO_MTU;
570 sc->sc_flags |= GEM_GIGABIT;
571 break;
572 }
573 }
574
575 /* claim 802.1q capability */
576 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577
578 /* Attach the interface. */
579 if_attach(ifp);
580 ether_ifattach(ifp, enaddr);
581 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
582
583 #if NRND > 0
584 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
585 RND_TYPE_NET, 0);
586 #endif
587
588 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589 NULL, device_xname(sc->sc_dev), "interrupts");
590 #ifdef GEM_COUNTERS
591 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
600 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
601 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
602 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
603 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
604 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
605 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
606 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
607 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
608 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
609 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
610 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
611 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
612 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
613 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
614 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
615 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
616 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
617 #endif
618
619 callout_init(&sc->sc_tick_ch, 0);
620
621 sc->sc_att_stage = GEM_ATT_FINISHED;
622
623 return;
624 }
625
626 void
627 gem_tick(void *arg)
628 {
629 struct gem_softc *sc = arg;
630 int s;
631
632 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
633 /*
634 * We have to reset everything if we failed to get a
635 * PCS interrupt. Restarting the callout is handled
636 * in gem_pcs_start().
637 */
638 gem_init(&sc->sc_ethercom.ec_if);
639 } else {
640 s = splnet();
641 mii_tick(&sc->sc_mii);
642 splx(s);
643 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
644 }
645 }
646
647 static int
648 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
649 {
650 int i;
651 u_int32_t reg;
652
653 for (i = TRIES; i--; DELAY(100)) {
654 reg = bus_space_read_4(sc->sc_bustag, h, r);
655 if ((reg & clr) == 0 && (reg & set) == set)
656 return (1);
657 }
658 return (0);
659 }
660
661 void
662 gem_reset(struct gem_softc *sc)
663 {
664 bus_space_tag_t t = sc->sc_bustag;
665 bus_space_handle_t h = sc->sc_h2;
666 int s;
667
668 s = splnet();
669 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
670 gem_reset_rx(sc);
671 gem_reset_tx(sc);
672
673 /* Do a full reset */
674 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
675 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
676 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
677 splx(s);
678 }
679
680
681 /*
682 * gem_rxdrain:
683 *
684 * Drain the receive queue.
685 */
686 static void
687 gem_rxdrain(struct gem_softc *sc)
688 {
689 struct gem_rxsoft *rxs;
690 int i;
691
692 for (i = 0; i < GEM_NRXDESC; i++) {
693 rxs = &sc->sc_rxsoft[i];
694 if (rxs->rxs_mbuf != NULL) {
695 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
696 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
697 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
698 m_freem(rxs->rxs_mbuf);
699 rxs->rxs_mbuf = NULL;
700 }
701 }
702 }
703
704 /*
705 * Reset the whole thing.
706 */
707 static void
708 gem_stop(struct ifnet *ifp, int disable)
709 {
710 struct gem_softc *sc = ifp->if_softc;
711 struct gem_txsoft *txs;
712
713 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
714
715 callout_halt(&sc->sc_tick_ch, NULL);
716 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
717 gem_pcs_stop(sc, disable);
718 else
719 mii_down(&sc->sc_mii);
720
721 /* XXX - Should we reset these instead? */
722 gem_disable_tx(sc);
723 gem_disable_rx(sc);
724
725 /*
726 * Release any queued transmit buffers.
727 */
728 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
729 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
730 if (txs->txs_mbuf != NULL) {
731 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
732 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
733 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
734 m_freem(txs->txs_mbuf);
735 txs->txs_mbuf = NULL;
736 }
737 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
738 }
739
740 /*
741 * Mark the interface down and cancel the watchdog timer.
742 */
743 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
744 sc->sc_if_flags = ifp->if_flags;
745 ifp->if_timer = 0;
746
747 if (disable)
748 gem_rxdrain(sc);
749 }
750
751
752 /*
753 * Reset the receiver
754 */
755 int
756 gem_reset_rx(struct gem_softc *sc)
757 {
758 bus_space_tag_t t = sc->sc_bustag;
759 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
760
761 /*
762 * Resetting while DMA is in progress can cause a bus hang, so we
763 * disable DMA first.
764 */
765 gem_disable_rx(sc);
766 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
767 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
768 /* Wait till it finishes */
769 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
770 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
771
772 /* Finally, reset the ERX */
773 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
774 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
775 /* Wait till it finishes */
776 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
777 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
778 return (1);
779 }
780 return (0);
781 }
782
783
784 /*
785 * Reset the receiver DMA engine.
786 *
787 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
788 * etc in order to reset the receiver DMA engine only and not do a full
789 * reset which amongst others also downs the link and clears the FIFOs.
790 */
791 static void
792 gem_reset_rxdma(struct gem_softc *sc)
793 {
794 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
795 bus_space_tag_t t = sc->sc_bustag;
796 bus_space_handle_t h = sc->sc_h1;
797 int i;
798
799 if (gem_reset_rx(sc) != 0) {
800 gem_init(ifp);
801 return;
802 }
803 for (i = 0; i < GEM_NRXDESC; i++)
804 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
805 GEM_UPDATE_RXDESC(sc, i);
806 sc->sc_rxptr = 0;
807 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
808 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
809
810 /* Reprogram Descriptor Ring Base Addresses */
811 /* NOTE: we use only 32-bit DMA addresses here. */
812 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
813 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
814
815 /* Redo ERX Configuration */
816 gem_rx_common(sc);
817
818 /* Give the reciever a swift kick */
819 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
820 }
821
822 /*
823 * Common RX configuration for gem_init() and gem_reset_rxdma().
824 */
825 static void
826 gem_rx_common(struct gem_softc *sc)
827 {
828 bus_space_tag_t t = sc->sc_bustag;
829 bus_space_handle_t h = sc->sc_h1;
830 u_int32_t v;
831
832 /* Encode Receive Descriptor ring size: four possible values */
833 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
834
835 /* Set receive h/w checksum offset */
836 #ifdef INET
837 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
838 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
839 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
840 #endif
841
842 /* Enable RX DMA */
843 bus_space_write_4(t, h, GEM_RX_CONFIG,
844 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
845 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
846
847 /*
848 * The following value is for an OFF Threshold of about 3/4 full
849 * and an ON Threshold of 1/4 full.
850 */
851 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
852 (3 * sc->sc_rxfifosize / 256) |
853 ((sc->sc_rxfifosize / 256) << 12));
854 bus_space_write_4(t, h, GEM_RX_BLANKING,
855 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
856 }
857
858 /*
859 * Reset the transmitter
860 */
861 int
862 gem_reset_tx(struct gem_softc *sc)
863 {
864 bus_space_tag_t t = sc->sc_bustag;
865 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
866
867 /*
868 * Resetting while DMA is in progress can cause a bus hang, so we
869 * disable DMA first.
870 */
871 gem_disable_tx(sc);
872 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
873 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
874 /* Wait till it finishes */
875 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
876 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
877 /* Wait 5ms extra. */
878 delay(5000);
879
880 /* Finally, reset the ETX */
881 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
882 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
883 /* Wait till it finishes */
884 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
885 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
886 return (1);
887 }
888 return (0);
889 }
890
891 /*
892 * disable receiver.
893 */
894 int
895 gem_disable_rx(struct gem_softc *sc)
896 {
897 bus_space_tag_t t = sc->sc_bustag;
898 bus_space_handle_t h = sc->sc_h1;
899 u_int32_t cfg;
900
901 /* Flip the enable bit */
902 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
903 cfg &= ~GEM_MAC_RX_ENABLE;
904 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
905 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
906 /* Wait for it to finish */
907 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
908 }
909
910 /*
911 * disable transmitter.
912 */
913 int
914 gem_disable_tx(struct gem_softc *sc)
915 {
916 bus_space_tag_t t = sc->sc_bustag;
917 bus_space_handle_t h = sc->sc_h1;
918 u_int32_t cfg;
919
920 /* Flip the enable bit */
921 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
922 cfg &= ~GEM_MAC_TX_ENABLE;
923 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
924 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
925 /* Wait for it to finish */
926 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
927 }
928
929 /*
930 * Initialize interface.
931 */
932 int
933 gem_meminit(struct gem_softc *sc)
934 {
935 struct gem_rxsoft *rxs;
936 int i, error;
937
938 /*
939 * Initialize the transmit descriptor ring.
940 */
941 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
942 for (i = 0; i < GEM_NTXDESC; i++) {
943 sc->sc_txdescs[i].gd_flags = 0;
944 sc->sc_txdescs[i].gd_addr = 0;
945 }
946 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
947 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
948 sc->sc_txfree = GEM_NTXDESC-1;
949 sc->sc_txnext = 0;
950 sc->sc_txwin = 0;
951
952 /*
953 * Initialize the receive descriptor and receive job
954 * descriptor rings.
955 */
956 for (i = 0; i < GEM_NRXDESC; i++) {
957 rxs = &sc->sc_rxsoft[i];
958 if (rxs->rxs_mbuf == NULL) {
959 if ((error = gem_add_rxbuf(sc, i)) != 0) {
960 aprint_error_dev(sc->sc_dev,
961 "unable to allocate or map rx "
962 "buffer %d, error = %d\n",
963 i, error);
964 /*
965 * XXX Should attempt to run with fewer receive
966 * XXX buffers instead of just failing.
967 */
968 gem_rxdrain(sc);
969 return (1);
970 }
971 } else
972 GEM_INIT_RXDESC(sc, i);
973 }
974 sc->sc_rxptr = 0;
975 sc->sc_meminited = 1;
976 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
977 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
978
979 return (0);
980 }
981
982 static int
983 gem_ringsize(int sz)
984 {
985 switch (sz) {
986 case 32:
987 return GEM_RING_SZ_32;
988 case 64:
989 return GEM_RING_SZ_64;
990 case 128:
991 return GEM_RING_SZ_128;
992 case 256:
993 return GEM_RING_SZ_256;
994 case 512:
995 return GEM_RING_SZ_512;
996 case 1024:
997 return GEM_RING_SZ_1024;
998 case 2048:
999 return GEM_RING_SZ_2048;
1000 case 4096:
1001 return GEM_RING_SZ_4096;
1002 case 8192:
1003 return GEM_RING_SZ_8192;
1004 default:
1005 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1006 return GEM_RING_SZ_32;
1007 }
1008 }
1009
1010
1011 /*
1012 * Start PCS
1013 */
1014 void
1015 gem_pcs_start(struct gem_softc *sc)
1016 {
1017 bus_space_tag_t t = sc->sc_bustag;
1018 bus_space_handle_t h = sc->sc_h1;
1019 uint32_t v;
1020
1021 #ifdef GEM_DEBUG
1022 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1023 #endif
1024
1025 /*
1026 * Set up. We must disable the MII before modifying the
1027 * GEM_MII_ANAR register
1028 */
1029 if (sc->sc_flags & GEM_SERDES) {
1030 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1031 GEM_MII_DATAPATH_SERDES);
1032 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1033 GEM_MII_SLINK_LOOPBACK);
1034 } else {
1035 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1036 GEM_MII_DATAPATH_SERIAL);
1037 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1038 }
1039 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1040 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1041 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1042 if (sc->sc_mii_media == IFM_AUTO)
1043 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1044 else if (sc->sc_mii_media == IFM_FDX) {
1045 v |= GEM_MII_ANEG_FUL_DUPLX;
1046 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1047 } else if (sc->sc_mii_media == IFM_HDX) {
1048 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1049 v |= GEM_MII_ANEG_HLF_DUPLX;
1050 }
1051
1052 /* Configure link. */
1053 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1054 bus_space_write_4(t, h, GEM_MII_CONTROL,
1055 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1056 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1057 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1058
1059 /* Start the 10 second timer */
1060 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1061 }
1062
1063 /*
1064 * Stop PCS
1065 */
1066 void
1067 gem_pcs_stop(struct gem_softc *sc, int disable)
1068 {
1069 bus_space_tag_t t = sc->sc_bustag;
1070 bus_space_handle_t h = sc->sc_h1;
1071
1072 #ifdef GEM_DEBUG
1073 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1074 #endif
1075
1076 /* Tell link partner that we're going away */
1077 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1078
1079 /*
1080 * Disable PCS MII. The documentation suggests that setting
1081 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1082 * negotiation will shut down the link. However, it appears
1083 * that we also need to unset the datapath mode.
1084 */
1085 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1086 bus_space_write_4(t, h, GEM_MII_CONTROL,
1087 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1088 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1089 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1090
1091 if (disable) {
1092 if (sc->sc_flags & GEM_SERDES)
1093 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1094 GEM_MII_SLINK_POWER_OFF);
1095 else
1096 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1097 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1098 }
1099
1100 sc->sc_flags &= ~GEM_LINK;
1101 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1102 sc->sc_mii.mii_media_status = IFM_AVALID;
1103 }
1104
1105
1106 /*
1107 * Initialization of interface; set up initialization block
1108 * and transmit/receive descriptor rings.
1109 */
1110 int
1111 gem_init(struct ifnet *ifp)
1112 {
1113 struct gem_softc *sc = ifp->if_softc;
1114 bus_space_tag_t t = sc->sc_bustag;
1115 bus_space_handle_t h = sc->sc_h1;
1116 int rc = 0, s;
1117 u_int max_frame_size;
1118 u_int32_t v;
1119
1120 s = splnet();
1121
1122 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1123 /*
1124 * Initialization sequence. The numbered steps below correspond
1125 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1126 * Channel Engine manual (part of the PCIO manual).
1127 * See also the STP2002-STQ document from Sun Microsystems.
1128 */
1129
1130 /* step 1 & 2. Reset the Ethernet Channel */
1131 gem_stop(ifp, 0);
1132 gem_reset(sc);
1133 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1134
1135 /* Re-initialize the MIF */
1136 gem_mifinit(sc);
1137
1138 /* Set up correct datapath for non-SERDES/Serialink */
1139 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1140 sc->sc_variant != GEM_SUN_ERI)
1141 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1142 GEM_MII_DATAPATH_MII);
1143
1144 /* Call MI reset function if any */
1145 if (sc->sc_hwreset)
1146 (*sc->sc_hwreset)(sc);
1147
1148 /* step 3. Setup data structures in host memory */
1149 if (gem_meminit(sc) != 0)
1150 return 1;
1151
1152 /* step 4. TX MAC registers & counters */
1153 gem_init_regs(sc);
1154 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1155 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1156 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1157 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1158 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1159 max_frame_size|/* burst size */(0x2000<<16));
1160
1161 /* step 5. RX MAC registers & counters */
1162 gem_setladrf(sc);
1163
1164 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1165 /* NOTE: we use only 32-bit DMA addresses here. */
1166 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1167 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1168
1169 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1170 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1171
1172 /* step 8. Global Configuration & Interrupt Mask */
1173 gem_inten(sc);
1174 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1175 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1176 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1177 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1178 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1179
1180 /* step 9. ETX Configuration: use mostly default values */
1181
1182 /* Enable TX DMA */
1183 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1184 bus_space_write_4(t, h, GEM_TX_CONFIG,
1185 v | GEM_TX_CONFIG_TXDMA_EN |
1186 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1187 GEM_TX_CONFIG_TXFIFO_TH));
1188 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1189
1190 /* step 10. ERX Configuration */
1191 gem_rx_common(sc);
1192
1193 /* step 11. Configure Media */
1194 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1195 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1196 goto out;
1197
1198 /* step 12. RX_MAC Configuration Register */
1199 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1200 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1201 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1202
1203 /* step 14. Issue Transmit Pending command */
1204
1205 /* Call MI initialization function if any */
1206 if (sc->sc_hwinit)
1207 (*sc->sc_hwinit)(sc);
1208
1209
1210 /* step 15. Give the reciever a swift kick */
1211 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1212
1213 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1214 /* Configure PCS */
1215 gem_pcs_start(sc);
1216 else
1217 /* Start the one second timer. */
1218 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1219
1220 sc->sc_flags &= ~GEM_LINK;
1221 ifp->if_flags |= IFF_RUNNING;
1222 ifp->if_flags &= ~IFF_OACTIVE;
1223 ifp->if_timer = 0;
1224 sc->sc_if_flags = ifp->if_flags;
1225 out:
1226 splx(s);
1227
1228 return (0);
1229 }
1230
1231 void
1232 gem_init_regs(struct gem_softc *sc)
1233 {
1234 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1235 bus_space_tag_t t = sc->sc_bustag;
1236 bus_space_handle_t h = sc->sc_h1;
1237 const u_char *laddr = CLLADDR(ifp->if_sadl);
1238 u_int32_t v;
1239
1240 /* These regs are not cleared on reset */
1241 if (!sc->sc_inited) {
1242
1243 /* Load recommended values */
1244 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1245 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1246 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1247
1248 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1249 /* Max frame and max burst size */
1250 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1251 ETHER_MAX_LEN | (0x2000<<16));
1252
1253 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1254 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1255 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1256 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1257 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1258 ((laddr[5]<<8)|laddr[4])&0x3ff);
1259
1260 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1261 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1262 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1263 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1264
1265 /* MAC control addr set to 01:80:c2:00:00:01 */
1266 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1267 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1268 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1269
1270 /* MAC filter addr set to 0:0:0:0:0:0 */
1271 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1272 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1273 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1274
1275 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1276 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1277
1278 sc->sc_inited = 1;
1279 }
1280
1281 /* Counters need to be zeroed */
1282 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1283 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1284 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1285 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1286 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1287 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1288 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1289 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1290 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1291 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1292 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1293
1294 /* Set XOFF PAUSE time. */
1295 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1296
1297 /*
1298 * Set the internal arbitration to "infinite" bursts of the
1299 * maximum length of 31 * 64 bytes so DMA transfers aren't
1300 * split up in cache line size chunks. This greatly improves
1301 * especially RX performance.
1302 * Enable silicon bug workarounds for the Apple variants.
1303 */
1304 bus_space_write_4(t, h, GEM_CONFIG,
1305 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1306 ((sc->sc_flags & GEM_PCI) ?
1307 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1308 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1309
1310 /*
1311 * Set the station address.
1312 */
1313 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1314 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1315 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1316
1317 /*
1318 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1319 */
1320 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1321 v = GEM_MAC_XIF_TX_MII_ENA;
1322 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1323 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1324 v |= GEM_MAC_XIF_FDPLX_LED;
1325 if (sc->sc_flags & GEM_GIGABIT)
1326 v |= GEM_MAC_XIF_GMII_MODE;
1327 }
1328 } else {
1329 v |= GEM_MAC_XIF_GMII_MODE;
1330 }
1331 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1332 }
1333
1334 #ifdef GEM_DEBUG
1335 static void
1336 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1337 {
1338 int i;
1339
1340 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1341 printf("descriptor %d:\t", i);
1342 printf("gd_flags: 0x%016" PRIx64 "\t",
1343 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1344 printf("gd_addr: 0x%016" PRIx64 "\n",
1345 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1346 if (i == lastdesc)
1347 break;
1348 }
1349 }
1350 #endif
1351
1352 static void
1353 gem_start(struct ifnet *ifp)
1354 {
1355 struct gem_softc *sc = ifp->if_softc;
1356 struct mbuf *m0, *m;
1357 struct gem_txsoft *txs;
1358 bus_dmamap_t dmamap;
1359 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1360 uint64_t flags = 0;
1361
1362 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1363 return;
1364
1365 /*
1366 * Remember the previous number of free descriptors and
1367 * the first descriptor we'll use.
1368 */
1369 ofree = sc->sc_txfree;
1370 firsttx = sc->sc_txnext;
1371
1372 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1373 device_xname(sc->sc_dev), ofree, firsttx));
1374
1375 /*
1376 * Loop through the send queue, setting up transmit descriptors
1377 * until we drain the queue, or use up all available transmit
1378 * descriptors.
1379 */
1380 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1381 sc->sc_txfree != 0) {
1382 /*
1383 * Grab a packet off the queue.
1384 */
1385 IFQ_POLL(&ifp->if_snd, m0);
1386 if (m0 == NULL)
1387 break;
1388 m = NULL;
1389
1390 dmamap = txs->txs_dmamap;
1391
1392 /*
1393 * Load the DMA map. If this fails, the packet either
1394 * didn't fit in the alloted number of segments, or we were
1395 * short on resources. In this case, we'll copy and try
1396 * again.
1397 */
1398 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1399 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1400 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1401 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1402 if (m0->m_pkthdr.len > MCLBYTES) {
1403 aprint_error_dev(sc->sc_dev,
1404 "unable to allocate jumbo Tx cluster\n");
1405 IFQ_DEQUEUE(&ifp->if_snd, m0);
1406 m_freem(m0);
1407 continue;
1408 }
1409 MGETHDR(m, M_DONTWAIT, MT_DATA);
1410 if (m == NULL) {
1411 aprint_error_dev(sc->sc_dev,
1412 "unable to allocate Tx mbuf\n");
1413 break;
1414 }
1415 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1416 if (m0->m_pkthdr.len > MHLEN) {
1417 MCLGET(m, M_DONTWAIT);
1418 if ((m->m_flags & M_EXT) == 0) {
1419 aprint_error_dev(sc->sc_dev,
1420 "unable to allocate Tx cluster\n");
1421 m_freem(m);
1422 break;
1423 }
1424 }
1425 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1426 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1427 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1428 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1429 if (error) {
1430 aprint_error_dev(sc->sc_dev,
1431 "unable to load Tx buffer, error = %d\n",
1432 error);
1433 break;
1434 }
1435 }
1436
1437 /*
1438 * Ensure we have enough descriptors free to describe
1439 * the packet.
1440 */
1441 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1442 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1443 /*
1444 * Not enough free descriptors to transmit this
1445 * packet. We haven't committed to anything yet,
1446 * so just unload the DMA map, put the packet
1447 * back on the queue, and punt. Notify the upper
1448 * layer that there are no more slots left.
1449 *
1450 * XXX We could allocate an mbuf and copy, but
1451 * XXX it is worth it?
1452 */
1453 ifp->if_flags |= IFF_OACTIVE;
1454 sc->sc_if_flags = ifp->if_flags;
1455 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1456 if (m != NULL)
1457 m_freem(m);
1458 break;
1459 }
1460
1461 IFQ_DEQUEUE(&ifp->if_snd, m0);
1462 if (m != NULL) {
1463 m_freem(m0);
1464 m0 = m;
1465 }
1466
1467 /*
1468 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1469 */
1470
1471 /* Sync the DMA map. */
1472 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1473 BUS_DMASYNC_PREWRITE);
1474
1475 /*
1476 * Initialize the transmit descriptors.
1477 */
1478 for (nexttx = sc->sc_txnext, seg = 0;
1479 seg < dmamap->dm_nsegs;
1480 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1481
1482 /*
1483 * If this is the first descriptor we're
1484 * enqueueing, set the start of packet flag,
1485 * and the checksum stuff if we want the hardware
1486 * to do it.
1487 */
1488 sc->sc_txdescs[nexttx].gd_addr =
1489 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1490 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1491 if (nexttx == firsttx) {
1492 flags |= GEM_TD_START_OF_PACKET;
1493 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1494 sc->sc_txwin = 0;
1495 flags |= GEM_TD_INTERRUPT_ME;
1496 }
1497
1498 #ifdef INET
1499 /* h/w checksum */
1500 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1501 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1502 struct ether_header *eh;
1503 uint16_t offset, start;
1504
1505 eh = mtod(m0, struct ether_header *);
1506 switch (ntohs(eh->ether_type)) {
1507 case ETHERTYPE_IP:
1508 start = ETHER_HDR_LEN;
1509 break;
1510 case ETHERTYPE_VLAN:
1511 start = ETHER_HDR_LEN +
1512 ETHER_VLAN_ENCAP_LEN;
1513 break;
1514 default:
1515 /* unsupported, drop it */
1516 m_free(m0);
1517 continue;
1518 }
1519 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1520 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1521 flags |= (start <<
1522 GEM_TD_CXSUM_STARTSHFT) |
1523 (offset <<
1524 GEM_TD_CXSUM_STUFFSHFT) |
1525 GEM_TD_CXSUM_ENABLE;
1526 }
1527 #endif
1528 }
1529 if (seg == dmamap->dm_nsegs - 1) {
1530 flags |= GEM_TD_END_OF_PACKET;
1531 } else {
1532 /* last flag set outside of loop */
1533 sc->sc_txdescs[nexttx].gd_flags =
1534 GEM_DMA_WRITE(sc, flags);
1535 }
1536 lasttx = nexttx;
1537 }
1538 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1539 /* add padding buffer at end of chain */
1540 flags &= ~GEM_TD_END_OF_PACKET;
1541 sc->sc_txdescs[lasttx].gd_flags =
1542 GEM_DMA_WRITE(sc, flags);
1543
1544 sc->sc_txdescs[nexttx].gd_addr =
1545 GEM_DMA_WRITE(sc,
1546 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1547 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1548 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1549 lasttx = nexttx;
1550 nexttx = GEM_NEXTTX(nexttx);
1551 seg++;
1552 }
1553 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1554
1555 KASSERT(lasttx != -1);
1556
1557 /*
1558 * Store a pointer to the packet so we can free it later,
1559 * and remember what txdirty will be once the packet is
1560 * done.
1561 */
1562 txs->txs_mbuf = m0;
1563 txs->txs_firstdesc = sc->sc_txnext;
1564 txs->txs_lastdesc = lasttx;
1565 txs->txs_ndescs = seg;
1566
1567 #ifdef GEM_DEBUG
1568 if (ifp->if_flags & IFF_DEBUG) {
1569 printf(" gem_start %p transmit chain:\n", txs);
1570 gem_txsoft_print(sc, txs->txs_firstdesc,
1571 txs->txs_lastdesc);
1572 }
1573 #endif
1574
1575 /* Sync the descriptors we're using. */
1576 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1577 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1578
1579 /* Advance the tx pointer. */
1580 sc->sc_txfree -= txs->txs_ndescs;
1581 sc->sc_txnext = nexttx;
1582
1583 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1584 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1585
1586 /*
1587 * Pass the packet to any BPF listeners.
1588 */
1589 bpf_mtap(ifp, m0);
1590 }
1591
1592 if (txs == NULL || sc->sc_txfree == 0) {
1593 /* No more slots left; notify upper layer. */
1594 ifp->if_flags |= IFF_OACTIVE;
1595 sc->sc_if_flags = ifp->if_flags;
1596 }
1597
1598 if (sc->sc_txfree != ofree) {
1599 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1600 device_xname(sc->sc_dev), lasttx, firsttx));
1601 /*
1602 * The entire packet chain is set up.
1603 * Kick the transmitter.
1604 */
1605 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1606 device_xname(sc->sc_dev), nexttx));
1607 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1608 sc->sc_txnext);
1609
1610 /* Set a watchdog timer in case the chip flakes out. */
1611 ifp->if_timer = 5;
1612 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1613 device_xname(sc->sc_dev), ifp->if_timer));
1614 }
1615 }
1616
1617 /*
1618 * Transmit interrupt.
1619 */
1620 int
1621 gem_tint(struct gem_softc *sc)
1622 {
1623 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1624 bus_space_tag_t t = sc->sc_bustag;
1625 bus_space_handle_t mac = sc->sc_h1;
1626 struct gem_txsoft *txs;
1627 int txlast;
1628 int progress = 0;
1629 u_int32_t v;
1630
1631 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1632
1633 /* Unload collision counters ... */
1634 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1635 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1636 ifp->if_collisions += v +
1637 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1638 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1639 ifp->if_oerrors += v;
1640
1641 /* ... then clear the hardware counters. */
1642 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1643 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1644 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1645 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1646
1647 /*
1648 * Go through our Tx list and free mbufs for those
1649 * frames that have been transmitted.
1650 */
1651 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1652 /*
1653 * In theory, we could harvest some descriptors before
1654 * the ring is empty, but that's a bit complicated.
1655 *
1656 * GEM_TX_COMPLETION points to the last descriptor
1657 * processed +1.
1658 *
1659 * Let's assume that the NIC writes back to the Tx
1660 * descriptors before it updates the completion
1661 * register. If the NIC has posted writes to the
1662 * Tx descriptors, PCI ordering requires that the
1663 * posted writes flush to RAM before the register-read
1664 * finishes. So let's read the completion register,
1665 * before syncing the descriptors, so that we
1666 * examine Tx descriptors that are at least as
1667 * current as the completion register.
1668 */
1669 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1670 DPRINTF(sc,
1671 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1672 txs->txs_lastdesc, txlast));
1673 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1674 if (txlast >= txs->txs_firstdesc &&
1675 txlast <= txs->txs_lastdesc)
1676 break;
1677 } else if (txlast >= txs->txs_firstdesc ||
1678 txlast <= txs->txs_lastdesc)
1679 break;
1680
1681 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1682 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1683
1684 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1685 if (ifp->if_flags & IFF_DEBUG) {
1686 printf(" txsoft %p transmit chain:\n", txs);
1687 gem_txsoft_print(sc, txs->txs_firstdesc,
1688 txs->txs_lastdesc);
1689 }
1690 #endif
1691
1692
1693 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1694 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1695
1696 sc->sc_txfree += txs->txs_ndescs;
1697
1698 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1699 0, txs->txs_dmamap->dm_mapsize,
1700 BUS_DMASYNC_POSTWRITE);
1701 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1702 if (txs->txs_mbuf != NULL) {
1703 m_freem(txs->txs_mbuf);
1704 txs->txs_mbuf = NULL;
1705 }
1706
1707 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1708
1709 ifp->if_opackets++;
1710 progress = 1;
1711 }
1712
1713 #if 0
1714 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1715 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1716 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1717 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1718 GEM_TX_DATA_PTR_HI) << 32) |
1719 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1720 GEM_TX_DATA_PTR_LO),
1721 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1722 #endif
1723
1724 if (progress) {
1725 if (sc->sc_txfree == GEM_NTXDESC - 1)
1726 sc->sc_txwin = 0;
1727
1728 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1729 ifp->if_flags &= ~IFF_OACTIVE;
1730 sc->sc_if_flags = ifp->if_flags;
1731 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1732 gem_start(ifp);
1733 }
1734 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1735 device_xname(sc->sc_dev), ifp->if_timer));
1736
1737 return (1);
1738 }
1739
1740 /*
1741 * Receive interrupt.
1742 */
1743 int
1744 gem_rint(struct gem_softc *sc)
1745 {
1746 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1747 bus_space_tag_t t = sc->sc_bustag;
1748 bus_space_handle_t h = sc->sc_h1;
1749 struct gem_rxsoft *rxs;
1750 struct mbuf *m;
1751 u_int64_t rxstat;
1752 u_int32_t rxcomp;
1753 int i, len, progress = 0;
1754
1755 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1756
1757 /*
1758 * Ignore spurious interrupt that sometimes occurs before
1759 * we are set up when we network boot.
1760 */
1761 if (!sc->sc_meminited)
1762 return 1;
1763
1764 /*
1765 * Read the completion register once. This limits
1766 * how long the following loop can execute.
1767 */
1768 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1769
1770 /*
1771 * XXX Read the lastrx only once at the top for speed.
1772 */
1773 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1774 sc->sc_rxptr, rxcomp));
1775
1776 /*
1777 * Go into the loop at least once.
1778 */
1779 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1780 i = GEM_NEXTRX(i)) {
1781 rxs = &sc->sc_rxsoft[i];
1782
1783 GEM_CDRXSYNC(sc, i,
1784 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1785
1786 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1787
1788 if (rxstat & GEM_RD_OWN) {
1789 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1790 /*
1791 * We have processed all of the receive buffers.
1792 */
1793 break;
1794 }
1795
1796 progress++;
1797 ifp->if_ipackets++;
1798
1799 if (rxstat & GEM_RD_BAD_CRC) {
1800 ifp->if_ierrors++;
1801 aprint_error_dev(sc->sc_dev,
1802 "receive error: CRC error\n");
1803 GEM_INIT_RXDESC(sc, i);
1804 continue;
1805 }
1806
1807 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1808 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1809 #ifdef GEM_DEBUG
1810 if (ifp->if_flags & IFF_DEBUG) {
1811 printf(" rxsoft %p descriptor %d: ", rxs, i);
1812 printf("gd_flags: 0x%016llx\t", (long long)
1813 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1814 printf("gd_addr: 0x%016llx\n", (long long)
1815 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1816 }
1817 #endif
1818
1819 /* No errors; receive the packet. */
1820 len = GEM_RD_BUFLEN(rxstat);
1821
1822 /*
1823 * Allocate a new mbuf cluster. If that fails, we are
1824 * out of memory, and must drop the packet and recycle
1825 * the buffer that's already attached to this descriptor.
1826 */
1827 m = rxs->rxs_mbuf;
1828 if (gem_add_rxbuf(sc, i) != 0) {
1829 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1830 ifp->if_ierrors++;
1831 GEM_INIT_RXDESC(sc, i);
1832 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1833 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1834 continue;
1835 }
1836 m->m_data += 2; /* We're already off by two */
1837
1838 m->m_pkthdr.rcvif = ifp;
1839 m->m_pkthdr.len = m->m_len = len;
1840
1841 /*
1842 * Pass this up to any BPF listeners, but only
1843 * pass it up the stack if it's for us.
1844 */
1845 bpf_mtap(ifp, m);
1846
1847 #ifdef INET
1848 /* hardware checksum */
1849 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1850 struct ether_header *eh;
1851 struct ip *ip;
1852 int32_t hlen, pktlen;
1853
1854 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1855 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1856 ETHER_VLAN_ENCAP_LEN;
1857 eh = (struct ether_header *) (mtod(m, char *) +
1858 ETHER_VLAN_ENCAP_LEN);
1859 } else {
1860 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1861 eh = mtod(m, struct ether_header *);
1862 }
1863 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1864 goto swcsum;
1865 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1866
1867 /* IPv4 only */
1868 if (ip->ip_v != IPVERSION)
1869 goto swcsum;
1870
1871 hlen = ip->ip_hl << 2;
1872 if (hlen < sizeof(struct ip))
1873 goto swcsum;
1874
1875 /*
1876 * bail if too short, has random trailing garbage,
1877 * truncated, fragment, or has ethernet pad.
1878 */
1879 if ((ntohs(ip->ip_len) < hlen) ||
1880 (ntohs(ip->ip_len) != pktlen) ||
1881 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1882 goto swcsum;
1883
1884 switch (ip->ip_p) {
1885 case IPPROTO_TCP:
1886 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1887 goto swcsum;
1888 if (pktlen < (hlen + sizeof(struct tcphdr)))
1889 goto swcsum;
1890 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1891 break;
1892 case IPPROTO_UDP:
1893 /* FALLTHROUGH */
1894 default:
1895 goto swcsum;
1896 }
1897
1898 /* the uncomplemented sum is expected */
1899 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1900
1901 /* if the pkt had ip options, we have to deduct them */
1902 if (hlen > sizeof(struct ip)) {
1903 uint16_t *opts;
1904 uint32_t optsum, temp;
1905
1906 optsum = 0;
1907 temp = hlen - sizeof(struct ip);
1908 opts = (uint16_t *) ((char *) ip +
1909 sizeof(struct ip));
1910
1911 while (temp > 1) {
1912 optsum += ntohs(*opts++);
1913 temp -= 2;
1914 }
1915 while (optsum >> 16)
1916 optsum = (optsum >> 16) +
1917 (optsum & 0xffff);
1918
1919 /* Deduct ip opts sum from hwsum. */
1920 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1921
1922 while (m->m_pkthdr.csum_data >> 16)
1923 m->m_pkthdr.csum_data =
1924 (m->m_pkthdr.csum_data >> 16) +
1925 (m->m_pkthdr.csum_data &
1926 0xffff);
1927 }
1928
1929 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1930 M_CSUM_NO_PSEUDOHDR;
1931 } else
1932 swcsum:
1933 m->m_pkthdr.csum_flags = 0;
1934 #endif
1935 /* Pass it on. */
1936 (*ifp->if_input)(ifp, m);
1937 }
1938
1939 if (progress) {
1940 /* Update the receive pointer. */
1941 if (i == sc->sc_rxptr) {
1942 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1943 #ifdef GEM_DEBUG
1944 if (ifp->if_flags & IFF_DEBUG)
1945 printf("%s: rint: ring wrap\n",
1946 device_xname(sc->sc_dev));
1947 #endif
1948 }
1949 sc->sc_rxptr = i;
1950 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1951 }
1952 #ifdef GEM_COUNTERS
1953 if (progress <= 4) {
1954 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1955 } else if (progress < 32) {
1956 if (progress < 16)
1957 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1958 else
1959 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1960
1961 } else {
1962 if (progress < 64)
1963 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1964 else
1965 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1966 }
1967 #endif
1968
1969 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1970 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1971
1972 /* Read error counters ... */
1973 ifp->if_ierrors +=
1974 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1975 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1976 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1977 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1978
1979 /* ... then clear the hardware counters. */
1980 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1981 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1982 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1983 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1984
1985 return (1);
1986 }
1987
1988
1989 /*
1990 * gem_add_rxbuf:
1991 *
1992 * Add a receive buffer to the indicated descriptor.
1993 */
1994 int
1995 gem_add_rxbuf(struct gem_softc *sc, int idx)
1996 {
1997 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1998 struct mbuf *m;
1999 int error;
2000
2001 MGETHDR(m, M_DONTWAIT, MT_DATA);
2002 if (m == NULL)
2003 return (ENOBUFS);
2004
2005 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2006 MCLGET(m, M_DONTWAIT);
2007 if ((m->m_flags & M_EXT) == 0) {
2008 m_freem(m);
2009 return (ENOBUFS);
2010 }
2011
2012 #ifdef GEM_DEBUG
2013 /* bzero the packet to check DMA */
2014 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2015 #endif
2016
2017 if (rxs->rxs_mbuf != NULL)
2018 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2019
2020 rxs->rxs_mbuf = m;
2021
2022 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2023 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2024 BUS_DMA_READ|BUS_DMA_NOWAIT);
2025 if (error) {
2026 aprint_error_dev(sc->sc_dev,
2027 "can't load rx DMA map %d, error = %d\n", idx, error);
2028 panic("gem_add_rxbuf"); /* XXX */
2029 }
2030
2031 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2032 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2033
2034 GEM_INIT_RXDESC(sc, idx);
2035
2036 return (0);
2037 }
2038
2039
2040 int
2041 gem_eint(struct gem_softc *sc, u_int status)
2042 {
2043 char bits[128];
2044 u_int32_t r, v;
2045
2046 if ((status & GEM_INTR_MIF) != 0) {
2047 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2048 return (1);
2049 }
2050
2051 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2052 gem_reset_rxdma(sc);
2053 return (1);
2054 }
2055
2056 if (status & GEM_INTR_BERR) {
2057 if (sc->sc_flags & GEM_PCI)
2058 r = GEM_ERROR_STATUS;
2059 else
2060 r = GEM_SBUS_ERROR_STATUS;
2061 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2062 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2063 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2064 v);
2065 return (1);
2066 }
2067 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2068 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2069
2070 return (1);
2071 }
2072
2073
2074 /*
2075 * PCS interrupts.
2076 * We should receive these when the link status changes, but sometimes
2077 * we don't receive them for link up. We compensate for this in the
2078 * gem_tick() callout.
2079 */
2080 int
2081 gem_pint(struct gem_softc *sc)
2082 {
2083 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2084 bus_space_tag_t t = sc->sc_bustag;
2085 bus_space_handle_t h = sc->sc_h1;
2086 u_int32_t v, v2;
2087
2088 /*
2089 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2090 * latched, so we have to read it twice. There is only one bit in
2091 * use, so the value is meaningless.
2092 */
2093 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2094 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2095
2096 if ((ifp->if_flags & IFF_UP) == 0)
2097 return 1;
2098
2099 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2100 return 1;
2101
2102 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2103 /* If we see remote fault, our link partner is probably going away */
2104 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2105 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2106 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2107 /* Otherwise, we may need to wait after auto-negotiation completes */
2108 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2109 GEM_MII_STATUS_ANEG_CPT) {
2110 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2111 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2112 }
2113 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2114 if (sc->sc_flags & GEM_LINK) {
2115 return 1;
2116 }
2117 callout_stop(&sc->sc_tick_ch);
2118 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2119 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2120 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2121 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2122 v &= v2;
2123 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2124 sc->sc_mii.mii_media_active |= IFM_FDX;
2125 #ifdef GEM_DEBUG
2126 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2127 #endif
2128 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2129 sc->sc_mii.mii_media_active |= IFM_HDX;
2130 #ifdef GEM_DEBUG
2131 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2132 #endif
2133 } else {
2134 #ifdef GEM_DEBUG
2135 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2136 #endif
2137 }
2138 gem_statuschange(sc);
2139 } else {
2140 if ((sc->sc_flags & GEM_LINK) == 0) {
2141 return 1;
2142 }
2143 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2144 sc->sc_mii.mii_media_status = IFM_AVALID;
2145 #ifdef GEM_DEBUG
2146 aprint_debug_dev(sc->sc_dev, "link down\n");
2147 #endif
2148 gem_statuschange(sc);
2149
2150 /* Start the 10 second timer */
2151 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2152 }
2153 return 1;
2154 }
2155
2156
2157
2158 int
2159 gem_intr(void *v)
2160 {
2161 struct gem_softc *sc = v;
2162 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2163 bus_space_tag_t t = sc->sc_bustag;
2164 bus_space_handle_t h = sc->sc_h1;
2165 u_int32_t status;
2166 int r = 0;
2167 #ifdef GEM_DEBUG
2168 char bits[128];
2169 #endif
2170
2171 /* XXX We should probably mask out interrupts until we're done */
2172
2173 sc->sc_ev_intr.ev_count++;
2174
2175 status = bus_space_read_4(t, h, GEM_STATUS);
2176 #ifdef GEM_DEBUG
2177 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2178 #endif
2179 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2180 device_xname(sc->sc_dev), (status >> 19), bits));
2181
2182
2183 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2184 r |= gem_eint(sc, status);
2185
2186 /* We don't bother with GEM_INTR_TX_DONE */
2187 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2188 GEM_COUNTER_INCR(sc, sc_ev_txint);
2189 r |= gem_tint(sc);
2190 }
2191
2192 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2193 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2194 r |= gem_rint(sc);
2195 }
2196
2197 /* We should eventually do more than just print out error stats. */
2198 if (status & GEM_INTR_TX_MAC) {
2199 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2200 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2201 printf("%s: MAC tx fault, status %x\n",
2202 device_xname(sc->sc_dev), txstat);
2203 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2204 gem_init(ifp);
2205 }
2206 if (status & GEM_INTR_RX_MAC) {
2207 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2208 /*
2209 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2210 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2211 * silicon bug so handle them silently. Moreover, it's
2212 * likely that the receiver has hung so we reset it.
2213 */
2214 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2215 ifp->if_ierrors++;
2216 gem_reset_rxdma(sc);
2217 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2218 printf("%s: MAC rx fault, status 0x%02x\n",
2219 device_xname(sc->sc_dev), rxstat);
2220 }
2221 if (status & GEM_INTR_PCS) {
2222 r |= gem_pint(sc);
2223 }
2224
2225 /* Do we need to do anything with these?
2226 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2227 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2228 if ((status2 & GEM_MAC_PAUSED) != 0)
2229 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2230 GEM_MAC_PAUSE_TIME(status2));
2231 if ((status2 & GEM_MAC_PAUSE) != 0)
2232 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2233 if ((status2 & GEM_MAC_RESUME) != 0)
2234 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2235 }
2236 if ((status & GEM_INTR_MIF) != 0)
2237 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2238 */
2239 #if NRND > 0
2240 rnd_add_uint32(&sc->rnd_source, status);
2241 #endif
2242 return (r);
2243 }
2244
2245
2246 void
2247 gem_watchdog(struct ifnet *ifp)
2248 {
2249 struct gem_softc *sc = ifp->if_softc;
2250
2251 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2252 "GEM_MAC_RX_CONFIG %x\n",
2253 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2254 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2255 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2256
2257 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2258 ++ifp->if_oerrors;
2259
2260 /* Try to get more packets going. */
2261 gem_start(ifp);
2262 }
2263
2264 /*
2265 * Initialize the MII Management Interface
2266 */
2267 void
2268 gem_mifinit(struct gem_softc *sc)
2269 {
2270 bus_space_tag_t t = sc->sc_bustag;
2271 bus_space_handle_t mif = sc->sc_h1;
2272
2273 /* Configure the MIF in frame mode */
2274 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2275 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2276 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2277 }
2278
2279 /*
2280 * MII interface
2281 *
2282 * The GEM MII interface supports at least three different operating modes:
2283 *
2284 * Bitbang mode is implemented using data, clock and output enable registers.
2285 *
2286 * Frame mode is implemented by loading a complete frame into the frame
2287 * register and polling the valid bit for completion.
2288 *
2289 * Polling mode uses the frame register but completion is indicated by
2290 * an interrupt.
2291 *
2292 */
2293 static int
2294 gem_mii_readreg(device_t self, int phy, int reg)
2295 {
2296 struct gem_softc *sc = device_private(self);
2297 bus_space_tag_t t = sc->sc_bustag;
2298 bus_space_handle_t mif = sc->sc_h1;
2299 int n;
2300 u_int32_t v;
2301
2302 #ifdef GEM_DEBUG1
2303 if (sc->sc_debug)
2304 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2305 #endif
2306
2307 /* Construct the frame command */
2308 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2309 GEM_MIF_FRAME_READ;
2310
2311 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2312 for (n = 0; n < 100; n++) {
2313 DELAY(1);
2314 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2315 if (v & GEM_MIF_FRAME_TA0)
2316 return (v & GEM_MIF_FRAME_DATA);
2317 }
2318
2319 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2320 return (0);
2321 }
2322
2323 static void
2324 gem_mii_writereg(device_t self, int phy, int reg, int val)
2325 {
2326 struct gem_softc *sc = device_private(self);
2327 bus_space_tag_t t = sc->sc_bustag;
2328 bus_space_handle_t mif = sc->sc_h1;
2329 int n;
2330 u_int32_t v;
2331
2332 #ifdef GEM_DEBUG1
2333 if (sc->sc_debug)
2334 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2335 phy, reg, val);
2336 #endif
2337
2338 /* Construct the frame command */
2339 v = GEM_MIF_FRAME_WRITE |
2340 (phy << GEM_MIF_PHY_SHIFT) |
2341 (reg << GEM_MIF_REG_SHIFT) |
2342 (val & GEM_MIF_FRAME_DATA);
2343
2344 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2345 for (n = 0; n < 100; n++) {
2346 DELAY(1);
2347 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2348 if (v & GEM_MIF_FRAME_TA0)
2349 return;
2350 }
2351
2352 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2353 }
2354
2355 static void
2356 gem_mii_statchg(device_t self)
2357 {
2358 struct gem_softc *sc = device_private(self);
2359 #ifdef GEM_DEBUG
2360 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2361 #endif
2362
2363 #ifdef GEM_DEBUG
2364 if (sc->sc_debug)
2365 printf("gem_mii_statchg: status change: phy = %d\n",
2366 sc->sc_phys[instance]);
2367 #endif
2368 gem_statuschange(sc);
2369 }
2370
2371 /*
2372 * Common status change for gem_mii_statchg() and gem_pint()
2373 */
2374 void
2375 gem_statuschange(struct gem_softc* sc)
2376 {
2377 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2378 bus_space_tag_t t = sc->sc_bustag;
2379 bus_space_handle_t mac = sc->sc_h1;
2380 int gigabit;
2381 u_int32_t rxcfg, txcfg, v;
2382
2383 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2384 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2385 sc->sc_flags |= GEM_LINK;
2386 else
2387 sc->sc_flags &= ~GEM_LINK;
2388
2389 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2390 gigabit = 1;
2391 else
2392 gigabit = 0;
2393
2394 /*
2395 * The configuration done here corresponds to the steps F) and
2396 * G) and as far as enabling of RX and TX MAC goes also step H)
2397 * of the initialization sequence outlined in section 3.2.1 of
2398 * the GEM Gigabit Ethernet ASIC Specification.
2399 */
2400
2401 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2402 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2403 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2404 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2405 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2406 else if (gigabit) {
2407 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2408 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2409 }
2410 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2411 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2412 BUS_SPACE_BARRIER_WRITE);
2413 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2414 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2415 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2416 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2417 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2418 BUS_SPACE_BARRIER_WRITE);
2419 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2420 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2421 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2422
2423 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2424 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2425 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2426
2427 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2428 gigabit != 0)
2429 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2430 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2431 else
2432 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2433 GEM_MAC_SLOT_TIME_NORMAL);
2434
2435 /* XIF Configuration */
2436 if (sc->sc_flags & GEM_LINK)
2437 v = GEM_MAC_XIF_LINK_LED;
2438 else
2439 v = 0;
2440 v |= GEM_MAC_XIF_TX_MII_ENA;
2441
2442 /* If an external transceiver is connected, enable its MII drivers */
2443 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2444 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2445 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2446 if (gigabit)
2447 v |= GEM_MAC_XIF_GMII_MODE;
2448 else
2449 v &= ~GEM_MAC_XIF_GMII_MODE;
2450 } else
2451 /* Internal MII needs buf enable */
2452 v |= GEM_MAC_XIF_MII_BUF_ENA;
2453 /* MII needs echo disable if half duplex. */
2454 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2455 /* turn on full duplex LED */
2456 v |= GEM_MAC_XIF_FDPLX_LED;
2457 else
2458 /* half duplex -- disable echo */
2459 v |= GEM_MAC_XIF_ECHO_DISABL;
2460 } else {
2461 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2462 v |= GEM_MAC_XIF_FDPLX_LED;
2463 v |= GEM_MAC_XIF_GMII_MODE;
2464 }
2465 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2466
2467 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2468 (sc->sc_flags & GEM_LINK) != 0) {
2469 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2470 txcfg | GEM_MAC_TX_ENABLE);
2471 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2472 rxcfg | GEM_MAC_RX_ENABLE);
2473 }
2474 }
2475
2476 int
2477 gem_ser_mediachange(struct ifnet *ifp)
2478 {
2479 struct gem_softc *sc = ifp->if_softc;
2480 u_int s, t;
2481
2482 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2483 return EINVAL;
2484
2485 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2486 if (s == IFM_AUTO) {
2487 if (sc->sc_mii_media != s) {
2488 #ifdef GEM_DEBUG
2489 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2490 #endif
2491 sc->sc_mii_media = s;
2492 if (ifp->if_flags & IFF_UP) {
2493 gem_pcs_stop(sc, 0);
2494 gem_pcs_start(sc);
2495 }
2496 }
2497 return 0;
2498 }
2499 if (s == IFM_1000_SX) {
2500 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2501 if (t == IFM_FDX || t == IFM_HDX) {
2502 if (sc->sc_mii_media != t) {
2503 sc->sc_mii_media = t;
2504 #ifdef GEM_DEBUG
2505 aprint_debug_dev(sc->sc_dev,
2506 "setting media to 1000baseSX-%s\n",
2507 t == IFM_FDX ? "FDX" : "HDX");
2508 #endif
2509 if (ifp->if_flags & IFF_UP) {
2510 gem_pcs_stop(sc, 0);
2511 gem_pcs_start(sc);
2512 }
2513 }
2514 return 0;
2515 }
2516 }
2517 return EINVAL;
2518 }
2519
2520 void
2521 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2522 {
2523 struct gem_softc *sc = ifp->if_softc;
2524
2525 if ((ifp->if_flags & IFF_UP) == 0)
2526 return;
2527 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2528 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2529 }
2530
2531 static int
2532 gem_ifflags_cb(struct ethercom *ec)
2533 {
2534 struct ifnet *ifp = &ec->ec_if;
2535 struct gem_softc *sc = ifp->if_softc;
2536 int change = ifp->if_flags ^ sc->sc_if_flags;
2537
2538 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2539 return ENETRESET;
2540 else if ((change & IFF_PROMISC) != 0)
2541 gem_setladrf(sc);
2542 return 0;
2543 }
2544
2545 /*
2546 * Process an ioctl request.
2547 */
2548 int
2549 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2550 {
2551 struct gem_softc *sc = ifp->if_softc;
2552 int s, error = 0;
2553
2554 s = splnet();
2555
2556 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2557 error = 0;
2558 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2559 ;
2560 else if (ifp->if_flags & IFF_RUNNING) {
2561 /*
2562 * Multicast list has changed; set the hardware filter
2563 * accordingly.
2564 */
2565 gem_setladrf(sc);
2566 }
2567 }
2568
2569 /* Try to get things going again */
2570 if (ifp->if_flags & IFF_UP)
2571 gem_start(ifp);
2572 splx(s);
2573 return (error);
2574 }
2575
2576 static void
2577 gem_inten(struct gem_softc *sc)
2578 {
2579 bus_space_tag_t t = sc->sc_bustag;
2580 bus_space_handle_t h = sc->sc_h1;
2581 uint32_t v;
2582
2583 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2584 v = GEM_INTR_PCS;
2585 else
2586 v = GEM_INTR_MIF;
2587 bus_space_write_4(t, h, GEM_INTMASK,
2588 ~(GEM_INTR_TX_INTME |
2589 GEM_INTR_TX_EMPTY |
2590 GEM_INTR_TX_MAC |
2591 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2592 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2593 GEM_INTR_BERR | v));
2594 }
2595
2596 bool
2597 gem_resume(device_t self, const pmf_qual_t *qual)
2598 {
2599 struct gem_softc *sc = device_private(self);
2600
2601 gem_inten(sc);
2602
2603 return true;
2604 }
2605
2606 bool
2607 gem_suspend(device_t self, const pmf_qual_t *qual)
2608 {
2609 struct gem_softc *sc = device_private(self);
2610 bus_space_tag_t t = sc->sc_bustag;
2611 bus_space_handle_t h = sc->sc_h1;
2612
2613 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2614
2615 return true;
2616 }
2617
2618 bool
2619 gem_shutdown(device_t self, int howto)
2620 {
2621 struct gem_softc *sc = device_private(self);
2622 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2623
2624 gem_stop(ifp, 1);
2625
2626 return true;
2627 }
2628
2629 /*
2630 * Set up the logical address filter.
2631 */
2632 void
2633 gem_setladrf(struct gem_softc *sc)
2634 {
2635 struct ethercom *ec = &sc->sc_ethercom;
2636 struct ifnet *ifp = &ec->ec_if;
2637 struct ether_multi *enm;
2638 struct ether_multistep step;
2639 bus_space_tag_t t = sc->sc_bustag;
2640 bus_space_handle_t h = sc->sc_h1;
2641 u_int32_t crc;
2642 u_int32_t hash[16];
2643 u_int32_t v;
2644 int i;
2645
2646 /* Get current RX configuration */
2647 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2648
2649 /*
2650 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2651 * and hash filter. Depending on the case, the right bit will be
2652 * enabled.
2653 */
2654 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2655 GEM_MAC_RX_PROMISC_GRP);
2656
2657 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2658 /* Turn on promiscuous mode */
2659 v |= GEM_MAC_RX_PROMISCUOUS;
2660 ifp->if_flags |= IFF_ALLMULTI;
2661 goto chipit;
2662 }
2663
2664 /*
2665 * Set up multicast address filter by passing all multicast addresses
2666 * through a crc generator, and then using the high order 8 bits as an
2667 * index into the 256 bit logical address filter. The high order 4
2668 * bits selects the word, while the other 4 bits select the bit within
2669 * the word (where bit 0 is the MSB).
2670 */
2671
2672 /* Clear hash table */
2673 memset(hash, 0, sizeof(hash));
2674
2675 ETHER_FIRST_MULTI(step, ec, enm);
2676 while (enm != NULL) {
2677 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2678 /*
2679 * We must listen to a range of multicast addresses.
2680 * For now, just accept all multicasts, rather than
2681 * trying to set only those filter bits needed to match
2682 * the range. (At this time, the only use of address
2683 * ranges is for IP multicast routing, for which the
2684 * range is big enough to require all bits set.)
2685 * XXX should use the address filters for this
2686 */
2687 ifp->if_flags |= IFF_ALLMULTI;
2688 v |= GEM_MAC_RX_PROMISC_GRP;
2689 goto chipit;
2690 }
2691
2692 /* Get the LE CRC32 of the address */
2693 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2694
2695 /* Just want the 8 most significant bits. */
2696 crc >>= 24;
2697
2698 /* Set the corresponding bit in the filter. */
2699 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2700
2701 ETHER_NEXT_MULTI(step, enm);
2702 }
2703
2704 v |= GEM_MAC_RX_HASH_FILTER;
2705 ifp->if_flags &= ~IFF_ALLMULTI;
2706
2707 /* Now load the hash table into the chip (if we are using it) */
2708 for (i = 0; i < 16; i++) {
2709 bus_space_write_4(t, h,
2710 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2711 hash[i]);
2712 }
2713
2714 chipit:
2715 sc->sc_if_flags = ifp->if_flags;
2716 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2717 }
2718