1 1.110 riastrad /* $NetBSD: hme.c,v 1.110 2024/06/29 12:11:11 riastradh Exp $ */ 2 1.1 pk 3 1.1 pk /*- 4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 1.1 pk * All rights reserved. 6 1.1 pk * 7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation 8 1.1 pk * by Paul Kranenburg. 9 1.1 pk * 10 1.1 pk * Redistribution and use in source and binary forms, with or without 11 1.1 pk * modification, are permitted provided that the following conditions 12 1.1 pk * are met: 13 1.1 pk * 1. Redistributions of source code must retain the above copyright 14 1.1 pk * notice, this list of conditions and the following disclaimer. 15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 pk * notice, this list of conditions and the following disclaimer in the 17 1.1 pk * documentation and/or other materials provided with the distribution. 18 1.1 pk * 19 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 pk * POSSIBILITY OF SUCH DAMAGE. 30 1.1 pk */ 31 1.1 pk 32 1.1 pk /* 33 1.1 pk * HME Ethernet module driver. 34 1.1 pk */ 35 1.25 lukem 36 1.25 lukem #include <sys/cdefs.h> 37 1.110 riastrad __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.110 2024/06/29 12:11:11 riastradh Exp $"); 38 1.1 pk 39 1.39 petrov /* #define HMEDEBUG */ 40 1.1 pk 41 1.1 pk #include "opt_inet.h" 42 1.1 pk 43 1.1 pk #include <sys/param.h> 44 1.1 pk #include <sys/systm.h> 45 1.5 pk #include <sys/kernel.h> 46 1.42 heas #include <sys/mbuf.h> 47 1.1 pk #include <sys/syslog.h> 48 1.1 pk #include <sys/socket.h> 49 1.1 pk #include <sys/device.h> 50 1.1 pk #include <sys/malloc.h> 51 1.1 pk #include <sys/ioctl.h> 52 1.1 pk #include <sys/errno.h> 53 1.91 riastrad #include <sys/rndsource.h> 54 1.1 pk 55 1.1 pk #include <net/if.h> 56 1.1 pk #include <net/if_dl.h> 57 1.1 pk #include <net/if_ether.h> 58 1.1 pk #include <net/if_media.h> 59 1.98 msaitoh #include <net/bpf.h> 60 1.1 pk 61 1.1 pk #ifdef INET 62 1.74 tsutsui #include <net/if_vlanvar.h> 63 1.1 pk #include <netinet/in.h> 64 1.1 pk #include <netinet/if_inarp.h> 65 1.1 pk #include <netinet/in_systm.h> 66 1.1 pk #include <netinet/in_var.h> 67 1.1 pk #include <netinet/ip.h> 68 1.46 heas #include <netinet/tcp.h> 69 1.46 heas #include <netinet/udp.h> 70 1.1 pk #endif 71 1.1 pk 72 1.1 pk #include <dev/mii/mii.h> 73 1.1 pk #include <dev/mii/miivar.h> 74 1.1 pk 75 1.60 ad #include <sys/bus.h> 76 1.1 pk 77 1.1 pk #include <dev/ic/hmereg.h> 78 1.1 pk #include <dev/ic/hmevar.h> 79 1.1 pk 80 1.81 tsutsui static void hme_start(struct ifnet *); 81 1.81 tsutsui static void hme_stop(struct ifnet *, int); 82 1.81 tsutsui static int hme_ioctl(struct ifnet *, u_long, void *); 83 1.81 tsutsui static void hme_tick(void *); 84 1.81 tsutsui static void hme_watchdog(struct ifnet *); 85 1.81 tsutsui static bool hme_shutdown(device_t, int); 86 1.84 jakllsch static int hme_init(struct ifnet *); 87 1.81 tsutsui static void hme_meminit(struct hme_softc *); 88 1.81 tsutsui static void hme_mifinit(struct hme_softc *); 89 1.103 msaitoh static void hme_reset(struct hme_softc *); 90 1.81 tsutsui static void hme_chipreset(struct hme_softc *); 91 1.81 tsutsui static void hme_setladrf(struct hme_softc *); 92 1.1 pk 93 1.1 pk /* MII methods & callbacks */ 94 1.101 msaitoh static int hme_mii_readreg(device_t, int, int, uint16_t *); 95 1.101 msaitoh static int hme_mii_writereg(device_t, int, int, uint16_t); 96 1.89 matt static void hme_mii_statchg(struct ifnet *); 97 1.44 perry 98 1.81 tsutsui static int hme_mediachange(struct ifnet *); 99 1.44 perry 100 1.81 tsutsui static struct mbuf *hme_get(struct hme_softc *, int, uint32_t); 101 1.81 tsutsui static int hme_put(struct hme_softc *, int, struct mbuf *); 102 1.81 tsutsui static void hme_read(struct hme_softc *, int, uint32_t); 103 1.81 tsutsui static int hme_eint(struct hme_softc *, u_int); 104 1.81 tsutsui static int hme_rint(struct hme_softc *); 105 1.81 tsutsui static int hme_tint(struct hme_softc *); 106 1.1 pk 107 1.81 tsutsui #if 0 108 1.28 tron /* Default buffer copy routines */ 109 1.81 tsutsui static void hme_copytobuf_contig(struct hme_softc *, void *, int, int); 110 1.81 tsutsui static void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int); 111 1.81 tsutsui #endif 112 1.28 tron 113 1.1 pk void 114 1.71 dsl hme_config(struct hme_softc *sc) 115 1.1 pk { 116 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if; 117 1.1 pk struct mii_data *mii = &sc->sc_mii; 118 1.5 pk struct mii_softc *child; 119 1.11 pk bus_dma_tag_t dmatag = sc->sc_dmatag; 120 1.1 pk bus_dma_segment_t seg; 121 1.1 pk bus_size_t size; 122 1.28 tron int rseg, error; 123 1.1 pk 124 1.1 pk /* 125 1.1 pk * HME common initialization. 126 1.1 pk * 127 1.1 pk * hme_softc fields that must be initialized by the front-end: 128 1.1 pk * 129 1.1 pk * the bus tag: 130 1.1 pk * sc_bustag 131 1.1 pk * 132 1.37 wiz * the DMA bus tag: 133 1.1 pk * sc_dmatag 134 1.1 pk * 135 1.1 pk * the bus handles: 136 1.1 pk * sc_seb (Shared Ethernet Block registers) 137 1.1 pk * sc_erx (Receiver Unit registers) 138 1.1 pk * sc_etx (Transmitter Unit registers) 139 1.1 pk * sc_mac (MAC registers) 140 1.36 wiz * sc_mif (Management Interface registers) 141 1.1 pk * 142 1.1 pk * the maximum bus burst size: 143 1.1 pk * sc_burst 144 1.1 pk * 145 1.28 tron * (notyet:DMA capable memory for the ring descriptors & packet buffers: 146 1.28 tron * rb_membase, rb_dmabase) 147 1.28 tron * 148 1.1 pk * the local Ethernet address: 149 1.1 pk * sc_enaddr 150 1.1 pk * 151 1.1 pk */ 152 1.1 pk 153 1.1 pk /* Make sure the chip is stopped. */ 154 1.80 tsutsui hme_chipreset(sc); 155 1.1 pk 156 1.28 tron /* 157 1.28 tron * Allocate descriptors and buffers 158 1.28 tron * XXX - do all this differently.. and more configurably, 159 1.28 tron * eg. use things as `dma_load_mbuf()' on transmit, 160 1.28 tron * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped 161 1.38 wiz * all the time) on the receiver side. 162 1.28 tron * 163 1.28 tron * Note: receive buffers must be 64-byte aligned. 164 1.28 tron * Also, apparently, the buffers must extend to a DMA burst 165 1.28 tron * boundary beyond the maximum packet size. 166 1.28 tron */ 167 1.28 tron #define _HME_NDESC 128 168 1.28 tron #define _HME_BUFSZ 1600 169 1.28 tron 170 1.28 tron /* Note: the # of descriptors must be a multiple of 16 */ 171 1.28 tron sc->sc_rb.rb_ntbuf = _HME_NDESC; 172 1.28 tron sc->sc_rb.rb_nrbuf = _HME_NDESC; 173 1.1 pk 174 1.1 pk /* 175 1.1 pk * Allocate DMA capable memory 176 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary; 177 1.1 pk * take this into account when calculating the size. Note that 178 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes, 179 1.28 tron * so we allocate that much regardless of _HME_NDESC. 180 1.1 pk */ 181 1.28 tron size = 2048 + /* TX descriptors */ 182 1.28 tron 2048 + /* RX descriptors */ 183 1.28 tron sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */ 184 1.46 heas sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */ 185 1.11 pk 186 1.11 pk /* Allocate DMA buffer */ 187 1.28 tron if ((error = bus_dmamem_alloc(dmatag, size, 188 1.28 tron 2048, 0, 189 1.28 tron &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 190 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n", 191 1.64 cegger error); 192 1.10 mrg return; 193 1.1 pk } 194 1.1 pk 195 1.11 pk /* Map DMA memory in CPU addressable space */ 196 1.11 pk if ((error = bus_dmamem_map(dmatag, &seg, rseg, size, 197 1.28 tron &sc->sc_rb.rb_membase, 198 1.103 msaitoh BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 199 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n", 200 1.64 cegger error); 201 1.109 rin goto bad_free; 202 1.1 pk } 203 1.13 mrg 204 1.13 mrg if ((error = bus_dmamap_create(dmatag, size, 1, size, 0, 205 1.28 tron BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 206 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA map create error %d\n", 207 1.64 cegger error); 208 1.109 rin goto bad_unmap; 209 1.13 mrg } 210 1.13 mrg 211 1.13 mrg /* Load the buffer */ 212 1.13 mrg if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap, 213 1.17 mrg sc->sc_rb.rb_membase, size, NULL, 214 1.103 msaitoh BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 215 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n", 216 1.64 cegger error); 217 1.109 rin goto bad_destroy; 218 1.13 mrg } 219 1.13 mrg sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr; 220 1.1 pk 221 1.79 tsutsui aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", 222 1.22 thorpej ether_sprintf(sc->sc_enaddr)); 223 1.2 pk 224 1.1 pk /* Initialize ifnet structure. */ 225 1.79 tsutsui strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 226 1.1 pk ifp->if_softc = sc; 227 1.1 pk ifp->if_start = hme_start; 228 1.80 tsutsui ifp->if_stop = hme_stop; 229 1.1 pk ifp->if_ioctl = hme_ioctl; 230 1.84 jakllsch ifp->if_init = hme_init; 231 1.1 pk ifp->if_watchdog = hme_watchdog; 232 1.102 msaitoh ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 233 1.41 heas sc->sc_if_flags = ifp->if_flags; 234 1.51 yamt ifp->if_capabilities |= 235 1.51 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 236 1.51 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 237 1.20 thorpej IFQ_SET_READY(&ifp->if_snd); 238 1.1 pk 239 1.1 pk /* Initialize ifmedia structures and MII info */ 240 1.1 pk mii->mii_ifp = ifp; 241 1.34 petrov mii->mii_readreg = hme_mii_readreg; 242 1.1 pk mii->mii_writereg = hme_mii_writereg; 243 1.1 pk mii->mii_statchg = hme_mii_statchg; 244 1.1 pk 245 1.61 dyoung sc->sc_ethercom.ec_mii = mii; 246 1.61 dyoung ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus); 247 1.1 pk 248 1.4 pk hme_mifinit(sc); 249 1.4 pk 250 1.79 tsutsui mii_attach(sc->sc_dev, mii, 0xffffffff, 251 1.88 jdc MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG); 252 1.2 pk 253 1.5 pk child = LIST_FIRST(&mii->mii_phys); 254 1.5 pk if (child == NULL) { 255 1.1 pk /* No PHY attached */ 256 1.103 msaitoh ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); 257 1.103 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL); 258 1.1 pk } else { 259 1.1 pk /* 260 1.5 pk * Walk along the list of attached MII devices and 261 1.5 pk * establish an `MII instance' to `phy number' 262 1.5 pk * mapping. We'll use this mapping in media change 263 1.5 pk * requests to determine which phy to use to program 264 1.5 pk * the MIF configuration register. 265 1.5 pk */ 266 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) { 267 1.5 pk /* 268 1.5 pk * Note: we support just two PHYs: the built-in 269 1.5 pk * internal device and an external on the MII 270 1.5 pk * connector. 271 1.5 pk */ 272 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) { 273 1.79 tsutsui aprint_error_dev(sc->sc_dev, 274 1.79 tsutsui "cannot accommodate MII device %s" 275 1.28 tron " at phy %d, instance %d\n", 276 1.66 xtraeme device_xname(child->mii_dev), 277 1.28 tron child->mii_phy, child->mii_inst); 278 1.5 pk continue; 279 1.5 pk } 280 1.5 pk 281 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy; 282 1.5 pk } 283 1.5 pk 284 1.5 pk /* 285 1.77 jdc * Set the default media to auto negotiation if the phy has 286 1.77 jdc * the auto negotiation capability. 287 1.77 jdc * XXX; What to do otherwise? 288 1.1 pk */ 289 1.103 msaitoh if (ifmedia_match(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0)) 290 1.103 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 291 1.77 jdc /* 292 1.77 jdc else 293 1.77 jdc ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia); 294 1.77 jdc */ 295 1.1 pk } 296 1.27 tron 297 1.28 tron /* claim 802.1q capability */ 298 1.27 tron sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 299 1.1 pk 300 1.1 pk /* Attach the interface. */ 301 1.1 pk if_attach(ifp); 302 1.96 ozaki if_deferred_start_init(ifp, NULL); 303 1.1 pk ether_ifattach(ifp, sc->sc_enaddr); 304 1.1 pk 305 1.80 tsutsui if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown)) 306 1.80 tsutsui pmf_class_network_register(sc->sc_dev, ifp); 307 1.80 tsutsui else 308 1.80 tsutsui aprint_error_dev(sc->sc_dev, 309 1.80 tsutsui "couldn't establish power handler\n"); 310 1.1 pk 311 1.79 tsutsui rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 312 1.90 tls RND_TYPE_NET, RND_FLAG_DEFAULT); 313 1.5 pk 314 1.57 ad callout_init(&sc->sc_tick_ch, 0); 315 1.107 thorpej callout_setfunc(&sc->sc_tick_ch, hme_tick, sc); 316 1.109 rin 317 1.109 rin return; 318 1.109 rin 319 1.109 rin bad_destroy: 320 1.109 rin bus_dmamap_destroy(dmatag, sc->sc_dmamap); 321 1.109 rin bad_unmap: 322 1.109 rin bus_dmamem_unmap(dmatag, sc->sc_rb.rb_membase, size); 323 1.109 rin bad_free: 324 1.109 rin bus_dmamem_free(dmatag, &seg, rseg); 325 1.5 pk } 326 1.5 pk 327 1.5 pk void 328 1.71 dsl hme_tick(void *arg) 329 1.5 pk { 330 1.5 pk struct hme_softc *sc = arg; 331 1.5 pk int s; 332 1.5 pk 333 1.5 pk s = splnet(); 334 1.5 pk mii_tick(&sc->sc_mii); 335 1.5 pk splx(s); 336 1.5 pk 337 1.107 thorpej callout_schedule(&sc->sc_tick_ch, hz); 338 1.1 pk } 339 1.1 pk 340 1.1 pk void 341 1.71 dsl hme_reset(struct hme_softc *sc) 342 1.1 pk { 343 1.1 pk int s; 344 1.1 pk 345 1.1 pk s = splnet(); 346 1.84 jakllsch (void)hme_init(&sc->sc_ethercom.ec_if); 347 1.1 pk splx(s); 348 1.1 pk } 349 1.1 pk 350 1.1 pk void 351 1.80 tsutsui hme_chipreset(struct hme_softc *sc) 352 1.1 pk { 353 1.1 pk bus_space_tag_t t = sc->sc_bustag; 354 1.1 pk bus_space_handle_t seb = sc->sc_seb; 355 1.1 pk int n; 356 1.1 pk 357 1.33 pk /* Mask all interrupts */ 358 1.33 pk bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff); 359 1.33 pk 360 1.1 pk /* Reset transmitter and receiver */ 361 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET, 362 1.28 tron (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)); 363 1.1 pk 364 1.1 pk for (n = 0; n < 20; n++) { 365 1.75 tsutsui uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET); 366 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0) 367 1.1 pk return; 368 1.1 pk DELAY(20); 369 1.1 pk } 370 1.1 pk 371 1.80 tsutsui printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__); 372 1.80 tsutsui } 373 1.80 tsutsui 374 1.80 tsutsui void 375 1.80 tsutsui hme_stop(struct ifnet *ifp, int disable) 376 1.80 tsutsui { 377 1.80 tsutsui struct hme_softc *sc; 378 1.80 tsutsui 379 1.80 tsutsui sc = ifp->if_softc; 380 1.80 tsutsui 381 1.80 tsutsui ifp->if_timer = 0; 382 1.80 tsutsui ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 383 1.80 tsutsui 384 1.80 tsutsui callout_stop(&sc->sc_tick_ch); 385 1.80 tsutsui mii_down(&sc->sc_mii); 386 1.80 tsutsui 387 1.80 tsutsui hme_chipreset(sc); 388 1.1 pk } 389 1.1 pk 390 1.1 pk void 391 1.71 dsl hme_meminit(struct hme_softc *sc) 392 1.1 pk { 393 1.28 tron bus_addr_t txbufdma, rxbufdma; 394 1.1 pk bus_addr_t dma; 395 1.56 christos char *p; 396 1.28 tron unsigned int ntbuf, nrbuf, i; 397 1.1 pk struct hme_ring *hr = &sc->sc_rb; 398 1.1 pk 399 1.1 pk p = hr->rb_membase; 400 1.1 pk dma = hr->rb_dmabase; 401 1.1 pk 402 1.28 tron ntbuf = hr->rb_ntbuf; 403 1.28 tron nrbuf = hr->rb_nrbuf; 404 1.28 tron 405 1.1 pk /* 406 1.1 pk * Allocate transmit descriptors 407 1.1 pk */ 408 1.1 pk hr->rb_txd = p; 409 1.1 pk hr->rb_txddma = dma; 410 1.28 tron p += ntbuf * HME_XD_SIZE; 411 1.28 tron dma += ntbuf * HME_XD_SIZE; 412 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/ 413 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048); 414 1.56 christos p = (void *)roundup((u_long)p, 2048); 415 1.1 pk 416 1.1 pk /* 417 1.1 pk * Allocate receive descriptors 418 1.1 pk */ 419 1.1 pk hr->rb_rxd = p; 420 1.1 pk hr->rb_rxddma = dma; 421 1.28 tron p += nrbuf * HME_XD_SIZE; 422 1.28 tron dma += nrbuf * HME_XD_SIZE; 423 1.4 pk /* Again move forward to the next 2048 byte boundary.*/ 424 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048); 425 1.56 christos p = (void *)roundup((u_long)p, 2048); 426 1.1 pk 427 1.28 tron 428 1.1 pk /* 429 1.28 tron * Allocate transmit buffers 430 1.1 pk */ 431 1.28 tron hr->rb_txbuf = p; 432 1.28 tron txbufdma = dma; 433 1.28 tron p += ntbuf * _HME_BUFSZ; 434 1.28 tron dma += ntbuf * _HME_BUFSZ; 435 1.28 tron 436 1.28 tron /* 437 1.28 tron * Allocate receive buffers 438 1.28 tron */ 439 1.28 tron hr->rb_rxbuf = p; 440 1.28 tron rxbufdma = dma; 441 1.28 tron p += nrbuf * _HME_BUFSZ; 442 1.28 tron dma += nrbuf * _HME_BUFSZ; 443 1.28 tron 444 1.28 tron /* 445 1.28 tron * Initialize transmit buffer descriptors 446 1.28 tron */ 447 1.28 tron for (i = 0; i < ntbuf; i++) { 448 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ); 449 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0); 450 1.1 pk } 451 1.1 pk 452 1.1 pk /* 453 1.28 tron * Initialize receive buffer descriptors 454 1.1 pk */ 455 1.28 tron for (i = 0; i < nrbuf; i++) { 456 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ); 457 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i, 458 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); 459 1.1 pk } 460 1.1 pk 461 1.28 tron hr->rb_tdhead = hr->rb_tdtail = 0; 462 1.28 tron hr->rb_td_nbusy = 0; 463 1.28 tron hr->rb_rdtail = 0; 464 1.1 pk } 465 1.1 pk 466 1.1 pk /* 467 1.1 pk * Initialization of interface; set up initialization block 468 1.1 pk * and transmit/receive descriptor rings. 469 1.1 pk */ 470 1.61 dyoung int 471 1.84 jakllsch hme_init(struct ifnet *ifp) 472 1.1 pk { 473 1.84 jakllsch struct hme_softc *sc = ifp->if_softc; 474 1.1 pk bus_space_tag_t t = sc->sc_bustag; 475 1.1 pk bus_space_handle_t seb = sc->sc_seb; 476 1.1 pk bus_space_handle_t etx = sc->sc_etx; 477 1.1 pk bus_space_handle_t erx = sc->sc_erx; 478 1.1 pk bus_space_handle_t mac = sc->sc_mac; 479 1.75 tsutsui uint8_t *ea; 480 1.75 tsutsui uint32_t v; 481 1.61 dyoung int rc; 482 1.1 pk 483 1.1 pk /* 484 1.1 pk * Initialization sequence. The numbered steps below correspond 485 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet 486 1.1 pk * Channel Engine manual (part of the PCIO manual). 487 1.1 pk * See also the STP2002-STQ document from Sun Microsystems. 488 1.1 pk */ 489 1.1 pk 490 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */ 491 1.80 tsutsui hme_stop(ifp, 0); 492 1.1 pk 493 1.4 pk /* Re-initialize the MIF */ 494 1.4 pk hme_mifinit(sc); 495 1.4 pk 496 1.1 pk /* Call MI reset function if any */ 497 1.1 pk if (sc->sc_hwreset) 498 1.1 pk (*sc->sc_hwreset)(sc); 499 1.1 pk 500 1.1 pk #if 0 501 1.1 pk /* Mask all MIF interrupts, just in case */ 502 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff); 503 1.1 pk #endif 504 1.1 pk 505 1.1 pk /* step 3. Setup data structures in host memory */ 506 1.1 pk hme_meminit(sc); 507 1.1 pk 508 1.1 pk /* step 4. TX MAC registers & counters */ 509 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); 510 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); 511 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); 512 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); 513 1.28 tron bus_space_write_4(t, mac, HME_MACI_TXSIZE, 514 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 515 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN); 516 1.45 heas sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable; 517 1.1 pk 518 1.1 pk /* Load station MAC address */ 519 1.1 pk ea = sc->sc_enaddr; 520 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]); 521 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]); 522 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]); 523 1.1 pk 524 1.1 pk /* 525 1.1 pk * Init seed for backoff 526 1.1 pk * (source suggested by manual: low 10 bits of MAC address) 527 1.42 heas */ 528 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff; 529 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v); 530 1.1 pk 531 1.1 pk 532 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */ 533 1.1 pk 534 1.1 pk 535 1.1 pk /* step 5. RX MAC registers & counters */ 536 1.1 pk hme_setladrf(sc); 537 1.1 pk 538 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */ 539 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma); 540 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf); 541 1.1 pk 542 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma); 543 1.28 tron bus_space_write_4(t, mac, HME_MACI_RXSIZE, 544 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 545 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN); 546 1.1 pk 547 1.1 pk /* step 8. Global Configuration & Interrupt Mask */ 548 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK, 549 1.28 tron ~( 550 1.28 tron /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/ 551 1.28 tron HME_SEB_STAT_HOSTTOTX | 552 1.28 tron HME_SEB_STAT_RXTOHOST | 553 1.28 tron HME_SEB_STAT_TXALL | 554 1.28 tron HME_SEB_STAT_TXPERR | 555 1.28 tron HME_SEB_STAT_RCNTEXP | 556 1.77 jdc HME_SEB_STAT_MIFIRQ | 557 1.28 tron HME_SEB_STAT_ALL_ERRORS )); 558 1.1 pk 559 1.1 pk switch (sc->sc_burst) { 560 1.1 pk default: 561 1.1 pk v = 0; 562 1.1 pk break; 563 1.1 pk case 16: 564 1.1 pk v = HME_SEB_CFG_BURST16; 565 1.1 pk break; 566 1.1 pk case 32: 567 1.1 pk v = HME_SEB_CFG_BURST32; 568 1.1 pk break; 569 1.1 pk case 64: 570 1.1 pk v = HME_SEB_CFG_BURST64; 571 1.1 pk break; 572 1.1 pk } 573 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v); 574 1.1 pk 575 1.1 pk /* step 9. ETX Configuration: use mostly default values */ 576 1.1 pk 577 1.1 pk /* Enable DMA */ 578 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG); 579 1.1 pk v |= HME_ETX_CFG_DMAENABLE; 580 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v); 581 1.1 pk 582 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */ 583 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1); 584 1.28 tron 585 1.1 pk 586 1.3 pk /* step 10. ERX Configuration */ 587 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG); 588 1.28 tron 589 1.28 tron /* Encode Receive Descriptor ring size: four possible values */ 590 1.28 tron switch (_HME_NDESC /*XXX*/) { 591 1.28 tron case 32: 592 1.28 tron v |= HME_ERX_CFG_RINGSIZE32; 593 1.28 tron break; 594 1.28 tron case 64: 595 1.28 tron v |= HME_ERX_CFG_RINGSIZE64; 596 1.28 tron break; 597 1.28 tron case 128: 598 1.28 tron v |= HME_ERX_CFG_RINGSIZE128; 599 1.28 tron break; 600 1.28 tron case 256: 601 1.28 tron v |= HME_ERX_CFG_RINGSIZE256; 602 1.28 tron break; 603 1.28 tron default: 604 1.28 tron printf("hme: invalid Receive Descriptor ring size\n"); 605 1.28 tron break; 606 1.28 tron } 607 1.28 tron 608 1.3 pk /* Enable DMA */ 609 1.28 tron v |= HME_ERX_CFG_DMAENABLE; 610 1.46 heas 611 1.46 heas /* set h/w rx checksum start offset (# of half-words) */ 612 1.49 heas #ifdef INET 613 1.74 tsutsui v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t)) 614 1.74 tsutsui << HME_ERX_CFG_CSUMSHIFT) & 615 1.46 heas HME_ERX_CFG_CSUMSTART; 616 1.49 heas #endif 617 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v); 618 1.1 pk 619 1.1 pk /* step 11. XIF Configuration */ 620 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF); 621 1.1 pk v |= HME_MAC_XIF_OE; 622 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v); 623 1.1 pk 624 1.1 pk /* step 12. RX_MAC Configuration Register */ 625 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG); 626 1.46 heas v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP; 627 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v); 628 1.1 pk 629 1.1 pk /* step 13. TX_MAC Configuration Register */ 630 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG); 631 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP); 632 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v); 633 1.1 pk 634 1.1 pk /* step 14. Issue Transmit Pending command */ 635 1.1 pk 636 1.1 pk /* Call MI initialization function if any */ 637 1.1 pk if (sc->sc_hwinit) 638 1.1 pk (*sc->sc_hwinit)(sc); 639 1.29 thorpej 640 1.29 thorpej /* Set the current media. */ 641 1.61 dyoung if ((rc = hme_mediachange(ifp)) != 0) 642 1.61 dyoung return rc; 643 1.9 thorpej 644 1.9 thorpej /* Start the one second timer. */ 645 1.107 thorpej callout_schedule(&sc->sc_tick_ch, hz); 646 1.1 pk 647 1.1 pk ifp->if_flags |= IFF_RUNNING; 648 1.1 pk ifp->if_flags &= ~IFF_OACTIVE; 649 1.41 heas sc->sc_if_flags = ifp->if_flags; 650 1.1 pk ifp->if_timer = 0; 651 1.1 pk hme_start(ifp); 652 1.61 dyoung return 0; 653 1.1 pk } 654 1.1 pk 655 1.28 tron /* 656 1.28 tron * Routine to copy from mbuf chain to transmit buffer in 657 1.28 tron * network buffer memory. 658 1.28 tron * Returns the amount of data copied. 659 1.28 tron */ 660 1.28 tron int 661 1.72 dsl hme_put(struct hme_softc *sc, int ri, struct mbuf *m) 662 1.72 dsl /* ri: Ring index */ 663 1.28 tron { 664 1.28 tron struct mbuf *n; 665 1.28 tron int len, tlen = 0; 666 1.56 christos char *bp; 667 1.28 tron 668 1.56 christos bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ; 669 1.28 tron for (; m; m = n) { 670 1.28 tron len = m->m_len; 671 1.28 tron if (len == 0) { 672 1.94 christos n = m_free(m); 673 1.28 tron continue; 674 1.28 tron } 675 1.56 christos memcpy(bp, mtod(m, void *), len); 676 1.28 tron bp += len; 677 1.28 tron tlen += len; 678 1.94 christos n = m_free(m); 679 1.28 tron } 680 1.28 tron return (tlen); 681 1.28 tron } 682 1.28 tron 683 1.28 tron /* 684 1.28 tron * Pull data off an interface. 685 1.28 tron * Len is length of data, with local net header stripped. 686 1.28 tron * We copy the data into mbufs. When full cluster sized units are present 687 1.28 tron * we copy into clusters. 688 1.28 tron */ 689 1.28 tron struct mbuf * 690 1.75 tsutsui hme_get(struct hme_softc *sc, int ri, uint32_t flags) 691 1.28 tron { 692 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if; 693 1.28 tron struct mbuf *m, *m0, *newm; 694 1.56 christos char *bp; 695 1.46 heas int len, totlen; 696 1.76 tsutsui #ifdef INET 697 1.76 tsutsui int csum_flags; 698 1.76 tsutsui #endif 699 1.28 tron 700 1.46 heas totlen = HME_XD_DECODE_RSIZE(flags); 701 1.28 tron MGETHDR(m0, M_DONTWAIT, MT_DATA); 702 1.28 tron if (m0 == 0) 703 1.28 tron return (0); 704 1.108 thorpej MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner); 705 1.93 ozaki m_set_rcvif(m0, ifp); 706 1.28 tron m0->m_pkthdr.len = totlen; 707 1.28 tron len = MHLEN; 708 1.28 tron m = m0; 709 1.28 tron 710 1.56 christos bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ; 711 1.28 tron 712 1.28 tron while (totlen > 0) { 713 1.28 tron if (totlen >= MINCLSIZE) { 714 1.28 tron MCLGET(m, M_DONTWAIT); 715 1.28 tron if ((m->m_flags & M_EXT) == 0) 716 1.28 tron goto bad; 717 1.28 tron len = MCLBYTES; 718 1.28 tron } 719 1.28 tron 720 1.28 tron if (m == m0) { 721 1.56 christos char *newdata = (char *) 722 1.28 tron ALIGN(m->m_data + sizeof(struct ether_header)) - 723 1.28 tron sizeof(struct ether_header); 724 1.28 tron len -= newdata - m->m_data; 725 1.28 tron m->m_data = newdata; 726 1.28 tron } 727 1.28 tron 728 1.100 riastrad m->m_len = len = uimin(totlen, len); 729 1.56 christos memcpy(mtod(m, void *), bp, len); 730 1.28 tron bp += len; 731 1.28 tron 732 1.28 tron totlen -= len; 733 1.28 tron if (totlen > 0) { 734 1.28 tron MGET(newm, M_DONTWAIT, MT_DATA); 735 1.28 tron if (newm == 0) 736 1.28 tron goto bad; 737 1.28 tron len = MLEN; 738 1.28 tron m = m->m_next = newm; 739 1.28 tron } 740 1.28 tron } 741 1.28 tron 742 1.49 heas #ifdef INET 743 1.49 heas /* hardware checksum */ 744 1.76 tsutsui csum_flags = 0; 745 1.50 rafal if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) { 746 1.46 heas struct ether_header *eh; 747 1.74 tsutsui struct ether_vlan_header *evh; 748 1.46 heas struct ip *ip; 749 1.46 heas struct udphdr *uh; 750 1.46 heas uint16_t *opts; 751 1.46 heas int32_t hlen, pktlen; 752 1.76 tsutsui uint32_t csum_data; 753 1.46 heas 754 1.74 tsutsui eh = mtod(m0, struct ether_header *); 755 1.74 tsutsui if (ntohs(eh->ether_type) == ETHERTYPE_IP) { 756 1.74 tsutsui ip = (struct ip *)((char *)eh + ETHER_HDR_LEN); 757 1.46 heas pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN; 758 1.74 tsutsui } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) { 759 1.74 tsutsui evh = (struct ether_vlan_header *)eh; 760 1.97 pgoyette if (ntohs(evh->evl_proto) != ETHERTYPE_IP) 761 1.74 tsutsui goto swcsum; 762 1.74 tsutsui ip = (struct ip *)((char *)eh + ETHER_HDR_LEN + 763 1.74 tsutsui ETHER_VLAN_ENCAP_LEN); 764 1.74 tsutsui pktlen = m0->m_pkthdr.len - 765 1.74 tsutsui ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN; 766 1.74 tsutsui } else 767 1.46 heas goto swcsum; 768 1.46 heas 769 1.46 heas /* IPv4 only */ 770 1.46 heas if (ip->ip_v != IPVERSION) 771 1.46 heas goto swcsum; 772 1.46 heas 773 1.46 heas hlen = ip->ip_hl << 2; 774 1.48 perry if (hlen < sizeof(struct ip)) 775 1.46 heas goto swcsum; 776 1.46 heas 777 1.49 heas /* 778 1.49 heas * bail if too short, has random trailing garbage, truncated, 779 1.49 heas * fragment, or has ethernet pad. 780 1.49 heas */ 781 1.76 tsutsui if (ntohs(ip->ip_len) < hlen || 782 1.76 tsutsui ntohs(ip->ip_len) != pktlen || 783 1.76 tsutsui (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0) 784 1.49 heas goto swcsum; 785 1.46 heas 786 1.46 heas switch (ip->ip_p) { 787 1.46 heas case IPPROTO_TCP: 788 1.76 tsutsui if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0) 789 1.46 heas goto swcsum; 790 1.46 heas if (pktlen < (hlen + sizeof(struct tcphdr))) 791 1.46 heas goto swcsum; 792 1.76 tsutsui csum_flags = 793 1.76 tsutsui M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR; 794 1.46 heas break; 795 1.46 heas case IPPROTO_UDP: 796 1.76 tsutsui if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0) 797 1.46 heas goto swcsum; 798 1.46 heas if (pktlen < (hlen + sizeof(struct udphdr))) 799 1.46 heas goto swcsum; 800 1.56 christos uh = (struct udphdr *)((char *)ip + hlen); 801 1.46 heas /* no checksum */ 802 1.46 heas if (uh->uh_sum == 0) 803 1.46 heas goto swcsum; 804 1.76 tsutsui csum_flags = 805 1.76 tsutsui M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR; 806 1.46 heas break; 807 1.46 heas default: 808 1.49 heas goto swcsum; 809 1.46 heas } 810 1.46 heas 811 1.46 heas /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */ 812 1.76 tsutsui csum_data = ~flags & HME_XD_RXCKSUM; 813 1.46 heas 814 1.74 tsutsui /* 815 1.74 tsutsui * If data offset is different from RX cksum start offset, 816 1.74 tsutsui * we have to deduct them. 817 1.74 tsutsui */ 818 1.76 tsutsui hlen = ((char *)ip + hlen) - 819 1.74 tsutsui ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip)); 820 1.76 tsutsui if (hlen > 1) { 821 1.46 heas uint32_t optsum; 822 1.46 heas 823 1.46 heas optsum = 0; 824 1.74 tsutsui opts = (uint16_t *)((char *)eh + 825 1.74 tsutsui ETHER_HDR_LEN + sizeof(struct ip)); 826 1.46 heas 827 1.76 tsutsui while (hlen > 1) { 828 1.46 heas optsum += ntohs(*opts++); 829 1.76 tsutsui hlen -= 2; 830 1.46 heas } 831 1.46 heas while (optsum >> 16) 832 1.46 heas optsum = (optsum >> 16) + (optsum & 0xffff); 833 1.46 heas 834 1.73 tsutsui /* Deduct the ip opts sum from the hwsum. */ 835 1.76 tsutsui csum_data += (uint16_t)~optsum; 836 1.46 heas 837 1.76 tsutsui while (csum_data >> 16) 838 1.76 tsutsui csum_data = 839 1.76 tsutsui (csum_data >> 16) + (csum_data & 0xffff); 840 1.46 heas } 841 1.76 tsutsui m0->m_pkthdr.csum_data = csum_data; 842 1.76 tsutsui } 843 1.49 heas swcsum: 844 1.76 tsutsui m0->m_pkthdr.csum_flags = csum_flags; 845 1.49 heas #endif 846 1.46 heas 847 1.28 tron return (m0); 848 1.28 tron 849 1.28 tron bad: 850 1.28 tron m_freem(m0); 851 1.28 tron return (0); 852 1.28 tron } 853 1.28 tron 854 1.28 tron /* 855 1.28 tron * Pass a packet to the higher levels. 856 1.28 tron */ 857 1.28 tron void 858 1.75 tsutsui hme_read(struct hme_softc *sc, int ix, uint32_t flags) 859 1.28 tron { 860 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if; 861 1.28 tron struct mbuf *m; 862 1.46 heas int len; 863 1.28 tron 864 1.46 heas len = HME_XD_DECODE_RSIZE(flags); 865 1.28 tron if (len <= sizeof(struct ether_header) || 866 1.28 tron len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 867 1.28 tron ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) : 868 1.28 tron ETHERMTU + sizeof(struct ether_header))) { 869 1.28 tron #ifdef HMEDEBUG 870 1.28 tron printf("%s: invalid packet size %d; dropping\n", 871 1.79 tsutsui device_xname(sc->sc_dev), len); 872 1.28 tron #endif 873 1.106 thorpej if_statinc(ifp, if_ierrors); 874 1.28 tron return; 875 1.28 tron } 876 1.28 tron 877 1.28 tron /* Pull packet off interface. */ 878 1.46 heas m = hme_get(sc, ix, flags); 879 1.28 tron if (m == 0) { 880 1.106 thorpej if_statinc(ifp, if_ierrors); 881 1.28 tron return; 882 1.28 tron } 883 1.28 tron 884 1.28 tron /* Pass the packet up. */ 885 1.92 ozaki if_percpuq_enqueue(ifp->if_percpuq, m); 886 1.28 tron } 887 1.28 tron 888 1.1 pk void 889 1.71 dsl hme_start(struct ifnet *ifp) 890 1.1 pk { 891 1.79 tsutsui struct hme_softc *sc = ifp->if_softc; 892 1.56 christos void *txd = sc->sc_rb.rb_txd; 893 1.1 pk struct mbuf *m; 894 1.46 heas unsigned int txflags; 895 1.80 tsutsui unsigned int ri, len, obusy; 896 1.28 tron unsigned int ntbuf = sc->sc_rb.rb_ntbuf; 897 1.1 pk 898 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 899 1.1 pk return; 900 1.1 pk 901 1.28 tron ri = sc->sc_rb.rb_tdhead; 902 1.80 tsutsui obusy = sc->sc_rb.rb_td_nbusy; 903 1.28 tron 904 1.28 tron for (;;) { 905 1.28 tron IFQ_DEQUEUE(&ifp->if_snd, m); 906 1.28 tron if (m == 0) 907 1.1 pk break; 908 1.1 pk 909 1.1 pk /* 910 1.1 pk * If BPF is listening on this interface, let it see the 911 1.1 pk * packet before we commit it to the wire. 912 1.1 pk */ 913 1.99 msaitoh bpf_mtap(ifp, m, BPF_D_OUT); 914 1.1 pk 915 1.49 heas #ifdef INET 916 1.46 heas /* collect bits for h/w csum, before hme_put frees the mbuf */ 917 1.46 heas if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) && 918 1.46 heas m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) { 919 1.46 heas struct ether_header *eh; 920 1.46 heas uint16_t offset, start; 921 1.46 heas 922 1.46 heas eh = mtod(m, struct ether_header *); 923 1.46 heas switch (ntohs(eh->ether_type)) { 924 1.46 heas case ETHERTYPE_IP: 925 1.46 heas start = ETHER_HDR_LEN; 926 1.46 heas break; 927 1.46 heas case ETHERTYPE_VLAN: 928 1.46 heas start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 929 1.46 heas break; 930 1.46 heas default: 931 1.46 heas /* unsupported, drop it */ 932 1.46 heas m_free(m); 933 1.46 heas continue; 934 1.46 heas } 935 1.47 thorpej start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data); 936 1.47 thorpej offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data) 937 1.47 thorpej + start; 938 1.46 heas txflags = HME_XD_TXCKSUM | 939 1.46 heas (offset << HME_XD_TXCSSTUFFSHIFT) | 940 1.104 msaitoh (start << HME_XD_TXCSSTARTSHIFT); 941 1.46 heas } else 942 1.49 heas #endif 943 1.46 heas txflags = 0; 944 1.46 heas 945 1.28 tron /* 946 1.28 tron * Copy the mbuf chain into the transmit buffer. 947 1.28 tron */ 948 1.28 tron len = hme_put(sc, ri, m); 949 1.28 tron 950 1.28 tron /* 951 1.28 tron * Initialize transmit registers and start transmission 952 1.28 tron */ 953 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, txd, ri, 954 1.28 tron HME_XD_OWN | HME_XD_SOP | HME_XD_EOP | 955 1.46 heas HME_XD_ENCODE_TSIZE(len) | txflags); 956 1.28 tron 957 1.28 tron /*if (sc->sc_rb.rb_td_nbusy <= 0)*/ 958 1.28 tron bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING, 959 1.28 tron HME_ETX_TP_DMAWAKEUP); 960 1.28 tron 961 1.28 tron if (++ri == ntbuf) 962 1.28 tron ri = 0; 963 1.28 tron 964 1.28 tron if (++sc->sc_rb.rb_td_nbusy == ntbuf) { 965 1.26 tron ifp->if_flags |= IFF_OACTIVE; 966 1.26 tron break; 967 1.26 tron } 968 1.1 pk } 969 1.1 pk 970 1.80 tsutsui if (obusy != sc->sc_rb.rb_td_nbusy) { 971 1.80 tsutsui sc->sc_rb.rb_tdhead = ri; 972 1.80 tsutsui ifp->if_timer = 5; 973 1.80 tsutsui } 974 1.1 pk } 975 1.1 pk 976 1.1 pk /* 977 1.1 pk * Transmit interrupt. 978 1.1 pk */ 979 1.1 pk int 980 1.71 dsl hme_tint(struct hme_softc *sc) 981 1.1 pk { 982 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if; 983 1.28 tron bus_space_tag_t t = sc->sc_bustag; 984 1.28 tron bus_space_handle_t mac = sc->sc_mac; 985 1.1 pk unsigned int ri, txflags; 986 1.28 tron 987 1.106 thorpej net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 988 1.106 thorpej 989 1.28 tron /* 990 1.28 tron * Unload collision counters 991 1.28 tron */ 992 1.110 riastrad if_statadd_ref(ifp, nsr, if_collisions, 993 1.28 tron bus_space_read_4(t, mac, HME_MACI_NCCNT) + 994 1.106 thorpej bus_space_read_4(t, mac, HME_MACI_FCCNT)); 995 1.110 riastrad if_statadd_ref(ifp, nsr, if_oerrors, 996 1.28 tron bus_space_read_4(t, mac, HME_MACI_EXCNT) + 997 1.106 thorpej bus_space_read_4(t, mac, HME_MACI_LTCNT)); 998 1.28 tron 999 1.28 tron /* 1000 1.28 tron * then clear the hardware counters. 1001 1.28 tron */ 1002 1.28 tron bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); 1003 1.28 tron bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); 1004 1.28 tron bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); 1005 1.28 tron bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); 1006 1.1 pk 1007 1.1 pk /* Fetch current position in the transmit ring */ 1008 1.28 tron ri = sc->sc_rb.rb_tdtail; 1009 1.1 pk 1010 1.1 pk for (;;) { 1011 1.28 tron if (sc->sc_rb.rb_td_nbusy <= 0) 1012 1.1 pk break; 1013 1.1 pk 1014 1.15 eeh txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri); 1015 1.1 pk 1016 1.1 pk if (txflags & HME_XD_OWN) 1017 1.1 pk break; 1018 1.1 pk 1019 1.1 pk ifp->if_flags &= ~IFF_OACTIVE; 1020 1.110 riastrad if_statinc_ref(ifp, nsr, if_opackets); 1021 1.26 tron 1022 1.28 tron if (++ri == sc->sc_rb.rb_ntbuf) 1023 1.1 pk ri = 0; 1024 1.1 pk 1025 1.28 tron --sc->sc_rb.rb_td_nbusy; 1026 1.1 pk } 1027 1.1 pk 1028 1.106 thorpej IF_STAT_PUTREF(ifp); 1029 1.106 thorpej 1030 1.3 pk /* Update ring */ 1031 1.28 tron sc->sc_rb.rb_tdtail = ri; 1032 1.1 pk 1033 1.96 ozaki if_schedule_deferred_start(ifp); 1034 1.1 pk 1035 1.28 tron if (sc->sc_rb.rb_td_nbusy == 0) 1036 1.1 pk ifp->if_timer = 0; 1037 1.1 pk 1038 1.1 pk return (1); 1039 1.1 pk } 1040 1.1 pk 1041 1.1 pk /* 1042 1.1 pk * Receive interrupt. 1043 1.1 pk */ 1044 1.1 pk int 1045 1.71 dsl hme_rint(struct hme_softc *sc) 1046 1.1 pk { 1047 1.77 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1048 1.77 jdc bus_space_tag_t t = sc->sc_bustag; 1049 1.77 jdc bus_space_handle_t mac = sc->sc_mac; 1050 1.56 christos void *xdr = sc->sc_rb.rb_rxd; 1051 1.28 tron unsigned int nrbuf = sc->sc_rb.rb_nrbuf; 1052 1.46 heas unsigned int ri; 1053 1.75 tsutsui uint32_t flags; 1054 1.1 pk 1055 1.28 tron ri = sc->sc_rb.rb_rdtail; 1056 1.1 pk 1057 1.1 pk /* 1058 1.1 pk * Process all buffers with valid data. 1059 1.1 pk */ 1060 1.1 pk for (;;) { 1061 1.28 tron flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri); 1062 1.1 pk if (flags & HME_XD_OWN) 1063 1.1 pk break; 1064 1.1 pk 1065 1.4 pk if (flags & HME_XD_OFL) { 1066 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n", 1067 1.79 tsutsui device_xname(sc->sc_dev), ri, flags); 1068 1.46 heas } else 1069 1.46 heas hme_read(sc, ri, flags); 1070 1.1 pk 1071 1.28 tron /* This buffer can be used by the hardware again */ 1072 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, xdr, ri, 1073 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); 1074 1.26 tron 1075 1.28 tron if (++ri == nrbuf) 1076 1.1 pk ri = 0; 1077 1.1 pk } 1078 1.1 pk 1079 1.28 tron sc->sc_rb.rb_rdtail = ri; 1080 1.28 tron 1081 1.77 jdc /* Read error counters ... */ 1082 1.106 thorpej if_statadd(ifp, if_ierrors, 1083 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) + 1084 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) + 1085 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) + 1086 1.106 thorpej bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT)); 1087 1.77 jdc 1088 1.77 jdc /* ... then clear the hardware counters. */ 1089 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0); 1090 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0); 1091 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0); 1092 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0); 1093 1.1 pk return (1); 1094 1.1 pk } 1095 1.1 pk 1096 1.1 pk int 1097 1.71 dsl hme_eint(struct hme_softc *sc, u_int status) 1098 1.1 pk { 1099 1.77 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1100 1.1 pk char bits[128]; 1101 1.1 pk 1102 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) { 1103 1.33 pk bus_space_tag_t t = sc->sc_bustag; 1104 1.33 pk bus_space_handle_t mif = sc->sc_mif; 1105 1.75 tsutsui uint32_t cf, st, sm; 1106 1.33 pk cf = bus_space_read_4(t, mif, HME_MIFI_CFG); 1107 1.33 pk st = bus_space_read_4(t, mif, HME_MIFI_STAT); 1108 1.33 pk sm = bus_space_read_4(t, mif, HME_MIFI_SM); 1109 1.33 pk printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n", 1110 1.79 tsutsui device_xname(sc->sc_dev), cf, st, sm); 1111 1.1 pk return (1); 1112 1.1 pk } 1113 1.77 jdc 1114 1.77 jdc /* Receive error counters rolled over */ 1115 1.106 thorpej net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 1116 1.77 jdc if (status & HME_SEB_STAT_ACNTEXP) 1117 1.110 riastrad if_statadd_ref(ifp, nsr, if_ierrors, 0xff); 1118 1.77 jdc if (status & HME_SEB_STAT_CCNTEXP) 1119 1.110 riastrad if_statadd_ref(ifp, nsr, if_ierrors, 0xff); 1120 1.77 jdc if (status & HME_SEB_STAT_LCNTEXP) 1121 1.110 riastrad if_statadd_ref(ifp, nsr, if_ierrors, 0xff); 1122 1.77 jdc if (status & HME_SEB_STAT_CVCNTEXP) 1123 1.110 riastrad if_statadd_ref(ifp, nsr, if_ierrors, 0xff); 1124 1.106 thorpej IF_STAT_PUTREF(ifp); 1125 1.77 jdc 1126 1.77 jdc /* RXTERR locks up the interface, so do a reset */ 1127 1.77 jdc if (status & HME_SEB_STAT_RXTERR) 1128 1.77 jdc hme_reset(sc); 1129 1.77 jdc 1130 1.68 christos snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status); 1131 1.79 tsutsui printf("%s: status=%s\n", device_xname(sc->sc_dev), bits); 1132 1.103 msaitoh 1133 1.1 pk return (1); 1134 1.1 pk } 1135 1.1 pk 1136 1.1 pk int 1137 1.71 dsl hme_intr(void *v) 1138 1.1 pk { 1139 1.79 tsutsui struct hme_softc *sc = v; 1140 1.1 pk bus_space_tag_t t = sc->sc_bustag; 1141 1.1 pk bus_space_handle_t seb = sc->sc_seb; 1142 1.75 tsutsui uint32_t status; 1143 1.1 pk int r = 0; 1144 1.1 pk 1145 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT); 1146 1.1 pk 1147 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0) 1148 1.1 pk r |= hme_eint(sc, status); 1149 1.1 pk 1150 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0) 1151 1.1 pk r |= hme_tint(sc); 1152 1.1 pk 1153 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0) 1154 1.1 pk r |= hme_rint(sc); 1155 1.1 pk 1156 1.40 abs rnd_add_uint32(&sc->rnd_source, status); 1157 1.40 abs 1158 1.1 pk return (r); 1159 1.1 pk } 1160 1.1 pk 1161 1.1 pk 1162 1.1 pk void 1163 1.71 dsl hme_watchdog(struct ifnet *ifp) 1164 1.1 pk { 1165 1.1 pk struct hme_softc *sc = ifp->if_softc; 1166 1.1 pk 1167 1.79 tsutsui log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev)); 1168 1.106 thorpej if_statinc(ifp, if_oerrors); 1169 1.1 pk 1170 1.1 pk hme_reset(sc); 1171 1.4 pk } 1172 1.4 pk 1173 1.4 pk /* 1174 1.4 pk * Initialize the MII Management Interface 1175 1.4 pk */ 1176 1.4 pk void 1177 1.71 dsl hme_mifinit(struct hme_softc *sc) 1178 1.4 pk { 1179 1.4 pk bus_space_tag_t t = sc->sc_bustag; 1180 1.4 pk bus_space_handle_t mif = sc->sc_mif; 1181 1.35 pk bus_space_handle_t mac = sc->sc_mac; 1182 1.33 pk int instance, phy; 1183 1.75 tsutsui uint32_t v; 1184 1.4 pk 1185 1.61 dyoung if (sc->sc_mii.mii_media.ifm_cur != NULL) { 1186 1.61 dyoung instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 1187 1.33 pk phy = sc->sc_phys[instance]; 1188 1.33 pk } else 1189 1.33 pk /* No media set yet, pick phy arbitrarily.. */ 1190 1.33 pk phy = HME_PHYAD_EXTERNAL; 1191 1.33 pk 1192 1.33 pk /* Configure the MIF in frame mode, no poll, current phy select */ 1193 1.33 pk v = 0; 1194 1.33 pk if (phy == HME_PHYAD_EXTERNAL) 1195 1.33 pk v |= HME_MIF_CFG_PHY; 1196 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1197 1.35 pk 1198 1.35 pk /* If an external transceiver is selected, enable its MII drivers */ 1199 1.35 pk v = bus_space_read_4(t, mac, HME_MACI_XIF); 1200 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE; 1201 1.35 pk if (phy == HME_PHYAD_EXTERNAL) 1202 1.35 pk v |= HME_MAC_XIF_MIIENABLE; 1203 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v); 1204 1.1 pk } 1205 1.1 pk 1206 1.1 pk /* 1207 1.1 pk * MII interface 1208 1.1 pk */ 1209 1.1 pk static int 1210 1.101 msaitoh hme_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 1211 1.1 pk { 1212 1.79 tsutsui struct hme_softc *sc = device_private(self); 1213 1.1 pk bus_space_tag_t t = sc->sc_bustag; 1214 1.1 pk bus_space_handle_t mif = sc->sc_mif; 1215 1.35 pk bus_space_handle_t mac = sc->sc_mac; 1216 1.75 tsutsui uint32_t v, xif_cfg, mifi_cfg; 1217 1.101 msaitoh int n, rv; 1218 1.1 pk 1219 1.33 pk /* We can at most have two PHYs */ 1220 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL) 1221 1.101 msaitoh return -1; 1222 1.32 martin 1223 1.5 pk /* Select the desired PHY in the MIF configuration register */ 1224 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG); 1225 1.5 pk v &= ~HME_MIF_CFG_PHY; 1226 1.5 pk if (phy == HME_PHYAD_EXTERNAL) 1227 1.5 pk v |= HME_MIF_CFG_PHY; 1228 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1229 1.5 pk 1230 1.42 heas /* Enable MII drivers on external transceiver */ 1231 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF); 1232 1.35 pk if (phy == HME_PHYAD_EXTERNAL) 1233 1.35 pk v |= HME_MAC_XIF_MIIENABLE; 1234 1.35 pk else 1235 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE; 1236 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v); 1237 1.35 pk 1238 1.33 pk #if 0 1239 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */ 1240 1.33 pk /* 1241 1.33 pk * Check whether a transceiver is connected by testing 1242 1.33 pk * the MIF configuration register's MDI_X bits. Note that 1243 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h 1244 1.33 pk */ 1245 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy)); 1246 1.33 pk delay(100); 1247 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1248 1.101 msaitoh if ((v & mif_mdi_bit) == 0) { 1249 1.101 msaitoh rv = -1; 1250 1.101 msaitoh goto out; 1251 1.101 msaitoh } 1252 1.33 pk #endif 1253 1.33 pk 1254 1.1 pk /* Construct the frame command */ 1255 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | 1256 1.1 pk HME_MIF_FO_TAMSB | 1257 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) | 1258 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) | 1259 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT); 1260 1.1 pk 1261 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v); 1262 1.1 pk for (n = 0; n < 100; n++) { 1263 1.2 pk DELAY(1); 1264 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO); 1265 1.33 pk if (v & HME_MIF_FO_TALSB) { 1266 1.101 msaitoh *val = v & HME_MIF_FO_DATA; 1267 1.101 msaitoh rv = 0; 1268 1.33 pk goto out; 1269 1.33 pk } 1270 1.1 pk } 1271 1.1 pk 1272 1.101 msaitoh rv = ETIMEDOUT; 1273 1.79 tsutsui printf("%s: mii_read timeout\n", device_xname(sc->sc_dev)); 1274 1.33 pk 1275 1.33 pk out: 1276 1.33 pk /* Restore MIFI_CFG register */ 1277 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg); 1278 1.35 pk /* Restore XIF register */ 1279 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg); 1280 1.101 msaitoh return rv; 1281 1.1 pk } 1282 1.1 pk 1283 1.101 msaitoh static int 1284 1.101 msaitoh hme_mii_writereg(device_t self, int phy, int reg, uint16_t val) 1285 1.1 pk { 1286 1.79 tsutsui struct hme_softc *sc = device_private(self); 1287 1.1 pk bus_space_tag_t t = sc->sc_bustag; 1288 1.1 pk bus_space_handle_t mif = sc->sc_mif; 1289 1.35 pk bus_space_handle_t mac = sc->sc_mac; 1290 1.75 tsutsui uint32_t v, xif_cfg, mifi_cfg; 1291 1.101 msaitoh int n, rv; 1292 1.32 martin 1293 1.33 pk /* We can at most have two PHYs */ 1294 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL) 1295 1.101 msaitoh return -1; 1296 1.1 pk 1297 1.5 pk /* Select the desired PHY in the MIF configuration register */ 1298 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG); 1299 1.5 pk v &= ~HME_MIF_CFG_PHY; 1300 1.5 pk if (phy == HME_PHYAD_EXTERNAL) 1301 1.5 pk v |= HME_MIF_CFG_PHY; 1302 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1303 1.5 pk 1304 1.42 heas /* Enable MII drivers on external transceiver */ 1305 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF); 1306 1.35 pk if (phy == HME_PHYAD_EXTERNAL) 1307 1.35 pk v |= HME_MAC_XIF_MIIENABLE; 1308 1.35 pk else 1309 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE; 1310 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v); 1311 1.35 pk 1312 1.33 pk #if 0 1313 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */ 1314 1.33 pk /* 1315 1.33 pk * Check whether a transceiver is connected by testing 1316 1.33 pk * the MIF configuration register's MDI_X bits. Note that 1317 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h 1318 1.33 pk */ 1319 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy)); 1320 1.33 pk delay(100); 1321 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1322 1.101 msaitoh if ((v & mif_mdi_bit) == 0) { 1323 1.101 msaitoh rv = -1; 1324 1.101 msaitoh goto out; 1325 1.101 msaitoh } 1326 1.33 pk #endif 1327 1.33 pk 1328 1.1 pk /* Construct the frame command */ 1329 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | 1330 1.1 pk HME_MIF_FO_TAMSB | 1331 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) | 1332 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) | 1333 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) | 1334 1.1 pk (val & HME_MIF_FO_DATA); 1335 1.1 pk 1336 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v); 1337 1.1 pk for (n = 0; n < 100; n++) { 1338 1.2 pk DELAY(1); 1339 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO); 1340 1.101 msaitoh if (v & HME_MIF_FO_TALSB) { 1341 1.101 msaitoh rv = 0; 1342 1.33 pk goto out; 1343 1.101 msaitoh } 1344 1.1 pk } 1345 1.1 pk 1346 1.101 msaitoh rv = ETIMEDOUT; 1347 1.79 tsutsui printf("%s: mii_write timeout\n", device_xname(sc->sc_dev)); 1348 1.33 pk out: 1349 1.33 pk /* Restore MIFI_CFG register */ 1350 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg); 1351 1.35 pk /* Restore XIF register */ 1352 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg); 1353 1.101 msaitoh 1354 1.101 msaitoh return rv; 1355 1.1 pk } 1356 1.1 pk 1357 1.1 pk static void 1358 1.89 matt hme_mii_statchg(struct ifnet *ifp) 1359 1.1 pk { 1360 1.89 matt struct hme_softc *sc = ifp->if_softc; 1361 1.1 pk bus_space_tag_t t = sc->sc_bustag; 1362 1.1 pk bus_space_handle_t mac = sc->sc_mac; 1363 1.75 tsutsui uint32_t v; 1364 1.1 pk 1365 1.5 pk #ifdef HMEDEBUG 1366 1.5 pk if (sc->sc_debug) 1367 1.33 pk printf("hme_mii_statchg: status change\n"); 1368 1.5 pk #endif 1369 1.1 pk 1370 1.5 pk /* Set the MAC Full Duplex bit appropriately */ 1371 1.30 martin /* Apparently the hme chip is SIMPLEX if working in full duplex mode, 1372 1.30 martin but not otherwise. */ 1373 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG); 1374 1.30 martin if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) { 1375 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX; 1376 1.30 martin sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX; 1377 1.30 martin } else { 1378 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX; 1379 1.30 martin sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX; 1380 1.30 martin } 1381 1.41 heas sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags; 1382 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v); 1383 1.5 pk } 1384 1.5 pk 1385 1.5 pk int 1386 1.71 dsl hme_mediachange(struct ifnet *ifp) 1387 1.5 pk { 1388 1.5 pk struct hme_softc *sc = ifp->if_softc; 1389 1.33 pk bus_space_tag_t t = sc->sc_bustag; 1390 1.33 pk bus_space_handle_t mif = sc->sc_mif; 1391 1.33 pk bus_space_handle_t mac = sc->sc_mac; 1392 1.33 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 1393 1.33 pk int phy = sc->sc_phys[instance]; 1394 1.61 dyoung int rc; 1395 1.75 tsutsui uint32_t v; 1396 1.5 pk 1397 1.33 pk #ifdef HMEDEBUG 1398 1.33 pk if (sc->sc_debug) 1399 1.33 pk printf("hme_mediachange: phy = %d\n", phy); 1400 1.33 pk #endif 1401 1.33 pk 1402 1.33 pk /* Select the current PHY in the MIF configuration register */ 1403 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG); 1404 1.33 pk v &= ~HME_MIF_CFG_PHY; 1405 1.33 pk if (phy == HME_PHYAD_EXTERNAL) 1406 1.33 pk v |= HME_MIF_CFG_PHY; 1407 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v); 1408 1.33 pk 1409 1.33 pk /* If an external transceiver is selected, enable its MII drivers */ 1410 1.33 pk v = bus_space_read_4(t, mac, HME_MACI_XIF); 1411 1.33 pk v &= ~HME_MAC_XIF_MIIENABLE; 1412 1.33 pk if (phy == HME_PHYAD_EXTERNAL) 1413 1.33 pk v |= HME_MAC_XIF_MIIENABLE; 1414 1.33 pk bus_space_write_4(t, mac, HME_MACI_XIF, v); 1415 1.5 pk 1416 1.61 dyoung if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO) 1417 1.61 dyoung return 0; 1418 1.61 dyoung return rc; 1419 1.1 pk } 1420 1.1 pk 1421 1.1 pk /* 1422 1.1 pk * Process an ioctl request. 1423 1.1 pk */ 1424 1.1 pk int 1425 1.67 dyoung hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 1426 1.1 pk { 1427 1.1 pk struct hme_softc *sc = ifp->if_softc; 1428 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data; 1429 1.1 pk int s, error = 0; 1430 1.1 pk 1431 1.1 pk s = splnet(); 1432 1.1 pk 1433 1.1 pk switch (cmd) { 1434 1.1 pk 1435 1.67 dyoung case SIOCINITIFADDR: 1436 1.1 pk switch (ifa->ifa_addr->sa_family) { 1437 1.1 pk #ifdef INET 1438 1.1 pk case AF_INET: 1439 1.41 heas if (ifp->if_flags & IFF_UP) 1440 1.41 heas hme_setladrf(sc); 1441 1.41 heas else { 1442 1.41 heas ifp->if_flags |= IFF_UP; 1443 1.84 jakllsch error = hme_init(ifp); 1444 1.41 heas } 1445 1.1 pk arp_ifinit(ifp, ifa); 1446 1.1 pk break; 1447 1.1 pk #endif 1448 1.1 pk default: 1449 1.41 heas ifp->if_flags |= IFF_UP; 1450 1.84 jakllsch error = hme_init(ifp); 1451 1.1 pk break; 1452 1.1 pk } 1453 1.1 pk break; 1454 1.1 pk 1455 1.1 pk case SIOCSIFFLAGS: 1456 1.45 heas #ifdef HMEDEBUG 1457 1.67 dyoung { 1458 1.67 dyoung struct ifreq *ifr = data; 1459 1.67 dyoung sc->sc_debug = 1460 1.67 dyoung (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0; 1461 1.67 dyoung } 1462 1.45 heas #endif 1463 1.67 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1464 1.67 dyoung break; 1465 1.45 heas 1466 1.103 msaitoh switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1467 1.67 dyoung case IFF_RUNNING: 1468 1.1 pk /* 1469 1.1 pk * If interface is marked down and it is running, then 1470 1.1 pk * stop it. 1471 1.1 pk */ 1472 1.80 tsutsui hme_stop(ifp, 0); 1473 1.1 pk ifp->if_flags &= ~IFF_RUNNING; 1474 1.67 dyoung break; 1475 1.67 dyoung case IFF_UP: 1476 1.1 pk /* 1477 1.1 pk * If interface is marked up and it is stopped, then 1478 1.1 pk * start it. 1479 1.1 pk */ 1480 1.84 jakllsch error = hme_init(ifp); 1481 1.67 dyoung break; 1482 1.103 msaitoh case IFF_UP | IFF_RUNNING: 1483 1.1 pk /* 1484 1.41 heas * If setting debug or promiscuous mode, do not reset 1485 1.41 heas * the chip; for everything else, call hme_init() 1486 1.41 heas * which will trigger a reset. 1487 1.1 pk */ 1488 1.41 heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG) 1489 1.46 heas if (ifp->if_flags != sc->sc_if_flags) { 1490 1.45 heas if ((ifp->if_flags & (~RESETIGN)) 1491 1.45 heas == (sc->sc_if_flags & (~RESETIGN))) 1492 1.45 heas hme_setladrf(sc); 1493 1.45 heas else 1494 1.84 jakllsch error = hme_init(ifp); 1495 1.45 heas } 1496 1.41 heas #undef RESETIGN 1497 1.67 dyoung break; 1498 1.67 dyoung case 0: 1499 1.67 dyoung break; 1500 1.1 pk } 1501 1.45 heas 1502 1.45 heas if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable) 1503 1.84 jakllsch error = hme_init(ifp); 1504 1.45 heas 1505 1.1 pk break; 1506 1.1 pk 1507 1.63 dyoung default: 1508 1.63 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 1509 1.63 dyoung break; 1510 1.63 dyoung 1511 1.63 dyoung error = 0; 1512 1.63 dyoung 1513 1.63 dyoung if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 1514 1.63 dyoung ; 1515 1.63 dyoung else if (ifp->if_flags & IFF_RUNNING) { 1516 1.1 pk /* 1517 1.1 pk * Multicast list has changed; set the hardware filter 1518 1.1 pk * accordingly. 1519 1.1 pk */ 1520 1.63 dyoung hme_setladrf(sc); 1521 1.1 pk } 1522 1.1 pk break; 1523 1.1 pk } 1524 1.1 pk 1525 1.41 heas sc->sc_if_flags = ifp->if_flags; 1526 1.1 pk splx(s); 1527 1.1 pk return (error); 1528 1.1 pk } 1529 1.1 pk 1530 1.80 tsutsui bool 1531 1.80 tsutsui hme_shutdown(device_t self, int howto) 1532 1.1 pk { 1533 1.79 tsutsui struct hme_softc *sc; 1534 1.80 tsutsui struct ifnet *ifp; 1535 1.80 tsutsui 1536 1.80 tsutsui sc = device_private(self); 1537 1.80 tsutsui ifp = &sc->sc_ethercom.ec_if; 1538 1.80 tsutsui hme_stop(ifp, 1); 1539 1.28 tron 1540 1.80 tsutsui return true; 1541 1.1 pk } 1542 1.1 pk 1543 1.1 pk /* 1544 1.1 pk * Set up the logical address filter. 1545 1.1 pk */ 1546 1.1 pk void 1547 1.71 dsl hme_setladrf(struct hme_softc *sc) 1548 1.1 pk { 1549 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1550 1.1 pk struct ether_multi *enm; 1551 1.1 pk struct ether_multistep step; 1552 1.28 tron struct ethercom *ec = &sc->sc_ethercom; 1553 1.1 pk bus_space_tag_t t = sc->sc_bustag; 1554 1.1 pk bus_space_handle_t mac = sc->sc_mac; 1555 1.83 tsutsui uint32_t v; 1556 1.75 tsutsui uint32_t crc; 1557 1.75 tsutsui uint32_t hash[4]; 1558 1.1 pk 1559 1.14 pk /* Clear hash table */ 1560 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0; 1561 1.14 pk 1562 1.14 pk /* Get current RX configuration */ 1563 1.14 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG); 1564 1.14 pk 1565 1.14 pk if ((ifp->if_flags & IFF_PROMISC) != 0) { 1566 1.14 pk /* Turn on promiscuous mode; turn off the hash filter */ 1567 1.14 pk v |= HME_MAC_RXCFG_PMISC; 1568 1.14 pk v &= ~HME_MAC_RXCFG_HENABLE; 1569 1.14 pk ifp->if_flags |= IFF_ALLMULTI; 1570 1.14 pk goto chipit; 1571 1.14 pk } 1572 1.14 pk 1573 1.14 pk /* Turn off promiscuous mode; turn on the hash filter */ 1574 1.14 pk v &= ~HME_MAC_RXCFG_PMISC; 1575 1.14 pk v |= HME_MAC_RXCFG_HENABLE; 1576 1.14 pk 1577 1.1 pk /* 1578 1.1 pk * Set up multicast address filter by passing all multicast addresses 1579 1.1 pk * through a crc generator, and then using the high order 6 bits as an 1580 1.1 pk * index into the 64 bit logical address filter. The high order bit 1581 1.1 pk * selects the word, while the rest of the bits select the bit within 1582 1.1 pk * the word. 1583 1.1 pk */ 1584 1.1 pk 1585 1.105 msaitoh ETHER_LOCK(ec); 1586 1.28 tron ETHER_FIRST_MULTI(step, ec, enm); 1587 1.1 pk while (enm != NULL) { 1588 1.70 tsutsui if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1589 1.1 pk /* 1590 1.1 pk * We must listen to a range of multicast addresses. 1591 1.1 pk * For now, just accept all multicasts, rather than 1592 1.1 pk * trying to set only those filter bits needed to match 1593 1.1 pk * the range. (At this time, the only use of address 1594 1.1 pk * ranges is for IP multicast routing, for which the 1595 1.1 pk * range is big enough to require all bits set.) 1596 1.1 pk */ 1597 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0xffff; 1598 1.14 pk ifp->if_flags |= IFF_ALLMULTI; 1599 1.105 msaitoh ETHER_UNLOCK(ec); 1600 1.14 pk goto chipit; 1601 1.1 pk } 1602 1.1 pk 1603 1.83 tsutsui crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 1604 1.83 tsutsui 1605 1.1 pk /* Just want the 6 most significant bits. */ 1606 1.1 pk crc >>= 26; 1607 1.1 pk 1608 1.1 pk /* Set the corresponding bit in the filter. */ 1609 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf); 1610 1.1 pk 1611 1.1 pk ETHER_NEXT_MULTI(step, enm); 1612 1.1 pk } 1613 1.105 msaitoh ETHER_UNLOCK(ec); 1614 1.1 pk 1615 1.14 pk ifp->if_flags &= ~IFF_ALLMULTI; 1616 1.14 pk 1617 1.14 pk chipit: 1618 1.14 pk /* Now load the hash table into the chip */ 1619 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]); 1620 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]); 1621 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]); 1622 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]); 1623 1.14 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v); 1624 1.1 pk } 1625 1.1 pk 1626 1.28 tron /* 1627 1.28 tron * Routines for accessing the transmit and receive buffers. 1628 1.28 tron * The various CPU and adapter configurations supported by this 1629 1.28 tron * driver require three different access methods for buffers 1630 1.28 tron * and descriptors: 1631 1.28 tron * (1) contig (contiguous data; no padding), 1632 1.28 tron * (2) gap2 (two bytes of data followed by two bytes of padding), 1633 1.28 tron * (3) gap16 (16 bytes of data followed by 16 bytes of padding). 1634 1.28 tron */ 1635 1.28 tron 1636 1.28 tron #if 0 1637 1.28 tron /* 1638 1.28 tron * contig: contiguous data with no padding. 1639 1.28 tron * 1640 1.28 tron * Buffers may have any alignment. 1641 1.28 tron */ 1642 1.28 tron 1643 1.28 tron void 1644 1.72 dsl hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len) 1645 1.26 tron { 1646 1.56 christos volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ); 1647 1.26 tron 1648 1.1 pk /* 1649 1.28 tron * Just call memcpy() to do the work. 1650 1.1 pk */ 1651 1.28 tron memcpy(buf, from, len); 1652 1.1 pk } 1653 1.1 pk 1654 1.28 tron void 1655 1.72 dsl hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len) 1656 1.1 pk { 1657 1.56 christos volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ); 1658 1.26 tron 1659 1.28 tron /* 1660 1.28 tron * Just call memcpy() to do the work. 1661 1.28 tron */ 1662 1.28 tron memcpy(to, buf, len); 1663 1.1 pk } 1664 1.28 tron #endif 1665