Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.10
      1  1.10      mrg /*	$NetBSD: hme.c,v 1.10 2000/04/05 05:54:02 mrg Exp $	*/
      2   1.1       pk 
      3   1.1       pk /*-
      4   1.1       pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5   1.1       pk  * All rights reserved.
      6   1.1       pk  *
      7   1.1       pk  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1       pk  * by Paul Kranenburg.
      9   1.1       pk  *
     10   1.1       pk  * Redistribution and use in source and binary forms, with or without
     11   1.1       pk  * modification, are permitted provided that the following conditions
     12   1.1       pk  * are met:
     13   1.1       pk  * 1. Redistributions of source code must retain the above copyright
     14   1.1       pk  *    notice, this list of conditions and the following disclaimer.
     15   1.1       pk  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1       pk  *    notice, this list of conditions and the following disclaimer in the
     17   1.1       pk  *    documentation and/or other materials provided with the distribution.
     18   1.1       pk  * 3. All advertising materials mentioning features or use of this software
     19   1.1       pk  *    must display the following acknowledgement:
     20   1.1       pk  *        This product includes software developed by the NetBSD
     21   1.1       pk  *        Foundation, Inc. and its contributors.
     22   1.1       pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1       pk  *    contributors may be used to endorse or promote products derived
     24   1.1       pk  *    from this software without specific prior written permission.
     25   1.1       pk  *
     26   1.1       pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1       pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1       pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1       pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1       pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1       pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1       pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1       pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1       pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1       pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1       pk  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1       pk  */
     38   1.1       pk 
     39   1.1       pk /*
     40   1.1       pk  * HME Ethernet module driver.
     41   1.1       pk  */
     42   1.1       pk 
     43   1.1       pk #define HMEDEBUG
     44   1.1       pk 
     45   1.1       pk #include "opt_inet.h"
     46   1.1       pk #include "opt_ns.h"
     47   1.1       pk #include "bpfilter.h"
     48   1.1       pk #include "rnd.h"
     49   1.1       pk 
     50   1.1       pk #include <sys/param.h>
     51   1.1       pk #include <sys/systm.h>
     52   1.5       pk #include <sys/kernel.h>
     53   1.1       pk #include <sys/mbuf.h>
     54   1.1       pk #include <sys/syslog.h>
     55   1.1       pk #include <sys/socket.h>
     56   1.1       pk #include <sys/device.h>
     57   1.1       pk #include <sys/malloc.h>
     58   1.1       pk #include <sys/ioctl.h>
     59   1.1       pk #include <sys/errno.h>
     60   1.1       pk #if NRND > 0
     61   1.1       pk #include <sys/rnd.h>
     62   1.1       pk #endif
     63   1.1       pk 
     64   1.1       pk #include <net/if.h>
     65   1.1       pk #include <net/if_dl.h>
     66   1.1       pk #include <net/if_ether.h>
     67   1.1       pk #include <net/if_media.h>
     68   1.1       pk 
     69   1.1       pk #ifdef INET
     70   1.1       pk #include <netinet/in.h>
     71   1.1       pk #include <netinet/if_inarp.h>
     72   1.1       pk #include <netinet/in_systm.h>
     73   1.1       pk #include <netinet/in_var.h>
     74   1.1       pk #include <netinet/ip.h>
     75   1.1       pk #endif
     76   1.1       pk 
     77   1.1       pk #ifdef NS
     78   1.1       pk #include <netns/ns.h>
     79   1.1       pk #include <netns/ns_if.h>
     80   1.1       pk #endif
     81   1.1       pk 
     82   1.1       pk #if NBPFILTER > 0
     83   1.1       pk #include <net/bpf.h>
     84   1.1       pk #include <net/bpfdesc.h>
     85   1.1       pk #endif
     86   1.1       pk 
     87   1.1       pk #include <dev/mii/mii.h>
     88   1.1       pk #include <dev/mii/miivar.h>
     89   1.1       pk 
     90   1.1       pk #include <machine/bus.h>
     91   1.1       pk 
     92   1.1       pk #include <dev/ic/hmereg.h>
     93   1.1       pk #include <dev/ic/hmevar.h>
     94   1.1       pk 
     95   1.1       pk void		hme_start __P((struct ifnet *));
     96   1.1       pk void		hme_stop __P((struct hme_softc *));
     97   1.1       pk int		hme_ioctl __P((struct ifnet *, u_long, caddr_t));
     98   1.5       pk void		hme_tick __P((void *));
     99   1.1       pk void		hme_watchdog __P((struct ifnet *));
    100   1.1       pk void		hme_shutdown __P((void *));
    101   1.1       pk void		hme_init __P((struct hme_softc *));
    102   1.1       pk void		hme_meminit __P((struct hme_softc *));
    103   1.4       pk void		hme_mifinit __P((struct hme_softc *));
    104   1.1       pk void		hme_reset __P((struct hme_softc *));
    105   1.1       pk void		hme_setladrf __P((struct hme_softc *));
    106   1.1       pk 
    107   1.1       pk /* MII methods & callbacks */
    108   1.1       pk static int	hme_mii_readreg __P((struct device *, int, int));
    109   1.1       pk static void	hme_mii_writereg __P((struct device *, int, int, int));
    110   1.1       pk static void	hme_mii_statchg __P((struct device *));
    111   1.1       pk 
    112   1.1       pk int		hme_mediachange __P((struct ifnet *));
    113   1.1       pk void		hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
    114   1.1       pk 
    115   1.1       pk struct mbuf	*hme_get __P((struct hme_softc *, int, int));
    116   1.1       pk int		hme_put __P((struct hme_softc *, int, struct mbuf *));
    117   1.1       pk void		hme_read __P((struct hme_softc *, int, int));
    118   1.1       pk int		hme_eint __P((struct hme_softc *, u_int));
    119   1.1       pk int		hme_rint __P((struct hme_softc *));
    120   1.1       pk int		hme_tint __P((struct hme_softc *));
    121   1.1       pk 
    122   1.1       pk static int	ether_cmp __P((u_char *, u_char *));
    123   1.1       pk 
    124   1.1       pk /* Default buffer copy routines */
    125   1.1       pk void	hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
    126   1.1       pk void	hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
    127   1.1       pk void	hme_zerobuf_contig __P((struct hme_softc *, int, int));
    128   1.1       pk 
    129   1.1       pk 
    130   1.1       pk void
    131   1.1       pk hme_config(sc)
    132   1.1       pk 	struct hme_softc *sc;
    133   1.1       pk {
    134   1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    135   1.1       pk 	struct mii_data *mii = &sc->sc_mii;
    136   1.5       pk 	struct mii_softc *child;
    137   1.1       pk 	bus_dma_segment_t seg;
    138   1.1       pk 	bus_size_t size;
    139   1.1       pk 	int rseg, error;
    140   1.1       pk 
    141   1.1       pk 	/*
    142   1.1       pk 	 * HME common initialization.
    143   1.1       pk 	 *
    144   1.1       pk 	 * hme_softc fields that must be initialized by the front-end:
    145   1.1       pk 	 *
    146   1.1       pk 	 * the bus tag:
    147   1.1       pk 	 *	sc_bustag
    148   1.1       pk 	 *
    149   1.1       pk 	 * the dma bus tag:
    150   1.1       pk 	 *	sc_dmatag
    151   1.1       pk 	 *
    152   1.1       pk 	 * the bus handles:
    153   1.1       pk 	 *	sc_seb		(Shared Ethernet Block registers)
    154   1.1       pk 	 *	sc_erx		(Receiver Unit registers)
    155   1.1       pk 	 *	sc_etx		(Transmitter Unit registers)
    156   1.1       pk 	 *	sc_mac		(MAC registers)
    157   1.1       pk 	 *	sc_mif		(Managment Interface registers)
    158   1.1       pk 	 *
    159   1.1       pk 	 * the maximum bus burst size:
    160   1.1       pk 	 *	sc_burst
    161   1.1       pk 	 *
    162   1.1       pk 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    163   1.1       pk 	 *	rb_membase, rb_dmabase)
    164   1.1       pk 	 *
    165   1.1       pk 	 * the local Ethernet address:
    166   1.1       pk 	 *	sc_enaddr
    167   1.1       pk 	 *
    168   1.1       pk 	 */
    169   1.1       pk 
    170   1.1       pk 	/* Make sure the chip is stopped. */
    171   1.1       pk 	hme_stop(sc);
    172   1.1       pk 
    173   1.1       pk 
    174   1.1       pk 	/*
    175   1.1       pk 	 * Allocate descriptors and buffers
    176   1.1       pk 	 * XXX - do all this differently.. and more configurably,
    177   1.1       pk 	 * eg. use things as `dma_load_mbuf()' on transmit,
    178   1.1       pk 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    179   1.1       pk 	 *     all the time) on the reveiver side.
    180   1.8       pk 	 *
    181   1.8       pk 	 * Note: receive buffers must be 64-byte aligned.
    182   1.8       pk 	 * Also, apparently, the buffers must extend to a DMA burst
    183   1.8       pk 	 * boundary beyond the maximum packet size.
    184   1.1       pk 	 */
    185   1.1       pk #define _HME_NDESC	32
    186   1.8       pk #define _HME_BUFSZ	1600
    187   1.1       pk 
    188   1.1       pk 	/* Note: the # of descriptors must be a multiple of 16 */
    189   1.1       pk 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    190   1.1       pk 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    191   1.1       pk 
    192   1.1       pk 	/*
    193   1.1       pk 	 * Allocate DMA capable memory
    194   1.1       pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    195   1.1       pk 	 * take this into account when calculating the size. Note that
    196   1.1       pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    197   1.1       pk 	 * so we allocate that much regardless of _HME_NDESC.
    198   1.1       pk 	 */
    199   1.1       pk 	size =	2048 +					/* TX descriptors */
    200   1.1       pk 		2048 +					/* RX descriptors */
    201   1.1       pk 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    202   1.1       pk 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* TX buffers */
    203   1.1       pk 	if ((error = bus_dmamem_alloc(sc->sc_dmatag, size,
    204   1.1       pk 				      2048, 0,
    205   1.1       pk 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    206   1.1       pk 		printf("%s: DMA buffer alloc error %d\n",
    207   1.1       pk 			sc->sc_dev.dv_xname, error);
    208  1.10      mrg 		return;
    209   1.1       pk 	}
    210   1.1       pk 	sc->sc_rb.rb_dmabase = seg.ds_addr;
    211   1.1       pk 
    212   1.1       pk 	/* Map DMA memory in CPU adressable space */
    213   1.1       pk 	if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, size,
    214   1.1       pk 				    &sc->sc_rb.rb_membase,
    215   1.1       pk 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    216   1.1       pk 		printf("%s: DMA buffer map error %d\n",
    217   1.1       pk 			sc->sc_dev.dv_xname, error);
    218   1.1       pk 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    219   1.1       pk 		return;
    220   1.1       pk 	}
    221   1.1       pk 
    222   1.1       pk #if 0
    223   1.1       pk 	/*
    224   1.1       pk 	 * Install default copy routines if not supplied.
    225   1.1       pk 	 */
    226   1.1       pk 	if (sc->sc_copytobuf == NULL)
    227   1.1       pk 		sc->sc_copytobuf = hme_copytobuf_contig;
    228   1.1       pk 
    229   1.1       pk 	if (sc->sc_copyfrombuf == NULL)
    230   1.1       pk 		sc->sc_copyfrombuf = hme_copyfrombuf_contig;
    231   1.1       pk #endif
    232   1.1       pk 
    233   1.2       pk 	printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
    234   1.2       pk 
    235   1.1       pk 	/* Initialize ifnet structure. */
    236   1.1       pk 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    237   1.1       pk 	ifp->if_softc = sc;
    238   1.1       pk 	ifp->if_start = hme_start;
    239   1.1       pk 	ifp->if_ioctl = hme_ioctl;
    240   1.1       pk 	ifp->if_watchdog = hme_watchdog;
    241   1.1       pk 	ifp->if_flags =
    242   1.1       pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    243   1.1       pk 
    244   1.1       pk 	/* Initialize ifmedia structures and MII info */
    245   1.1       pk 	mii->mii_ifp = ifp;
    246   1.1       pk 	mii->mii_readreg = hme_mii_readreg;
    247   1.1       pk 	mii->mii_writereg = hme_mii_writereg;
    248   1.1       pk 	mii->mii_statchg = hme_mii_statchg;
    249   1.1       pk 
    250   1.1       pk 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
    251   1.1       pk 
    252   1.4       pk 	hme_mifinit(sc);
    253   1.4       pk 
    254   1.6  thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    255   1.7  thorpej 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
    256   1.2       pk 
    257   1.5       pk 	child = LIST_FIRST(&mii->mii_phys);
    258   1.5       pk 	if (child == NULL) {
    259   1.1       pk 		/* No PHY attached */
    260   1.1       pk 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    261   1.1       pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    262   1.1       pk 	} else {
    263   1.1       pk 		/*
    264   1.5       pk 		 * Walk along the list of attached MII devices and
    265   1.5       pk 		 * establish an `MII instance' to `phy number'
    266   1.5       pk 		 * mapping. We'll use this mapping in media change
    267   1.5       pk 		 * requests to determine which phy to use to program
    268   1.5       pk 		 * the MIF configuration register.
    269   1.5       pk 		 */
    270   1.5       pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    271   1.5       pk 			/*
    272   1.5       pk 			 * Note: we support just two PHYs: the built-in
    273   1.5       pk 			 * internal device and an external on the MII
    274   1.5       pk 			 * connector.
    275   1.5       pk 			 */
    276   1.5       pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    277   1.5       pk 				printf("%s: cannot accomodate MII device %s"
    278   1.5       pk 				       " at phy %d, instance %d\n",
    279   1.5       pk 				       sc->sc_dev.dv_xname,
    280   1.5       pk 				       child->mii_dev.dv_xname,
    281   1.5       pk 				       child->mii_phy, child->mii_inst);
    282   1.5       pk 				continue;
    283   1.5       pk 			}
    284   1.5       pk 
    285   1.5       pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    286   1.5       pk 		}
    287   1.5       pk 
    288   1.5       pk 		/*
    289   1.1       pk 		 * XXX - we can really do the following ONLY if the
    290   1.1       pk 		 * phy indeed has the auto negotiation capability!!
    291   1.1       pk 		 */
    292   1.1       pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    293   1.1       pk 	}
    294   1.1       pk 
    295   1.1       pk 	/* Attach the interface. */
    296   1.1       pk 	if_attach(ifp);
    297   1.1       pk 	ether_ifattach(ifp, sc->sc_enaddr);
    298   1.1       pk 
    299   1.1       pk #if NBPFILTER > 0
    300   1.1       pk 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
    301   1.1       pk #endif
    302   1.1       pk 
    303   1.1       pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    304   1.1       pk 	if (sc->sc_sh == NULL)
    305   1.1       pk 		panic("hme_config: can't establish shutdownhook");
    306   1.1       pk 
    307   1.1       pk #if 0
    308   1.1       pk 	printf("%s: %d receive buffers, %d transmit buffers\n",
    309   1.1       pk 	    sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
    310   1.1       pk 	sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
    311   1.1       pk 					M_WAITOK);
    312   1.1       pk 	sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
    313   1.1       pk 					M_WAITOK);
    314   1.1       pk #endif
    315   1.1       pk 
    316   1.1       pk #if NRND > 0
    317   1.1       pk 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    318   1.1       pk 			  RND_TYPE_NET, 0);
    319   1.1       pk #endif
    320   1.5       pk 
    321   1.9  thorpej 	callout_init(&sc->sc_tick_ch);
    322   1.5       pk }
    323   1.5       pk 
    324   1.5       pk void
    325   1.5       pk hme_tick(arg)
    326   1.5       pk 	void *arg;
    327   1.5       pk {
    328   1.5       pk 	struct hme_softc *sc = arg;
    329   1.5       pk 	int s;
    330   1.5       pk 
    331   1.5       pk 	s = splnet();
    332   1.5       pk 	mii_tick(&sc->sc_mii);
    333   1.5       pk 	splx(s);
    334   1.5       pk 
    335   1.9  thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    336   1.1       pk }
    337   1.1       pk 
    338   1.1       pk void
    339   1.1       pk hme_reset(sc)
    340   1.1       pk 	struct hme_softc *sc;
    341   1.1       pk {
    342   1.1       pk 	int s;
    343   1.1       pk 
    344   1.1       pk 	s = splnet();
    345   1.1       pk 	hme_init(sc);
    346   1.1       pk 	splx(s);
    347   1.1       pk }
    348   1.1       pk 
    349   1.1       pk void
    350   1.1       pk hme_stop(sc)
    351   1.1       pk 	struct hme_softc *sc;
    352   1.1       pk {
    353   1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    354   1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    355   1.1       pk 	int n;
    356   1.1       pk 
    357   1.9  thorpej 	callout_stop(&sc->sc_tick_ch);
    358   1.5       pk 	mii_down(&sc->sc_mii);
    359   1.5       pk 
    360   1.1       pk 	/* Reset transmitter and receiver */
    361   1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    362   1.1       pk 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    363   1.1       pk 
    364   1.1       pk 	for (n = 0; n < 20; n++) {
    365   1.1       pk 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    366   1.1       pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    367   1.1       pk 			return;
    368   1.1       pk 		DELAY(20);
    369   1.1       pk 	}
    370   1.1       pk 
    371   1.1       pk 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
    372   1.1       pk }
    373   1.1       pk 
    374   1.1       pk void
    375   1.1       pk hme_meminit(sc)
    376   1.1       pk 	struct hme_softc *sc;
    377   1.1       pk {
    378   1.1       pk 	bus_addr_t txbufdma, rxbufdma;
    379   1.1       pk 	bus_addr_t dma;
    380   1.1       pk 	caddr_t p;
    381   1.1       pk 	unsigned int ntbuf, nrbuf, i;
    382   1.1       pk 	struct hme_ring *hr = &sc->sc_rb;
    383   1.1       pk 
    384   1.1       pk 	p = hr->rb_membase;
    385   1.1       pk 	dma = hr->rb_dmabase;
    386   1.1       pk 
    387   1.1       pk 	ntbuf = hr->rb_ntbuf;
    388   1.1       pk 	nrbuf = hr->rb_nrbuf;
    389   1.1       pk 
    390   1.1       pk 	/*
    391   1.1       pk 	 * Allocate transmit descriptors
    392   1.1       pk 	 */
    393   1.1       pk 	hr->rb_txd = p;
    394   1.1       pk 	hr->rb_txddma = dma;
    395   1.1       pk 	p += ntbuf * HME_XD_SIZE;
    396   1.1       pk 	dma += ntbuf * HME_XD_SIZE;
    397   1.4       pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    398   1.4       pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    399   1.4       pk 	p = (caddr_t)roundup((u_long)p, 2048);
    400   1.1       pk 
    401   1.1       pk 	/*
    402   1.1       pk 	 * Allocate receive descriptors
    403   1.1       pk 	 */
    404   1.1       pk 	hr->rb_rxd = p;
    405   1.1       pk 	hr->rb_rxddma = dma;
    406   1.1       pk 	p += nrbuf * HME_XD_SIZE;
    407   1.1       pk 	dma += nrbuf * HME_XD_SIZE;
    408   1.4       pk 	/* Again move forward to the next 2048 byte boundary.*/
    409   1.4       pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    410   1.4       pk 	p = (caddr_t)roundup((u_long)p, 2048);
    411   1.1       pk 
    412   1.1       pk 
    413   1.1       pk 	/*
    414   1.1       pk 	 * Allocate transmit buffers
    415   1.1       pk 	 */
    416   1.1       pk 	hr->rb_txbuf = p;
    417   1.1       pk 	txbufdma = dma;
    418   1.1       pk 	p += ntbuf * _HME_BUFSZ;
    419   1.1       pk 	dma += ntbuf * _HME_BUFSZ;
    420   1.1       pk 
    421   1.1       pk 	/*
    422   1.1       pk 	 * Allocate receive buffers
    423   1.1       pk 	 */
    424   1.1       pk 	hr->rb_rxbuf = p;
    425   1.1       pk 	rxbufdma = dma;
    426   1.1       pk 	p += nrbuf * _HME_BUFSZ;
    427   1.1       pk 	dma += nrbuf * _HME_BUFSZ;
    428   1.1       pk 
    429   1.1       pk 	/*
    430   1.1       pk 	 * Initialize transmit buffer descriptors
    431   1.1       pk 	 */
    432   1.1       pk 	for (i = 0; i < ntbuf; i++) {
    433   1.1       pk 		HME_XD_SETADDR(hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    434   1.1       pk 		HME_XD_SETFLAGS(hr->rb_txd, i, 0);
    435   1.1       pk 	}
    436   1.1       pk 
    437   1.1       pk 	/*
    438   1.1       pk 	 * Initialize receive buffer descriptors
    439   1.1       pk 	 */
    440   1.1       pk 	for (i = 0; i < nrbuf; i++) {
    441   1.2       pk 		HME_XD_SETADDR(hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    442   1.2       pk 		HME_XD_SETFLAGS(hr->rb_rxd, i,
    443   1.1       pk 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    444   1.1       pk 	}
    445   1.1       pk 
    446   1.1       pk 	hr->rb_tdhead = hr->rb_tdtail = 0;
    447   1.1       pk 	hr->rb_td_nbusy = 0;
    448   1.1       pk 	hr->rb_rdtail = 0;
    449   1.1       pk }
    450   1.1       pk 
    451   1.1       pk /*
    452   1.1       pk  * Initialization of interface; set up initialization block
    453   1.1       pk  * and transmit/receive descriptor rings.
    454   1.1       pk  */
    455   1.1       pk void
    456   1.1       pk hme_init(sc)
    457   1.1       pk 	struct hme_softc *sc;
    458   1.1       pk {
    459   1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    460   1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    461   1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    462   1.1       pk 	bus_space_handle_t etx = sc->sc_etx;
    463   1.1       pk 	bus_space_handle_t erx = sc->sc_erx;
    464   1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
    465   1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
    466   1.1       pk 	u_int8_t *ea;
    467   1.1       pk 	u_int32_t v;
    468   1.1       pk 
    469   1.1       pk 	/*
    470   1.1       pk 	 * Initialization sequence. The numbered steps below correspond
    471   1.1       pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    472   1.1       pk 	 * Channel Engine manual (part of the PCIO manual).
    473   1.1       pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    474   1.1       pk 	 */
    475   1.1       pk 
    476   1.1       pk 	/* step 1 & 2. Reset the Ethernet Channel */
    477   1.1       pk 	hme_stop(sc);
    478   1.1       pk 
    479   1.4       pk 	/* Re-initialize the MIF */
    480   1.4       pk 	hme_mifinit(sc);
    481   1.4       pk 
    482   1.1       pk 	/* Call MI reset function if any */
    483   1.1       pk 	if (sc->sc_hwreset)
    484   1.1       pk 		(*sc->sc_hwreset)(sc);
    485   1.1       pk 
    486   1.1       pk #if 0
    487   1.1       pk 	/* Mask all MIF interrupts, just in case */
    488   1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    489   1.1       pk #endif
    490   1.1       pk 
    491   1.1       pk 	/* step 3. Setup data structures in host memory */
    492   1.1       pk 	hme_meminit(sc);
    493   1.1       pk 
    494   1.1       pk 	/* step 4. TX MAC registers & counters */
    495   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    496   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    497   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    498   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    499   1.1       pk 
    500   1.1       pk 	/* Load station MAC address */
    501   1.1       pk 	ea = sc->sc_enaddr;
    502   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    503   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    504   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    505   1.1       pk 
    506   1.1       pk 	/*
    507   1.1       pk 	 * Init seed for backoff
    508   1.1       pk 	 * (source suggested by manual: low 10 bits of MAC address)
    509   1.1       pk 	 */
    510   1.1       pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    511   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    512   1.1       pk 
    513   1.1       pk 
    514   1.1       pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    515   1.1       pk 
    516   1.1       pk 
    517   1.1       pk 	/* step 5. RX MAC registers & counters */
    518   1.1       pk 	hme_setladrf(sc);
    519   1.1       pk 
    520   1.1       pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    521   1.1       pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    522   1.1       pk 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    523   1.1       pk 
    524   1.1       pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    525   1.1       pk 
    526   1.1       pk 
    527   1.1       pk 	/* step 8. Global Configuration & Interrupt Mask */
    528   1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    529   1.2       pk 			~(
    530   1.2       pk 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    531   1.2       pk 			  HME_SEB_STAT_HOSTTOTX |
    532   1.2       pk 			  HME_SEB_STAT_RXTOHOST |
    533   1.2       pk 			  HME_SEB_STAT_TXALL |
    534   1.2       pk 			  HME_SEB_STAT_TXPERR |
    535   1.2       pk 			  HME_SEB_STAT_RCNTEXP |
    536   1.2       pk 			  HME_SEB_STAT_ALL_ERRORS ));
    537   1.1       pk 
    538   1.1       pk 	switch (sc->sc_burst) {
    539   1.1       pk 	default:
    540   1.1       pk 		v = 0;
    541   1.1       pk 		break;
    542   1.1       pk 	case 16:
    543   1.1       pk 		v = HME_SEB_CFG_BURST16;
    544   1.1       pk 		break;
    545   1.1       pk 	case 32:
    546   1.1       pk 		v = HME_SEB_CFG_BURST32;
    547   1.1       pk 		break;
    548   1.1       pk 	case 64:
    549   1.1       pk 		v = HME_SEB_CFG_BURST64;
    550   1.1       pk 		break;
    551   1.1       pk 	}
    552   1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    553   1.1       pk 
    554   1.1       pk 	/* step 9. ETX Configuration: use mostly default values */
    555   1.1       pk 
    556   1.1       pk 	/* Enable DMA */
    557   1.2       pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    558   1.1       pk 	v |= HME_ETX_CFG_DMAENABLE;
    559   1.2       pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    560   1.1       pk 
    561   1.3       pk 	/* Transmit Descriptor ring size: in increments of 16 */
    562   1.3       pk 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    563   1.1       pk 
    564   1.1       pk 
    565   1.3       pk 	/* step 10. ERX Configuration */
    566   1.2       pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    567   1.3       pk 
    568   1.3       pk 	/* Encode Receive Descriptor ring size: four possible values */
    569   1.3       pk 	switch (_HME_NDESC /*XXX*/) {
    570   1.3       pk 	case 32:
    571   1.3       pk 		v |= HME_ERX_CFG_RINGSIZE32;
    572   1.3       pk 		break;
    573   1.3       pk 	case 64:
    574   1.3       pk 		v |= HME_ERX_CFG_RINGSIZE64;
    575   1.3       pk 		break;
    576   1.3       pk 	case 128:
    577   1.3       pk 		v |= HME_ERX_CFG_RINGSIZE128;
    578   1.3       pk 		break;
    579   1.3       pk 	case 256:
    580   1.3       pk 		v |= HME_ERX_CFG_RINGSIZE256;
    581   1.3       pk 		break;
    582   1.3       pk 	default:
    583   1.3       pk 		printf("hme: invalid Receive Descriptor ring size\n");
    584   1.3       pk 		break;
    585   1.3       pk 	}
    586   1.3       pk 
    587   1.3       pk 	/* Enable DMA */
    588   1.1       pk 	v |= HME_ERX_CFG_DMAENABLE;
    589   1.2       pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    590   1.1       pk 
    591   1.1       pk 	/* step 11. XIF Configuration */
    592   1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    593   1.1       pk 	v |= HME_MAC_XIF_OE;
    594   1.4       pk 	/* If an external transceiver is connected, enable its MII drivers */
    595   1.2       pk 	if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
    596   1.4       pk 		v |= HME_MAC_XIF_MIIENABLE;
    597   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    598   1.1       pk 
    599   1.2       pk 
    600   1.1       pk 	/* step 12. RX_MAC Configuration Register */
    601   1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    602   1.1       pk 	v |= HME_MAC_RXCFG_ENABLE;
    603   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    604   1.1       pk 
    605   1.1       pk 	/* step 13. TX_MAC Configuration Register */
    606   1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    607   1.2       pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    608   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    609   1.1       pk 
    610   1.1       pk 	/* step 14. Issue Transmit Pending command */
    611   1.1       pk 
    612   1.1       pk 	/* Call MI initialization function if any */
    613   1.1       pk 	if (sc->sc_hwinit)
    614   1.1       pk 		(*sc->sc_hwinit)(sc);
    615   1.9  thorpej 
    616   1.9  thorpej 	/* Start the one second timer. */
    617   1.9  thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    618   1.1       pk 
    619   1.1       pk 	ifp->if_flags |= IFF_RUNNING;
    620   1.1       pk 	ifp->if_flags &= ~IFF_OACTIVE;
    621   1.1       pk 	ifp->if_timer = 0;
    622   1.1       pk 	hme_start(ifp);
    623   1.1       pk }
    624   1.1       pk 
    625   1.1       pk /*
    626   1.1       pk  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    627   1.1       pk  * speed.
    628   1.1       pk  */
    629   1.1       pk static __inline__ int
    630   1.1       pk ether_cmp(a, b)
    631   1.1       pk 	u_char *a, *b;
    632   1.1       pk {
    633   1.1       pk 
    634   1.1       pk 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    635   1.1       pk 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    636   1.1       pk 		return (0);
    637   1.1       pk 	return (1);
    638   1.1       pk }
    639   1.1       pk 
    640   1.1       pk 
    641   1.1       pk /*
    642   1.1       pk  * Routine to copy from mbuf chain to transmit buffer in
    643   1.1       pk  * network buffer memory.
    644   1.1       pk  * Returns the amount of data copied.
    645   1.1       pk  */
    646   1.1       pk int
    647   1.1       pk hme_put(sc, ri, m)
    648   1.1       pk 	struct hme_softc *sc;
    649   1.1       pk 	int ri;			/* Ring index */
    650   1.1       pk 	struct mbuf *m;
    651   1.1       pk {
    652   1.1       pk 	struct mbuf *n;
    653   1.1       pk 	int len, tlen = 0;
    654   1.1       pk 	caddr_t bp;
    655   1.1       pk 
    656   1.1       pk 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    657   1.1       pk 	for (; m; m = n) {
    658   1.1       pk 		len = m->m_len;
    659   1.1       pk 		if (len == 0) {
    660   1.1       pk 			MFREE(m, n);
    661   1.1       pk 			continue;
    662   1.1       pk 		}
    663   1.1       pk 		bcopy(mtod(m, caddr_t), bp, len);
    664   1.1       pk 		bp += len;
    665   1.1       pk 		tlen += len;
    666   1.1       pk 		MFREE(m, n);
    667   1.1       pk 	}
    668   1.1       pk 	return (tlen);
    669   1.1       pk }
    670   1.1       pk 
    671   1.1       pk /*
    672   1.1       pk  * Pull data off an interface.
    673   1.1       pk  * Len is length of data, with local net header stripped.
    674   1.1       pk  * We copy the data into mbufs.  When full cluster sized units are present
    675   1.1       pk  * we copy into clusters.
    676   1.1       pk  */
    677   1.1       pk struct mbuf *
    678   1.1       pk hme_get(sc, ri, totlen)
    679   1.1       pk 	struct hme_softc *sc;
    680   1.1       pk 	int ri, totlen;
    681   1.1       pk {
    682   1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    683   1.1       pk 	struct mbuf *m, *m0, *newm;
    684   1.1       pk 	caddr_t bp;
    685   1.1       pk 	int len;
    686   1.1       pk 
    687   1.1       pk 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    688   1.1       pk 	if (m0 == 0)
    689   1.1       pk 		return (0);
    690   1.1       pk 	m0->m_pkthdr.rcvif = ifp;
    691   1.1       pk 	m0->m_pkthdr.len = totlen;
    692   1.1       pk 	len = MHLEN;
    693   1.1       pk 	m = m0;
    694   1.1       pk 
    695   1.1       pk 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    696   1.1       pk 
    697   1.1       pk 	while (totlen > 0) {
    698   1.1       pk 		if (totlen >= MINCLSIZE) {
    699   1.1       pk 			MCLGET(m, M_DONTWAIT);
    700   1.1       pk 			if ((m->m_flags & M_EXT) == 0)
    701   1.1       pk 				goto bad;
    702   1.1       pk 			len = MCLBYTES;
    703   1.1       pk 		}
    704   1.1       pk 
    705   1.1       pk 		if (m == m0) {
    706   1.1       pk 			caddr_t newdata = (caddr_t)
    707   1.1       pk 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    708   1.1       pk 			    sizeof(struct ether_header);
    709   1.1       pk 			len -= newdata - m->m_data;
    710   1.1       pk 			m->m_data = newdata;
    711   1.1       pk 		}
    712   1.1       pk 
    713   1.1       pk 		m->m_len = len = min(totlen, len);
    714   1.1       pk 		bcopy(bp, mtod(m, caddr_t), len);
    715   1.1       pk 		bp += len;
    716   1.1       pk 
    717   1.1       pk 		totlen -= len;
    718   1.1       pk 		if (totlen > 0) {
    719   1.1       pk 			MGET(newm, M_DONTWAIT, MT_DATA);
    720   1.1       pk 			if (newm == 0)
    721   1.1       pk 				goto bad;
    722   1.1       pk 			len = MLEN;
    723   1.1       pk 			m = m->m_next = newm;
    724   1.1       pk 		}
    725   1.1       pk 	}
    726   1.1       pk 
    727   1.1       pk 	return (m0);
    728   1.1       pk 
    729   1.1       pk bad:
    730   1.1       pk 	m_freem(m0);
    731   1.1       pk 	return (0);
    732   1.1       pk }
    733   1.1       pk 
    734   1.1       pk /*
    735   1.1       pk  * Pass a packet to the higher levels.
    736   1.1       pk  */
    737   1.1       pk void
    738   1.1       pk hme_read(sc, ix, len)
    739   1.1       pk 	struct hme_softc *sc;
    740   1.1       pk 	int ix, len;
    741   1.1       pk {
    742   1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    743   1.1       pk 	struct mbuf *m;
    744   1.1       pk 
    745   1.1       pk 	if (len <= sizeof(struct ether_header) ||
    746   1.1       pk 	    len > ETHERMTU + sizeof(struct ether_header)) {
    747   1.1       pk #ifdef HMEDEBUG
    748   1.1       pk 		printf("%s: invalid packet size %d; dropping\n",
    749   1.1       pk 		    sc->sc_dev.dv_xname, len);
    750   1.1       pk #endif
    751   1.1       pk 		ifp->if_ierrors++;
    752   1.1       pk 		return;
    753   1.1       pk 	}
    754   1.1       pk 
    755   1.1       pk 	/* Pull packet off interface. */
    756   1.1       pk 	m = hme_get(sc, ix, len);
    757   1.1       pk 	if (m == 0) {
    758   1.1       pk 		ifp->if_ierrors++;
    759   1.1       pk 		return;
    760   1.1       pk 	}
    761   1.1       pk 
    762   1.1       pk 	ifp->if_ipackets++;
    763   1.1       pk 
    764   1.1       pk #if NBPFILTER > 0
    765   1.1       pk 	/*
    766   1.1       pk 	 * Check if there's a BPF listener on this interface.
    767   1.1       pk 	 * If so, hand off the raw packet to BPF.
    768   1.1       pk 	 */
    769   1.1       pk 	if (ifp->if_bpf) {
    770   1.2       pk 		struct ether_header *eh;
    771   1.2       pk 
    772   1.1       pk 		bpf_mtap(ifp->if_bpf, m);
    773   1.1       pk 
    774   1.1       pk 		/*
    775   1.1       pk 		 * Note that the interface cannot be in promiscuous mode if
    776   1.1       pk 		 * there are no BPF listeners.  And if we are in promiscuous
    777   1.1       pk 		 * mode, we have to check if this packet is really ours.
    778   1.1       pk 		 */
    779   1.2       pk 
    780   1.2       pk 		/* We assume that the header fit entirely in one mbuf. */
    781   1.2       pk 		eh = mtod(m, struct ether_header *);
    782   1.2       pk 
    783   1.1       pk 		if ((ifp->if_flags & IFF_PROMISC) != 0 &&
    784   1.1       pk 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
    785   1.4       pk 		    ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) {
    786   1.1       pk 			m_freem(m);
    787   1.1       pk 			return;
    788   1.1       pk 		}
    789   1.1       pk 	}
    790   1.1       pk #endif
    791   1.1       pk 
    792   1.1       pk 	/* Pass the packet up. */
    793   1.1       pk 	(*ifp->if_input)(ifp, m);
    794   1.1       pk }
    795   1.1       pk 
    796   1.1       pk void
    797   1.1       pk hme_start(ifp)
    798   1.1       pk 	struct ifnet *ifp;
    799   1.1       pk {
    800   1.1       pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    801   1.1       pk 	caddr_t txd = sc->sc_rb.rb_txd;
    802   1.1       pk 	struct mbuf *m;
    803   1.1       pk 	unsigned int ri, len;
    804   1.1       pk 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    805   1.1       pk 
    806   1.1       pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    807   1.1       pk 		return;
    808   1.1       pk 
    809   1.1       pk 	ri = sc->sc_rb.rb_tdhead;
    810   1.1       pk 
    811   1.1       pk 	for (;;) {
    812   1.1       pk 		IF_DEQUEUE(&ifp->if_snd, m);
    813   1.1       pk 		if (m == 0)
    814   1.1       pk 			break;
    815   1.1       pk 
    816   1.1       pk #if NBPFILTER > 0
    817   1.1       pk 		/*
    818   1.1       pk 		 * If BPF is listening on this interface, let it see the
    819   1.1       pk 		 * packet before we commit it to the wire.
    820   1.1       pk 		 */
    821   1.1       pk 		if (ifp->if_bpf)
    822   1.1       pk 			bpf_mtap(ifp->if_bpf, m);
    823   1.1       pk #endif
    824   1.1       pk 
    825   1.1       pk 		/*
    826   1.1       pk 		 * Copy the mbuf chain into the transmit buffer.
    827   1.1       pk 		 */
    828   1.1       pk 		len = hme_put(sc, ri, m);
    829   1.1       pk 
    830   1.1       pk 		/*
    831   1.1       pk 		 * Initialize transmit registers and start transmission
    832   1.1       pk 		 */
    833   1.1       pk 		HME_XD_SETFLAGS(txd, ri,
    834   1.1       pk 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    835   1.1       pk 			HME_XD_ENCODE_TSIZE(len));
    836   1.1       pk 
    837   1.3       pk 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    838   1.1       pk 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    839   1.1       pk 				  HME_ETX_TP_DMAWAKEUP);
    840   1.1       pk 
    841   1.1       pk 		if (++ri == ntbuf)
    842   1.1       pk 			ri = 0;
    843   1.1       pk 
    844   1.1       pk 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    845   1.1       pk 			ifp->if_flags |= IFF_OACTIVE;
    846   1.1       pk 			break;
    847   1.1       pk 		}
    848   1.1       pk 	}
    849   1.1       pk 
    850   1.1       pk 	sc->sc_rb.rb_tdhead = ri;
    851   1.1       pk }
    852   1.1       pk 
    853   1.1       pk /*
    854   1.1       pk  * Transmit interrupt.
    855   1.1       pk  */
    856   1.1       pk int
    857   1.1       pk hme_tint(sc)
    858   1.1       pk 	struct hme_softc *sc;
    859   1.1       pk {
    860   1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    861   1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    862   1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
    863   1.1       pk 	unsigned int ri, txflags;
    864   1.1       pk 
    865   1.1       pk 	/*
    866   1.1       pk 	 * Unload collision counters
    867   1.1       pk 	 */
    868   1.1       pk 	ifp->if_collisions +=
    869   1.1       pk 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    870   1.1       pk 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
    871   1.1       pk 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    872   1.1       pk 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    873   1.1       pk 
    874   1.1       pk 	/*
    875   1.1       pk 	 * then clear the hardware counters.
    876   1.1       pk 	 */
    877   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    878   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    879   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    880   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    881   1.1       pk 
    882   1.1       pk 	/* Fetch current position in the transmit ring */
    883   1.1       pk 	ri = sc->sc_rb.rb_tdtail;
    884   1.1       pk 
    885   1.1       pk 	for (;;) {
    886   1.1       pk 		if (sc->sc_rb.rb_td_nbusy <= 0)
    887   1.1       pk 			break;
    888   1.1       pk 
    889   1.1       pk 		txflags = HME_XD_GETFLAGS(sc->sc_rb.rb_txd, ri);
    890   1.1       pk 
    891   1.1       pk 		if (txflags & HME_XD_OWN)
    892   1.1       pk 			break;
    893   1.1       pk 
    894   1.1       pk 		ifp->if_flags &= ~IFF_OACTIVE;
    895   1.1       pk 		ifp->if_opackets++;
    896   1.1       pk 
    897   1.3       pk 		if (++ri == sc->sc_rb.rb_ntbuf)
    898   1.1       pk 			ri = 0;
    899   1.1       pk 
    900   1.1       pk 		--sc->sc_rb.rb_td_nbusy;
    901   1.1       pk 	}
    902   1.1       pk 
    903   1.3       pk 	/* Update ring */
    904   1.1       pk 	sc->sc_rb.rb_tdtail = ri;
    905   1.1       pk 
    906   1.1       pk 	hme_start(ifp);
    907   1.1       pk 
    908   1.1       pk 	if (sc->sc_rb.rb_td_nbusy == 0)
    909   1.1       pk 		ifp->if_timer = 0;
    910   1.1       pk 
    911   1.1       pk 	return (1);
    912   1.1       pk }
    913   1.1       pk 
    914   1.1       pk /*
    915   1.1       pk  * Receive interrupt.
    916   1.1       pk  */
    917   1.1       pk int
    918   1.1       pk hme_rint(sc)
    919   1.1       pk 	struct hme_softc *sc;
    920   1.1       pk {
    921   1.1       pk 	caddr_t xdr = sc->sc_rb.rb_rxd;
    922   1.1       pk 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
    923   1.1       pk 	unsigned int ri, len;
    924   1.1       pk 	u_int32_t flags;
    925   1.1       pk 
    926   1.1       pk 	ri = sc->sc_rb.rb_rdtail;
    927   1.1       pk 
    928   1.1       pk 	/*
    929   1.1       pk 	 * Process all buffers with valid data.
    930   1.1       pk 	 */
    931   1.1       pk 	for (;;) {
    932   1.1       pk 		flags = HME_XD_GETFLAGS(xdr, ri);
    933   1.1       pk 		if (flags & HME_XD_OWN)
    934   1.1       pk 			break;
    935   1.1       pk 
    936   1.4       pk 		if (flags & HME_XD_OFL) {
    937   1.4       pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
    938   1.4       pk 					sc->sc_dev.dv_xname, ri, flags);
    939   1.4       pk 		} else {
    940   1.4       pk 			len = HME_XD_DECODE_RSIZE(flags);
    941   1.4       pk 			hme_read(sc, ri, len);
    942   1.4       pk 		}
    943   1.1       pk 
    944   1.1       pk 		/* This buffer can be used by the hardware again */
    945   1.1       pk 		HME_XD_SETFLAGS(xdr, ri,
    946   1.1       pk 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    947   1.1       pk 
    948   1.1       pk 		if (++ri == nrbuf)
    949   1.1       pk 			ri = 0;
    950   1.1       pk 	}
    951   1.1       pk 
    952   1.1       pk 	sc->sc_rb.rb_rdtail = ri;
    953   1.1       pk 
    954   1.1       pk 	return (1);
    955   1.1       pk }
    956   1.1       pk 
    957   1.1       pk int
    958   1.1       pk hme_eint(sc, status)
    959   1.1       pk 	struct hme_softc *sc;
    960   1.1       pk 	u_int status;
    961   1.1       pk {
    962   1.1       pk 	char bits[128];
    963   1.1       pk 
    964   1.1       pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
    965   1.1       pk 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
    966   1.1       pk 		return (1);
    967   1.1       pk 	}
    968   1.1       pk 
    969   1.1       pk 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
    970   1.1       pk 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
    971   1.1       pk 	return (1);
    972   1.1       pk }
    973   1.1       pk 
    974   1.1       pk int
    975   1.1       pk hme_intr(v)
    976   1.1       pk 	void *v;
    977   1.1       pk {
    978   1.1       pk 	struct hme_softc *sc = (struct hme_softc *)v;
    979   1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    980   1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    981   1.1       pk 	u_int32_t status;
    982   1.1       pk 	int r = 0;
    983   1.1       pk 
    984   1.1       pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
    985   1.1       pk 
    986   1.1       pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
    987   1.1       pk 		r |= hme_eint(sc, status);
    988   1.1       pk 
    989   1.1       pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
    990   1.1       pk 		r |= hme_tint(sc);
    991   1.1       pk 
    992   1.1       pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
    993   1.1       pk 		r |= hme_rint(sc);
    994   1.1       pk 
    995   1.1       pk 	return (r);
    996   1.1       pk }
    997   1.1       pk 
    998   1.1       pk 
    999   1.1       pk void
   1000   1.1       pk hme_watchdog(ifp)
   1001   1.1       pk 	struct ifnet *ifp;
   1002   1.1       pk {
   1003   1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1004   1.1       pk 
   1005   1.1       pk 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1006   1.1       pk 	++ifp->if_oerrors;
   1007   1.1       pk 
   1008   1.1       pk 	hme_reset(sc);
   1009   1.4       pk }
   1010   1.4       pk 
   1011   1.4       pk /*
   1012   1.4       pk  * Initialize the MII Management Interface
   1013   1.4       pk  */
   1014   1.4       pk void
   1015   1.4       pk hme_mifinit(sc)
   1016   1.4       pk 	struct hme_softc *sc;
   1017   1.4       pk {
   1018   1.4       pk 	bus_space_tag_t t = sc->sc_bustag;
   1019   1.4       pk 	bus_space_handle_t mif = sc->sc_mif;
   1020   1.4       pk 	u_int32_t v;
   1021   1.4       pk 
   1022   1.4       pk 	/* Configure the MIF in frame mode */
   1023   1.4       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1024   1.4       pk 	v &= ~HME_MIF_CFG_BBMODE;
   1025   1.4       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1026   1.1       pk }
   1027   1.1       pk 
   1028   1.1       pk /*
   1029   1.1       pk  * MII interface
   1030   1.1       pk  */
   1031   1.1       pk static int
   1032   1.1       pk hme_mii_readreg(self, phy, reg)
   1033   1.1       pk 	struct device *self;
   1034   1.1       pk 	int phy, reg;
   1035   1.1       pk {
   1036   1.1       pk 	struct hme_softc *sc = (void *)self;
   1037   1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1038   1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
   1039   1.1       pk 	int n;
   1040   1.1       pk 	u_int32_t v;
   1041   1.1       pk 
   1042   1.5       pk 	/* Select the desired PHY in the MIF configuration register */
   1043   1.5       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1044   1.5       pk 	/* Clear PHY select bit */
   1045   1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1046   1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1047   1.5       pk 		/* Set PHY select bit to get at external device */
   1048   1.5       pk 		v |= HME_MIF_CFG_PHY;
   1049   1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1050   1.5       pk 
   1051   1.1       pk 	/* Construct the frame command */
   1052   1.1       pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1053   1.1       pk 	    HME_MIF_FO_TAMSB |
   1054   1.1       pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1055   1.1       pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1056   1.1       pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1057   1.1       pk 
   1058   1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1059   1.1       pk 	for (n = 0; n < 100; n++) {
   1060   1.2       pk 		DELAY(1);
   1061   1.1       pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1062   1.1       pk 		if (v & HME_MIF_FO_TALSB)
   1063   1.1       pk 			return (v & HME_MIF_FO_DATA);
   1064   1.1       pk 	}
   1065   1.1       pk 
   1066   1.1       pk 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1067   1.1       pk 	return (0);
   1068   1.1       pk }
   1069   1.1       pk 
   1070   1.1       pk static void
   1071   1.1       pk hme_mii_writereg(self, phy, reg, val)
   1072   1.1       pk 	struct device *self;
   1073   1.1       pk 	int phy, reg, val;
   1074   1.1       pk {
   1075   1.1       pk 	struct hme_softc *sc = (void *)self;
   1076   1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1077   1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
   1078   1.1       pk 	int n;
   1079   1.1       pk 	u_int32_t v;
   1080   1.1       pk 
   1081   1.5       pk 	/* Select the desired PHY in the MIF configuration register */
   1082   1.5       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1083   1.5       pk 	/* Clear PHY select bit */
   1084   1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1085   1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1086   1.5       pk 		/* Set PHY select bit to get at external device */
   1087   1.5       pk 		v |= HME_MIF_CFG_PHY;
   1088   1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1089   1.5       pk 
   1090   1.1       pk 	/* Construct the frame command */
   1091   1.1       pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1092   1.1       pk 	    HME_MIF_FO_TAMSB				|
   1093   1.1       pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1094   1.1       pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1095   1.1       pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1096   1.1       pk 	    (val & HME_MIF_FO_DATA);
   1097   1.1       pk 
   1098   1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1099   1.1       pk 	for (n = 0; n < 100; n++) {
   1100   1.2       pk 		DELAY(1);
   1101   1.1       pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1102   1.1       pk 		if (v & HME_MIF_FO_TALSB)
   1103   1.1       pk 			return;
   1104   1.1       pk 	}
   1105   1.1       pk 
   1106   1.2       pk 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1107   1.1       pk }
   1108   1.1       pk 
   1109   1.1       pk static void
   1110   1.1       pk hme_mii_statchg(dev)
   1111   1.1       pk 	struct device *dev;
   1112   1.1       pk {
   1113   1.3       pk 	struct hme_softc *sc = (void *)dev;
   1114   1.5       pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1115   1.5       pk 	int phy = sc->sc_phys[instance];
   1116   1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1117   1.5       pk 	bus_space_handle_t mif = sc->sc_mif;
   1118   1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
   1119   1.1       pk 	u_int32_t v;
   1120   1.1       pk 
   1121   1.5       pk #ifdef HMEDEBUG
   1122   1.5       pk 	if (sc->sc_debug)
   1123   1.5       pk 		printf("hme_mii_statchg: status change: phy = %d\n", phy);
   1124   1.5       pk #endif
   1125   1.1       pk 
   1126   1.5       pk 	/* Select the current PHY in the MIF configuration register */
   1127   1.5       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1128   1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1129   1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1130   1.5       pk 		v |= HME_MIF_CFG_PHY;
   1131   1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1132   1.1       pk 
   1133   1.5       pk 	/* Set the MAC Full Duplex bit appropriately */
   1134   1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1135   1.1       pk 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1136   1.1       pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1137   1.1       pk 	else
   1138   1.1       pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1139   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1140   1.1       pk 
   1141   1.5       pk 	/* If an external transceiver is selected, enable its MII drivers */
   1142   1.5       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1143   1.5       pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1144   1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1145   1.5       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1146   1.5       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1147   1.5       pk }
   1148   1.5       pk 
   1149   1.5       pk int
   1150   1.5       pk hme_mediachange(ifp)
   1151   1.5       pk 	struct ifnet *ifp;
   1152   1.5       pk {
   1153   1.5       pk 	struct hme_softc *sc = ifp->if_softc;
   1154   1.5       pk 
   1155   1.5       pk 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1156   1.5       pk 		return (EINVAL);
   1157   1.5       pk 
   1158   1.5       pk 	return (mii_mediachg(&sc->sc_mii));
   1159   1.1       pk }
   1160   1.1       pk 
   1161   1.1       pk void
   1162   1.1       pk hme_mediastatus(ifp, ifmr)
   1163   1.1       pk 	struct ifnet *ifp;
   1164   1.1       pk 	struct ifmediareq *ifmr;
   1165   1.1       pk {
   1166   1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1167   1.1       pk 
   1168   1.1       pk 	if ((ifp->if_flags & IFF_UP) == 0)
   1169   1.1       pk 		return;
   1170   1.1       pk 
   1171   1.1       pk 	mii_pollstat(&sc->sc_mii);
   1172   1.1       pk 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1173   1.1       pk 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1174   1.1       pk }
   1175   1.1       pk 
   1176   1.1       pk /*
   1177   1.1       pk  * Process an ioctl request.
   1178   1.1       pk  */
   1179   1.1       pk int
   1180   1.1       pk hme_ioctl(ifp, cmd, data)
   1181   1.1       pk 	struct ifnet *ifp;
   1182   1.1       pk 	u_long cmd;
   1183   1.1       pk 	caddr_t data;
   1184   1.1       pk {
   1185   1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1186   1.1       pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1187   1.1       pk 	struct ifreq *ifr = (struct ifreq *)data;
   1188   1.1       pk 	int s, error = 0;
   1189   1.1       pk 
   1190   1.1       pk 	s = splnet();
   1191   1.1       pk 
   1192   1.1       pk 	switch (cmd) {
   1193   1.1       pk 
   1194   1.1       pk 	case SIOCSIFADDR:
   1195   1.1       pk 		ifp->if_flags |= IFF_UP;
   1196   1.1       pk 
   1197   1.1       pk 		switch (ifa->ifa_addr->sa_family) {
   1198   1.1       pk #ifdef INET
   1199   1.1       pk 		case AF_INET:
   1200   1.1       pk 			hme_init(sc);
   1201   1.1       pk 			arp_ifinit(ifp, ifa);
   1202   1.1       pk 			break;
   1203   1.1       pk #endif
   1204   1.1       pk #ifdef NS
   1205   1.1       pk 		case AF_NS:
   1206   1.1       pk 		    {
   1207   1.1       pk 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1208   1.1       pk 
   1209   1.1       pk 			if (ns_nullhost(*ina))
   1210   1.1       pk 				ina->x_host =
   1211   1.1       pk 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1212   1.1       pk 			else {
   1213   1.1       pk 				bcopy(ina->x_host.c_host,
   1214   1.1       pk 				    LLADDR(ifp->if_sadl),
   1215   1.1       pk 				    sizeof(sc->sc_enaddr));
   1216   1.1       pk 			}
   1217   1.1       pk 			/* Set new address. */
   1218   1.1       pk 			hme_init(sc);
   1219   1.1       pk 			break;
   1220   1.1       pk 		    }
   1221   1.1       pk #endif
   1222   1.1       pk 		default:
   1223   1.1       pk 			hme_init(sc);
   1224   1.1       pk 			break;
   1225   1.1       pk 		}
   1226   1.1       pk 		break;
   1227   1.1       pk 
   1228   1.1       pk 	case SIOCSIFFLAGS:
   1229   1.1       pk 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1230   1.1       pk 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1231   1.1       pk 			/*
   1232   1.1       pk 			 * If interface is marked down and it is running, then
   1233   1.1       pk 			 * stop it.
   1234   1.1       pk 			 */
   1235   1.1       pk 			hme_stop(sc);
   1236   1.1       pk 			ifp->if_flags &= ~IFF_RUNNING;
   1237   1.1       pk 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1238   1.1       pk 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
   1239   1.1       pk 			/*
   1240   1.1       pk 			 * If interface is marked up and it is stopped, then
   1241   1.1       pk 			 * start it.
   1242   1.1       pk 			 */
   1243   1.1       pk 			hme_init(sc);
   1244   1.1       pk 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1245   1.1       pk 			/*
   1246   1.1       pk 			 * Reset the interface to pick up changes in any other
   1247   1.1       pk 			 * flags that affect hardware registers.
   1248   1.1       pk 			 */
   1249   1.1       pk 			/*hme_stop(sc);*/
   1250   1.1       pk 			hme_init(sc);
   1251   1.1       pk 		}
   1252   1.1       pk #ifdef HMEDEBUG
   1253   1.1       pk 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1254   1.1       pk #endif
   1255   1.1       pk 		break;
   1256   1.1       pk 
   1257   1.1       pk 	case SIOCADDMULTI:
   1258   1.1       pk 	case SIOCDELMULTI:
   1259   1.1       pk 		error = (cmd == SIOCADDMULTI) ?
   1260   1.1       pk 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1261   1.1       pk 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1262   1.1       pk 
   1263   1.1       pk 		if (error == ENETRESET) {
   1264   1.1       pk 			/*
   1265   1.1       pk 			 * Multicast list has changed; set the hardware filter
   1266   1.1       pk 			 * accordingly.
   1267   1.1       pk 			 */
   1268   1.1       pk 			hme_setladrf(sc);
   1269   1.1       pk 			error = 0;
   1270   1.1       pk 		}
   1271   1.1       pk 		break;
   1272   1.1       pk 
   1273   1.1       pk 	case SIOCGIFMEDIA:
   1274   1.1       pk 	case SIOCSIFMEDIA:
   1275   1.1       pk 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1276   1.1       pk 		break;
   1277   1.1       pk 
   1278   1.1       pk 	default:
   1279   1.1       pk 		error = EINVAL;
   1280   1.1       pk 		break;
   1281   1.1       pk 	}
   1282   1.1       pk 
   1283   1.1       pk 	splx(s);
   1284   1.1       pk 	return (error);
   1285   1.1       pk }
   1286   1.1       pk 
   1287   1.1       pk void
   1288   1.1       pk hme_shutdown(arg)
   1289   1.1       pk 	void *arg;
   1290   1.1       pk {
   1291   1.1       pk 
   1292   1.1       pk 	hme_stop((struct hme_softc *)arg);
   1293   1.1       pk }
   1294   1.1       pk 
   1295   1.1       pk /*
   1296   1.1       pk  * Set up the logical address filter.
   1297   1.1       pk  */
   1298   1.1       pk void
   1299   1.1       pk hme_setladrf(sc)
   1300   1.1       pk 	struct hme_softc *sc;
   1301   1.1       pk {
   1302   1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1303   1.1       pk 	struct ether_multi *enm;
   1304   1.1       pk 	struct ether_multistep step;
   1305   1.1       pk 	struct ethercom *ec = &sc->sc_ethercom;
   1306   1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1307   1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
   1308   1.1       pk 	u_char *cp;
   1309   1.1       pk 	u_int32_t crc;
   1310   1.1       pk 	u_int32_t hash[4];
   1311   1.1       pk 	int len;
   1312   1.1       pk 
   1313   1.1       pk 	/*
   1314   1.1       pk 	 * Set up multicast address filter by passing all multicast addresses
   1315   1.1       pk 	 * through a crc generator, and then using the high order 6 bits as an
   1316   1.1       pk 	 * index into the 64 bit logical address filter.  The high order bit
   1317   1.1       pk 	 * selects the word, while the rest of the bits select the bit within
   1318   1.1       pk 	 * the word.
   1319   1.1       pk 	 */
   1320   1.1       pk 
   1321   1.1       pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1322   1.1       pk 		u_int32_t v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1323   1.1       pk 		v |= HME_MAC_RXCFG_PMISC;
   1324   1.1       pk 		bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1325   1.1       pk 		goto allmulti;
   1326   1.1       pk 	}
   1327   1.1       pk 
   1328   1.1       pk 	/* Clear hash table */
   1329   1.1       pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1330   1.1       pk 	ETHER_FIRST_MULTI(step, ec, enm);
   1331   1.1       pk 	while (enm != NULL) {
   1332   1.1       pk 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1333   1.1       pk 			/*
   1334   1.1       pk 			 * We must listen to a range of multicast addresses.
   1335   1.1       pk 			 * For now, just accept all multicasts, rather than
   1336   1.1       pk 			 * trying to set only those filter bits needed to match
   1337   1.1       pk 			 * the range.  (At this time, the only use of address
   1338   1.1       pk 			 * ranges is for IP multicast routing, for which the
   1339   1.1       pk 			 * range is big enough to require all bits set.)
   1340   1.1       pk 			 */
   1341   1.1       pk 			goto allmulti;
   1342   1.1       pk 		}
   1343   1.1       pk 
   1344   1.1       pk 		cp = enm->enm_addrlo;
   1345   1.1       pk 		crc = 0xffffffff;
   1346   1.1       pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1347   1.1       pk 			int octet = *cp++;
   1348   1.1       pk 			int i;
   1349   1.1       pk 
   1350   1.1       pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1351   1.1       pk 			for (i = 0; i < 8; i++) {
   1352   1.1       pk 				if ((crc & 1) ^ (octet & 1)) {
   1353   1.1       pk 					crc >>= 1;
   1354   1.1       pk 					crc ^= MC_POLY_LE;
   1355   1.1       pk 				} else {
   1356   1.1       pk 					crc >>= 1;
   1357   1.1       pk 				}
   1358   1.1       pk 				octet >>= 1;
   1359   1.1       pk 			}
   1360   1.1       pk 		}
   1361   1.1       pk 		/* Just want the 6 most significant bits. */
   1362   1.1       pk 		crc >>= 26;
   1363   1.1       pk 
   1364   1.1       pk 		/* Set the corresponding bit in the filter. */
   1365   1.1       pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1366   1.1       pk 
   1367   1.1       pk 		ETHER_NEXT_MULTI(step, enm);
   1368   1.1       pk 	}
   1369   1.1       pk 
   1370   1.1       pk 	/* Now load the hash table onto the chip */
   1371   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1372   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1373   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1374   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1375   1.1       pk 
   1376   1.1       pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1377   1.1       pk 	return;
   1378   1.1       pk 
   1379   1.1       pk allmulti:
   1380   1.1       pk 	ifp->if_flags |= IFF_ALLMULTI;
   1381   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, 0xffff);
   1382   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, 0xffff);
   1383   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, 0xffff);
   1384   1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, 0xffff);
   1385   1.1       pk }
   1386   1.1       pk 
   1387   1.1       pk /*
   1388   1.1       pk  * Routines for accessing the transmit and receive buffers.
   1389   1.1       pk  * The various CPU and adapter configurations supported by this
   1390   1.1       pk  * driver require three different access methods for buffers
   1391   1.1       pk  * and descriptors:
   1392   1.1       pk  *	(1) contig (contiguous data; no padding),
   1393   1.1       pk  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1394   1.1       pk  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1395   1.1       pk  */
   1396   1.1       pk 
   1397   1.1       pk #if 0
   1398   1.1       pk /*
   1399   1.1       pk  * contig: contiguous data with no padding.
   1400   1.1       pk  *
   1401   1.1       pk  * Buffers may have any alignment.
   1402   1.1       pk  */
   1403   1.1       pk 
   1404   1.1       pk void
   1405   1.1       pk hme_copytobuf_contig(sc, from, ri, len)
   1406   1.1       pk 	struct hme_softc *sc;
   1407   1.1       pk 	void *from;
   1408   1.1       pk 	int ri, len;
   1409   1.1       pk {
   1410   1.1       pk 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1411   1.1       pk 
   1412   1.1       pk 	/*
   1413   1.1       pk 	 * Just call bcopy() to do the work.
   1414   1.1       pk 	 */
   1415   1.1       pk 	bcopy(from, buf, len);
   1416   1.1       pk }
   1417   1.1       pk 
   1418   1.1       pk void
   1419   1.1       pk hme_copyfrombuf_contig(sc, to, boff, len)
   1420   1.1       pk 	struct hme_softc *sc;
   1421   1.1       pk 	void *to;
   1422   1.1       pk 	int boff, len;
   1423   1.1       pk {
   1424   1.1       pk 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1425   1.1       pk 
   1426   1.1       pk 	/*
   1427   1.1       pk 	 * Just call bcopy() to do the work.
   1428   1.1       pk 	 */
   1429   1.1       pk 	bcopy(buf, to, len);
   1430   1.1       pk }
   1431   1.1       pk #endif
   1432