Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.101
      1  1.101   msaitoh /*	$NetBSD: hme.c,v 1.101 2019/01/22 03:42:26 msaitoh Exp $	*/
      2    1.1        pk 
      3    1.1        pk /*-
      4    1.1        pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5    1.1        pk  * All rights reserved.
      6    1.1        pk  *
      7    1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8    1.1        pk  * by Paul Kranenburg.
      9    1.1        pk  *
     10    1.1        pk  * Redistribution and use in source and binary forms, with or without
     11    1.1        pk  * modification, are permitted provided that the following conditions
     12    1.1        pk  * are met:
     13    1.1        pk  * 1. Redistributions of source code must retain the above copyright
     14    1.1        pk  *    notice, this list of conditions and the following disclaimer.
     15    1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     17    1.1        pk  *    documentation and/or other materials provided with the distribution.
     18    1.1        pk  *
     19    1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     30    1.1        pk  */
     31    1.1        pk 
     32    1.1        pk /*
     33    1.1        pk  * HME Ethernet module driver.
     34    1.1        pk  */
     35   1.25     lukem 
     36   1.25     lukem #include <sys/cdefs.h>
     37  1.101   msaitoh __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.101 2019/01/22 03:42:26 msaitoh Exp $");
     38    1.1        pk 
     39   1.39    petrov /* #define HMEDEBUG */
     40    1.1        pk 
     41    1.1        pk #include "opt_inet.h"
     42    1.1        pk 
     43    1.1        pk #include <sys/param.h>
     44    1.1        pk #include <sys/systm.h>
     45    1.5        pk #include <sys/kernel.h>
     46   1.42      heas #include <sys/mbuf.h>
     47    1.1        pk #include <sys/syslog.h>
     48    1.1        pk #include <sys/socket.h>
     49    1.1        pk #include <sys/device.h>
     50    1.1        pk #include <sys/malloc.h>
     51    1.1        pk #include <sys/ioctl.h>
     52    1.1        pk #include <sys/errno.h>
     53   1.91  riastrad #include <sys/rndsource.h>
     54    1.1        pk 
     55    1.1        pk #include <net/if.h>
     56    1.1        pk #include <net/if_dl.h>
     57    1.1        pk #include <net/if_ether.h>
     58    1.1        pk #include <net/if_media.h>
     59   1.98   msaitoh #include <net/bpf.h>
     60    1.1        pk 
     61    1.1        pk #ifdef INET
     62   1.74   tsutsui #include <net/if_vlanvar.h>
     63    1.1        pk #include <netinet/in.h>
     64    1.1        pk #include <netinet/if_inarp.h>
     65    1.1        pk #include <netinet/in_systm.h>
     66    1.1        pk #include <netinet/in_var.h>
     67    1.1        pk #include <netinet/ip.h>
     68   1.46      heas #include <netinet/tcp.h>
     69   1.46      heas #include <netinet/udp.h>
     70    1.1        pk #endif
     71    1.1        pk 
     72    1.1        pk #include <dev/mii/mii.h>
     73    1.1        pk #include <dev/mii/miivar.h>
     74    1.1        pk 
     75   1.60        ad #include <sys/bus.h>
     76    1.1        pk 
     77    1.1        pk #include <dev/ic/hmereg.h>
     78    1.1        pk #include <dev/ic/hmevar.h>
     79    1.1        pk 
     80   1.81   tsutsui static void	hme_start(struct ifnet *);
     81   1.81   tsutsui static void	hme_stop(struct ifnet *, int);
     82   1.81   tsutsui static int	hme_ioctl(struct ifnet *, u_long, void *);
     83   1.81   tsutsui static void	hme_tick(void *);
     84   1.81   tsutsui static void	hme_watchdog(struct ifnet *);
     85   1.81   tsutsui static bool	hme_shutdown(device_t, int);
     86   1.84  jakllsch static int	hme_init(struct ifnet *);
     87   1.81   tsutsui static void	hme_meminit(struct hme_softc *);
     88   1.81   tsutsui static void	hme_mifinit(struct hme_softc *);
     89   1.82   tsutsui static void	hme_reset(struct hme_softc *);
     90   1.81   tsutsui static void	hme_chipreset(struct hme_softc *);
     91   1.81   tsutsui static void	hme_setladrf(struct hme_softc *);
     92    1.1        pk 
     93    1.1        pk /* MII methods & callbacks */
     94  1.101   msaitoh static int	hme_mii_readreg(device_t, int, int, uint16_t *);
     95  1.101   msaitoh static int	hme_mii_writereg(device_t, int, int, uint16_t);
     96   1.89      matt static void	hme_mii_statchg(struct ifnet *);
     97   1.44     perry 
     98   1.81   tsutsui static int	hme_mediachange(struct ifnet *);
     99   1.44     perry 
    100   1.81   tsutsui static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
    101   1.81   tsutsui static int	hme_put(struct hme_softc *, int, struct mbuf *);
    102   1.81   tsutsui static void	hme_read(struct hme_softc *, int, uint32_t);
    103   1.81   tsutsui static int	hme_eint(struct hme_softc *, u_int);
    104   1.81   tsutsui static int	hme_rint(struct hme_softc *);
    105   1.81   tsutsui static int	hme_tint(struct hme_softc *);
    106    1.1        pk 
    107   1.81   tsutsui #if 0
    108   1.28      tron /* Default buffer copy routines */
    109   1.81   tsutsui static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    110   1.81   tsutsui static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    111   1.81   tsutsui #endif
    112   1.28      tron 
    113    1.1        pk void
    114   1.71       dsl hme_config(struct hme_softc *sc)
    115    1.1        pk {
    116    1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    117    1.1        pk 	struct mii_data *mii = &sc->sc_mii;
    118    1.5        pk 	struct mii_softc *child;
    119   1.11        pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    120    1.1        pk 	bus_dma_segment_t seg;
    121    1.1        pk 	bus_size_t size;
    122   1.28      tron 	int rseg, error;
    123    1.1        pk 
    124    1.1        pk 	/*
    125    1.1        pk 	 * HME common initialization.
    126    1.1        pk 	 *
    127    1.1        pk 	 * hme_softc fields that must be initialized by the front-end:
    128    1.1        pk 	 *
    129    1.1        pk 	 * the bus tag:
    130    1.1        pk 	 *	sc_bustag
    131    1.1        pk 	 *
    132   1.37       wiz 	 * the DMA bus tag:
    133    1.1        pk 	 *	sc_dmatag
    134    1.1        pk 	 *
    135    1.1        pk 	 * the bus handles:
    136    1.1        pk 	 *	sc_seb		(Shared Ethernet Block registers)
    137    1.1        pk 	 *	sc_erx		(Receiver Unit registers)
    138    1.1        pk 	 *	sc_etx		(Transmitter Unit registers)
    139    1.1        pk 	 *	sc_mac		(MAC registers)
    140   1.36       wiz 	 *	sc_mif		(Management Interface registers)
    141    1.1        pk 	 *
    142    1.1        pk 	 * the maximum bus burst size:
    143    1.1        pk 	 *	sc_burst
    144    1.1        pk 	 *
    145   1.28      tron 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    146   1.28      tron 	 *	rb_membase, rb_dmabase)
    147   1.28      tron 	 *
    148    1.1        pk 	 * the local Ethernet address:
    149    1.1        pk 	 *	sc_enaddr
    150    1.1        pk 	 *
    151    1.1        pk 	 */
    152    1.1        pk 
    153    1.1        pk 	/* Make sure the chip is stopped. */
    154   1.80   tsutsui 	hme_chipreset(sc);
    155    1.1        pk 
    156   1.28      tron 	/*
    157   1.28      tron 	 * Allocate descriptors and buffers
    158   1.28      tron 	 * XXX - do all this differently.. and more configurably,
    159   1.28      tron 	 * eg. use things as `dma_load_mbuf()' on transmit,
    160   1.28      tron 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    161   1.38       wiz 	 *     all the time) on the receiver side.
    162   1.28      tron 	 *
    163   1.28      tron 	 * Note: receive buffers must be 64-byte aligned.
    164   1.28      tron 	 * Also, apparently, the buffers must extend to a DMA burst
    165   1.28      tron 	 * boundary beyond the maximum packet size.
    166   1.28      tron 	 */
    167   1.28      tron #define _HME_NDESC	128
    168   1.28      tron #define _HME_BUFSZ	1600
    169   1.28      tron 
    170   1.28      tron 	/* Note: the # of descriptors must be a multiple of 16 */
    171   1.28      tron 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    172   1.28      tron 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    173    1.1        pk 
    174    1.1        pk 	/*
    175    1.1        pk 	 * Allocate DMA capable memory
    176    1.1        pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    177    1.1        pk 	 * take this into account when calculating the size. Note that
    178    1.1        pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    179   1.28      tron 	 * so we allocate that much regardless of _HME_NDESC.
    180    1.1        pk 	 */
    181   1.28      tron 	size =	2048 +					/* TX descriptors */
    182   1.28      tron 		2048 +					/* RX descriptors */
    183   1.28      tron 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    184   1.46      heas 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    185   1.11        pk 
    186   1.11        pk 	/* Allocate DMA buffer */
    187   1.28      tron 	if ((error = bus_dmamem_alloc(dmatag, size,
    188   1.28      tron 				      2048, 0,
    189   1.28      tron 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    190   1.79   tsutsui 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
    191   1.64    cegger 			error);
    192   1.10       mrg 		return;
    193    1.1        pk 	}
    194    1.1        pk 
    195   1.11        pk 	/* Map DMA memory in CPU addressable space */
    196   1.11        pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    197   1.28      tron 				    &sc->sc_rb.rb_membase,
    198   1.28      tron 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    199   1.79   tsutsui 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
    200   1.64    cegger 			error);
    201   1.11        pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    202   1.11        pk 		bus_dmamem_free(dmatag, &seg, rseg);
    203    1.1        pk 		return;
    204    1.1        pk 	}
    205   1.13       mrg 
    206   1.13       mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    207   1.28      tron 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    208   1.79   tsutsui 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
    209   1.64    cegger 			error);
    210   1.13       mrg 		return;
    211   1.13       mrg 	}
    212   1.13       mrg 
    213   1.13       mrg 	/* Load the buffer */
    214   1.13       mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    215   1.17       mrg 	    sc->sc_rb.rb_membase, size, NULL,
    216   1.17       mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    217   1.79   tsutsui 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
    218   1.64    cegger 			error);
    219   1.13       mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    220   1.13       mrg 		return;
    221   1.13       mrg 	}
    222   1.13       mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    223    1.1        pk 
    224   1.79   tsutsui 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    225   1.22   thorpej 	    ether_sprintf(sc->sc_enaddr));
    226    1.2        pk 
    227    1.1        pk 	/* Initialize ifnet structure. */
    228   1.79   tsutsui 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    229    1.1        pk 	ifp->if_softc = sc;
    230    1.1        pk 	ifp->if_start = hme_start;
    231   1.80   tsutsui 	ifp->if_stop = hme_stop;
    232    1.1        pk 	ifp->if_ioctl = hme_ioctl;
    233   1.84  jakllsch 	ifp->if_init = hme_init;
    234    1.1        pk 	ifp->if_watchdog = hme_watchdog;
    235    1.1        pk 	ifp->if_flags =
    236    1.1        pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    237   1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    238   1.51      yamt 	ifp->if_capabilities |=
    239   1.51      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    240   1.51      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    241   1.20   thorpej 	IFQ_SET_READY(&ifp->if_snd);
    242    1.1        pk 
    243    1.1        pk 	/* Initialize ifmedia structures and MII info */
    244    1.1        pk 	mii->mii_ifp = ifp;
    245   1.34    petrov 	mii->mii_readreg = hme_mii_readreg;
    246    1.1        pk 	mii->mii_writereg = hme_mii_writereg;
    247    1.1        pk 	mii->mii_statchg = hme_mii_statchg;
    248    1.1        pk 
    249   1.61    dyoung 	sc->sc_ethercom.ec_mii = mii;
    250   1.61    dyoung 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    251    1.1        pk 
    252    1.4        pk 	hme_mifinit(sc);
    253    1.4        pk 
    254   1.79   tsutsui 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    255   1.88       jdc 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    256    1.2        pk 
    257    1.5        pk 	child = LIST_FIRST(&mii->mii_phys);
    258    1.5        pk 	if (child == NULL) {
    259    1.1        pk 		/* No PHY attached */
    260   1.61    dyoung 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    261   1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    262    1.1        pk 	} else {
    263    1.1        pk 		/*
    264    1.5        pk 		 * Walk along the list of attached MII devices and
    265    1.5        pk 		 * establish an `MII instance' to `phy number'
    266    1.5        pk 		 * mapping. We'll use this mapping in media change
    267    1.5        pk 		 * requests to determine which phy to use to program
    268    1.5        pk 		 * the MIF configuration register.
    269    1.5        pk 		 */
    270    1.5        pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    271    1.5        pk 			/*
    272    1.5        pk 			 * Note: we support just two PHYs: the built-in
    273    1.5        pk 			 * internal device and an external on the MII
    274    1.5        pk 			 * connector.
    275    1.5        pk 			 */
    276    1.5        pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    277   1.79   tsutsui 				aprint_error_dev(sc->sc_dev,
    278   1.79   tsutsui 				    "cannot accommodate MII device %s"
    279   1.28      tron 				       " at phy %d, instance %d\n",
    280   1.66   xtraeme 				       device_xname(child->mii_dev),
    281   1.28      tron 				       child->mii_phy, child->mii_inst);
    282    1.5        pk 				continue;
    283    1.5        pk 			}
    284    1.5        pk 
    285    1.5        pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    286    1.5        pk 		}
    287    1.5        pk 
    288    1.5        pk 		/*
    289   1.77       jdc 		 * Set the default media to auto negotiation if the phy has
    290   1.77       jdc 		 * the auto negotiation capability.
    291   1.77       jdc 		 * XXX; What to do otherwise?
    292    1.1        pk 		 */
    293   1.77       jdc 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
    294   1.77       jdc 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    295   1.77       jdc /*
    296   1.77       jdc 		else
    297   1.77       jdc 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
    298   1.77       jdc */
    299    1.1        pk 	}
    300   1.27      tron 
    301   1.28      tron 	/* claim 802.1q capability */
    302   1.27      tron 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    303    1.1        pk 
    304    1.1        pk 	/* Attach the interface. */
    305    1.1        pk 	if_attach(ifp);
    306   1.96     ozaki 	if_deferred_start_init(ifp, NULL);
    307    1.1        pk 	ether_ifattach(ifp, sc->sc_enaddr);
    308    1.1        pk 
    309   1.80   tsutsui 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
    310   1.80   tsutsui 		pmf_class_network_register(sc->sc_dev, ifp);
    311   1.80   tsutsui 	else
    312   1.80   tsutsui 		aprint_error_dev(sc->sc_dev,
    313   1.80   tsutsui 		    "couldn't establish power handler\n");
    314    1.1        pk 
    315   1.79   tsutsui 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    316   1.90       tls 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
    317    1.5        pk 
    318   1.57        ad 	callout_init(&sc->sc_tick_ch, 0);
    319    1.5        pk }
    320    1.5        pk 
    321    1.5        pk void
    322   1.71       dsl hme_tick(void *arg)
    323    1.5        pk {
    324    1.5        pk 	struct hme_softc *sc = arg;
    325    1.5        pk 	int s;
    326    1.5        pk 
    327    1.5        pk 	s = splnet();
    328    1.5        pk 	mii_tick(&sc->sc_mii);
    329    1.5        pk 	splx(s);
    330    1.5        pk 
    331    1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    332    1.1        pk }
    333    1.1        pk 
    334    1.1        pk void
    335   1.71       dsl hme_reset(struct hme_softc *sc)
    336    1.1        pk {
    337    1.1        pk 	int s;
    338    1.1        pk 
    339    1.1        pk 	s = splnet();
    340   1.84  jakllsch 	(void)hme_init(&sc->sc_ethercom.ec_if);
    341    1.1        pk 	splx(s);
    342    1.1        pk }
    343    1.1        pk 
    344    1.1        pk void
    345   1.80   tsutsui hme_chipreset(struct hme_softc *sc)
    346    1.1        pk {
    347    1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    348    1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    349    1.1        pk 	int n;
    350    1.1        pk 
    351   1.33        pk 	/* Mask all interrupts */
    352   1.33        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    353   1.33        pk 
    354    1.1        pk 	/* Reset transmitter and receiver */
    355    1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    356   1.28      tron 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    357    1.1        pk 
    358    1.1        pk 	for (n = 0; n < 20; n++) {
    359   1.75   tsutsui 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    360    1.1        pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    361    1.1        pk 			return;
    362    1.1        pk 		DELAY(20);
    363    1.1        pk 	}
    364    1.1        pk 
    365   1.80   tsutsui 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
    366   1.80   tsutsui }
    367   1.80   tsutsui 
    368   1.80   tsutsui void
    369   1.80   tsutsui hme_stop(struct ifnet *ifp, int disable)
    370   1.80   tsutsui {
    371   1.80   tsutsui 	struct hme_softc *sc;
    372   1.80   tsutsui 
    373   1.80   tsutsui 	sc = ifp->if_softc;
    374   1.80   tsutsui 
    375   1.80   tsutsui 	ifp->if_timer = 0;
    376   1.80   tsutsui 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    377   1.80   tsutsui 
    378   1.80   tsutsui 	callout_stop(&sc->sc_tick_ch);
    379   1.80   tsutsui 	mii_down(&sc->sc_mii);
    380   1.80   tsutsui 
    381   1.80   tsutsui 	hme_chipreset(sc);
    382    1.1        pk }
    383    1.1        pk 
    384    1.1        pk void
    385   1.71       dsl hme_meminit(struct hme_softc *sc)
    386    1.1        pk {
    387   1.28      tron 	bus_addr_t txbufdma, rxbufdma;
    388    1.1        pk 	bus_addr_t dma;
    389   1.56  christos 	char *p;
    390   1.28      tron 	unsigned int ntbuf, nrbuf, i;
    391    1.1        pk 	struct hme_ring *hr = &sc->sc_rb;
    392    1.1        pk 
    393    1.1        pk 	p = hr->rb_membase;
    394    1.1        pk 	dma = hr->rb_dmabase;
    395    1.1        pk 
    396   1.28      tron 	ntbuf = hr->rb_ntbuf;
    397   1.28      tron 	nrbuf = hr->rb_nrbuf;
    398   1.28      tron 
    399    1.1        pk 	/*
    400    1.1        pk 	 * Allocate transmit descriptors
    401    1.1        pk 	 */
    402    1.1        pk 	hr->rb_txd = p;
    403    1.1        pk 	hr->rb_txddma = dma;
    404   1.28      tron 	p += ntbuf * HME_XD_SIZE;
    405   1.28      tron 	dma += ntbuf * HME_XD_SIZE;
    406    1.4        pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    407    1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    408   1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    409    1.1        pk 
    410    1.1        pk 	/*
    411    1.1        pk 	 * Allocate receive descriptors
    412    1.1        pk 	 */
    413    1.1        pk 	hr->rb_rxd = p;
    414    1.1        pk 	hr->rb_rxddma = dma;
    415   1.28      tron 	p += nrbuf * HME_XD_SIZE;
    416   1.28      tron 	dma += nrbuf * HME_XD_SIZE;
    417    1.4        pk 	/* Again move forward to the next 2048 byte boundary.*/
    418    1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    419   1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    420    1.1        pk 
    421   1.28      tron 
    422    1.1        pk 	/*
    423   1.28      tron 	 * Allocate transmit buffers
    424    1.1        pk 	 */
    425   1.28      tron 	hr->rb_txbuf = p;
    426   1.28      tron 	txbufdma = dma;
    427   1.28      tron 	p += ntbuf * _HME_BUFSZ;
    428   1.28      tron 	dma += ntbuf * _HME_BUFSZ;
    429   1.28      tron 
    430   1.28      tron 	/*
    431   1.28      tron 	 * Allocate receive buffers
    432   1.28      tron 	 */
    433   1.28      tron 	hr->rb_rxbuf = p;
    434   1.28      tron 	rxbufdma = dma;
    435   1.28      tron 	p += nrbuf * _HME_BUFSZ;
    436   1.28      tron 	dma += nrbuf * _HME_BUFSZ;
    437   1.28      tron 
    438   1.28      tron 	/*
    439   1.28      tron 	 * Initialize transmit buffer descriptors
    440   1.28      tron 	 */
    441   1.28      tron 	for (i = 0; i < ntbuf; i++) {
    442   1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    443   1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    444    1.1        pk 	}
    445    1.1        pk 
    446    1.1        pk 	/*
    447   1.28      tron 	 * Initialize receive buffer descriptors
    448    1.1        pk 	 */
    449   1.28      tron 	for (i = 0; i < nrbuf; i++) {
    450   1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    451   1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    452   1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    453    1.1        pk 	}
    454    1.1        pk 
    455   1.28      tron 	hr->rb_tdhead = hr->rb_tdtail = 0;
    456   1.28      tron 	hr->rb_td_nbusy = 0;
    457   1.28      tron 	hr->rb_rdtail = 0;
    458    1.1        pk }
    459    1.1        pk 
    460    1.1        pk /*
    461    1.1        pk  * Initialization of interface; set up initialization block
    462    1.1        pk  * and transmit/receive descriptor rings.
    463    1.1        pk  */
    464   1.61    dyoung int
    465   1.84  jakllsch hme_init(struct ifnet *ifp)
    466    1.1        pk {
    467   1.84  jakllsch 	struct hme_softc *sc = ifp->if_softc;
    468    1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    469    1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    470    1.1        pk 	bus_space_handle_t etx = sc->sc_etx;
    471    1.1        pk 	bus_space_handle_t erx = sc->sc_erx;
    472    1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
    473   1.75   tsutsui 	uint8_t *ea;
    474   1.75   tsutsui 	uint32_t v;
    475   1.61    dyoung 	int rc;
    476    1.1        pk 
    477    1.1        pk 	/*
    478    1.1        pk 	 * Initialization sequence. The numbered steps below correspond
    479    1.1        pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    480    1.1        pk 	 * Channel Engine manual (part of the PCIO manual).
    481    1.1        pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    482    1.1        pk 	 */
    483    1.1        pk 
    484    1.1        pk 	/* step 1 & 2. Reset the Ethernet Channel */
    485   1.80   tsutsui 	hme_stop(ifp, 0);
    486    1.1        pk 
    487    1.4        pk 	/* Re-initialize the MIF */
    488    1.4        pk 	hme_mifinit(sc);
    489    1.4        pk 
    490    1.1        pk 	/* Call MI reset function if any */
    491    1.1        pk 	if (sc->sc_hwreset)
    492    1.1        pk 		(*sc->sc_hwreset)(sc);
    493    1.1        pk 
    494    1.1        pk #if 0
    495    1.1        pk 	/* Mask all MIF interrupts, just in case */
    496    1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    497    1.1        pk #endif
    498    1.1        pk 
    499    1.1        pk 	/* step 3. Setup data structures in host memory */
    500    1.1        pk 	hme_meminit(sc);
    501    1.1        pk 
    502    1.1        pk 	/* step 4. TX MAC registers & counters */
    503    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    504    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    505    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    506    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    507   1.28      tron 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    508   1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    509   1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    510   1.45      heas 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    511    1.1        pk 
    512    1.1        pk 	/* Load station MAC address */
    513    1.1        pk 	ea = sc->sc_enaddr;
    514    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    515    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    516    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    517    1.1        pk 
    518    1.1        pk 	/*
    519    1.1        pk 	 * Init seed for backoff
    520    1.1        pk 	 * (source suggested by manual: low 10 bits of MAC address)
    521   1.42      heas 	 */
    522    1.1        pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    523    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    524    1.1        pk 
    525    1.1        pk 
    526    1.1        pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    527    1.1        pk 
    528    1.1        pk 
    529    1.1        pk 	/* step 5. RX MAC registers & counters */
    530    1.1        pk 	hme_setladrf(sc);
    531    1.1        pk 
    532    1.1        pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    533    1.1        pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    534   1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    535    1.1        pk 
    536    1.1        pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    537   1.28      tron 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    538   1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    539   1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    540    1.1        pk 
    541    1.1        pk 	/* step 8. Global Configuration & Interrupt Mask */
    542    1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    543   1.28      tron 			~(
    544   1.28      tron 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    545   1.28      tron 			  HME_SEB_STAT_HOSTTOTX |
    546   1.28      tron 			  HME_SEB_STAT_RXTOHOST |
    547   1.28      tron 			  HME_SEB_STAT_TXALL |
    548   1.28      tron 			  HME_SEB_STAT_TXPERR |
    549   1.28      tron 			  HME_SEB_STAT_RCNTEXP |
    550   1.77       jdc 			  HME_SEB_STAT_MIFIRQ |
    551   1.28      tron 			  HME_SEB_STAT_ALL_ERRORS ));
    552    1.1        pk 
    553    1.1        pk 	switch (sc->sc_burst) {
    554    1.1        pk 	default:
    555    1.1        pk 		v = 0;
    556    1.1        pk 		break;
    557    1.1        pk 	case 16:
    558    1.1        pk 		v = HME_SEB_CFG_BURST16;
    559    1.1        pk 		break;
    560    1.1        pk 	case 32:
    561    1.1        pk 		v = HME_SEB_CFG_BURST32;
    562    1.1        pk 		break;
    563    1.1        pk 	case 64:
    564    1.1        pk 		v = HME_SEB_CFG_BURST64;
    565    1.1        pk 		break;
    566    1.1        pk 	}
    567    1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    568    1.1        pk 
    569    1.1        pk 	/* step 9. ETX Configuration: use mostly default values */
    570    1.1        pk 
    571    1.1        pk 	/* Enable DMA */
    572    1.2        pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    573    1.1        pk 	v |= HME_ETX_CFG_DMAENABLE;
    574    1.2        pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    575    1.1        pk 
    576    1.3        pk 	/* Transmit Descriptor ring size: in increments of 16 */
    577   1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    578   1.28      tron 
    579    1.1        pk 
    580    1.3        pk 	/* step 10. ERX Configuration */
    581    1.2        pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    582   1.28      tron 
    583   1.28      tron 	/* Encode Receive Descriptor ring size: four possible values */
    584   1.28      tron 	switch (_HME_NDESC /*XXX*/) {
    585   1.28      tron 	case 32:
    586   1.28      tron 		v |= HME_ERX_CFG_RINGSIZE32;
    587   1.28      tron 		break;
    588   1.28      tron 	case 64:
    589   1.28      tron 		v |= HME_ERX_CFG_RINGSIZE64;
    590   1.28      tron 		break;
    591   1.28      tron 	case 128:
    592   1.28      tron 		v |= HME_ERX_CFG_RINGSIZE128;
    593   1.28      tron 		break;
    594   1.28      tron 	case 256:
    595   1.28      tron 		v |= HME_ERX_CFG_RINGSIZE256;
    596   1.28      tron 		break;
    597   1.28      tron 	default:
    598   1.28      tron 		printf("hme: invalid Receive Descriptor ring size\n");
    599   1.28      tron 		break;
    600   1.28      tron 	}
    601   1.28      tron 
    602    1.3        pk 	/* Enable DMA */
    603   1.28      tron 	v |= HME_ERX_CFG_DMAENABLE;
    604   1.46      heas 
    605   1.46      heas 	/* set h/w rx checksum start offset (# of half-words) */
    606   1.49      heas #ifdef INET
    607   1.74   tsutsui 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    608   1.74   tsutsui 		<< HME_ERX_CFG_CSUMSHIFT) &
    609   1.46      heas 		HME_ERX_CFG_CSUMSTART;
    610   1.49      heas #endif
    611    1.2        pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    612    1.1        pk 
    613    1.1        pk 	/* step 11. XIF Configuration */
    614    1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    615    1.1        pk 	v |= HME_MAC_XIF_OE;
    616    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    617    1.1        pk 
    618    1.1        pk 	/* step 12. RX_MAC Configuration Register */
    619    1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    620   1.46      heas 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    621    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    622    1.1        pk 
    623    1.1        pk 	/* step 13. TX_MAC Configuration Register */
    624    1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    625    1.2        pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    626    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    627    1.1        pk 
    628    1.1        pk 	/* step 14. Issue Transmit Pending command */
    629    1.1        pk 
    630    1.1        pk 	/* Call MI initialization function if any */
    631    1.1        pk 	if (sc->sc_hwinit)
    632    1.1        pk 		(*sc->sc_hwinit)(sc);
    633   1.29   thorpej 
    634   1.29   thorpej 	/* Set the current media. */
    635   1.61    dyoung 	if ((rc = hme_mediachange(ifp)) != 0)
    636   1.61    dyoung 		return rc;
    637    1.9   thorpej 
    638    1.9   thorpej 	/* Start the one second timer. */
    639    1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    640    1.1        pk 
    641    1.1        pk 	ifp->if_flags |= IFF_RUNNING;
    642    1.1        pk 	ifp->if_flags &= ~IFF_OACTIVE;
    643   1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    644    1.1        pk 	ifp->if_timer = 0;
    645    1.1        pk 	hme_start(ifp);
    646   1.61    dyoung 	return 0;
    647    1.1        pk }
    648    1.1        pk 
    649   1.28      tron /*
    650   1.28      tron  * Routine to copy from mbuf chain to transmit buffer in
    651   1.28      tron  * network buffer memory.
    652   1.28      tron  * Returns the amount of data copied.
    653   1.28      tron  */
    654   1.28      tron int
    655   1.72       dsl hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    656   1.72       dsl 	/* ri:			 Ring index */
    657   1.28      tron {
    658   1.28      tron 	struct mbuf *n;
    659   1.28      tron 	int len, tlen = 0;
    660   1.56  christos 	char *bp;
    661   1.28      tron 
    662   1.56  christos 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    663   1.28      tron 	for (; m; m = n) {
    664   1.28      tron 		len = m->m_len;
    665   1.28      tron 		if (len == 0) {
    666   1.94  christos 			n = m_free(m);
    667   1.28      tron 			continue;
    668   1.28      tron 		}
    669   1.56  christos 		memcpy(bp, mtod(m, void *), len);
    670   1.28      tron 		bp += len;
    671   1.28      tron 		tlen += len;
    672   1.94  christos 		n = m_free(m);
    673   1.28      tron 	}
    674   1.28      tron 	return (tlen);
    675   1.28      tron }
    676   1.28      tron 
    677   1.28      tron /*
    678   1.28      tron  * Pull data off an interface.
    679   1.28      tron  * Len is length of data, with local net header stripped.
    680   1.28      tron  * We copy the data into mbufs.  When full cluster sized units are present
    681   1.28      tron  * we copy into clusters.
    682   1.28      tron  */
    683   1.28      tron struct mbuf *
    684   1.75   tsutsui hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    685   1.28      tron {
    686   1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    687   1.28      tron 	struct mbuf *m, *m0, *newm;
    688   1.56  christos 	char *bp;
    689   1.46      heas 	int len, totlen;
    690   1.76   tsutsui #ifdef INET
    691   1.76   tsutsui 	int csum_flags;
    692   1.76   tsutsui #endif
    693   1.28      tron 
    694   1.46      heas 	totlen = HME_XD_DECODE_RSIZE(flags);
    695   1.28      tron 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    696   1.28      tron 	if (m0 == 0)
    697   1.28      tron 		return (0);
    698   1.93     ozaki 	m_set_rcvif(m0, ifp);
    699   1.28      tron 	m0->m_pkthdr.len = totlen;
    700   1.28      tron 	len = MHLEN;
    701   1.28      tron 	m = m0;
    702   1.28      tron 
    703   1.56  christos 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    704   1.28      tron 
    705   1.28      tron 	while (totlen > 0) {
    706   1.28      tron 		if (totlen >= MINCLSIZE) {
    707   1.28      tron 			MCLGET(m, M_DONTWAIT);
    708   1.28      tron 			if ((m->m_flags & M_EXT) == 0)
    709   1.28      tron 				goto bad;
    710   1.28      tron 			len = MCLBYTES;
    711   1.28      tron 		}
    712   1.28      tron 
    713   1.28      tron 		if (m == m0) {
    714   1.56  christos 			char *newdata = (char *)
    715   1.28      tron 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    716   1.28      tron 			    sizeof(struct ether_header);
    717   1.28      tron 			len -= newdata - m->m_data;
    718   1.28      tron 			m->m_data = newdata;
    719   1.28      tron 		}
    720   1.28      tron 
    721  1.100  riastrad 		m->m_len = len = uimin(totlen, len);
    722   1.56  christos 		memcpy(mtod(m, void *), bp, len);
    723   1.28      tron 		bp += len;
    724   1.28      tron 
    725   1.28      tron 		totlen -= len;
    726   1.28      tron 		if (totlen > 0) {
    727   1.28      tron 			MGET(newm, M_DONTWAIT, MT_DATA);
    728   1.28      tron 			if (newm == 0)
    729   1.28      tron 				goto bad;
    730   1.28      tron 			len = MLEN;
    731   1.28      tron 			m = m->m_next = newm;
    732   1.28      tron 		}
    733   1.28      tron 	}
    734   1.28      tron 
    735   1.49      heas #ifdef INET
    736   1.49      heas 	/* hardware checksum */
    737   1.76   tsutsui 	csum_flags = 0;
    738   1.50     rafal 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    739   1.46      heas 		struct ether_header *eh;
    740   1.74   tsutsui 		struct ether_vlan_header *evh;
    741   1.46      heas 		struct ip *ip;
    742   1.46      heas 		struct udphdr *uh;
    743   1.46      heas 		uint16_t *opts;
    744   1.46      heas 		int32_t hlen, pktlen;
    745   1.76   tsutsui 		uint32_t csum_data;
    746   1.46      heas 
    747   1.74   tsutsui 		eh = mtod(m0, struct ether_header *);
    748   1.74   tsutsui 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    749   1.74   tsutsui 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    750   1.46      heas 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    751   1.74   tsutsui 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    752   1.74   tsutsui 			evh = (struct ether_vlan_header *)eh;
    753   1.97  pgoyette 			if (ntohs(evh->evl_proto) != ETHERTYPE_IP)
    754   1.74   tsutsui 				goto swcsum;
    755   1.74   tsutsui 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    756   1.74   tsutsui 			    ETHER_VLAN_ENCAP_LEN);
    757   1.74   tsutsui 			pktlen = m0->m_pkthdr.len -
    758   1.74   tsutsui 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    759   1.74   tsutsui 		} else
    760   1.46      heas 			goto swcsum;
    761   1.46      heas 
    762   1.46      heas 		/* IPv4 only */
    763   1.46      heas 		if (ip->ip_v != IPVERSION)
    764   1.46      heas 			goto swcsum;
    765   1.46      heas 
    766   1.46      heas 		hlen = ip->ip_hl << 2;
    767   1.48     perry 		if (hlen < sizeof(struct ip))
    768   1.46      heas 			goto swcsum;
    769   1.46      heas 
    770   1.49      heas 		/*
    771   1.49      heas 		 * bail if too short, has random trailing garbage, truncated,
    772   1.49      heas 		 * fragment, or has ethernet pad.
    773   1.49      heas 		 */
    774   1.76   tsutsui 		if (ntohs(ip->ip_len) < hlen ||
    775   1.76   tsutsui 		    ntohs(ip->ip_len) != pktlen ||
    776   1.76   tsutsui 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    777   1.49      heas 			goto swcsum;
    778   1.46      heas 
    779   1.46      heas 		switch (ip->ip_p) {
    780   1.46      heas 		case IPPROTO_TCP:
    781   1.76   tsutsui 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    782   1.46      heas 				goto swcsum;
    783   1.46      heas 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    784   1.46      heas 				goto swcsum;
    785   1.76   tsutsui 			csum_flags =
    786   1.76   tsutsui 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    787   1.46      heas 			break;
    788   1.46      heas 		case IPPROTO_UDP:
    789   1.76   tsutsui 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    790   1.46      heas 				goto swcsum;
    791   1.46      heas 			if (pktlen < (hlen + sizeof(struct udphdr)))
    792   1.46      heas 				goto swcsum;
    793   1.56  christos 			uh = (struct udphdr *)((char *)ip + hlen);
    794   1.46      heas 			/* no checksum */
    795   1.46      heas 			if (uh->uh_sum == 0)
    796   1.46      heas 				goto swcsum;
    797   1.76   tsutsui 			csum_flags =
    798   1.76   tsutsui 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    799   1.46      heas 			break;
    800   1.46      heas 		default:
    801   1.49      heas 			goto swcsum;
    802   1.46      heas 		}
    803   1.46      heas 
    804   1.46      heas 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    805   1.76   tsutsui 		csum_data = ~flags & HME_XD_RXCKSUM;
    806   1.46      heas 
    807   1.74   tsutsui 		/*
    808   1.74   tsutsui 		 * If data offset is different from RX cksum start offset,
    809   1.74   tsutsui 		 * we have to deduct them.
    810   1.74   tsutsui 		 */
    811   1.76   tsutsui 		hlen = ((char *)ip + hlen) -
    812   1.74   tsutsui 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    813   1.76   tsutsui 		if (hlen > 1) {
    814   1.46      heas 			uint32_t optsum;
    815   1.46      heas 
    816   1.46      heas 			optsum = 0;
    817   1.74   tsutsui 			opts = (uint16_t *)((char *)eh +
    818   1.74   tsutsui 			    ETHER_HDR_LEN + sizeof(struct ip));
    819   1.46      heas 
    820   1.76   tsutsui 			while (hlen > 1) {
    821   1.46      heas 				optsum += ntohs(*opts++);
    822   1.76   tsutsui 				hlen -= 2;
    823   1.46      heas 			}
    824   1.46      heas 			while (optsum >> 16)
    825   1.46      heas 				optsum = (optsum >> 16) + (optsum & 0xffff);
    826   1.46      heas 
    827   1.73   tsutsui 			/* Deduct the ip opts sum from the hwsum. */
    828   1.76   tsutsui 			csum_data += (uint16_t)~optsum;
    829   1.46      heas 
    830   1.76   tsutsui 			while (csum_data >> 16)
    831   1.76   tsutsui 				csum_data =
    832   1.76   tsutsui 				    (csum_data >> 16) + (csum_data & 0xffff);
    833   1.46      heas 		}
    834   1.76   tsutsui 		m0->m_pkthdr.csum_data = csum_data;
    835   1.76   tsutsui 	}
    836   1.49      heas swcsum:
    837   1.76   tsutsui 	m0->m_pkthdr.csum_flags = csum_flags;
    838   1.49      heas #endif
    839   1.46      heas 
    840   1.28      tron 	return (m0);
    841   1.28      tron 
    842   1.28      tron bad:
    843   1.28      tron 	m_freem(m0);
    844   1.28      tron 	return (0);
    845   1.28      tron }
    846   1.28      tron 
    847   1.28      tron /*
    848   1.28      tron  * Pass a packet to the higher levels.
    849   1.28      tron  */
    850   1.28      tron void
    851   1.75   tsutsui hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    852   1.28      tron {
    853   1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    854   1.28      tron 	struct mbuf *m;
    855   1.46      heas 	int len;
    856   1.28      tron 
    857   1.46      heas 	len = HME_XD_DECODE_RSIZE(flags);
    858   1.28      tron 	if (len <= sizeof(struct ether_header) ||
    859   1.28      tron 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    860   1.28      tron 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    861   1.28      tron 	    ETHERMTU + sizeof(struct ether_header))) {
    862   1.28      tron #ifdef HMEDEBUG
    863   1.28      tron 		printf("%s: invalid packet size %d; dropping\n",
    864   1.79   tsutsui 		    device_xname(sc->sc_dev), len);
    865   1.28      tron #endif
    866   1.28      tron 		ifp->if_ierrors++;
    867   1.28      tron 		return;
    868   1.28      tron 	}
    869   1.28      tron 
    870   1.28      tron 	/* Pull packet off interface. */
    871   1.46      heas 	m = hme_get(sc, ix, flags);
    872   1.28      tron 	if (m == 0) {
    873   1.28      tron 		ifp->if_ierrors++;
    874   1.28      tron 		return;
    875   1.28      tron 	}
    876   1.28      tron 
    877   1.28      tron 	/* Pass the packet up. */
    878   1.92     ozaki 	if_percpuq_enqueue(ifp->if_percpuq, m);
    879   1.28      tron }
    880   1.28      tron 
    881    1.1        pk void
    882   1.71       dsl hme_start(struct ifnet *ifp)
    883    1.1        pk {
    884   1.79   tsutsui 	struct hme_softc *sc = ifp->if_softc;
    885   1.56  christos 	void *txd = sc->sc_rb.rb_txd;
    886    1.1        pk 	struct mbuf *m;
    887   1.46      heas 	unsigned int txflags;
    888   1.80   tsutsui 	unsigned int ri, len, obusy;
    889   1.28      tron 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    890    1.1        pk 
    891    1.1        pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    892    1.1        pk 		return;
    893    1.1        pk 
    894   1.28      tron 	ri = sc->sc_rb.rb_tdhead;
    895   1.80   tsutsui 	obusy = sc->sc_rb.rb_td_nbusy;
    896   1.28      tron 
    897   1.28      tron 	for (;;) {
    898   1.28      tron 		IFQ_DEQUEUE(&ifp->if_snd, m);
    899   1.28      tron 		if (m == 0)
    900    1.1        pk 			break;
    901    1.1        pk 
    902    1.1        pk 		/*
    903    1.1        pk 		 * If BPF is listening on this interface, let it see the
    904    1.1        pk 		 * packet before we commit it to the wire.
    905    1.1        pk 		 */
    906   1.99   msaitoh 		bpf_mtap(ifp, m, BPF_D_OUT);
    907    1.1        pk 
    908   1.49      heas #ifdef INET
    909   1.46      heas 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    910   1.46      heas 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    911   1.46      heas 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    912   1.46      heas 			struct ether_header *eh;
    913   1.46      heas 			uint16_t offset, start;
    914   1.46      heas 
    915   1.46      heas 			eh = mtod(m, struct ether_header *);
    916   1.46      heas 			switch (ntohs(eh->ether_type)) {
    917   1.46      heas 			case ETHERTYPE_IP:
    918   1.46      heas 				start = ETHER_HDR_LEN;
    919   1.46      heas 				break;
    920   1.46      heas 			case ETHERTYPE_VLAN:
    921   1.46      heas 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    922   1.46      heas 				break;
    923   1.46      heas 			default:
    924   1.46      heas 				/* unsupported, drop it */
    925   1.46      heas 				m_free(m);
    926   1.46      heas 				continue;
    927   1.46      heas 			}
    928   1.47   thorpej 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    929   1.47   thorpej 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    930   1.47   thorpej 			    + start;
    931   1.46      heas 			txflags = HME_XD_TXCKSUM |
    932   1.46      heas 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    933   1.46      heas 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    934   1.46      heas 		} else
    935   1.49      heas #endif
    936   1.46      heas 			txflags = 0;
    937   1.46      heas 
    938   1.28      tron 		/*
    939   1.28      tron 		 * Copy the mbuf chain into the transmit buffer.
    940   1.28      tron 		 */
    941   1.28      tron 		len = hme_put(sc, ri, m);
    942   1.28      tron 
    943   1.28      tron 		/*
    944   1.28      tron 		 * Initialize transmit registers and start transmission
    945   1.28      tron 		 */
    946   1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    947   1.28      tron 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    948   1.46      heas 			HME_XD_ENCODE_TSIZE(len) | txflags);
    949   1.28      tron 
    950   1.28      tron 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    951   1.28      tron 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    952   1.28      tron 				  HME_ETX_TP_DMAWAKEUP);
    953   1.28      tron 
    954   1.28      tron 		if (++ri == ntbuf)
    955   1.28      tron 			ri = 0;
    956   1.28      tron 
    957   1.28      tron 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    958   1.26      tron 			ifp->if_flags |= IFF_OACTIVE;
    959   1.26      tron 			break;
    960   1.26      tron 		}
    961    1.1        pk 	}
    962    1.1        pk 
    963   1.80   tsutsui 	if (obusy != sc->sc_rb.rb_td_nbusy) {
    964   1.80   tsutsui 		sc->sc_rb.rb_tdhead = ri;
    965   1.80   tsutsui 		ifp->if_timer = 5;
    966   1.80   tsutsui 	}
    967    1.1        pk }
    968    1.1        pk 
    969    1.1        pk /*
    970    1.1        pk  * Transmit interrupt.
    971    1.1        pk  */
    972    1.1        pk int
    973   1.71       dsl hme_tint(struct hme_softc *sc)
    974    1.1        pk {
    975    1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    976   1.28      tron 	bus_space_tag_t t = sc->sc_bustag;
    977   1.28      tron 	bus_space_handle_t mac = sc->sc_mac;
    978    1.1        pk 	unsigned int ri, txflags;
    979   1.28      tron 
    980   1.28      tron 	/*
    981   1.28      tron 	 * Unload collision counters
    982   1.28      tron 	 */
    983   1.28      tron 	ifp->if_collisions +=
    984   1.28      tron 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    985   1.77       jdc 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
    986   1.77       jdc 	ifp->if_oerrors +=
    987   1.28      tron 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    988   1.28      tron 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    989   1.28      tron 
    990   1.28      tron 	/*
    991   1.28      tron 	 * then clear the hardware counters.
    992   1.28      tron 	 */
    993   1.28      tron 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    994   1.28      tron 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    995   1.28      tron 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    996   1.28      tron 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    997    1.1        pk 
    998    1.1        pk 	/* Fetch current position in the transmit ring */
    999   1.28      tron 	ri = sc->sc_rb.rb_tdtail;
   1000    1.1        pk 
   1001    1.1        pk 	for (;;) {
   1002   1.28      tron 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1003    1.1        pk 			break;
   1004    1.1        pk 
   1005   1.15       eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1006    1.1        pk 
   1007    1.1        pk 		if (txflags & HME_XD_OWN)
   1008    1.1        pk 			break;
   1009    1.1        pk 
   1010    1.1        pk 		ifp->if_flags &= ~IFF_OACTIVE;
   1011   1.28      tron 		ifp->if_opackets++;
   1012   1.26      tron 
   1013   1.28      tron 		if (++ri == sc->sc_rb.rb_ntbuf)
   1014    1.1        pk 			ri = 0;
   1015    1.1        pk 
   1016   1.28      tron 		--sc->sc_rb.rb_td_nbusy;
   1017    1.1        pk 	}
   1018    1.1        pk 
   1019    1.3        pk 	/* Update ring */
   1020   1.28      tron 	sc->sc_rb.rb_tdtail = ri;
   1021    1.1        pk 
   1022   1.96     ozaki 	if_schedule_deferred_start(ifp);
   1023    1.1        pk 
   1024   1.28      tron 	if (sc->sc_rb.rb_td_nbusy == 0)
   1025    1.1        pk 		ifp->if_timer = 0;
   1026    1.1        pk 
   1027    1.1        pk 	return (1);
   1028    1.1        pk }
   1029    1.1        pk 
   1030    1.1        pk /*
   1031    1.1        pk  * Receive interrupt.
   1032    1.1        pk  */
   1033    1.1        pk int
   1034   1.71       dsl hme_rint(struct hme_softc *sc)
   1035    1.1        pk {
   1036   1.77       jdc 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1037   1.77       jdc 	bus_space_tag_t t = sc->sc_bustag;
   1038   1.77       jdc 	bus_space_handle_t mac = sc->sc_mac;
   1039   1.56  christos 	void *xdr = sc->sc_rb.rb_rxd;
   1040   1.28      tron 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1041   1.46      heas 	unsigned int ri;
   1042   1.75   tsutsui 	uint32_t flags;
   1043    1.1        pk 
   1044   1.28      tron 	ri = sc->sc_rb.rb_rdtail;
   1045    1.1        pk 
   1046    1.1        pk 	/*
   1047    1.1        pk 	 * Process all buffers with valid data.
   1048    1.1        pk 	 */
   1049    1.1        pk 	for (;;) {
   1050   1.28      tron 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1051    1.1        pk 		if (flags & HME_XD_OWN)
   1052    1.1        pk 			break;
   1053    1.1        pk 
   1054    1.4        pk 		if (flags & HME_XD_OFL) {
   1055    1.4        pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1056   1.79   tsutsui 					device_xname(sc->sc_dev), ri, flags);
   1057   1.46      heas 		} else
   1058   1.46      heas 			hme_read(sc, ri, flags);
   1059    1.1        pk 
   1060   1.28      tron 		/* This buffer can be used by the hardware again */
   1061   1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1062   1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1063   1.26      tron 
   1064   1.28      tron 		if (++ri == nrbuf)
   1065    1.1        pk 			ri = 0;
   1066    1.1        pk 	}
   1067    1.1        pk 
   1068   1.28      tron 	sc->sc_rb.rb_rdtail = ri;
   1069   1.28      tron 
   1070   1.77       jdc 	/* Read error counters ... */
   1071   1.77       jdc 	ifp->if_ierrors +=
   1072   1.77       jdc 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
   1073   1.77       jdc 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
   1074   1.77       jdc 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
   1075   1.77       jdc 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
   1076   1.77       jdc 
   1077   1.77       jdc 	/* ... then clear the hardware counters. */
   1078   1.77       jdc 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
   1079   1.77       jdc 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
   1080   1.77       jdc 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
   1081   1.77       jdc 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
   1082    1.1        pk 	return (1);
   1083    1.1        pk }
   1084    1.1        pk 
   1085    1.1        pk int
   1086   1.71       dsl hme_eint(struct hme_softc *sc, u_int status)
   1087    1.1        pk {
   1088   1.77       jdc 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1089    1.1        pk 	char bits[128];
   1090    1.1        pk 
   1091    1.1        pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1092   1.33        pk 		bus_space_tag_t t = sc->sc_bustag;
   1093   1.33        pk 		bus_space_handle_t mif = sc->sc_mif;
   1094   1.75   tsutsui 		uint32_t cf, st, sm;
   1095   1.33        pk 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1096   1.33        pk 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1097   1.33        pk 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1098   1.33        pk 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1099   1.79   tsutsui 			device_xname(sc->sc_dev), cf, st, sm);
   1100    1.1        pk 		return (1);
   1101    1.1        pk 	}
   1102   1.77       jdc 
   1103   1.77       jdc 	/* Receive error counters rolled over */
   1104   1.77       jdc 	if (status & HME_SEB_STAT_ACNTEXP)
   1105   1.77       jdc 		ifp->if_ierrors += 0xff;
   1106   1.77       jdc 	if (status & HME_SEB_STAT_CCNTEXP)
   1107   1.77       jdc 		ifp->if_ierrors += 0xff;
   1108   1.77       jdc 	if (status & HME_SEB_STAT_LCNTEXP)
   1109   1.77       jdc 		ifp->if_ierrors += 0xff;
   1110   1.77       jdc 	if (status & HME_SEB_STAT_CVCNTEXP)
   1111   1.77       jdc 		ifp->if_ierrors += 0xff;
   1112   1.77       jdc 
   1113   1.77       jdc 	/* RXTERR locks up the interface, so do a reset */
   1114   1.77       jdc 	if (status & HME_SEB_STAT_RXTERR)
   1115   1.77       jdc 		hme_reset(sc);
   1116   1.77       jdc 
   1117   1.68  christos 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1118   1.79   tsutsui 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   1119   1.68  christos 
   1120    1.1        pk 	return (1);
   1121    1.1        pk }
   1122    1.1        pk 
   1123    1.1        pk int
   1124   1.71       dsl hme_intr(void *v)
   1125    1.1        pk {
   1126   1.79   tsutsui 	struct hme_softc *sc = v;
   1127    1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1128    1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
   1129   1.75   tsutsui 	uint32_t status;
   1130    1.1        pk 	int r = 0;
   1131    1.1        pk 
   1132    1.1        pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1133    1.1        pk 
   1134    1.1        pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1135    1.1        pk 		r |= hme_eint(sc, status);
   1136    1.1        pk 
   1137    1.1        pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1138    1.1        pk 		r |= hme_tint(sc);
   1139    1.1        pk 
   1140    1.1        pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1141    1.1        pk 		r |= hme_rint(sc);
   1142    1.1        pk 
   1143   1.40       abs 	rnd_add_uint32(&sc->rnd_source, status);
   1144   1.40       abs 
   1145    1.1        pk 	return (r);
   1146    1.1        pk }
   1147    1.1        pk 
   1148    1.1        pk 
   1149    1.1        pk void
   1150   1.71       dsl hme_watchdog(struct ifnet *ifp)
   1151    1.1        pk {
   1152    1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1153    1.1        pk 
   1154   1.79   tsutsui 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1155    1.1        pk 	++ifp->if_oerrors;
   1156    1.1        pk 
   1157    1.1        pk 	hme_reset(sc);
   1158    1.4        pk }
   1159    1.4        pk 
   1160    1.4        pk /*
   1161    1.4        pk  * Initialize the MII Management Interface
   1162    1.4        pk  */
   1163    1.4        pk void
   1164   1.71       dsl hme_mifinit(struct hme_softc *sc)
   1165    1.4        pk {
   1166    1.4        pk 	bus_space_tag_t t = sc->sc_bustag;
   1167    1.4        pk 	bus_space_handle_t mif = sc->sc_mif;
   1168   1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1169   1.33        pk 	int instance, phy;
   1170   1.75   tsutsui 	uint32_t v;
   1171    1.4        pk 
   1172   1.61    dyoung 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1173   1.61    dyoung 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1174   1.33        pk 		phy = sc->sc_phys[instance];
   1175   1.33        pk 	} else
   1176   1.33        pk 		/* No media set yet, pick phy arbitrarily.. */
   1177   1.33        pk 		phy = HME_PHYAD_EXTERNAL;
   1178   1.33        pk 
   1179   1.33        pk 	/* Configure the MIF in frame mode, no poll, current phy select */
   1180   1.33        pk 	v = 0;
   1181   1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1182   1.33        pk 		v |= HME_MIF_CFG_PHY;
   1183    1.4        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1184   1.35        pk 
   1185   1.35        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1186   1.35        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1187   1.35        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1188   1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1189   1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1190   1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1191    1.1        pk }
   1192    1.1        pk 
   1193    1.1        pk /*
   1194    1.1        pk  * MII interface
   1195    1.1        pk  */
   1196    1.1        pk static int
   1197  1.101   msaitoh hme_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1198    1.1        pk {
   1199   1.79   tsutsui 	struct hme_softc *sc = device_private(self);
   1200    1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1201    1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1202   1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1203   1.75   tsutsui 	uint32_t v, xif_cfg, mifi_cfg;
   1204  1.101   msaitoh 	int n, rv;
   1205    1.1        pk 
   1206   1.33        pk 	/* We can at most have two PHYs */
   1207   1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1208  1.101   msaitoh 		return -1;
   1209   1.32    martin 
   1210    1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1211   1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1212    1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1213    1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1214    1.5        pk 		v |= HME_MIF_CFG_PHY;
   1215    1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1216    1.5        pk 
   1217   1.42      heas 	/* Enable MII drivers on external transceiver */
   1218   1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1219   1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1220   1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1221   1.35        pk 	else
   1222   1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1223   1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1224   1.35        pk 
   1225   1.33        pk #if 0
   1226   1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1227   1.33        pk 	/*
   1228   1.33        pk 	 * Check whether a transceiver is connected by testing
   1229   1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1230   1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1231   1.33        pk 	 */
   1232   1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1233   1.33        pk 	delay(100);
   1234   1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1235  1.101   msaitoh 	if ((v & mif_mdi_bit) == 0) {
   1236  1.101   msaitoh 		rv = -1;
   1237  1.101   msaitoh 		goto out;
   1238  1.101   msaitoh 	}
   1239   1.33        pk #endif
   1240   1.33        pk 
   1241    1.1        pk 	/* Construct the frame command */
   1242    1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1243    1.1        pk 	    HME_MIF_FO_TAMSB |
   1244    1.1        pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1245    1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1246    1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1247    1.1        pk 
   1248    1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1249    1.1        pk 	for (n = 0; n < 100; n++) {
   1250    1.2        pk 		DELAY(1);
   1251    1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1252   1.33        pk 		if (v & HME_MIF_FO_TALSB) {
   1253  1.101   msaitoh 			*val = v & HME_MIF_FO_DATA;
   1254  1.101   msaitoh 			rv = 0;
   1255   1.33        pk 			goto out;
   1256   1.33        pk 		}
   1257    1.1        pk 	}
   1258    1.1        pk 
   1259  1.101   msaitoh 	rv = ETIMEDOUT;
   1260   1.79   tsutsui 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   1261   1.33        pk 
   1262   1.33        pk out:
   1263   1.33        pk 	/* Restore MIFI_CFG register */
   1264   1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1265   1.35        pk 	/* Restore XIF register */
   1266   1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1267  1.101   msaitoh 	return rv;
   1268    1.1        pk }
   1269    1.1        pk 
   1270  1.101   msaitoh static int
   1271  1.101   msaitoh hme_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1272    1.1        pk {
   1273   1.79   tsutsui 	struct hme_softc *sc = device_private(self);
   1274    1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1275    1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1276   1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1277   1.75   tsutsui 	uint32_t v, xif_cfg, mifi_cfg;
   1278  1.101   msaitoh 	int n, rv;
   1279   1.32    martin 
   1280   1.33        pk 	/* We can at most have two PHYs */
   1281   1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1282  1.101   msaitoh 		return -1;
   1283    1.1        pk 
   1284    1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1285   1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1286    1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1287    1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1288    1.5        pk 		v |= HME_MIF_CFG_PHY;
   1289    1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1290    1.5        pk 
   1291   1.42      heas 	/* Enable MII drivers on external transceiver */
   1292   1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1293   1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1294   1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1295   1.35        pk 	else
   1296   1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1297   1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1298   1.35        pk 
   1299   1.33        pk #if 0
   1300   1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1301   1.33        pk 	/*
   1302   1.33        pk 	 * Check whether a transceiver is connected by testing
   1303   1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1304   1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1305   1.33        pk 	 */
   1306   1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1307   1.33        pk 	delay(100);
   1308   1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1309  1.101   msaitoh 	if ((v & mif_mdi_bit) == 0) {
   1310  1.101   msaitoh 		rv = -1;
   1311  1.101   msaitoh 		goto out;
   1312  1.101   msaitoh 	}
   1313   1.33        pk #endif
   1314   1.33        pk 
   1315    1.1        pk 	/* Construct the frame command */
   1316    1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1317    1.1        pk 	    HME_MIF_FO_TAMSB				|
   1318    1.1        pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1319    1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1320    1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1321    1.1        pk 	    (val & HME_MIF_FO_DATA);
   1322    1.1        pk 
   1323    1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1324    1.1        pk 	for (n = 0; n < 100; n++) {
   1325    1.2        pk 		DELAY(1);
   1326    1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1327  1.101   msaitoh 		if (v & HME_MIF_FO_TALSB) {
   1328  1.101   msaitoh 			rv = 0;
   1329   1.33        pk 			goto out;
   1330  1.101   msaitoh 		}
   1331    1.1        pk 	}
   1332    1.1        pk 
   1333  1.101   msaitoh 	rv = ETIMEDOUT;
   1334   1.79   tsutsui 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   1335   1.33        pk out:
   1336   1.33        pk 	/* Restore MIFI_CFG register */
   1337   1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1338   1.35        pk 	/* Restore XIF register */
   1339   1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1340  1.101   msaitoh 
   1341  1.101   msaitoh 	return rv;
   1342    1.1        pk }
   1343    1.1        pk 
   1344    1.1        pk static void
   1345   1.89      matt hme_mii_statchg(struct ifnet *ifp)
   1346    1.1        pk {
   1347   1.89      matt 	struct hme_softc *sc = ifp->if_softc;
   1348    1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1349    1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1350   1.75   tsutsui 	uint32_t v;
   1351    1.1        pk 
   1352    1.5        pk #ifdef HMEDEBUG
   1353    1.5        pk 	if (sc->sc_debug)
   1354   1.33        pk 		printf("hme_mii_statchg: status change\n");
   1355    1.5        pk #endif
   1356    1.1        pk 
   1357    1.5        pk 	/* Set the MAC Full Duplex bit appropriately */
   1358   1.30    martin 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1359   1.30    martin 	   but not otherwise. */
   1360    1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1361   1.30    martin 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1362    1.1        pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1363   1.30    martin 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1364   1.30    martin 	} else {
   1365    1.1        pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1366   1.30    martin 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1367   1.30    martin 	}
   1368   1.41      heas 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1369    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1370    1.5        pk }
   1371    1.5        pk 
   1372    1.5        pk int
   1373   1.71       dsl hme_mediachange(struct ifnet *ifp)
   1374    1.5        pk {
   1375    1.5        pk 	struct hme_softc *sc = ifp->if_softc;
   1376   1.33        pk 	bus_space_tag_t t = sc->sc_bustag;
   1377   1.33        pk 	bus_space_handle_t mif = sc->sc_mif;
   1378   1.33        pk 	bus_space_handle_t mac = sc->sc_mac;
   1379   1.33        pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1380   1.33        pk 	int phy = sc->sc_phys[instance];
   1381   1.61    dyoung 	int rc;
   1382   1.75   tsutsui 	uint32_t v;
   1383    1.5        pk 
   1384   1.33        pk #ifdef HMEDEBUG
   1385   1.33        pk 	if (sc->sc_debug)
   1386   1.33        pk 		printf("hme_mediachange: phy = %d\n", phy);
   1387   1.33        pk #endif
   1388   1.33        pk 
   1389   1.33        pk 	/* Select the current PHY in the MIF configuration register */
   1390   1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1391   1.33        pk 	v &= ~HME_MIF_CFG_PHY;
   1392   1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1393   1.33        pk 		v |= HME_MIF_CFG_PHY;
   1394   1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1395   1.33        pk 
   1396   1.33        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1397   1.33        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1398   1.33        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1399   1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1400   1.33        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1401   1.33        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1402    1.5        pk 
   1403   1.61    dyoung 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1404   1.61    dyoung 		return 0;
   1405   1.61    dyoung 	return rc;
   1406    1.1        pk }
   1407    1.1        pk 
   1408    1.1        pk /*
   1409    1.1        pk  * Process an ioctl request.
   1410    1.1        pk  */
   1411    1.1        pk int
   1412   1.67    dyoung hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1413    1.1        pk {
   1414    1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1415    1.1        pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1416    1.1        pk 	int s, error = 0;
   1417    1.1        pk 
   1418    1.1        pk 	s = splnet();
   1419    1.1        pk 
   1420    1.1        pk 	switch (cmd) {
   1421    1.1        pk 
   1422   1.67    dyoung 	case SIOCINITIFADDR:
   1423    1.1        pk 		switch (ifa->ifa_addr->sa_family) {
   1424    1.1        pk #ifdef INET
   1425    1.1        pk 		case AF_INET:
   1426   1.41      heas 			if (ifp->if_flags & IFF_UP)
   1427   1.41      heas 				hme_setladrf(sc);
   1428   1.41      heas 			else {
   1429   1.41      heas 				ifp->if_flags |= IFF_UP;
   1430   1.84  jakllsch 				error = hme_init(ifp);
   1431   1.41      heas 			}
   1432    1.1        pk 			arp_ifinit(ifp, ifa);
   1433    1.1        pk 			break;
   1434    1.1        pk #endif
   1435    1.1        pk 		default:
   1436   1.41      heas 			ifp->if_flags |= IFF_UP;
   1437   1.84  jakllsch 			error = hme_init(ifp);
   1438    1.1        pk 			break;
   1439    1.1        pk 		}
   1440    1.1        pk 		break;
   1441    1.1        pk 
   1442    1.1        pk 	case SIOCSIFFLAGS:
   1443   1.45      heas #ifdef HMEDEBUG
   1444   1.67    dyoung 		{
   1445   1.67    dyoung 			struct ifreq *ifr = data;
   1446   1.67    dyoung 			sc->sc_debug =
   1447   1.67    dyoung 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1448   1.67    dyoung 		}
   1449   1.45      heas #endif
   1450   1.67    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1451   1.67    dyoung 			break;
   1452   1.45      heas 
   1453   1.67    dyoung 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1454   1.67    dyoung 		case IFF_RUNNING:
   1455    1.1        pk 			/*
   1456    1.1        pk 			 * If interface is marked down and it is running, then
   1457    1.1        pk 			 * stop it.
   1458    1.1        pk 			 */
   1459   1.80   tsutsui 			hme_stop(ifp, 0);
   1460    1.1        pk 			ifp->if_flags &= ~IFF_RUNNING;
   1461   1.67    dyoung 			break;
   1462   1.67    dyoung 		case IFF_UP:
   1463    1.1        pk 			/*
   1464    1.1        pk 			 * If interface is marked up and it is stopped, then
   1465    1.1        pk 			 * start it.
   1466    1.1        pk 			 */
   1467   1.84  jakllsch 			error = hme_init(ifp);
   1468   1.67    dyoung 			break;
   1469   1.67    dyoung 		case IFF_UP|IFF_RUNNING:
   1470    1.1        pk 			/*
   1471   1.41      heas 			 * If setting debug or promiscuous mode, do not reset
   1472   1.41      heas 			 * the chip; for everything else, call hme_init()
   1473   1.41      heas 			 * which will trigger a reset.
   1474    1.1        pk 			 */
   1475   1.41      heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1476   1.46      heas 			if (ifp->if_flags != sc->sc_if_flags) {
   1477   1.45      heas 				if ((ifp->if_flags & (~RESETIGN))
   1478   1.45      heas 				    == (sc->sc_if_flags & (~RESETIGN)))
   1479   1.45      heas 					hme_setladrf(sc);
   1480   1.45      heas 				else
   1481   1.84  jakllsch 					error = hme_init(ifp);
   1482   1.45      heas 			}
   1483   1.41      heas #undef RESETIGN
   1484   1.67    dyoung 			break;
   1485   1.67    dyoung 		case 0:
   1486   1.67    dyoung 			break;
   1487    1.1        pk 		}
   1488   1.45      heas 
   1489   1.45      heas 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1490   1.84  jakllsch 			error = hme_init(ifp);
   1491   1.45      heas 
   1492    1.1        pk 		break;
   1493    1.1        pk 
   1494   1.63    dyoung 	default:
   1495   1.63    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1496   1.63    dyoung 			break;
   1497   1.63    dyoung 
   1498   1.63    dyoung 		error = 0;
   1499   1.63    dyoung 
   1500   1.63    dyoung 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1501   1.63    dyoung 			;
   1502   1.63    dyoung 		else if (ifp->if_flags & IFF_RUNNING) {
   1503    1.1        pk 			/*
   1504    1.1        pk 			 * Multicast list has changed; set the hardware filter
   1505    1.1        pk 			 * accordingly.
   1506    1.1        pk 			 */
   1507   1.63    dyoung 			hme_setladrf(sc);
   1508    1.1        pk 		}
   1509    1.1        pk 		break;
   1510    1.1        pk 	}
   1511    1.1        pk 
   1512   1.41      heas 	sc->sc_if_flags = ifp->if_flags;
   1513    1.1        pk 	splx(s);
   1514    1.1        pk 	return (error);
   1515    1.1        pk }
   1516    1.1        pk 
   1517   1.80   tsutsui bool
   1518   1.80   tsutsui hme_shutdown(device_t self, int howto)
   1519    1.1        pk {
   1520   1.79   tsutsui 	struct hme_softc *sc;
   1521   1.80   tsutsui 	struct ifnet *ifp;
   1522   1.80   tsutsui 
   1523   1.80   tsutsui 	sc = device_private(self);
   1524   1.80   tsutsui 	ifp = &sc->sc_ethercom.ec_if;
   1525   1.80   tsutsui 	hme_stop(ifp, 1);
   1526   1.28      tron 
   1527   1.80   tsutsui 	return true;
   1528    1.1        pk }
   1529    1.1        pk 
   1530    1.1        pk /*
   1531    1.1        pk  * Set up the logical address filter.
   1532    1.1        pk  */
   1533    1.1        pk void
   1534   1.71       dsl hme_setladrf(struct hme_softc *sc)
   1535    1.1        pk {
   1536    1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1537    1.1        pk 	struct ether_multi *enm;
   1538    1.1        pk 	struct ether_multistep step;
   1539   1.28      tron 	struct ethercom *ec = &sc->sc_ethercom;
   1540    1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1541    1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1542   1.83   tsutsui 	uint32_t v;
   1543   1.75   tsutsui 	uint32_t crc;
   1544   1.75   tsutsui 	uint32_t hash[4];
   1545    1.1        pk 
   1546   1.14        pk 	/* Clear hash table */
   1547   1.14        pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1548   1.14        pk 
   1549   1.14        pk 	/* Get current RX configuration */
   1550   1.14        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1551   1.14        pk 
   1552   1.14        pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1553   1.14        pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1554   1.14        pk 		v |= HME_MAC_RXCFG_PMISC;
   1555   1.14        pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1556   1.14        pk 		ifp->if_flags |= IFF_ALLMULTI;
   1557   1.14        pk 		goto chipit;
   1558   1.14        pk 	}
   1559   1.14        pk 
   1560   1.14        pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1561   1.14        pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1562   1.14        pk 	v |= HME_MAC_RXCFG_HENABLE;
   1563   1.14        pk 
   1564    1.1        pk 	/*
   1565    1.1        pk 	 * Set up multicast address filter by passing all multicast addresses
   1566    1.1        pk 	 * through a crc generator, and then using the high order 6 bits as an
   1567    1.1        pk 	 * index into the 64 bit logical address filter.  The high order bit
   1568    1.1        pk 	 * selects the word, while the rest of the bits select the bit within
   1569    1.1        pk 	 * the word.
   1570    1.1        pk 	 */
   1571    1.1        pk 
   1572   1.28      tron 	ETHER_FIRST_MULTI(step, ec, enm);
   1573    1.1        pk 	while (enm != NULL) {
   1574   1.70   tsutsui 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1575    1.1        pk 			/*
   1576    1.1        pk 			 * We must listen to a range of multicast addresses.
   1577    1.1        pk 			 * For now, just accept all multicasts, rather than
   1578    1.1        pk 			 * trying to set only those filter bits needed to match
   1579    1.1        pk 			 * the range.  (At this time, the only use of address
   1580    1.1        pk 			 * ranges is for IP multicast routing, for which the
   1581    1.1        pk 			 * range is big enough to require all bits set.)
   1582    1.1        pk 			 */
   1583   1.14        pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1584   1.14        pk 			ifp->if_flags |= IFF_ALLMULTI;
   1585   1.14        pk 			goto chipit;
   1586    1.1        pk 		}
   1587    1.1        pk 
   1588   1.83   tsutsui 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1589   1.83   tsutsui 
   1590    1.1        pk 		/* Just want the 6 most significant bits. */
   1591    1.1        pk 		crc >>= 26;
   1592    1.1        pk 
   1593    1.1        pk 		/* Set the corresponding bit in the filter. */
   1594    1.1        pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1595    1.1        pk 
   1596    1.1        pk 		ETHER_NEXT_MULTI(step, enm);
   1597    1.1        pk 	}
   1598    1.1        pk 
   1599   1.14        pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1600   1.14        pk 
   1601   1.14        pk chipit:
   1602   1.14        pk 	/* Now load the hash table into the chip */
   1603    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1604    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1605    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1606    1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1607   1.14        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1608    1.1        pk }
   1609    1.1        pk 
   1610   1.28      tron /*
   1611   1.28      tron  * Routines for accessing the transmit and receive buffers.
   1612   1.28      tron  * The various CPU and adapter configurations supported by this
   1613   1.28      tron  * driver require three different access methods for buffers
   1614   1.28      tron  * and descriptors:
   1615   1.28      tron  *	(1) contig (contiguous data; no padding),
   1616   1.28      tron  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1617   1.28      tron  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1618   1.28      tron  */
   1619   1.28      tron 
   1620   1.28      tron #if 0
   1621   1.28      tron /*
   1622   1.28      tron  * contig: contiguous data with no padding.
   1623   1.28      tron  *
   1624   1.28      tron  * Buffers may have any alignment.
   1625   1.28      tron  */
   1626   1.28      tron 
   1627   1.28      tron void
   1628   1.72       dsl hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1629   1.26      tron {
   1630   1.56  christos 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1631   1.26      tron 
   1632    1.1        pk 	/*
   1633   1.28      tron 	 * Just call memcpy() to do the work.
   1634    1.1        pk 	 */
   1635   1.28      tron 	memcpy(buf, from, len);
   1636    1.1        pk }
   1637    1.1        pk 
   1638   1.28      tron void
   1639   1.72       dsl hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1640    1.1        pk {
   1641   1.56  christos 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1642   1.26      tron 
   1643   1.28      tron 	/*
   1644   1.28      tron 	 * Just call memcpy() to do the work.
   1645   1.28      tron 	 */
   1646   1.28      tron 	memcpy(to, buf, len);
   1647    1.1        pk }
   1648   1.28      tron #endif
   1649