hme.c revision 1.20 1 1.20 thorpej /* $NetBSD: hme.c,v 1.20 2000/12/14 06:27:25 thorpej Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk * 3. All advertising materials mentioning features or use of this software
19 1.1 pk * must display the following acknowledgement:
20 1.1 pk * This product includes software developed by the NetBSD
21 1.1 pk * Foundation, Inc. and its contributors.
22 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 pk * contributors may be used to endorse or promote products derived
24 1.1 pk * from this software without specific prior written permission.
25 1.1 pk *
26 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
37 1.1 pk */
38 1.1 pk
39 1.1 pk /*
40 1.1 pk * HME Ethernet module driver.
41 1.1 pk */
42 1.1 pk
43 1.1 pk #define HMEDEBUG
44 1.1 pk
45 1.1 pk #include "opt_inet.h"
46 1.1 pk #include "opt_ns.h"
47 1.1 pk #include "bpfilter.h"
48 1.1 pk #include "rnd.h"
49 1.1 pk
50 1.1 pk #include <sys/param.h>
51 1.1 pk #include <sys/systm.h>
52 1.5 pk #include <sys/kernel.h>
53 1.1 pk #include <sys/mbuf.h>
54 1.1 pk #include <sys/syslog.h>
55 1.1 pk #include <sys/socket.h>
56 1.1 pk #include <sys/device.h>
57 1.1 pk #include <sys/malloc.h>
58 1.1 pk #include <sys/ioctl.h>
59 1.1 pk #include <sys/errno.h>
60 1.1 pk #if NRND > 0
61 1.1 pk #include <sys/rnd.h>
62 1.1 pk #endif
63 1.1 pk
64 1.1 pk #include <net/if.h>
65 1.1 pk #include <net/if_dl.h>
66 1.1 pk #include <net/if_ether.h>
67 1.1 pk #include <net/if_media.h>
68 1.1 pk
69 1.1 pk #ifdef INET
70 1.1 pk #include <netinet/in.h>
71 1.1 pk #include <netinet/if_inarp.h>
72 1.1 pk #include <netinet/in_systm.h>
73 1.1 pk #include <netinet/in_var.h>
74 1.1 pk #include <netinet/ip.h>
75 1.1 pk #endif
76 1.1 pk
77 1.1 pk #ifdef NS
78 1.1 pk #include <netns/ns.h>
79 1.1 pk #include <netns/ns_if.h>
80 1.1 pk #endif
81 1.1 pk
82 1.1 pk #if NBPFILTER > 0
83 1.1 pk #include <net/bpf.h>
84 1.1 pk #include <net/bpfdesc.h>
85 1.1 pk #endif
86 1.1 pk
87 1.1 pk #include <dev/mii/mii.h>
88 1.1 pk #include <dev/mii/miivar.h>
89 1.1 pk
90 1.1 pk #include <machine/bus.h>
91 1.1 pk
92 1.1 pk #include <dev/ic/hmereg.h>
93 1.1 pk #include <dev/ic/hmevar.h>
94 1.1 pk
95 1.1 pk void hme_start __P((struct ifnet *));
96 1.1 pk void hme_stop __P((struct hme_softc *));
97 1.1 pk int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
98 1.5 pk void hme_tick __P((void *));
99 1.1 pk void hme_watchdog __P((struct ifnet *));
100 1.1 pk void hme_shutdown __P((void *));
101 1.1 pk void hme_init __P((struct hme_softc *));
102 1.1 pk void hme_meminit __P((struct hme_softc *));
103 1.4 pk void hme_mifinit __P((struct hme_softc *));
104 1.1 pk void hme_reset __P((struct hme_softc *));
105 1.1 pk void hme_setladrf __P((struct hme_softc *));
106 1.1 pk
107 1.1 pk /* MII methods & callbacks */
108 1.1 pk static int hme_mii_readreg __P((struct device *, int, int));
109 1.1 pk static void hme_mii_writereg __P((struct device *, int, int, int));
110 1.1 pk static void hme_mii_statchg __P((struct device *));
111 1.1 pk
112 1.1 pk int hme_mediachange __P((struct ifnet *));
113 1.1 pk void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
114 1.1 pk
115 1.1 pk struct mbuf *hme_get __P((struct hme_softc *, int, int));
116 1.1 pk int hme_put __P((struct hme_softc *, int, struct mbuf *));
117 1.1 pk void hme_read __P((struct hme_softc *, int, int));
118 1.1 pk int hme_eint __P((struct hme_softc *, u_int));
119 1.1 pk int hme_rint __P((struct hme_softc *));
120 1.1 pk int hme_tint __P((struct hme_softc *));
121 1.1 pk
122 1.1 pk static int ether_cmp __P((u_char *, u_char *));
123 1.1 pk
124 1.1 pk /* Default buffer copy routines */
125 1.1 pk void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
126 1.1 pk void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
127 1.1 pk void hme_zerobuf_contig __P((struct hme_softc *, int, int));
128 1.1 pk
129 1.1 pk
130 1.1 pk void
131 1.1 pk hme_config(sc)
132 1.1 pk struct hme_softc *sc;
133 1.1 pk {
134 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 1.1 pk struct mii_data *mii = &sc->sc_mii;
136 1.5 pk struct mii_softc *child;
137 1.11 pk bus_dma_tag_t dmatag = sc->sc_dmatag;
138 1.1 pk bus_dma_segment_t seg;
139 1.1 pk bus_size_t size;
140 1.1 pk int rseg, error;
141 1.1 pk
142 1.1 pk /*
143 1.1 pk * HME common initialization.
144 1.1 pk *
145 1.1 pk * hme_softc fields that must be initialized by the front-end:
146 1.1 pk *
147 1.1 pk * the bus tag:
148 1.1 pk * sc_bustag
149 1.1 pk *
150 1.1 pk * the dma bus tag:
151 1.1 pk * sc_dmatag
152 1.1 pk *
153 1.1 pk * the bus handles:
154 1.1 pk * sc_seb (Shared Ethernet Block registers)
155 1.1 pk * sc_erx (Receiver Unit registers)
156 1.1 pk * sc_etx (Transmitter Unit registers)
157 1.1 pk * sc_mac (MAC registers)
158 1.1 pk * sc_mif (Managment Interface registers)
159 1.1 pk *
160 1.1 pk * the maximum bus burst size:
161 1.1 pk * sc_burst
162 1.1 pk *
163 1.1 pk * (notyet:DMA capable memory for the ring descriptors & packet buffers:
164 1.1 pk * rb_membase, rb_dmabase)
165 1.1 pk *
166 1.1 pk * the local Ethernet address:
167 1.1 pk * sc_enaddr
168 1.1 pk *
169 1.1 pk */
170 1.1 pk
171 1.1 pk /* Make sure the chip is stopped. */
172 1.1 pk hme_stop(sc);
173 1.1 pk
174 1.1 pk
175 1.1 pk /*
176 1.1 pk * Allocate descriptors and buffers
177 1.1 pk * XXX - do all this differently.. and more configurably,
178 1.1 pk * eg. use things as `dma_load_mbuf()' on transmit,
179 1.1 pk * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
180 1.1 pk * all the time) on the reveiver side.
181 1.8 pk *
182 1.8 pk * Note: receive buffers must be 64-byte aligned.
183 1.8 pk * Also, apparently, the buffers must extend to a DMA burst
184 1.8 pk * boundary beyond the maximum packet size.
185 1.1 pk */
186 1.1 pk #define _HME_NDESC 32
187 1.8 pk #define _HME_BUFSZ 1600
188 1.1 pk
189 1.1 pk /* Note: the # of descriptors must be a multiple of 16 */
190 1.1 pk sc->sc_rb.rb_ntbuf = _HME_NDESC;
191 1.1 pk sc->sc_rb.rb_nrbuf = _HME_NDESC;
192 1.1 pk
193 1.1 pk /*
194 1.1 pk * Allocate DMA capable memory
195 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
196 1.1 pk * take this into account when calculating the size. Note that
197 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
198 1.1 pk * so we allocate that much regardless of _HME_NDESC.
199 1.1 pk */
200 1.1 pk size = 2048 + /* TX descriptors */
201 1.1 pk 2048 + /* RX descriptors */
202 1.1 pk sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
203 1.1 pk sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
204 1.11 pk
205 1.11 pk /* Allocate DMA buffer */
206 1.11 pk if ((error = bus_dmamem_alloc(dmatag, size,
207 1.1 pk 2048, 0,
208 1.1 pk &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
209 1.1 pk printf("%s: DMA buffer alloc error %d\n",
210 1.1 pk sc->sc_dev.dv_xname, error);
211 1.10 mrg return;
212 1.1 pk }
213 1.1 pk
214 1.11 pk /* Map DMA memory in CPU addressable space */
215 1.11 pk if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
216 1.1 pk &sc->sc_rb.rb_membase,
217 1.1 pk BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
218 1.1 pk printf("%s: DMA buffer map error %d\n",
219 1.1 pk sc->sc_dev.dv_xname, error);
220 1.11 pk bus_dmamap_unload(dmatag, sc->sc_dmamap);
221 1.11 pk bus_dmamem_free(dmatag, &seg, rseg);
222 1.1 pk return;
223 1.1 pk }
224 1.13 mrg
225 1.13 mrg if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
226 1.13 mrg BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
227 1.13 mrg printf("%s: DMA map create error %d\n",
228 1.13 mrg sc->sc_dev.dv_xname, error);
229 1.13 mrg return;
230 1.13 mrg }
231 1.13 mrg
232 1.13 mrg /* Load the buffer */
233 1.13 mrg if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
234 1.17 mrg sc->sc_rb.rb_membase, size, NULL,
235 1.17 mrg BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
236 1.13 mrg printf("%s: DMA buffer map load error %d\n",
237 1.13 mrg sc->sc_dev.dv_xname, error);
238 1.13 mrg bus_dmamem_free(dmatag, &seg, rseg);
239 1.13 mrg return;
240 1.13 mrg }
241 1.13 mrg sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
242 1.1 pk
243 1.2 pk printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
244 1.2 pk
245 1.1 pk /* Initialize ifnet structure. */
246 1.1 pk bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
247 1.1 pk ifp->if_softc = sc;
248 1.1 pk ifp->if_start = hme_start;
249 1.1 pk ifp->if_ioctl = hme_ioctl;
250 1.1 pk ifp->if_watchdog = hme_watchdog;
251 1.1 pk ifp->if_flags =
252 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
253 1.20 thorpej IFQ_SET_READY(&ifp->if_snd);
254 1.1 pk
255 1.1 pk /* Initialize ifmedia structures and MII info */
256 1.1 pk mii->mii_ifp = ifp;
257 1.1 pk mii->mii_readreg = hme_mii_readreg;
258 1.1 pk mii->mii_writereg = hme_mii_writereg;
259 1.1 pk mii->mii_statchg = hme_mii_statchg;
260 1.1 pk
261 1.1 pk ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
262 1.1 pk
263 1.4 pk hme_mifinit(sc);
264 1.4 pk
265 1.6 thorpej mii_attach(&sc->sc_dev, mii, 0xffffffff,
266 1.7 thorpej MII_PHY_ANY, MII_OFFSET_ANY, 0);
267 1.2 pk
268 1.5 pk child = LIST_FIRST(&mii->mii_phys);
269 1.5 pk if (child == NULL) {
270 1.1 pk /* No PHY attached */
271 1.1 pk ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
272 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
273 1.1 pk } else {
274 1.1 pk /*
275 1.5 pk * Walk along the list of attached MII devices and
276 1.5 pk * establish an `MII instance' to `phy number'
277 1.5 pk * mapping. We'll use this mapping in media change
278 1.5 pk * requests to determine which phy to use to program
279 1.5 pk * the MIF configuration register.
280 1.5 pk */
281 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
282 1.5 pk /*
283 1.5 pk * Note: we support just two PHYs: the built-in
284 1.5 pk * internal device and an external on the MII
285 1.5 pk * connector.
286 1.5 pk */
287 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) {
288 1.5 pk printf("%s: cannot accomodate MII device %s"
289 1.5 pk " at phy %d, instance %d\n",
290 1.5 pk sc->sc_dev.dv_xname,
291 1.5 pk child->mii_dev.dv_xname,
292 1.5 pk child->mii_phy, child->mii_inst);
293 1.5 pk continue;
294 1.5 pk }
295 1.5 pk
296 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy;
297 1.5 pk }
298 1.5 pk
299 1.5 pk /*
300 1.1 pk * XXX - we can really do the following ONLY if the
301 1.1 pk * phy indeed has the auto negotiation capability!!
302 1.1 pk */
303 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
304 1.1 pk }
305 1.1 pk
306 1.19 bouyer /* claim 802.1q capability */
307 1.19 bouyer sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
308 1.19 bouyer
309 1.1 pk /* Attach the interface. */
310 1.1 pk if_attach(ifp);
311 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
312 1.1 pk
313 1.1 pk sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
314 1.1 pk if (sc->sc_sh == NULL)
315 1.1 pk panic("hme_config: can't establish shutdownhook");
316 1.1 pk
317 1.1 pk #if 0
318 1.1 pk printf("%s: %d receive buffers, %d transmit buffers\n",
319 1.1 pk sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
320 1.1 pk sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
321 1.1 pk M_WAITOK);
322 1.1 pk sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
323 1.1 pk M_WAITOK);
324 1.1 pk #endif
325 1.1 pk
326 1.1 pk #if NRND > 0
327 1.1 pk rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
328 1.1 pk RND_TYPE_NET, 0);
329 1.1 pk #endif
330 1.5 pk
331 1.9 thorpej callout_init(&sc->sc_tick_ch);
332 1.5 pk }
333 1.5 pk
334 1.5 pk void
335 1.5 pk hme_tick(arg)
336 1.5 pk void *arg;
337 1.5 pk {
338 1.5 pk struct hme_softc *sc = arg;
339 1.5 pk int s;
340 1.5 pk
341 1.5 pk s = splnet();
342 1.5 pk mii_tick(&sc->sc_mii);
343 1.5 pk splx(s);
344 1.5 pk
345 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
346 1.1 pk }
347 1.1 pk
348 1.1 pk void
349 1.1 pk hme_reset(sc)
350 1.1 pk struct hme_softc *sc;
351 1.1 pk {
352 1.1 pk int s;
353 1.1 pk
354 1.1 pk s = splnet();
355 1.1 pk hme_init(sc);
356 1.1 pk splx(s);
357 1.1 pk }
358 1.1 pk
359 1.1 pk void
360 1.1 pk hme_stop(sc)
361 1.1 pk struct hme_softc *sc;
362 1.1 pk {
363 1.1 pk bus_space_tag_t t = sc->sc_bustag;
364 1.1 pk bus_space_handle_t seb = sc->sc_seb;
365 1.1 pk int n;
366 1.1 pk
367 1.9 thorpej callout_stop(&sc->sc_tick_ch);
368 1.5 pk mii_down(&sc->sc_mii);
369 1.5 pk
370 1.1 pk /* Reset transmitter and receiver */
371 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
372 1.1 pk (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
373 1.1 pk
374 1.1 pk for (n = 0; n < 20; n++) {
375 1.1 pk u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
376 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
377 1.1 pk return;
378 1.1 pk DELAY(20);
379 1.1 pk }
380 1.1 pk
381 1.1 pk printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
382 1.1 pk }
383 1.1 pk
384 1.1 pk void
385 1.1 pk hme_meminit(sc)
386 1.1 pk struct hme_softc *sc;
387 1.1 pk {
388 1.1 pk bus_addr_t txbufdma, rxbufdma;
389 1.1 pk bus_addr_t dma;
390 1.1 pk caddr_t p;
391 1.1 pk unsigned int ntbuf, nrbuf, i;
392 1.1 pk struct hme_ring *hr = &sc->sc_rb;
393 1.1 pk
394 1.1 pk p = hr->rb_membase;
395 1.1 pk dma = hr->rb_dmabase;
396 1.1 pk
397 1.1 pk ntbuf = hr->rb_ntbuf;
398 1.1 pk nrbuf = hr->rb_nrbuf;
399 1.1 pk
400 1.1 pk /*
401 1.1 pk * Allocate transmit descriptors
402 1.1 pk */
403 1.1 pk hr->rb_txd = p;
404 1.1 pk hr->rb_txddma = dma;
405 1.1 pk p += ntbuf * HME_XD_SIZE;
406 1.1 pk dma += ntbuf * HME_XD_SIZE;
407 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/
408 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
409 1.4 pk p = (caddr_t)roundup((u_long)p, 2048);
410 1.1 pk
411 1.1 pk /*
412 1.1 pk * Allocate receive descriptors
413 1.1 pk */
414 1.1 pk hr->rb_rxd = p;
415 1.1 pk hr->rb_rxddma = dma;
416 1.1 pk p += nrbuf * HME_XD_SIZE;
417 1.1 pk dma += nrbuf * HME_XD_SIZE;
418 1.4 pk /* Again move forward to the next 2048 byte boundary.*/
419 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
420 1.4 pk p = (caddr_t)roundup((u_long)p, 2048);
421 1.1 pk
422 1.1 pk
423 1.1 pk /*
424 1.1 pk * Allocate transmit buffers
425 1.1 pk */
426 1.1 pk hr->rb_txbuf = p;
427 1.1 pk txbufdma = dma;
428 1.1 pk p += ntbuf * _HME_BUFSZ;
429 1.1 pk dma += ntbuf * _HME_BUFSZ;
430 1.1 pk
431 1.1 pk /*
432 1.1 pk * Allocate receive buffers
433 1.1 pk */
434 1.1 pk hr->rb_rxbuf = p;
435 1.1 pk rxbufdma = dma;
436 1.1 pk p += nrbuf * _HME_BUFSZ;
437 1.1 pk dma += nrbuf * _HME_BUFSZ;
438 1.1 pk
439 1.1 pk /*
440 1.1 pk * Initialize transmit buffer descriptors
441 1.1 pk */
442 1.1 pk for (i = 0; i < ntbuf; i++) {
443 1.15 eeh HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
444 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
445 1.1 pk }
446 1.1 pk
447 1.1 pk /*
448 1.1 pk * Initialize receive buffer descriptors
449 1.1 pk */
450 1.1 pk for (i = 0; i < nrbuf; i++) {
451 1.15 eeh HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
452 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
453 1.1 pk HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
454 1.1 pk }
455 1.1 pk
456 1.1 pk hr->rb_tdhead = hr->rb_tdtail = 0;
457 1.1 pk hr->rb_td_nbusy = 0;
458 1.1 pk hr->rb_rdtail = 0;
459 1.1 pk }
460 1.1 pk
461 1.1 pk /*
462 1.1 pk * Initialization of interface; set up initialization block
463 1.1 pk * and transmit/receive descriptor rings.
464 1.1 pk */
465 1.1 pk void
466 1.1 pk hme_init(sc)
467 1.1 pk struct hme_softc *sc;
468 1.1 pk {
469 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 1.1 pk bus_space_tag_t t = sc->sc_bustag;
471 1.1 pk bus_space_handle_t seb = sc->sc_seb;
472 1.1 pk bus_space_handle_t etx = sc->sc_etx;
473 1.1 pk bus_space_handle_t erx = sc->sc_erx;
474 1.1 pk bus_space_handle_t mac = sc->sc_mac;
475 1.1 pk bus_space_handle_t mif = sc->sc_mif;
476 1.1 pk u_int8_t *ea;
477 1.1 pk u_int32_t v;
478 1.1 pk
479 1.1 pk /*
480 1.1 pk * Initialization sequence. The numbered steps below correspond
481 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
482 1.1 pk * Channel Engine manual (part of the PCIO manual).
483 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
484 1.1 pk */
485 1.1 pk
486 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
487 1.1 pk hme_stop(sc);
488 1.1 pk
489 1.4 pk /* Re-initialize the MIF */
490 1.4 pk hme_mifinit(sc);
491 1.4 pk
492 1.1 pk /* Call MI reset function if any */
493 1.1 pk if (sc->sc_hwreset)
494 1.1 pk (*sc->sc_hwreset)(sc);
495 1.1 pk
496 1.1 pk #if 0
497 1.1 pk /* Mask all MIF interrupts, just in case */
498 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
499 1.1 pk #endif
500 1.1 pk
501 1.1 pk /* step 3. Setup data structures in host memory */
502 1.1 pk hme_meminit(sc);
503 1.1 pk
504 1.1 pk /* step 4. TX MAC registers & counters */
505 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
506 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
507 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
508 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
509 1.19 bouyer bus_space_write_4(t, mac, HME_MACI_TXSIZE,
510 1.19 bouyer (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
511 1.19 bouyer ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
512 1.19 bouyer ETHER_MAX_LEN);
513 1.1 pk
514 1.1 pk /* Load station MAC address */
515 1.1 pk ea = sc->sc_enaddr;
516 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
517 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
518 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
519 1.1 pk
520 1.1 pk /*
521 1.1 pk * Init seed for backoff
522 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
523 1.1 pk */
524 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
525 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
526 1.1 pk
527 1.1 pk
528 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
529 1.1 pk
530 1.1 pk
531 1.1 pk /* step 5. RX MAC registers & counters */
532 1.1 pk hme_setladrf(sc);
533 1.1 pk
534 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
535 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
536 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
537 1.1 pk
538 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
539 1.19 bouyer bus_space_write_4(t, mac, HME_MACI_RXSIZE,
540 1.19 bouyer (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
541 1.19 bouyer ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
542 1.19 bouyer ETHER_MAX_LEN);
543 1.1 pk
544 1.1 pk
545 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
546 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
547 1.2 pk ~(
548 1.2 pk /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
549 1.2 pk HME_SEB_STAT_HOSTTOTX |
550 1.2 pk HME_SEB_STAT_RXTOHOST |
551 1.2 pk HME_SEB_STAT_TXALL |
552 1.2 pk HME_SEB_STAT_TXPERR |
553 1.2 pk HME_SEB_STAT_RCNTEXP |
554 1.2 pk HME_SEB_STAT_ALL_ERRORS ));
555 1.1 pk
556 1.1 pk switch (sc->sc_burst) {
557 1.1 pk default:
558 1.1 pk v = 0;
559 1.1 pk break;
560 1.1 pk case 16:
561 1.1 pk v = HME_SEB_CFG_BURST16;
562 1.1 pk break;
563 1.1 pk case 32:
564 1.1 pk v = HME_SEB_CFG_BURST32;
565 1.1 pk break;
566 1.1 pk case 64:
567 1.1 pk v = HME_SEB_CFG_BURST64;
568 1.1 pk break;
569 1.1 pk }
570 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
571 1.1 pk
572 1.1 pk /* step 9. ETX Configuration: use mostly default values */
573 1.1 pk
574 1.1 pk /* Enable DMA */
575 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
576 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
577 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
578 1.1 pk
579 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
580 1.3 pk bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
581 1.1 pk
582 1.1 pk
583 1.3 pk /* step 10. ERX Configuration */
584 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
585 1.3 pk
586 1.3 pk /* Encode Receive Descriptor ring size: four possible values */
587 1.3 pk switch (_HME_NDESC /*XXX*/) {
588 1.3 pk case 32:
589 1.3 pk v |= HME_ERX_CFG_RINGSIZE32;
590 1.3 pk break;
591 1.3 pk case 64:
592 1.3 pk v |= HME_ERX_CFG_RINGSIZE64;
593 1.3 pk break;
594 1.3 pk case 128:
595 1.3 pk v |= HME_ERX_CFG_RINGSIZE128;
596 1.3 pk break;
597 1.3 pk case 256:
598 1.3 pk v |= HME_ERX_CFG_RINGSIZE256;
599 1.3 pk break;
600 1.3 pk default:
601 1.3 pk printf("hme: invalid Receive Descriptor ring size\n");
602 1.3 pk break;
603 1.3 pk }
604 1.3 pk
605 1.3 pk /* Enable DMA */
606 1.1 pk v |= HME_ERX_CFG_DMAENABLE;
607 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
608 1.1 pk
609 1.1 pk /* step 11. XIF Configuration */
610 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
611 1.1 pk v |= HME_MAC_XIF_OE;
612 1.4 pk /* If an external transceiver is connected, enable its MII drivers */
613 1.2 pk if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
614 1.4 pk v |= HME_MAC_XIF_MIIENABLE;
615 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
616 1.1 pk
617 1.2 pk
618 1.1 pk /* step 12. RX_MAC Configuration Register */
619 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
620 1.1 pk v |= HME_MAC_RXCFG_ENABLE;
621 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
622 1.1 pk
623 1.1 pk /* step 13. TX_MAC Configuration Register */
624 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
625 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
626 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
627 1.1 pk
628 1.1 pk /* step 14. Issue Transmit Pending command */
629 1.1 pk
630 1.1 pk /* Call MI initialization function if any */
631 1.1 pk if (sc->sc_hwinit)
632 1.1 pk (*sc->sc_hwinit)(sc);
633 1.9 thorpej
634 1.9 thorpej /* Start the one second timer. */
635 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
636 1.1 pk
637 1.1 pk ifp->if_flags |= IFF_RUNNING;
638 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
639 1.1 pk ifp->if_timer = 0;
640 1.1 pk hme_start(ifp);
641 1.1 pk }
642 1.1 pk
643 1.1 pk /*
644 1.1 pk * Compare two Ether/802 addresses for equality, inlined and unrolled for
645 1.1 pk * speed.
646 1.1 pk */
647 1.1 pk static __inline__ int
648 1.1 pk ether_cmp(a, b)
649 1.1 pk u_char *a, *b;
650 1.1 pk {
651 1.1 pk
652 1.1 pk if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
653 1.1 pk a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
654 1.1 pk return (0);
655 1.1 pk return (1);
656 1.1 pk }
657 1.1 pk
658 1.1 pk
659 1.1 pk /*
660 1.1 pk * Routine to copy from mbuf chain to transmit buffer in
661 1.1 pk * network buffer memory.
662 1.1 pk * Returns the amount of data copied.
663 1.1 pk */
664 1.1 pk int
665 1.1 pk hme_put(sc, ri, m)
666 1.1 pk struct hme_softc *sc;
667 1.1 pk int ri; /* Ring index */
668 1.1 pk struct mbuf *m;
669 1.1 pk {
670 1.1 pk struct mbuf *n;
671 1.1 pk int len, tlen = 0;
672 1.1 pk caddr_t bp;
673 1.1 pk
674 1.1 pk bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
675 1.1 pk for (; m; m = n) {
676 1.1 pk len = m->m_len;
677 1.1 pk if (len == 0) {
678 1.1 pk MFREE(m, n);
679 1.1 pk continue;
680 1.1 pk }
681 1.1 pk bcopy(mtod(m, caddr_t), bp, len);
682 1.1 pk bp += len;
683 1.1 pk tlen += len;
684 1.1 pk MFREE(m, n);
685 1.1 pk }
686 1.1 pk return (tlen);
687 1.1 pk }
688 1.1 pk
689 1.1 pk /*
690 1.1 pk * Pull data off an interface.
691 1.1 pk * Len is length of data, with local net header stripped.
692 1.1 pk * We copy the data into mbufs. When full cluster sized units are present
693 1.1 pk * we copy into clusters.
694 1.1 pk */
695 1.1 pk struct mbuf *
696 1.1 pk hme_get(sc, ri, totlen)
697 1.1 pk struct hme_softc *sc;
698 1.1 pk int ri, totlen;
699 1.1 pk {
700 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
701 1.1 pk struct mbuf *m, *m0, *newm;
702 1.1 pk caddr_t bp;
703 1.1 pk int len;
704 1.1 pk
705 1.1 pk MGETHDR(m0, M_DONTWAIT, MT_DATA);
706 1.1 pk if (m0 == 0)
707 1.1 pk return (0);
708 1.1 pk m0->m_pkthdr.rcvif = ifp;
709 1.1 pk m0->m_pkthdr.len = totlen;
710 1.1 pk len = MHLEN;
711 1.1 pk m = m0;
712 1.1 pk
713 1.1 pk bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
714 1.1 pk
715 1.1 pk while (totlen > 0) {
716 1.1 pk if (totlen >= MINCLSIZE) {
717 1.1 pk MCLGET(m, M_DONTWAIT);
718 1.1 pk if ((m->m_flags & M_EXT) == 0)
719 1.1 pk goto bad;
720 1.1 pk len = MCLBYTES;
721 1.1 pk }
722 1.1 pk
723 1.1 pk if (m == m0) {
724 1.1 pk caddr_t newdata = (caddr_t)
725 1.1 pk ALIGN(m->m_data + sizeof(struct ether_header)) -
726 1.1 pk sizeof(struct ether_header);
727 1.1 pk len -= newdata - m->m_data;
728 1.1 pk m->m_data = newdata;
729 1.1 pk }
730 1.1 pk
731 1.1 pk m->m_len = len = min(totlen, len);
732 1.1 pk bcopy(bp, mtod(m, caddr_t), len);
733 1.1 pk bp += len;
734 1.1 pk
735 1.1 pk totlen -= len;
736 1.1 pk if (totlen > 0) {
737 1.1 pk MGET(newm, M_DONTWAIT, MT_DATA);
738 1.1 pk if (newm == 0)
739 1.1 pk goto bad;
740 1.1 pk len = MLEN;
741 1.1 pk m = m->m_next = newm;
742 1.1 pk }
743 1.1 pk }
744 1.1 pk
745 1.1 pk return (m0);
746 1.1 pk
747 1.1 pk bad:
748 1.1 pk m_freem(m0);
749 1.1 pk return (0);
750 1.1 pk }
751 1.1 pk
752 1.1 pk /*
753 1.1 pk * Pass a packet to the higher levels.
754 1.1 pk */
755 1.1 pk void
756 1.1 pk hme_read(sc, ix, len)
757 1.1 pk struct hme_softc *sc;
758 1.1 pk int ix, len;
759 1.1 pk {
760 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
761 1.1 pk struct mbuf *m;
762 1.1 pk
763 1.1 pk if (len <= sizeof(struct ether_header) ||
764 1.19 bouyer len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
765 1.19 bouyer ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
766 1.19 bouyer ETHERMTU + sizeof(struct ether_header))) {
767 1.1 pk #ifdef HMEDEBUG
768 1.1 pk printf("%s: invalid packet size %d; dropping\n",
769 1.1 pk sc->sc_dev.dv_xname, len);
770 1.1 pk #endif
771 1.1 pk ifp->if_ierrors++;
772 1.1 pk return;
773 1.1 pk }
774 1.1 pk
775 1.1 pk /* Pull packet off interface. */
776 1.1 pk m = hme_get(sc, ix, len);
777 1.1 pk if (m == 0) {
778 1.1 pk ifp->if_ierrors++;
779 1.1 pk return;
780 1.1 pk }
781 1.1 pk
782 1.1 pk ifp->if_ipackets++;
783 1.1 pk
784 1.1 pk #if NBPFILTER > 0
785 1.1 pk /*
786 1.1 pk * Check if there's a BPF listener on this interface.
787 1.1 pk * If so, hand off the raw packet to BPF.
788 1.1 pk */
789 1.16 thorpej if (ifp->if_bpf)
790 1.1 pk bpf_mtap(ifp->if_bpf, m);
791 1.1 pk #endif
792 1.1 pk
793 1.1 pk /* Pass the packet up. */
794 1.1 pk (*ifp->if_input)(ifp, m);
795 1.1 pk }
796 1.1 pk
797 1.1 pk void
798 1.1 pk hme_start(ifp)
799 1.1 pk struct ifnet *ifp;
800 1.1 pk {
801 1.1 pk struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
802 1.1 pk caddr_t txd = sc->sc_rb.rb_txd;
803 1.1 pk struct mbuf *m;
804 1.1 pk unsigned int ri, len;
805 1.1 pk unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
806 1.1 pk
807 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
808 1.1 pk return;
809 1.1 pk
810 1.1 pk ri = sc->sc_rb.rb_tdhead;
811 1.1 pk
812 1.1 pk for (;;) {
813 1.20 thorpej IFQ_DEQUEUE(&ifp->if_snd, m);
814 1.1 pk if (m == 0)
815 1.1 pk break;
816 1.1 pk
817 1.1 pk #if NBPFILTER > 0
818 1.1 pk /*
819 1.1 pk * If BPF is listening on this interface, let it see the
820 1.1 pk * packet before we commit it to the wire.
821 1.1 pk */
822 1.1 pk if (ifp->if_bpf)
823 1.1 pk bpf_mtap(ifp->if_bpf, m);
824 1.1 pk #endif
825 1.1 pk
826 1.1 pk /*
827 1.1 pk * Copy the mbuf chain into the transmit buffer.
828 1.1 pk */
829 1.1 pk len = hme_put(sc, ri, m);
830 1.1 pk
831 1.1 pk /*
832 1.1 pk * Initialize transmit registers and start transmission
833 1.1 pk */
834 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
835 1.1 pk HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
836 1.1 pk HME_XD_ENCODE_TSIZE(len));
837 1.1 pk
838 1.3 pk /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
839 1.1 pk bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
840 1.1 pk HME_ETX_TP_DMAWAKEUP);
841 1.1 pk
842 1.1 pk if (++ri == ntbuf)
843 1.1 pk ri = 0;
844 1.1 pk
845 1.1 pk if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
846 1.1 pk ifp->if_flags |= IFF_OACTIVE;
847 1.1 pk break;
848 1.1 pk }
849 1.1 pk }
850 1.1 pk
851 1.1 pk sc->sc_rb.rb_tdhead = ri;
852 1.1 pk }
853 1.1 pk
854 1.1 pk /*
855 1.1 pk * Transmit interrupt.
856 1.1 pk */
857 1.1 pk int
858 1.1 pk hme_tint(sc)
859 1.1 pk struct hme_softc *sc;
860 1.1 pk {
861 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
862 1.1 pk bus_space_tag_t t = sc->sc_bustag;
863 1.1 pk bus_space_handle_t mac = sc->sc_mac;
864 1.1 pk unsigned int ri, txflags;
865 1.1 pk
866 1.1 pk /*
867 1.1 pk * Unload collision counters
868 1.1 pk */
869 1.1 pk ifp->if_collisions +=
870 1.1 pk bus_space_read_4(t, mac, HME_MACI_NCCNT) +
871 1.1 pk bus_space_read_4(t, mac, HME_MACI_FCCNT) +
872 1.1 pk bus_space_read_4(t, mac, HME_MACI_EXCNT) +
873 1.1 pk bus_space_read_4(t, mac, HME_MACI_LTCNT);
874 1.1 pk
875 1.1 pk /*
876 1.1 pk * then clear the hardware counters.
877 1.1 pk */
878 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
879 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
880 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
881 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
882 1.1 pk
883 1.1 pk /* Fetch current position in the transmit ring */
884 1.1 pk ri = sc->sc_rb.rb_tdtail;
885 1.1 pk
886 1.1 pk for (;;) {
887 1.1 pk if (sc->sc_rb.rb_td_nbusy <= 0)
888 1.1 pk break;
889 1.1 pk
890 1.15 eeh txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
891 1.1 pk
892 1.1 pk if (txflags & HME_XD_OWN)
893 1.1 pk break;
894 1.1 pk
895 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
896 1.1 pk ifp->if_opackets++;
897 1.1 pk
898 1.3 pk if (++ri == sc->sc_rb.rb_ntbuf)
899 1.1 pk ri = 0;
900 1.1 pk
901 1.1 pk --sc->sc_rb.rb_td_nbusy;
902 1.1 pk }
903 1.1 pk
904 1.3 pk /* Update ring */
905 1.1 pk sc->sc_rb.rb_tdtail = ri;
906 1.1 pk
907 1.1 pk hme_start(ifp);
908 1.1 pk
909 1.1 pk if (sc->sc_rb.rb_td_nbusy == 0)
910 1.1 pk ifp->if_timer = 0;
911 1.1 pk
912 1.1 pk return (1);
913 1.1 pk }
914 1.1 pk
915 1.1 pk /*
916 1.1 pk * Receive interrupt.
917 1.1 pk */
918 1.1 pk int
919 1.1 pk hme_rint(sc)
920 1.1 pk struct hme_softc *sc;
921 1.1 pk {
922 1.1 pk caddr_t xdr = sc->sc_rb.rb_rxd;
923 1.1 pk unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
924 1.1 pk unsigned int ri, len;
925 1.1 pk u_int32_t flags;
926 1.1 pk
927 1.1 pk ri = sc->sc_rb.rb_rdtail;
928 1.1 pk
929 1.1 pk /*
930 1.1 pk * Process all buffers with valid data.
931 1.1 pk */
932 1.1 pk for (;;) {
933 1.15 eeh flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
934 1.1 pk if (flags & HME_XD_OWN)
935 1.1 pk break;
936 1.1 pk
937 1.4 pk if (flags & HME_XD_OFL) {
938 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
939 1.4 pk sc->sc_dev.dv_xname, ri, flags);
940 1.4 pk } else {
941 1.4 pk len = HME_XD_DECODE_RSIZE(flags);
942 1.4 pk hme_read(sc, ri, len);
943 1.4 pk }
944 1.1 pk
945 1.1 pk /* This buffer can be used by the hardware again */
946 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
947 1.1 pk HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
948 1.1 pk
949 1.1 pk if (++ri == nrbuf)
950 1.1 pk ri = 0;
951 1.1 pk }
952 1.1 pk
953 1.1 pk sc->sc_rb.rb_rdtail = ri;
954 1.1 pk
955 1.1 pk return (1);
956 1.1 pk }
957 1.1 pk
958 1.1 pk int
959 1.1 pk hme_eint(sc, status)
960 1.1 pk struct hme_softc *sc;
961 1.1 pk u_int status;
962 1.1 pk {
963 1.1 pk char bits[128];
964 1.1 pk
965 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
966 1.1 pk printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
967 1.1 pk return (1);
968 1.1 pk }
969 1.1 pk
970 1.1 pk printf("%s: status=%s\n", sc->sc_dev.dv_xname,
971 1.1 pk bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
972 1.1 pk return (1);
973 1.1 pk }
974 1.1 pk
975 1.1 pk int
976 1.1 pk hme_intr(v)
977 1.1 pk void *v;
978 1.1 pk {
979 1.1 pk struct hme_softc *sc = (struct hme_softc *)v;
980 1.1 pk bus_space_tag_t t = sc->sc_bustag;
981 1.1 pk bus_space_handle_t seb = sc->sc_seb;
982 1.1 pk u_int32_t status;
983 1.1 pk int r = 0;
984 1.1 pk
985 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
986 1.1 pk
987 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
988 1.1 pk r |= hme_eint(sc, status);
989 1.1 pk
990 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
991 1.1 pk r |= hme_tint(sc);
992 1.1 pk
993 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
994 1.1 pk r |= hme_rint(sc);
995 1.1 pk
996 1.1 pk return (r);
997 1.1 pk }
998 1.1 pk
999 1.1 pk
1000 1.1 pk void
1001 1.1 pk hme_watchdog(ifp)
1002 1.1 pk struct ifnet *ifp;
1003 1.1 pk {
1004 1.1 pk struct hme_softc *sc = ifp->if_softc;
1005 1.1 pk
1006 1.1 pk log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1007 1.1 pk ++ifp->if_oerrors;
1008 1.1 pk
1009 1.1 pk hme_reset(sc);
1010 1.4 pk }
1011 1.4 pk
1012 1.4 pk /*
1013 1.4 pk * Initialize the MII Management Interface
1014 1.4 pk */
1015 1.4 pk void
1016 1.4 pk hme_mifinit(sc)
1017 1.4 pk struct hme_softc *sc;
1018 1.4 pk {
1019 1.4 pk bus_space_tag_t t = sc->sc_bustag;
1020 1.4 pk bus_space_handle_t mif = sc->sc_mif;
1021 1.4 pk u_int32_t v;
1022 1.4 pk
1023 1.4 pk /* Configure the MIF in frame mode */
1024 1.4 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1025 1.4 pk v &= ~HME_MIF_CFG_BBMODE;
1026 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1027 1.1 pk }
1028 1.1 pk
1029 1.1 pk /*
1030 1.1 pk * MII interface
1031 1.1 pk */
1032 1.1 pk static int
1033 1.1 pk hme_mii_readreg(self, phy, reg)
1034 1.1 pk struct device *self;
1035 1.1 pk int phy, reg;
1036 1.1 pk {
1037 1.1 pk struct hme_softc *sc = (void *)self;
1038 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1039 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1040 1.1 pk int n;
1041 1.1 pk u_int32_t v;
1042 1.1 pk
1043 1.5 pk /* Select the desired PHY in the MIF configuration register */
1044 1.5 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1045 1.5 pk /* Clear PHY select bit */
1046 1.5 pk v &= ~HME_MIF_CFG_PHY;
1047 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1048 1.5 pk /* Set PHY select bit to get at external device */
1049 1.5 pk v |= HME_MIF_CFG_PHY;
1050 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1051 1.5 pk
1052 1.1 pk /* Construct the frame command */
1053 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1054 1.1 pk HME_MIF_FO_TAMSB |
1055 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1056 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1057 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
1058 1.1 pk
1059 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1060 1.1 pk for (n = 0; n < 100; n++) {
1061 1.2 pk DELAY(1);
1062 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1063 1.1 pk if (v & HME_MIF_FO_TALSB)
1064 1.1 pk return (v & HME_MIF_FO_DATA);
1065 1.1 pk }
1066 1.1 pk
1067 1.1 pk printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1068 1.1 pk return (0);
1069 1.1 pk }
1070 1.1 pk
1071 1.1 pk static void
1072 1.1 pk hme_mii_writereg(self, phy, reg, val)
1073 1.1 pk struct device *self;
1074 1.1 pk int phy, reg, val;
1075 1.1 pk {
1076 1.1 pk struct hme_softc *sc = (void *)self;
1077 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1078 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1079 1.1 pk int n;
1080 1.1 pk u_int32_t v;
1081 1.1 pk
1082 1.5 pk /* Select the desired PHY in the MIF configuration register */
1083 1.5 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1084 1.5 pk /* Clear PHY select bit */
1085 1.5 pk v &= ~HME_MIF_CFG_PHY;
1086 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1087 1.5 pk /* Set PHY select bit to get at external device */
1088 1.5 pk v |= HME_MIF_CFG_PHY;
1089 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1090 1.5 pk
1091 1.1 pk /* Construct the frame command */
1092 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1093 1.1 pk HME_MIF_FO_TAMSB |
1094 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1095 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1096 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
1097 1.1 pk (val & HME_MIF_FO_DATA);
1098 1.1 pk
1099 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1100 1.1 pk for (n = 0; n < 100; n++) {
1101 1.2 pk DELAY(1);
1102 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1103 1.1 pk if (v & HME_MIF_FO_TALSB)
1104 1.1 pk return;
1105 1.1 pk }
1106 1.1 pk
1107 1.2 pk printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1108 1.1 pk }
1109 1.1 pk
1110 1.1 pk static void
1111 1.1 pk hme_mii_statchg(dev)
1112 1.1 pk struct device *dev;
1113 1.1 pk {
1114 1.3 pk struct hme_softc *sc = (void *)dev;
1115 1.5 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1116 1.5 pk int phy = sc->sc_phys[instance];
1117 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1118 1.5 pk bus_space_handle_t mif = sc->sc_mif;
1119 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1120 1.1 pk u_int32_t v;
1121 1.1 pk
1122 1.5 pk #ifdef HMEDEBUG
1123 1.5 pk if (sc->sc_debug)
1124 1.5 pk printf("hme_mii_statchg: status change: phy = %d\n", phy);
1125 1.5 pk #endif
1126 1.1 pk
1127 1.5 pk /* Select the current PHY in the MIF configuration register */
1128 1.5 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1129 1.5 pk v &= ~HME_MIF_CFG_PHY;
1130 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1131 1.5 pk v |= HME_MIF_CFG_PHY;
1132 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1133 1.1 pk
1134 1.5 pk /* Set the MAC Full Duplex bit appropriately */
1135 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1136 1.1 pk if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1137 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
1138 1.1 pk else
1139 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
1140 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1141 1.1 pk
1142 1.5 pk /* If an external transceiver is selected, enable its MII drivers */
1143 1.5 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1144 1.5 pk v &= ~HME_MAC_XIF_MIIENABLE;
1145 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1146 1.5 pk v |= HME_MAC_XIF_MIIENABLE;
1147 1.5 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1148 1.5 pk }
1149 1.5 pk
1150 1.5 pk int
1151 1.5 pk hme_mediachange(ifp)
1152 1.5 pk struct ifnet *ifp;
1153 1.5 pk {
1154 1.5 pk struct hme_softc *sc = ifp->if_softc;
1155 1.5 pk
1156 1.5 pk if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1157 1.5 pk return (EINVAL);
1158 1.5 pk
1159 1.5 pk return (mii_mediachg(&sc->sc_mii));
1160 1.1 pk }
1161 1.1 pk
1162 1.1 pk void
1163 1.1 pk hme_mediastatus(ifp, ifmr)
1164 1.1 pk struct ifnet *ifp;
1165 1.1 pk struct ifmediareq *ifmr;
1166 1.1 pk {
1167 1.1 pk struct hme_softc *sc = ifp->if_softc;
1168 1.1 pk
1169 1.1 pk if ((ifp->if_flags & IFF_UP) == 0)
1170 1.1 pk return;
1171 1.1 pk
1172 1.1 pk mii_pollstat(&sc->sc_mii);
1173 1.1 pk ifmr->ifm_active = sc->sc_mii.mii_media_active;
1174 1.1 pk ifmr->ifm_status = sc->sc_mii.mii_media_status;
1175 1.1 pk }
1176 1.1 pk
1177 1.1 pk /*
1178 1.1 pk * Process an ioctl request.
1179 1.1 pk */
1180 1.1 pk int
1181 1.1 pk hme_ioctl(ifp, cmd, data)
1182 1.1 pk struct ifnet *ifp;
1183 1.1 pk u_long cmd;
1184 1.1 pk caddr_t data;
1185 1.1 pk {
1186 1.1 pk struct hme_softc *sc = ifp->if_softc;
1187 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1188 1.1 pk struct ifreq *ifr = (struct ifreq *)data;
1189 1.1 pk int s, error = 0;
1190 1.1 pk
1191 1.1 pk s = splnet();
1192 1.1 pk
1193 1.1 pk switch (cmd) {
1194 1.1 pk
1195 1.1 pk case SIOCSIFADDR:
1196 1.1 pk ifp->if_flags |= IFF_UP;
1197 1.1 pk
1198 1.1 pk switch (ifa->ifa_addr->sa_family) {
1199 1.1 pk #ifdef INET
1200 1.1 pk case AF_INET:
1201 1.1 pk hme_init(sc);
1202 1.1 pk arp_ifinit(ifp, ifa);
1203 1.1 pk break;
1204 1.1 pk #endif
1205 1.1 pk #ifdef NS
1206 1.1 pk case AF_NS:
1207 1.1 pk {
1208 1.1 pk struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1209 1.1 pk
1210 1.1 pk if (ns_nullhost(*ina))
1211 1.1 pk ina->x_host =
1212 1.1 pk *(union ns_host *)LLADDR(ifp->if_sadl);
1213 1.1 pk else {
1214 1.1 pk bcopy(ina->x_host.c_host,
1215 1.1 pk LLADDR(ifp->if_sadl),
1216 1.1 pk sizeof(sc->sc_enaddr));
1217 1.1 pk }
1218 1.1 pk /* Set new address. */
1219 1.1 pk hme_init(sc);
1220 1.1 pk break;
1221 1.1 pk }
1222 1.1 pk #endif
1223 1.1 pk default:
1224 1.1 pk hme_init(sc);
1225 1.1 pk break;
1226 1.1 pk }
1227 1.1 pk break;
1228 1.1 pk
1229 1.1 pk case SIOCSIFFLAGS:
1230 1.1 pk if ((ifp->if_flags & IFF_UP) == 0 &&
1231 1.1 pk (ifp->if_flags & IFF_RUNNING) != 0) {
1232 1.1 pk /*
1233 1.1 pk * If interface is marked down and it is running, then
1234 1.1 pk * stop it.
1235 1.1 pk */
1236 1.1 pk hme_stop(sc);
1237 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1238 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0 &&
1239 1.1 pk (ifp->if_flags & IFF_RUNNING) == 0) {
1240 1.1 pk /*
1241 1.1 pk * If interface is marked up and it is stopped, then
1242 1.1 pk * start it.
1243 1.1 pk */
1244 1.1 pk hme_init(sc);
1245 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0) {
1246 1.1 pk /*
1247 1.1 pk * Reset the interface to pick up changes in any other
1248 1.1 pk * flags that affect hardware registers.
1249 1.1 pk */
1250 1.1 pk /*hme_stop(sc);*/
1251 1.1 pk hme_init(sc);
1252 1.1 pk }
1253 1.1 pk #ifdef HMEDEBUG
1254 1.1 pk sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1255 1.1 pk #endif
1256 1.1 pk break;
1257 1.1 pk
1258 1.1 pk case SIOCADDMULTI:
1259 1.1 pk case SIOCDELMULTI:
1260 1.1 pk error = (cmd == SIOCADDMULTI) ?
1261 1.1 pk ether_addmulti(ifr, &sc->sc_ethercom) :
1262 1.1 pk ether_delmulti(ifr, &sc->sc_ethercom);
1263 1.1 pk
1264 1.1 pk if (error == ENETRESET) {
1265 1.1 pk /*
1266 1.1 pk * Multicast list has changed; set the hardware filter
1267 1.1 pk * accordingly.
1268 1.1 pk */
1269 1.1 pk hme_setladrf(sc);
1270 1.1 pk error = 0;
1271 1.1 pk }
1272 1.1 pk break;
1273 1.1 pk
1274 1.1 pk case SIOCGIFMEDIA:
1275 1.1 pk case SIOCSIFMEDIA:
1276 1.1 pk error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1277 1.1 pk break;
1278 1.1 pk
1279 1.1 pk default:
1280 1.1 pk error = EINVAL;
1281 1.1 pk break;
1282 1.1 pk }
1283 1.1 pk
1284 1.1 pk splx(s);
1285 1.1 pk return (error);
1286 1.1 pk }
1287 1.1 pk
1288 1.1 pk void
1289 1.1 pk hme_shutdown(arg)
1290 1.1 pk void *arg;
1291 1.1 pk {
1292 1.1 pk
1293 1.1 pk hme_stop((struct hme_softc *)arg);
1294 1.1 pk }
1295 1.1 pk
1296 1.1 pk /*
1297 1.1 pk * Set up the logical address filter.
1298 1.1 pk */
1299 1.1 pk void
1300 1.1 pk hme_setladrf(sc)
1301 1.1 pk struct hme_softc *sc;
1302 1.1 pk {
1303 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1304 1.1 pk struct ether_multi *enm;
1305 1.1 pk struct ether_multistep step;
1306 1.1 pk struct ethercom *ec = &sc->sc_ethercom;
1307 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1308 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1309 1.1 pk u_char *cp;
1310 1.1 pk u_int32_t crc;
1311 1.1 pk u_int32_t hash[4];
1312 1.14 pk u_int32_t v;
1313 1.1 pk int len;
1314 1.1 pk
1315 1.14 pk /* Clear hash table */
1316 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1317 1.14 pk
1318 1.14 pk /* Get current RX configuration */
1319 1.14 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1320 1.14 pk
1321 1.14 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1322 1.14 pk /* Turn on promiscuous mode; turn off the hash filter */
1323 1.14 pk v |= HME_MAC_RXCFG_PMISC;
1324 1.14 pk v &= ~HME_MAC_RXCFG_HENABLE;
1325 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1326 1.14 pk goto chipit;
1327 1.14 pk }
1328 1.14 pk
1329 1.14 pk /* Turn off promiscuous mode; turn on the hash filter */
1330 1.14 pk v &= ~HME_MAC_RXCFG_PMISC;
1331 1.14 pk v |= HME_MAC_RXCFG_HENABLE;
1332 1.14 pk
1333 1.1 pk /*
1334 1.1 pk * Set up multicast address filter by passing all multicast addresses
1335 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1336 1.1 pk * index into the 64 bit logical address filter. The high order bit
1337 1.1 pk * selects the word, while the rest of the bits select the bit within
1338 1.1 pk * the word.
1339 1.1 pk */
1340 1.1 pk
1341 1.1 pk ETHER_FIRST_MULTI(step, ec, enm);
1342 1.1 pk while (enm != NULL) {
1343 1.1 pk if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1344 1.1 pk /*
1345 1.1 pk * We must listen to a range of multicast addresses.
1346 1.1 pk * For now, just accept all multicasts, rather than
1347 1.1 pk * trying to set only those filter bits needed to match
1348 1.1 pk * the range. (At this time, the only use of address
1349 1.1 pk * ranges is for IP multicast routing, for which the
1350 1.1 pk * range is big enough to require all bits set.)
1351 1.1 pk */
1352 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1353 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1354 1.14 pk goto chipit;
1355 1.1 pk }
1356 1.1 pk
1357 1.1 pk cp = enm->enm_addrlo;
1358 1.1 pk crc = 0xffffffff;
1359 1.1 pk for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1360 1.1 pk int octet = *cp++;
1361 1.1 pk int i;
1362 1.1 pk
1363 1.1 pk #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1364 1.1 pk for (i = 0; i < 8; i++) {
1365 1.1 pk if ((crc & 1) ^ (octet & 1)) {
1366 1.1 pk crc >>= 1;
1367 1.1 pk crc ^= MC_POLY_LE;
1368 1.1 pk } else {
1369 1.1 pk crc >>= 1;
1370 1.1 pk }
1371 1.1 pk octet >>= 1;
1372 1.1 pk }
1373 1.1 pk }
1374 1.1 pk /* Just want the 6 most significant bits. */
1375 1.1 pk crc >>= 26;
1376 1.1 pk
1377 1.1 pk /* Set the corresponding bit in the filter. */
1378 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1379 1.1 pk
1380 1.1 pk ETHER_NEXT_MULTI(step, enm);
1381 1.1 pk }
1382 1.1 pk
1383 1.14 pk ifp->if_flags &= ~IFF_ALLMULTI;
1384 1.14 pk
1385 1.14 pk chipit:
1386 1.14 pk /* Now load the hash table into the chip */
1387 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1388 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1389 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1390 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1391 1.14 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1392 1.1 pk }
1393 1.1 pk
1394 1.1 pk /*
1395 1.1 pk * Routines for accessing the transmit and receive buffers.
1396 1.1 pk * The various CPU and adapter configurations supported by this
1397 1.1 pk * driver require three different access methods for buffers
1398 1.1 pk * and descriptors:
1399 1.1 pk * (1) contig (contiguous data; no padding),
1400 1.1 pk * (2) gap2 (two bytes of data followed by two bytes of padding),
1401 1.1 pk * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1402 1.1 pk */
1403 1.1 pk
1404 1.1 pk #if 0
1405 1.1 pk /*
1406 1.1 pk * contig: contiguous data with no padding.
1407 1.1 pk *
1408 1.1 pk * Buffers may have any alignment.
1409 1.1 pk */
1410 1.1 pk
1411 1.1 pk void
1412 1.1 pk hme_copytobuf_contig(sc, from, ri, len)
1413 1.1 pk struct hme_softc *sc;
1414 1.1 pk void *from;
1415 1.1 pk int ri, len;
1416 1.1 pk {
1417 1.1 pk volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1418 1.1 pk
1419 1.1 pk /*
1420 1.1 pk * Just call bcopy() to do the work.
1421 1.1 pk */
1422 1.1 pk bcopy(from, buf, len);
1423 1.1 pk }
1424 1.1 pk
1425 1.1 pk void
1426 1.1 pk hme_copyfrombuf_contig(sc, to, boff, len)
1427 1.1 pk struct hme_softc *sc;
1428 1.1 pk void *to;
1429 1.1 pk int boff, len;
1430 1.1 pk {
1431 1.1 pk volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1432 1.1 pk
1433 1.1 pk /*
1434 1.1 pk * Just call bcopy() to do the work.
1435 1.1 pk */
1436 1.1 pk bcopy(buf, to, len);
1437 1.1 pk }
1438 1.1 pk #endif
1439