Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.21.2.3
      1  1.21.2.3  jdolecek /*	$NetBSD: hme.c,v 1.21.2.3 2002/09/06 08:44:18 jdolecek Exp $	*/
      2       1.1        pk 
      3       1.1        pk /*-
      4       1.1        pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5       1.1        pk  * All rights reserved.
      6       1.1        pk  *
      7       1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1        pk  * by Paul Kranenburg.
      9       1.1        pk  *
     10       1.1        pk  * Redistribution and use in source and binary forms, with or without
     11       1.1        pk  * modification, are permitted provided that the following conditions
     12       1.1        pk  * are met:
     13       1.1        pk  * 1. Redistributions of source code must retain the above copyright
     14       1.1        pk  *    notice, this list of conditions and the following disclaimer.
     15       1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     17       1.1        pk  *    documentation and/or other materials provided with the distribution.
     18       1.1        pk  * 3. All advertising materials mentioning features or use of this software
     19       1.1        pk  *    must display the following acknowledgement:
     20       1.1        pk  *        This product includes software developed by the NetBSD
     21       1.1        pk  *        Foundation, Inc. and its contributors.
     22       1.1        pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.1        pk  *    contributors may be used to endorse or promote products derived
     24       1.1        pk  *    from this software without specific prior written permission.
     25       1.1        pk  *
     26       1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     37       1.1        pk  */
     38       1.1        pk 
     39       1.1        pk /*
     40       1.1        pk  * HME Ethernet module driver.
     41       1.1        pk  */
     42       1.1        pk 
     43  1.21.2.1   thorpej #include <sys/cdefs.h>
     44  1.21.2.3  jdolecek __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.21.2.3 2002/09/06 08:44:18 jdolecek Exp $");
     45  1.21.2.1   thorpej 
     46       1.1        pk #define HMEDEBUG
     47       1.1        pk 
     48       1.1        pk #include "opt_inet.h"
     49       1.1        pk #include "opt_ns.h"
     50       1.1        pk #include "bpfilter.h"
     51       1.1        pk #include "rnd.h"
     52       1.1        pk 
     53       1.1        pk #include <sys/param.h>
     54       1.1        pk #include <sys/systm.h>
     55       1.5        pk #include <sys/kernel.h>
     56       1.1        pk #include <sys/mbuf.h>
     57       1.1        pk #include <sys/syslog.h>
     58       1.1        pk #include <sys/socket.h>
     59       1.1        pk #include <sys/device.h>
     60       1.1        pk #include <sys/malloc.h>
     61       1.1        pk #include <sys/ioctl.h>
     62       1.1        pk #include <sys/errno.h>
     63       1.1        pk #if NRND > 0
     64       1.1        pk #include <sys/rnd.h>
     65       1.1        pk #endif
     66       1.1        pk 
     67       1.1        pk #include <net/if.h>
     68       1.1        pk #include <net/if_dl.h>
     69       1.1        pk #include <net/if_ether.h>
     70       1.1        pk #include <net/if_media.h>
     71       1.1        pk 
     72       1.1        pk #ifdef INET
     73       1.1        pk #include <netinet/in.h>
     74       1.1        pk #include <netinet/if_inarp.h>
     75       1.1        pk #include <netinet/in_systm.h>
     76       1.1        pk #include <netinet/in_var.h>
     77       1.1        pk #include <netinet/ip.h>
     78       1.1        pk #endif
     79       1.1        pk 
     80       1.1        pk #ifdef NS
     81       1.1        pk #include <netns/ns.h>
     82       1.1        pk #include <netns/ns_if.h>
     83       1.1        pk #endif
     84       1.1        pk 
     85       1.1        pk #if NBPFILTER > 0
     86       1.1        pk #include <net/bpf.h>
     87       1.1        pk #include <net/bpfdesc.h>
     88       1.1        pk #endif
     89       1.1        pk 
     90       1.1        pk #include <dev/mii/mii.h>
     91       1.1        pk #include <dev/mii/miivar.h>
     92       1.1        pk 
     93       1.1        pk #include <machine/bus.h>
     94       1.1        pk 
     95       1.1        pk #include <dev/ic/hmereg.h>
     96       1.1        pk #include <dev/ic/hmevar.h>
     97       1.1        pk 
     98       1.1        pk void		hme_start __P((struct ifnet *));
     99       1.1        pk void		hme_stop __P((struct hme_softc *));
    100       1.1        pk int		hme_ioctl __P((struct ifnet *, u_long, caddr_t));
    101       1.5        pk void		hme_tick __P((void *));
    102       1.1        pk void		hme_watchdog __P((struct ifnet *));
    103       1.1        pk void		hme_shutdown __P((void *));
    104       1.1        pk void		hme_init __P((struct hme_softc *));
    105       1.1        pk void		hme_meminit __P((struct hme_softc *));
    106       1.4        pk void		hme_mifinit __P((struct hme_softc *));
    107       1.1        pk void		hme_reset __P((struct hme_softc *));
    108       1.1        pk void		hme_setladrf __P((struct hme_softc *));
    109       1.1        pk 
    110       1.1        pk /* MII methods & callbacks */
    111       1.1        pk static int	hme_mii_readreg __P((struct device *, int, int));
    112       1.1        pk static void	hme_mii_writereg __P((struct device *, int, int, int));
    113       1.1        pk static void	hme_mii_statchg __P((struct device *));
    114       1.1        pk 
    115       1.1        pk int		hme_mediachange __P((struct ifnet *));
    116       1.1        pk void		hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
    117       1.1        pk 
    118       1.1        pk struct mbuf	*hme_get __P((struct hme_softc *, int, int));
    119       1.1        pk int		hme_put __P((struct hme_softc *, int, struct mbuf *));
    120       1.1        pk void		hme_read __P((struct hme_softc *, int, int));
    121       1.1        pk int		hme_eint __P((struct hme_softc *, u_int));
    122       1.1        pk int		hme_rint __P((struct hme_softc *));
    123       1.1        pk int		hme_tint __P((struct hme_softc *));
    124       1.1        pk 
    125       1.1        pk static int	ether_cmp __P((u_char *, u_char *));
    126       1.1        pk 
    127       1.1        pk /* Default buffer copy routines */
    128       1.1        pk void	hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
    129       1.1        pk void	hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
    130       1.1        pk void	hme_zerobuf_contig __P((struct hme_softc *, int, int));
    131       1.1        pk 
    132       1.1        pk 
    133       1.1        pk void
    134       1.1        pk hme_config(sc)
    135       1.1        pk 	struct hme_softc *sc;
    136       1.1        pk {
    137       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    138       1.1        pk 	struct mii_data *mii = &sc->sc_mii;
    139       1.5        pk 	struct mii_softc *child;
    140      1.11        pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    141       1.1        pk 	bus_dma_segment_t seg;
    142       1.1        pk 	bus_size_t size;
    143       1.1        pk 	int rseg, error;
    144       1.1        pk 
    145       1.1        pk 	/*
    146       1.1        pk 	 * HME common initialization.
    147       1.1        pk 	 *
    148       1.1        pk 	 * hme_softc fields that must be initialized by the front-end:
    149       1.1        pk 	 *
    150       1.1        pk 	 * the bus tag:
    151       1.1        pk 	 *	sc_bustag
    152       1.1        pk 	 *
    153       1.1        pk 	 * the dma bus tag:
    154       1.1        pk 	 *	sc_dmatag
    155       1.1        pk 	 *
    156       1.1        pk 	 * the bus handles:
    157       1.1        pk 	 *	sc_seb		(Shared Ethernet Block registers)
    158       1.1        pk 	 *	sc_erx		(Receiver Unit registers)
    159       1.1        pk 	 *	sc_etx		(Transmitter Unit registers)
    160       1.1        pk 	 *	sc_mac		(MAC registers)
    161       1.1        pk 	 *	sc_mif		(Managment Interface registers)
    162       1.1        pk 	 *
    163       1.1        pk 	 * the maximum bus burst size:
    164       1.1        pk 	 *	sc_burst
    165       1.1        pk 	 *
    166       1.1        pk 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    167       1.1        pk 	 *	rb_membase, rb_dmabase)
    168       1.1        pk 	 *
    169       1.1        pk 	 * the local Ethernet address:
    170       1.1        pk 	 *	sc_enaddr
    171       1.1        pk 	 *
    172       1.1        pk 	 */
    173       1.1        pk 
    174       1.1        pk 	/* Make sure the chip is stopped. */
    175       1.1        pk 	hme_stop(sc);
    176       1.1        pk 
    177       1.1        pk 
    178       1.1        pk 	/*
    179       1.1        pk 	 * Allocate descriptors and buffers
    180       1.1        pk 	 * XXX - do all this differently.. and more configurably,
    181       1.1        pk 	 * eg. use things as `dma_load_mbuf()' on transmit,
    182       1.1        pk 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    183       1.1        pk 	 *     all the time) on the reveiver side.
    184       1.8        pk 	 *
    185       1.8        pk 	 * Note: receive buffers must be 64-byte aligned.
    186       1.8        pk 	 * Also, apparently, the buffers must extend to a DMA burst
    187       1.8        pk 	 * boundary beyond the maximum packet size.
    188       1.1        pk 	 */
    189  1.21.2.1   thorpej #define _HME_NDESC	128
    190       1.8        pk #define _HME_BUFSZ	1600
    191       1.1        pk 
    192       1.1        pk 	/* Note: the # of descriptors must be a multiple of 16 */
    193       1.1        pk 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    194       1.1        pk 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    195       1.1        pk 
    196       1.1        pk 	/*
    197       1.1        pk 	 * Allocate DMA capable memory
    198       1.1        pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    199       1.1        pk 	 * take this into account when calculating the size. Note that
    200       1.1        pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    201       1.1        pk 	 * so we allocate that much regardless of _HME_NDESC.
    202       1.1        pk 	 */
    203       1.1        pk 	size =	2048 +					/* TX descriptors */
    204       1.1        pk 		2048 +					/* RX descriptors */
    205       1.1        pk 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    206       1.1        pk 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* TX buffers */
    207      1.11        pk 
    208      1.11        pk 	/* Allocate DMA buffer */
    209      1.11        pk 	if ((error = bus_dmamem_alloc(dmatag, size,
    210       1.1        pk 				      2048, 0,
    211       1.1        pk 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    212       1.1        pk 		printf("%s: DMA buffer alloc error %d\n",
    213       1.1        pk 			sc->sc_dev.dv_xname, error);
    214      1.10       mrg 		return;
    215       1.1        pk 	}
    216       1.1        pk 
    217      1.11        pk 	/* Map DMA memory in CPU addressable space */
    218      1.11        pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    219       1.1        pk 				    &sc->sc_rb.rb_membase,
    220       1.1        pk 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    221       1.1        pk 		printf("%s: DMA buffer map error %d\n",
    222       1.1        pk 			sc->sc_dev.dv_xname, error);
    223      1.11        pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    224      1.11        pk 		bus_dmamem_free(dmatag, &seg, rseg);
    225       1.1        pk 		return;
    226       1.1        pk 	}
    227      1.13       mrg 
    228      1.13       mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    229      1.13       mrg 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    230      1.13       mrg 		printf("%s: DMA map create error %d\n",
    231      1.13       mrg 			sc->sc_dev.dv_xname, error);
    232      1.13       mrg 		return;
    233      1.13       mrg 	}
    234      1.13       mrg 
    235      1.13       mrg 	/* Load the buffer */
    236      1.13       mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    237      1.17       mrg 	    sc->sc_rb.rb_membase, size, NULL,
    238      1.17       mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    239      1.13       mrg 		printf("%s: DMA buffer map load error %d\n",
    240      1.13       mrg 			sc->sc_dev.dv_xname, error);
    241      1.13       mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    242      1.13       mrg 		return;
    243      1.13       mrg 	}
    244      1.13       mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    245       1.1        pk 
    246  1.21.2.1   thorpej 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    247  1.21.2.1   thorpej 	    ether_sprintf(sc->sc_enaddr));
    248       1.2        pk 
    249       1.1        pk 	/* Initialize ifnet structure. */
    250      1.21   thorpej 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    251       1.1        pk 	ifp->if_softc = sc;
    252       1.1        pk 	ifp->if_start = hme_start;
    253       1.1        pk 	ifp->if_ioctl = hme_ioctl;
    254       1.1        pk 	ifp->if_watchdog = hme_watchdog;
    255       1.1        pk 	ifp->if_flags =
    256       1.1        pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    257      1.20   thorpej 	IFQ_SET_READY(&ifp->if_snd);
    258       1.1        pk 
    259       1.1        pk 	/* Initialize ifmedia structures and MII info */
    260       1.1        pk 	mii->mii_ifp = ifp;
    261       1.1        pk 	mii->mii_readreg = hme_mii_readreg;
    262       1.1        pk 	mii->mii_writereg = hme_mii_writereg;
    263       1.1        pk 	mii->mii_statchg = hme_mii_statchg;
    264       1.1        pk 
    265       1.1        pk 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
    266       1.1        pk 
    267       1.4        pk 	hme_mifinit(sc);
    268       1.4        pk 
    269       1.6   thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    270       1.7   thorpej 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
    271       1.2        pk 
    272       1.5        pk 	child = LIST_FIRST(&mii->mii_phys);
    273       1.5        pk 	if (child == NULL) {
    274       1.1        pk 		/* No PHY attached */
    275       1.1        pk 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    276       1.1        pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    277       1.1        pk 	} else {
    278       1.1        pk 		/*
    279       1.5        pk 		 * Walk along the list of attached MII devices and
    280       1.5        pk 		 * establish an `MII instance' to `phy number'
    281       1.5        pk 		 * mapping. We'll use this mapping in media change
    282       1.5        pk 		 * requests to determine which phy to use to program
    283       1.5        pk 		 * the MIF configuration register.
    284       1.5        pk 		 */
    285       1.5        pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    286       1.5        pk 			/*
    287       1.5        pk 			 * Note: we support just two PHYs: the built-in
    288       1.5        pk 			 * internal device and an external on the MII
    289       1.5        pk 			 * connector.
    290       1.5        pk 			 */
    291       1.5        pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    292       1.5        pk 				printf("%s: cannot accomodate MII device %s"
    293       1.5        pk 				       " at phy %d, instance %d\n",
    294       1.5        pk 				       sc->sc_dev.dv_xname,
    295       1.5        pk 				       child->mii_dev.dv_xname,
    296       1.5        pk 				       child->mii_phy, child->mii_inst);
    297       1.5        pk 				continue;
    298       1.5        pk 			}
    299       1.5        pk 
    300       1.5        pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    301       1.5        pk 		}
    302       1.5        pk 
    303       1.5        pk 		/*
    304       1.1        pk 		 * XXX - we can really do the following ONLY if the
    305       1.1        pk 		 * phy indeed has the auto negotiation capability!!
    306       1.1        pk 		 */
    307       1.1        pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    308       1.1        pk 	}
    309       1.1        pk 
    310      1.19    bouyer 	/* claim 802.1q capability */
    311      1.19    bouyer 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    312      1.19    bouyer 
    313       1.1        pk 	/* Attach the interface. */
    314       1.1        pk 	if_attach(ifp);
    315       1.1        pk 	ether_ifattach(ifp, sc->sc_enaddr);
    316       1.1        pk 
    317       1.1        pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    318       1.1        pk 	if (sc->sc_sh == NULL)
    319       1.1        pk 		panic("hme_config: can't establish shutdownhook");
    320       1.1        pk 
    321       1.1        pk #if 0
    322       1.1        pk 	printf("%s: %d receive buffers, %d transmit buffers\n",
    323       1.1        pk 	    sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
    324       1.1        pk 	sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
    325       1.1        pk 					M_WAITOK);
    326       1.1        pk 	sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
    327       1.1        pk 					M_WAITOK);
    328       1.1        pk #endif
    329       1.1        pk 
    330       1.1        pk #if NRND > 0
    331       1.1        pk 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    332       1.1        pk 			  RND_TYPE_NET, 0);
    333       1.1        pk #endif
    334       1.5        pk 
    335       1.9   thorpej 	callout_init(&sc->sc_tick_ch);
    336       1.5        pk }
    337       1.5        pk 
    338       1.5        pk void
    339       1.5        pk hme_tick(arg)
    340       1.5        pk 	void *arg;
    341       1.5        pk {
    342       1.5        pk 	struct hme_softc *sc = arg;
    343       1.5        pk 	int s;
    344       1.5        pk 
    345       1.5        pk 	s = splnet();
    346       1.5        pk 	mii_tick(&sc->sc_mii);
    347       1.5        pk 	splx(s);
    348       1.5        pk 
    349       1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    350       1.1        pk }
    351       1.1        pk 
    352       1.1        pk void
    353       1.1        pk hme_reset(sc)
    354       1.1        pk 	struct hme_softc *sc;
    355       1.1        pk {
    356       1.1        pk 	int s;
    357       1.1        pk 
    358       1.1        pk 	s = splnet();
    359       1.1        pk 	hme_init(sc);
    360       1.1        pk 	splx(s);
    361       1.1        pk }
    362       1.1        pk 
    363       1.1        pk void
    364       1.1        pk hme_stop(sc)
    365       1.1        pk 	struct hme_softc *sc;
    366       1.1        pk {
    367       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    368       1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    369       1.1        pk 	int n;
    370       1.1        pk 
    371       1.9   thorpej 	callout_stop(&sc->sc_tick_ch);
    372       1.5        pk 	mii_down(&sc->sc_mii);
    373       1.5        pk 
    374       1.1        pk 	/* Reset transmitter and receiver */
    375       1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    376       1.1        pk 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    377       1.1        pk 
    378       1.1        pk 	for (n = 0; n < 20; n++) {
    379       1.1        pk 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    380       1.1        pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    381       1.1        pk 			return;
    382       1.1        pk 		DELAY(20);
    383       1.1        pk 	}
    384       1.1        pk 
    385       1.1        pk 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
    386       1.1        pk }
    387       1.1        pk 
    388       1.1        pk void
    389       1.1        pk hme_meminit(sc)
    390       1.1        pk 	struct hme_softc *sc;
    391       1.1        pk {
    392       1.1        pk 	bus_addr_t txbufdma, rxbufdma;
    393       1.1        pk 	bus_addr_t dma;
    394       1.1        pk 	caddr_t p;
    395       1.1        pk 	unsigned int ntbuf, nrbuf, i;
    396       1.1        pk 	struct hme_ring *hr = &sc->sc_rb;
    397       1.1        pk 
    398       1.1        pk 	p = hr->rb_membase;
    399       1.1        pk 	dma = hr->rb_dmabase;
    400       1.1        pk 
    401       1.1        pk 	ntbuf = hr->rb_ntbuf;
    402       1.1        pk 	nrbuf = hr->rb_nrbuf;
    403       1.1        pk 
    404       1.1        pk 	/*
    405       1.1        pk 	 * Allocate transmit descriptors
    406       1.1        pk 	 */
    407       1.1        pk 	hr->rb_txd = p;
    408       1.1        pk 	hr->rb_txddma = dma;
    409       1.1        pk 	p += ntbuf * HME_XD_SIZE;
    410       1.1        pk 	dma += ntbuf * HME_XD_SIZE;
    411       1.4        pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    412       1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    413       1.4        pk 	p = (caddr_t)roundup((u_long)p, 2048);
    414       1.1        pk 
    415       1.1        pk 	/*
    416       1.1        pk 	 * Allocate receive descriptors
    417       1.1        pk 	 */
    418       1.1        pk 	hr->rb_rxd = p;
    419       1.1        pk 	hr->rb_rxddma = dma;
    420       1.1        pk 	p += nrbuf * HME_XD_SIZE;
    421       1.1        pk 	dma += nrbuf * HME_XD_SIZE;
    422       1.4        pk 	/* Again move forward to the next 2048 byte boundary.*/
    423       1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    424       1.4        pk 	p = (caddr_t)roundup((u_long)p, 2048);
    425       1.1        pk 
    426       1.1        pk 
    427       1.1        pk 	/*
    428       1.1        pk 	 * Allocate transmit buffers
    429       1.1        pk 	 */
    430       1.1        pk 	hr->rb_txbuf = p;
    431       1.1        pk 	txbufdma = dma;
    432       1.1        pk 	p += ntbuf * _HME_BUFSZ;
    433       1.1        pk 	dma += ntbuf * _HME_BUFSZ;
    434       1.1        pk 
    435       1.1        pk 	/*
    436       1.1        pk 	 * Allocate receive buffers
    437       1.1        pk 	 */
    438       1.1        pk 	hr->rb_rxbuf = p;
    439       1.1        pk 	rxbufdma = dma;
    440       1.1        pk 	p += nrbuf * _HME_BUFSZ;
    441       1.1        pk 	dma += nrbuf * _HME_BUFSZ;
    442       1.1        pk 
    443       1.1        pk 	/*
    444       1.1        pk 	 * Initialize transmit buffer descriptors
    445       1.1        pk 	 */
    446       1.1        pk 	for (i = 0; i < ntbuf; i++) {
    447      1.15       eeh 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    448      1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    449       1.1        pk 	}
    450       1.1        pk 
    451       1.1        pk 	/*
    452       1.1        pk 	 * Initialize receive buffer descriptors
    453       1.1        pk 	 */
    454       1.1        pk 	for (i = 0; i < nrbuf; i++) {
    455      1.15       eeh 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    456      1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    457       1.1        pk 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    458       1.1        pk 	}
    459       1.1        pk 
    460       1.1        pk 	hr->rb_tdhead = hr->rb_tdtail = 0;
    461       1.1        pk 	hr->rb_td_nbusy = 0;
    462       1.1        pk 	hr->rb_rdtail = 0;
    463       1.1        pk }
    464       1.1        pk 
    465       1.1        pk /*
    466       1.1        pk  * Initialization of interface; set up initialization block
    467       1.1        pk  * and transmit/receive descriptor rings.
    468       1.1        pk  */
    469       1.1        pk void
    470       1.1        pk hme_init(sc)
    471       1.1        pk 	struct hme_softc *sc;
    472       1.1        pk {
    473       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    474       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    475       1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    476       1.1        pk 	bus_space_handle_t etx = sc->sc_etx;
    477       1.1        pk 	bus_space_handle_t erx = sc->sc_erx;
    478       1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
    479       1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
    480       1.1        pk 	u_int8_t *ea;
    481       1.1        pk 	u_int32_t v;
    482       1.1        pk 
    483       1.1        pk 	/*
    484       1.1        pk 	 * Initialization sequence. The numbered steps below correspond
    485       1.1        pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    486       1.1        pk 	 * Channel Engine manual (part of the PCIO manual).
    487       1.1        pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    488       1.1        pk 	 */
    489       1.1        pk 
    490       1.1        pk 	/* step 1 & 2. Reset the Ethernet Channel */
    491       1.1        pk 	hme_stop(sc);
    492       1.1        pk 
    493       1.4        pk 	/* Re-initialize the MIF */
    494       1.4        pk 	hme_mifinit(sc);
    495       1.4        pk 
    496       1.1        pk 	/* Call MI reset function if any */
    497       1.1        pk 	if (sc->sc_hwreset)
    498       1.1        pk 		(*sc->sc_hwreset)(sc);
    499       1.1        pk 
    500       1.1        pk #if 0
    501       1.1        pk 	/* Mask all MIF interrupts, just in case */
    502       1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    503       1.1        pk #endif
    504       1.1        pk 
    505       1.1        pk 	/* step 3. Setup data structures in host memory */
    506       1.1        pk 	hme_meminit(sc);
    507       1.1        pk 
    508       1.1        pk 	/* step 4. TX MAC registers & counters */
    509       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    510       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    511       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    512       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    513      1.19    bouyer 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    514      1.19    bouyer 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    515      1.19    bouyer 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
    516      1.19    bouyer             ETHER_MAX_LEN);
    517       1.1        pk 
    518       1.1        pk 	/* Load station MAC address */
    519       1.1        pk 	ea = sc->sc_enaddr;
    520       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    521       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    522       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    523       1.1        pk 
    524       1.1        pk 	/*
    525       1.1        pk 	 * Init seed for backoff
    526       1.1        pk 	 * (source suggested by manual: low 10 bits of MAC address)
    527       1.1        pk 	 */
    528       1.1        pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    529       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    530       1.1        pk 
    531       1.1        pk 
    532       1.1        pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    533       1.1        pk 
    534       1.1        pk 
    535       1.1        pk 	/* step 5. RX MAC registers & counters */
    536       1.1        pk 	hme_setladrf(sc);
    537       1.1        pk 
    538       1.1        pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    539       1.1        pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    540       1.1        pk 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    541       1.1        pk 
    542       1.1        pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    543      1.19    bouyer 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    544      1.19    bouyer 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    545      1.19    bouyer 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
    546      1.19    bouyer             ETHER_MAX_LEN);
    547       1.1        pk 
    548       1.1        pk 
    549       1.1        pk 	/* step 8. Global Configuration & Interrupt Mask */
    550       1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    551       1.2        pk 			~(
    552       1.2        pk 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    553       1.2        pk 			  HME_SEB_STAT_HOSTTOTX |
    554       1.2        pk 			  HME_SEB_STAT_RXTOHOST |
    555       1.2        pk 			  HME_SEB_STAT_TXALL |
    556       1.2        pk 			  HME_SEB_STAT_TXPERR |
    557       1.2        pk 			  HME_SEB_STAT_RCNTEXP |
    558       1.2        pk 			  HME_SEB_STAT_ALL_ERRORS ));
    559       1.1        pk 
    560       1.1        pk 	switch (sc->sc_burst) {
    561       1.1        pk 	default:
    562       1.1        pk 		v = 0;
    563       1.1        pk 		break;
    564       1.1        pk 	case 16:
    565       1.1        pk 		v = HME_SEB_CFG_BURST16;
    566       1.1        pk 		break;
    567       1.1        pk 	case 32:
    568       1.1        pk 		v = HME_SEB_CFG_BURST32;
    569       1.1        pk 		break;
    570       1.1        pk 	case 64:
    571       1.1        pk 		v = HME_SEB_CFG_BURST64;
    572       1.1        pk 		break;
    573       1.1        pk 	}
    574       1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    575       1.1        pk 
    576       1.1        pk 	/* step 9. ETX Configuration: use mostly default values */
    577       1.1        pk 
    578       1.1        pk 	/* Enable DMA */
    579       1.2        pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    580       1.1        pk 	v |= HME_ETX_CFG_DMAENABLE;
    581       1.2        pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    582       1.1        pk 
    583       1.3        pk 	/* Transmit Descriptor ring size: in increments of 16 */
    584       1.3        pk 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    585       1.1        pk 
    586       1.1        pk 
    587       1.3        pk 	/* step 10. ERX Configuration */
    588       1.2        pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    589       1.3        pk 
    590       1.3        pk 	/* Encode Receive Descriptor ring size: four possible values */
    591       1.3        pk 	switch (_HME_NDESC /*XXX*/) {
    592       1.3        pk 	case 32:
    593       1.3        pk 		v |= HME_ERX_CFG_RINGSIZE32;
    594       1.3        pk 		break;
    595       1.3        pk 	case 64:
    596       1.3        pk 		v |= HME_ERX_CFG_RINGSIZE64;
    597       1.3        pk 		break;
    598       1.3        pk 	case 128:
    599       1.3        pk 		v |= HME_ERX_CFG_RINGSIZE128;
    600       1.3        pk 		break;
    601       1.3        pk 	case 256:
    602       1.3        pk 		v |= HME_ERX_CFG_RINGSIZE256;
    603       1.3        pk 		break;
    604       1.3        pk 	default:
    605       1.3        pk 		printf("hme: invalid Receive Descriptor ring size\n");
    606       1.3        pk 		break;
    607       1.3        pk 	}
    608       1.3        pk 
    609       1.3        pk 	/* Enable DMA */
    610       1.1        pk 	v |= HME_ERX_CFG_DMAENABLE;
    611       1.2        pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    612       1.1        pk 
    613       1.1        pk 	/* step 11. XIF Configuration */
    614       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    615       1.1        pk 	v |= HME_MAC_XIF_OE;
    616       1.4        pk 	/* If an external transceiver is connected, enable its MII drivers */
    617       1.2        pk 	if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
    618       1.4        pk 		v |= HME_MAC_XIF_MIIENABLE;
    619       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    620       1.1        pk 
    621       1.2        pk 
    622       1.1        pk 	/* step 12. RX_MAC Configuration Register */
    623       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    624       1.1        pk 	v |= HME_MAC_RXCFG_ENABLE;
    625       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    626       1.1        pk 
    627       1.1        pk 	/* step 13. TX_MAC Configuration Register */
    628       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    629       1.2        pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    630       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    631       1.1        pk 
    632       1.1        pk 	/* step 14. Issue Transmit Pending command */
    633       1.1        pk 
    634       1.1        pk 	/* Call MI initialization function if any */
    635       1.1        pk 	if (sc->sc_hwinit)
    636       1.1        pk 		(*sc->sc_hwinit)(sc);
    637  1.21.2.2  jdolecek 
    638  1.21.2.2  jdolecek 	/* Set the current media. */
    639  1.21.2.2  jdolecek 	mii_mediachg(&sc->sc_mii);
    640       1.9   thorpej 
    641       1.9   thorpej 	/* Start the one second timer. */
    642       1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    643       1.1        pk 
    644       1.1        pk 	ifp->if_flags |= IFF_RUNNING;
    645       1.1        pk 	ifp->if_flags &= ~IFF_OACTIVE;
    646       1.1        pk 	ifp->if_timer = 0;
    647       1.1        pk 	hme_start(ifp);
    648       1.1        pk }
    649       1.1        pk 
    650       1.1        pk /*
    651       1.1        pk  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    652       1.1        pk  * speed.
    653       1.1        pk  */
    654       1.1        pk static __inline__ int
    655       1.1        pk ether_cmp(a, b)
    656       1.1        pk 	u_char *a, *b;
    657       1.1        pk {
    658       1.1        pk 
    659       1.1        pk 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    660       1.1        pk 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    661       1.1        pk 		return (0);
    662       1.1        pk 	return (1);
    663       1.1        pk }
    664       1.1        pk 
    665       1.1        pk 
    666       1.1        pk /*
    667       1.1        pk  * Routine to copy from mbuf chain to transmit buffer in
    668       1.1        pk  * network buffer memory.
    669       1.1        pk  * Returns the amount of data copied.
    670       1.1        pk  */
    671       1.1        pk int
    672       1.1        pk hme_put(sc, ri, m)
    673       1.1        pk 	struct hme_softc *sc;
    674       1.1        pk 	int ri;			/* Ring index */
    675       1.1        pk 	struct mbuf *m;
    676       1.1        pk {
    677       1.1        pk 	struct mbuf *n;
    678       1.1        pk 	int len, tlen = 0;
    679       1.1        pk 	caddr_t bp;
    680       1.1        pk 
    681       1.1        pk 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    682       1.1        pk 	for (; m; m = n) {
    683       1.1        pk 		len = m->m_len;
    684       1.1        pk 		if (len == 0) {
    685       1.1        pk 			MFREE(m, n);
    686       1.1        pk 			continue;
    687       1.1        pk 		}
    688      1.21   thorpej 		memcpy(bp, mtod(m, caddr_t), len);
    689       1.1        pk 		bp += len;
    690       1.1        pk 		tlen += len;
    691       1.1        pk 		MFREE(m, n);
    692       1.1        pk 	}
    693       1.1        pk 	return (tlen);
    694       1.1        pk }
    695       1.1        pk 
    696       1.1        pk /*
    697       1.1        pk  * Pull data off an interface.
    698       1.1        pk  * Len is length of data, with local net header stripped.
    699       1.1        pk  * We copy the data into mbufs.  When full cluster sized units are present
    700       1.1        pk  * we copy into clusters.
    701       1.1        pk  */
    702       1.1        pk struct mbuf *
    703       1.1        pk hme_get(sc, ri, totlen)
    704       1.1        pk 	struct hme_softc *sc;
    705       1.1        pk 	int ri, totlen;
    706       1.1        pk {
    707       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    708       1.1        pk 	struct mbuf *m, *m0, *newm;
    709       1.1        pk 	caddr_t bp;
    710       1.1        pk 	int len;
    711       1.1        pk 
    712       1.1        pk 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    713       1.1        pk 	if (m0 == 0)
    714       1.1        pk 		return (0);
    715       1.1        pk 	m0->m_pkthdr.rcvif = ifp;
    716       1.1        pk 	m0->m_pkthdr.len = totlen;
    717       1.1        pk 	len = MHLEN;
    718       1.1        pk 	m = m0;
    719       1.1        pk 
    720       1.1        pk 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    721       1.1        pk 
    722       1.1        pk 	while (totlen > 0) {
    723       1.1        pk 		if (totlen >= MINCLSIZE) {
    724       1.1        pk 			MCLGET(m, M_DONTWAIT);
    725       1.1        pk 			if ((m->m_flags & M_EXT) == 0)
    726       1.1        pk 				goto bad;
    727       1.1        pk 			len = MCLBYTES;
    728       1.1        pk 		}
    729       1.1        pk 
    730       1.1        pk 		if (m == m0) {
    731       1.1        pk 			caddr_t newdata = (caddr_t)
    732       1.1        pk 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    733       1.1        pk 			    sizeof(struct ether_header);
    734       1.1        pk 			len -= newdata - m->m_data;
    735       1.1        pk 			m->m_data = newdata;
    736       1.1        pk 		}
    737       1.1        pk 
    738       1.1        pk 		m->m_len = len = min(totlen, len);
    739      1.21   thorpej 		memcpy(mtod(m, caddr_t), bp, len);
    740       1.1        pk 		bp += len;
    741       1.1        pk 
    742       1.1        pk 		totlen -= len;
    743       1.1        pk 		if (totlen > 0) {
    744       1.1        pk 			MGET(newm, M_DONTWAIT, MT_DATA);
    745       1.1        pk 			if (newm == 0)
    746       1.1        pk 				goto bad;
    747       1.1        pk 			len = MLEN;
    748       1.1        pk 			m = m->m_next = newm;
    749       1.1        pk 		}
    750       1.1        pk 	}
    751       1.1        pk 
    752       1.1        pk 	return (m0);
    753       1.1        pk 
    754       1.1        pk bad:
    755       1.1        pk 	m_freem(m0);
    756       1.1        pk 	return (0);
    757       1.1        pk }
    758       1.1        pk 
    759       1.1        pk /*
    760       1.1        pk  * Pass a packet to the higher levels.
    761       1.1        pk  */
    762       1.1        pk void
    763       1.1        pk hme_read(sc, ix, len)
    764       1.1        pk 	struct hme_softc *sc;
    765       1.1        pk 	int ix, len;
    766       1.1        pk {
    767       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    768       1.1        pk 	struct mbuf *m;
    769       1.1        pk 
    770       1.1        pk 	if (len <= sizeof(struct ether_header) ||
    771      1.19    bouyer 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    772      1.19    bouyer 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    773      1.19    bouyer 	    ETHERMTU + sizeof(struct ether_header))) {
    774       1.1        pk #ifdef HMEDEBUG
    775       1.1        pk 		printf("%s: invalid packet size %d; dropping\n",
    776       1.1        pk 		    sc->sc_dev.dv_xname, len);
    777       1.1        pk #endif
    778       1.1        pk 		ifp->if_ierrors++;
    779       1.1        pk 		return;
    780       1.1        pk 	}
    781       1.1        pk 
    782       1.1        pk 	/* Pull packet off interface. */
    783       1.1        pk 	m = hme_get(sc, ix, len);
    784       1.1        pk 	if (m == 0) {
    785       1.1        pk 		ifp->if_ierrors++;
    786       1.1        pk 		return;
    787       1.1        pk 	}
    788       1.1        pk 
    789       1.1        pk 	ifp->if_ipackets++;
    790       1.1        pk 
    791       1.1        pk #if NBPFILTER > 0
    792       1.1        pk 	/*
    793       1.1        pk 	 * Check if there's a BPF listener on this interface.
    794       1.1        pk 	 * If so, hand off the raw packet to BPF.
    795       1.1        pk 	 */
    796      1.16   thorpej 	if (ifp->if_bpf)
    797       1.1        pk 		bpf_mtap(ifp->if_bpf, m);
    798       1.1        pk #endif
    799       1.1        pk 
    800       1.1        pk 	/* Pass the packet up. */
    801       1.1        pk 	(*ifp->if_input)(ifp, m);
    802       1.1        pk }
    803       1.1        pk 
    804       1.1        pk void
    805       1.1        pk hme_start(ifp)
    806       1.1        pk 	struct ifnet *ifp;
    807       1.1        pk {
    808       1.1        pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    809       1.1        pk 	caddr_t txd = sc->sc_rb.rb_txd;
    810       1.1        pk 	struct mbuf *m;
    811       1.1        pk 	unsigned int ri, len;
    812       1.1        pk 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    813       1.1        pk 
    814       1.1        pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    815       1.1        pk 		return;
    816       1.1        pk 
    817       1.1        pk 	ri = sc->sc_rb.rb_tdhead;
    818       1.1        pk 
    819       1.1        pk 	for (;;) {
    820      1.20   thorpej 		IFQ_DEQUEUE(&ifp->if_snd, m);
    821       1.1        pk 		if (m == 0)
    822       1.1        pk 			break;
    823       1.1        pk 
    824       1.1        pk #if NBPFILTER > 0
    825       1.1        pk 		/*
    826       1.1        pk 		 * If BPF is listening on this interface, let it see the
    827       1.1        pk 		 * packet before we commit it to the wire.
    828       1.1        pk 		 */
    829       1.1        pk 		if (ifp->if_bpf)
    830       1.1        pk 			bpf_mtap(ifp->if_bpf, m);
    831       1.1        pk #endif
    832       1.1        pk 
    833       1.1        pk 		/*
    834       1.1        pk 		 * Copy the mbuf chain into the transmit buffer.
    835       1.1        pk 		 */
    836       1.1        pk 		len = hme_put(sc, ri, m);
    837       1.1        pk 
    838       1.1        pk 		/*
    839       1.1        pk 		 * Initialize transmit registers and start transmission
    840       1.1        pk 		 */
    841      1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    842       1.1        pk 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    843       1.1        pk 			HME_XD_ENCODE_TSIZE(len));
    844       1.1        pk 
    845       1.3        pk 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    846       1.1        pk 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    847       1.1        pk 				  HME_ETX_TP_DMAWAKEUP);
    848       1.1        pk 
    849       1.1        pk 		if (++ri == ntbuf)
    850       1.1        pk 			ri = 0;
    851       1.1        pk 
    852       1.1        pk 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    853       1.1        pk 			ifp->if_flags |= IFF_OACTIVE;
    854       1.1        pk 			break;
    855       1.1        pk 		}
    856       1.1        pk 	}
    857       1.1        pk 
    858       1.1        pk 	sc->sc_rb.rb_tdhead = ri;
    859       1.1        pk }
    860       1.1        pk 
    861       1.1        pk /*
    862       1.1        pk  * Transmit interrupt.
    863       1.1        pk  */
    864       1.1        pk int
    865       1.1        pk hme_tint(sc)
    866       1.1        pk 	struct hme_softc *sc;
    867       1.1        pk {
    868       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    869       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    870       1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
    871       1.1        pk 	unsigned int ri, txflags;
    872       1.1        pk 
    873       1.1        pk 	/*
    874       1.1        pk 	 * Unload collision counters
    875       1.1        pk 	 */
    876       1.1        pk 	ifp->if_collisions +=
    877       1.1        pk 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    878       1.1        pk 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
    879       1.1        pk 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    880       1.1        pk 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    881       1.1        pk 
    882       1.1        pk 	/*
    883       1.1        pk 	 * then clear the hardware counters.
    884       1.1        pk 	 */
    885       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    886       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    887       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    888       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    889       1.1        pk 
    890       1.1        pk 	/* Fetch current position in the transmit ring */
    891       1.1        pk 	ri = sc->sc_rb.rb_tdtail;
    892       1.1        pk 
    893       1.1        pk 	for (;;) {
    894       1.1        pk 		if (sc->sc_rb.rb_td_nbusy <= 0)
    895       1.1        pk 			break;
    896       1.1        pk 
    897      1.15       eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
    898       1.1        pk 
    899       1.1        pk 		if (txflags & HME_XD_OWN)
    900       1.1        pk 			break;
    901       1.1        pk 
    902       1.1        pk 		ifp->if_flags &= ~IFF_OACTIVE;
    903       1.1        pk 		ifp->if_opackets++;
    904       1.1        pk 
    905       1.3        pk 		if (++ri == sc->sc_rb.rb_ntbuf)
    906       1.1        pk 			ri = 0;
    907       1.1        pk 
    908       1.1        pk 		--sc->sc_rb.rb_td_nbusy;
    909       1.1        pk 	}
    910       1.1        pk 
    911       1.3        pk 	/* Update ring */
    912       1.1        pk 	sc->sc_rb.rb_tdtail = ri;
    913       1.1        pk 
    914       1.1        pk 	hme_start(ifp);
    915       1.1        pk 
    916       1.1        pk 	if (sc->sc_rb.rb_td_nbusy == 0)
    917       1.1        pk 		ifp->if_timer = 0;
    918       1.1        pk 
    919       1.1        pk 	return (1);
    920       1.1        pk }
    921       1.1        pk 
    922       1.1        pk /*
    923       1.1        pk  * Receive interrupt.
    924       1.1        pk  */
    925       1.1        pk int
    926       1.1        pk hme_rint(sc)
    927       1.1        pk 	struct hme_softc *sc;
    928       1.1        pk {
    929       1.1        pk 	caddr_t xdr = sc->sc_rb.rb_rxd;
    930       1.1        pk 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
    931       1.1        pk 	unsigned int ri, len;
    932       1.1        pk 	u_int32_t flags;
    933       1.1        pk 
    934       1.1        pk 	ri = sc->sc_rb.rb_rdtail;
    935       1.1        pk 
    936       1.1        pk 	/*
    937       1.1        pk 	 * Process all buffers with valid data.
    938       1.1        pk 	 */
    939       1.1        pk 	for (;;) {
    940      1.15       eeh 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
    941       1.1        pk 		if (flags & HME_XD_OWN)
    942       1.1        pk 			break;
    943       1.1        pk 
    944       1.4        pk 		if (flags & HME_XD_OFL) {
    945       1.4        pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
    946       1.4        pk 					sc->sc_dev.dv_xname, ri, flags);
    947       1.4        pk 		} else {
    948       1.4        pk 			len = HME_XD_DECODE_RSIZE(flags);
    949       1.4        pk 			hme_read(sc, ri, len);
    950       1.4        pk 		}
    951       1.1        pk 
    952       1.1        pk 		/* This buffer can be used by the hardware again */
    953      1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
    954       1.1        pk 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    955       1.1        pk 
    956       1.1        pk 		if (++ri == nrbuf)
    957       1.1        pk 			ri = 0;
    958       1.1        pk 	}
    959       1.1        pk 
    960       1.1        pk 	sc->sc_rb.rb_rdtail = ri;
    961       1.1        pk 
    962       1.1        pk 	return (1);
    963       1.1        pk }
    964       1.1        pk 
    965       1.1        pk int
    966       1.1        pk hme_eint(sc, status)
    967       1.1        pk 	struct hme_softc *sc;
    968       1.1        pk 	u_int status;
    969       1.1        pk {
    970       1.1        pk 	char bits[128];
    971       1.1        pk 
    972       1.1        pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
    973       1.1        pk 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
    974       1.1        pk 		return (1);
    975       1.1        pk 	}
    976       1.1        pk 
    977       1.1        pk 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
    978       1.1        pk 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
    979       1.1        pk 	return (1);
    980       1.1        pk }
    981       1.1        pk 
    982       1.1        pk int
    983       1.1        pk hme_intr(v)
    984       1.1        pk 	void *v;
    985       1.1        pk {
    986       1.1        pk 	struct hme_softc *sc = (struct hme_softc *)v;
    987       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    988       1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    989       1.1        pk 	u_int32_t status;
    990       1.1        pk 	int r = 0;
    991       1.1        pk 
    992       1.1        pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
    993       1.1        pk 
    994       1.1        pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
    995       1.1        pk 		r |= hme_eint(sc, status);
    996       1.1        pk 
    997       1.1        pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
    998       1.1        pk 		r |= hme_tint(sc);
    999       1.1        pk 
   1000       1.1        pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1001       1.1        pk 		r |= hme_rint(sc);
   1002       1.1        pk 
   1003       1.1        pk 	return (r);
   1004       1.1        pk }
   1005       1.1        pk 
   1006       1.1        pk 
   1007       1.1        pk void
   1008       1.1        pk hme_watchdog(ifp)
   1009       1.1        pk 	struct ifnet *ifp;
   1010       1.1        pk {
   1011       1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1012       1.1        pk 
   1013       1.1        pk 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1014       1.1        pk 	++ifp->if_oerrors;
   1015       1.1        pk 
   1016       1.1        pk 	hme_reset(sc);
   1017       1.4        pk }
   1018       1.4        pk 
   1019       1.4        pk /*
   1020       1.4        pk  * Initialize the MII Management Interface
   1021       1.4        pk  */
   1022       1.4        pk void
   1023       1.4        pk hme_mifinit(sc)
   1024       1.4        pk 	struct hme_softc *sc;
   1025       1.4        pk {
   1026       1.4        pk 	bus_space_tag_t t = sc->sc_bustag;
   1027       1.4        pk 	bus_space_handle_t mif = sc->sc_mif;
   1028       1.4        pk 	u_int32_t v;
   1029       1.4        pk 
   1030       1.4        pk 	/* Configure the MIF in frame mode */
   1031       1.4        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1032       1.4        pk 	v &= ~HME_MIF_CFG_BBMODE;
   1033       1.4        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1034       1.1        pk }
   1035       1.1        pk 
   1036       1.1        pk /*
   1037       1.1        pk  * MII interface
   1038       1.1        pk  */
   1039       1.1        pk static int
   1040       1.1        pk hme_mii_readreg(self, phy, reg)
   1041       1.1        pk 	struct device *self;
   1042       1.1        pk 	int phy, reg;
   1043       1.1        pk {
   1044       1.1        pk 	struct hme_softc *sc = (void *)self;
   1045       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1046       1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1047       1.1        pk 	int n;
   1048       1.1        pk 	u_int32_t v;
   1049       1.1        pk 
   1050       1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1051       1.5        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1052       1.5        pk 	/* Clear PHY select bit */
   1053       1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1054       1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1055       1.5        pk 		/* Set PHY select bit to get at external device */
   1056       1.5        pk 		v |= HME_MIF_CFG_PHY;
   1057       1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1058       1.5        pk 
   1059       1.1        pk 	/* Construct the frame command */
   1060       1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1061       1.1        pk 	    HME_MIF_FO_TAMSB |
   1062       1.1        pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1063       1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1064       1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1065       1.1        pk 
   1066       1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1067       1.1        pk 	for (n = 0; n < 100; n++) {
   1068       1.2        pk 		DELAY(1);
   1069       1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1070       1.1        pk 		if (v & HME_MIF_FO_TALSB)
   1071       1.1        pk 			return (v & HME_MIF_FO_DATA);
   1072       1.1        pk 	}
   1073       1.1        pk 
   1074       1.1        pk 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1075       1.1        pk 	return (0);
   1076       1.1        pk }
   1077       1.1        pk 
   1078       1.1        pk static void
   1079       1.1        pk hme_mii_writereg(self, phy, reg, val)
   1080       1.1        pk 	struct device *self;
   1081       1.1        pk 	int phy, reg, val;
   1082       1.1        pk {
   1083       1.1        pk 	struct hme_softc *sc = (void *)self;
   1084       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1085       1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1086       1.1        pk 	int n;
   1087       1.1        pk 	u_int32_t v;
   1088       1.1        pk 
   1089       1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1090       1.5        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1091       1.5        pk 	/* Clear PHY select bit */
   1092       1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1093       1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1094       1.5        pk 		/* Set PHY select bit to get at external device */
   1095       1.5        pk 		v |= HME_MIF_CFG_PHY;
   1096       1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1097       1.5        pk 
   1098       1.1        pk 	/* Construct the frame command */
   1099       1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1100       1.1        pk 	    HME_MIF_FO_TAMSB				|
   1101       1.1        pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1102       1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1103       1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1104       1.1        pk 	    (val & HME_MIF_FO_DATA);
   1105       1.1        pk 
   1106       1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1107       1.1        pk 	for (n = 0; n < 100; n++) {
   1108       1.2        pk 		DELAY(1);
   1109       1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1110       1.1        pk 		if (v & HME_MIF_FO_TALSB)
   1111       1.1        pk 			return;
   1112       1.1        pk 	}
   1113       1.1        pk 
   1114       1.2        pk 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1115       1.1        pk }
   1116       1.1        pk 
   1117       1.1        pk static void
   1118       1.1        pk hme_mii_statchg(dev)
   1119       1.1        pk 	struct device *dev;
   1120       1.1        pk {
   1121       1.3        pk 	struct hme_softc *sc = (void *)dev;
   1122       1.5        pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1123       1.5        pk 	int phy = sc->sc_phys[instance];
   1124       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1125       1.5        pk 	bus_space_handle_t mif = sc->sc_mif;
   1126       1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1127       1.1        pk 	u_int32_t v;
   1128       1.1        pk 
   1129       1.5        pk #ifdef HMEDEBUG
   1130       1.5        pk 	if (sc->sc_debug)
   1131       1.5        pk 		printf("hme_mii_statchg: status change: phy = %d\n", phy);
   1132       1.5        pk #endif
   1133       1.1        pk 
   1134       1.5        pk 	/* Select the current PHY in the MIF configuration register */
   1135       1.5        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1136       1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1137       1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1138       1.5        pk 		v |= HME_MIF_CFG_PHY;
   1139       1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1140       1.1        pk 
   1141       1.5        pk 	/* Set the MAC Full Duplex bit appropriately */
   1142  1.21.2.3  jdolecek 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1143  1.21.2.3  jdolecek 	   but not otherwise. */
   1144       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1145  1.21.2.3  jdolecek 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1146       1.1        pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1147  1.21.2.3  jdolecek 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1148  1.21.2.3  jdolecek 	} else {
   1149       1.1        pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1150  1.21.2.3  jdolecek 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1151  1.21.2.3  jdolecek 	}
   1152       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1153       1.1        pk 
   1154       1.5        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1155       1.5        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1156       1.5        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1157       1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1158       1.5        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1159       1.5        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1160       1.5        pk }
   1161       1.5        pk 
   1162       1.5        pk int
   1163       1.5        pk hme_mediachange(ifp)
   1164       1.5        pk 	struct ifnet *ifp;
   1165       1.5        pk {
   1166       1.5        pk 	struct hme_softc *sc = ifp->if_softc;
   1167       1.5        pk 
   1168       1.5        pk 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1169       1.5        pk 		return (EINVAL);
   1170       1.5        pk 
   1171       1.5        pk 	return (mii_mediachg(&sc->sc_mii));
   1172       1.1        pk }
   1173       1.1        pk 
   1174       1.1        pk void
   1175       1.1        pk hme_mediastatus(ifp, ifmr)
   1176       1.1        pk 	struct ifnet *ifp;
   1177       1.1        pk 	struct ifmediareq *ifmr;
   1178       1.1        pk {
   1179       1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1180       1.1        pk 
   1181       1.1        pk 	if ((ifp->if_flags & IFF_UP) == 0)
   1182       1.1        pk 		return;
   1183       1.1        pk 
   1184       1.1        pk 	mii_pollstat(&sc->sc_mii);
   1185       1.1        pk 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1186       1.1        pk 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1187       1.1        pk }
   1188       1.1        pk 
   1189       1.1        pk /*
   1190       1.1        pk  * Process an ioctl request.
   1191       1.1        pk  */
   1192       1.1        pk int
   1193       1.1        pk hme_ioctl(ifp, cmd, data)
   1194       1.1        pk 	struct ifnet *ifp;
   1195       1.1        pk 	u_long cmd;
   1196       1.1        pk 	caddr_t data;
   1197       1.1        pk {
   1198       1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1199       1.1        pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1200       1.1        pk 	struct ifreq *ifr = (struct ifreq *)data;
   1201       1.1        pk 	int s, error = 0;
   1202       1.1        pk 
   1203       1.1        pk 	s = splnet();
   1204       1.1        pk 
   1205       1.1        pk 	switch (cmd) {
   1206       1.1        pk 
   1207       1.1        pk 	case SIOCSIFADDR:
   1208       1.1        pk 		ifp->if_flags |= IFF_UP;
   1209       1.1        pk 
   1210       1.1        pk 		switch (ifa->ifa_addr->sa_family) {
   1211       1.1        pk #ifdef INET
   1212       1.1        pk 		case AF_INET:
   1213       1.1        pk 			hme_init(sc);
   1214       1.1        pk 			arp_ifinit(ifp, ifa);
   1215       1.1        pk 			break;
   1216       1.1        pk #endif
   1217       1.1        pk #ifdef NS
   1218       1.1        pk 		case AF_NS:
   1219       1.1        pk 		    {
   1220       1.1        pk 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1221       1.1        pk 
   1222       1.1        pk 			if (ns_nullhost(*ina))
   1223       1.1        pk 				ina->x_host =
   1224       1.1        pk 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1225       1.1        pk 			else {
   1226      1.21   thorpej 				memcpy(LLADDR(ifp->if_sadl),
   1227      1.21   thorpej 				    ina->x_host.c_host, sizeof(sc->sc_enaddr));
   1228       1.1        pk 			}
   1229       1.1        pk 			/* Set new address. */
   1230       1.1        pk 			hme_init(sc);
   1231       1.1        pk 			break;
   1232       1.1        pk 		    }
   1233       1.1        pk #endif
   1234       1.1        pk 		default:
   1235       1.1        pk 			hme_init(sc);
   1236       1.1        pk 			break;
   1237       1.1        pk 		}
   1238       1.1        pk 		break;
   1239       1.1        pk 
   1240       1.1        pk 	case SIOCSIFFLAGS:
   1241       1.1        pk 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1242       1.1        pk 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1243       1.1        pk 			/*
   1244       1.1        pk 			 * If interface is marked down and it is running, then
   1245       1.1        pk 			 * stop it.
   1246       1.1        pk 			 */
   1247       1.1        pk 			hme_stop(sc);
   1248       1.1        pk 			ifp->if_flags &= ~IFF_RUNNING;
   1249       1.1        pk 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1250       1.1        pk 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
   1251       1.1        pk 			/*
   1252       1.1        pk 			 * If interface is marked up and it is stopped, then
   1253       1.1        pk 			 * start it.
   1254       1.1        pk 			 */
   1255       1.1        pk 			hme_init(sc);
   1256       1.1        pk 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1257       1.1        pk 			/*
   1258       1.1        pk 			 * Reset the interface to pick up changes in any other
   1259       1.1        pk 			 * flags that affect hardware registers.
   1260       1.1        pk 			 */
   1261       1.1        pk 			/*hme_stop(sc);*/
   1262       1.1        pk 			hme_init(sc);
   1263       1.1        pk 		}
   1264       1.1        pk #ifdef HMEDEBUG
   1265       1.1        pk 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1266       1.1        pk #endif
   1267       1.1        pk 		break;
   1268       1.1        pk 
   1269       1.1        pk 	case SIOCADDMULTI:
   1270       1.1        pk 	case SIOCDELMULTI:
   1271       1.1        pk 		error = (cmd == SIOCADDMULTI) ?
   1272       1.1        pk 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1273       1.1        pk 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1274       1.1        pk 
   1275       1.1        pk 		if (error == ENETRESET) {
   1276       1.1        pk 			/*
   1277       1.1        pk 			 * Multicast list has changed; set the hardware filter
   1278       1.1        pk 			 * accordingly.
   1279       1.1        pk 			 */
   1280       1.1        pk 			hme_setladrf(sc);
   1281       1.1        pk 			error = 0;
   1282       1.1        pk 		}
   1283       1.1        pk 		break;
   1284       1.1        pk 
   1285       1.1        pk 	case SIOCGIFMEDIA:
   1286       1.1        pk 	case SIOCSIFMEDIA:
   1287       1.1        pk 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1288       1.1        pk 		break;
   1289       1.1        pk 
   1290       1.1        pk 	default:
   1291       1.1        pk 		error = EINVAL;
   1292       1.1        pk 		break;
   1293       1.1        pk 	}
   1294       1.1        pk 
   1295       1.1        pk 	splx(s);
   1296       1.1        pk 	return (error);
   1297       1.1        pk }
   1298       1.1        pk 
   1299       1.1        pk void
   1300       1.1        pk hme_shutdown(arg)
   1301       1.1        pk 	void *arg;
   1302       1.1        pk {
   1303       1.1        pk 
   1304       1.1        pk 	hme_stop((struct hme_softc *)arg);
   1305       1.1        pk }
   1306       1.1        pk 
   1307       1.1        pk /*
   1308       1.1        pk  * Set up the logical address filter.
   1309       1.1        pk  */
   1310       1.1        pk void
   1311       1.1        pk hme_setladrf(sc)
   1312       1.1        pk 	struct hme_softc *sc;
   1313       1.1        pk {
   1314       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1315       1.1        pk 	struct ether_multi *enm;
   1316       1.1        pk 	struct ether_multistep step;
   1317       1.1        pk 	struct ethercom *ec = &sc->sc_ethercom;
   1318       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1319       1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1320       1.1        pk 	u_char *cp;
   1321       1.1        pk 	u_int32_t crc;
   1322       1.1        pk 	u_int32_t hash[4];
   1323      1.14        pk 	u_int32_t v;
   1324       1.1        pk 	int len;
   1325       1.1        pk 
   1326      1.14        pk 	/* Clear hash table */
   1327      1.14        pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1328      1.14        pk 
   1329      1.14        pk 	/* Get current RX configuration */
   1330      1.14        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1331      1.14        pk 
   1332      1.14        pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1333      1.14        pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1334      1.14        pk 		v |= HME_MAC_RXCFG_PMISC;
   1335      1.14        pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1336      1.14        pk 		ifp->if_flags |= IFF_ALLMULTI;
   1337      1.14        pk 		goto chipit;
   1338      1.14        pk 	}
   1339      1.14        pk 
   1340      1.14        pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1341      1.14        pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1342      1.14        pk 	v |= HME_MAC_RXCFG_HENABLE;
   1343      1.14        pk 
   1344       1.1        pk 	/*
   1345       1.1        pk 	 * Set up multicast address filter by passing all multicast addresses
   1346       1.1        pk 	 * through a crc generator, and then using the high order 6 bits as an
   1347       1.1        pk 	 * index into the 64 bit logical address filter.  The high order bit
   1348       1.1        pk 	 * selects the word, while the rest of the bits select the bit within
   1349       1.1        pk 	 * the word.
   1350       1.1        pk 	 */
   1351       1.1        pk 
   1352       1.1        pk 	ETHER_FIRST_MULTI(step, ec, enm);
   1353       1.1        pk 	while (enm != NULL) {
   1354       1.1        pk 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1355       1.1        pk 			/*
   1356       1.1        pk 			 * We must listen to a range of multicast addresses.
   1357       1.1        pk 			 * For now, just accept all multicasts, rather than
   1358       1.1        pk 			 * trying to set only those filter bits needed to match
   1359       1.1        pk 			 * the range.  (At this time, the only use of address
   1360       1.1        pk 			 * ranges is for IP multicast routing, for which the
   1361       1.1        pk 			 * range is big enough to require all bits set.)
   1362       1.1        pk 			 */
   1363      1.14        pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1364      1.14        pk 			ifp->if_flags |= IFF_ALLMULTI;
   1365      1.14        pk 			goto chipit;
   1366       1.1        pk 		}
   1367       1.1        pk 
   1368       1.1        pk 		cp = enm->enm_addrlo;
   1369       1.1        pk 		crc = 0xffffffff;
   1370       1.1        pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1371       1.1        pk 			int octet = *cp++;
   1372       1.1        pk 			int i;
   1373       1.1        pk 
   1374       1.1        pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1375       1.1        pk 			for (i = 0; i < 8; i++) {
   1376       1.1        pk 				if ((crc & 1) ^ (octet & 1)) {
   1377       1.1        pk 					crc >>= 1;
   1378       1.1        pk 					crc ^= MC_POLY_LE;
   1379       1.1        pk 				} else {
   1380       1.1        pk 					crc >>= 1;
   1381       1.1        pk 				}
   1382       1.1        pk 				octet >>= 1;
   1383       1.1        pk 			}
   1384       1.1        pk 		}
   1385       1.1        pk 		/* Just want the 6 most significant bits. */
   1386       1.1        pk 		crc >>= 26;
   1387       1.1        pk 
   1388       1.1        pk 		/* Set the corresponding bit in the filter. */
   1389       1.1        pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1390       1.1        pk 
   1391       1.1        pk 		ETHER_NEXT_MULTI(step, enm);
   1392       1.1        pk 	}
   1393       1.1        pk 
   1394      1.14        pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1395      1.14        pk 
   1396      1.14        pk chipit:
   1397      1.14        pk 	/* Now load the hash table into the chip */
   1398       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1399       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1400       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1401       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1402      1.14        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1403       1.1        pk }
   1404       1.1        pk 
   1405       1.1        pk /*
   1406       1.1        pk  * Routines for accessing the transmit and receive buffers.
   1407       1.1        pk  * The various CPU and adapter configurations supported by this
   1408       1.1        pk  * driver require three different access methods for buffers
   1409       1.1        pk  * and descriptors:
   1410       1.1        pk  *	(1) contig (contiguous data; no padding),
   1411       1.1        pk  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1412       1.1        pk  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1413       1.1        pk  */
   1414       1.1        pk 
   1415       1.1        pk #if 0
   1416       1.1        pk /*
   1417       1.1        pk  * contig: contiguous data with no padding.
   1418       1.1        pk  *
   1419       1.1        pk  * Buffers may have any alignment.
   1420       1.1        pk  */
   1421       1.1        pk 
   1422       1.1        pk void
   1423       1.1        pk hme_copytobuf_contig(sc, from, ri, len)
   1424       1.1        pk 	struct hme_softc *sc;
   1425       1.1        pk 	void *from;
   1426       1.1        pk 	int ri, len;
   1427       1.1        pk {
   1428       1.1        pk 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1429       1.1        pk 
   1430       1.1        pk 	/*
   1431      1.21   thorpej 	 * Just call memcpy() to do the work.
   1432       1.1        pk 	 */
   1433      1.21   thorpej 	memcpy(buf, from, len);
   1434       1.1        pk }
   1435       1.1        pk 
   1436       1.1        pk void
   1437       1.1        pk hme_copyfrombuf_contig(sc, to, boff, len)
   1438       1.1        pk 	struct hme_softc *sc;
   1439       1.1        pk 	void *to;
   1440       1.1        pk 	int boff, len;
   1441       1.1        pk {
   1442       1.1        pk 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1443       1.1        pk 
   1444       1.1        pk 	/*
   1445      1.21   thorpej 	 * Just call memcpy() to do the work.
   1446       1.1        pk 	 */
   1447      1.21   thorpej 	memcpy(to, buf, len);
   1448       1.1        pk }
   1449       1.1        pk #endif
   1450