Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.21.4.1
      1  1.21.4.1     fvdl /*	$NetBSD: hme.c,v 1.21.4.1 2001/10/11 00:02:03 fvdl Exp $	*/
      2       1.1       pk 
      3       1.1       pk /*-
      4       1.1       pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5       1.1       pk  * All rights reserved.
      6       1.1       pk  *
      7       1.1       pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1       pk  * by Paul Kranenburg.
      9       1.1       pk  *
     10       1.1       pk  * Redistribution and use in source and binary forms, with or without
     11       1.1       pk  * modification, are permitted provided that the following conditions
     12       1.1       pk  * are met:
     13       1.1       pk  * 1. Redistributions of source code must retain the above copyright
     14       1.1       pk  *    notice, this list of conditions and the following disclaimer.
     15       1.1       pk  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1       pk  *    notice, this list of conditions and the following disclaimer in the
     17       1.1       pk  *    documentation and/or other materials provided with the distribution.
     18       1.1       pk  * 3. All advertising materials mentioning features or use of this software
     19       1.1       pk  *    must display the following acknowledgement:
     20       1.1       pk  *        This product includes software developed by the NetBSD
     21       1.1       pk  *        Foundation, Inc. and its contributors.
     22       1.1       pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.1       pk  *    contributors may be used to endorse or promote products derived
     24       1.1       pk  *    from this software without specific prior written permission.
     25       1.1       pk  *
     26       1.1       pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.1       pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.1       pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.1       pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.1       pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.1       pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.1       pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.1       pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.1       pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.1       pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.1       pk  * POSSIBILITY OF SUCH DAMAGE.
     37       1.1       pk  */
     38       1.1       pk 
     39       1.1       pk /*
     40       1.1       pk  * HME Ethernet module driver.
     41       1.1       pk  */
     42       1.1       pk 
     43       1.1       pk #define HMEDEBUG
     44       1.1       pk 
     45       1.1       pk #include "opt_inet.h"
     46       1.1       pk #include "opt_ns.h"
     47       1.1       pk #include "bpfilter.h"
     48       1.1       pk #include "rnd.h"
     49       1.1       pk 
     50       1.1       pk #include <sys/param.h>
     51       1.1       pk #include <sys/systm.h>
     52       1.5       pk #include <sys/kernel.h>
     53       1.1       pk #include <sys/mbuf.h>
     54       1.1       pk #include <sys/syslog.h>
     55       1.1       pk #include <sys/socket.h>
     56       1.1       pk #include <sys/device.h>
     57       1.1       pk #include <sys/malloc.h>
     58       1.1       pk #include <sys/ioctl.h>
     59       1.1       pk #include <sys/errno.h>
     60       1.1       pk #if NRND > 0
     61       1.1       pk #include <sys/rnd.h>
     62       1.1       pk #endif
     63       1.1       pk 
     64       1.1       pk #include <net/if.h>
     65       1.1       pk #include <net/if_dl.h>
     66       1.1       pk #include <net/if_ether.h>
     67       1.1       pk #include <net/if_media.h>
     68       1.1       pk 
     69       1.1       pk #ifdef INET
     70       1.1       pk #include <netinet/in.h>
     71       1.1       pk #include <netinet/if_inarp.h>
     72       1.1       pk #include <netinet/in_systm.h>
     73       1.1       pk #include <netinet/in_var.h>
     74       1.1       pk #include <netinet/ip.h>
     75       1.1       pk #endif
     76       1.1       pk 
     77       1.1       pk #ifdef NS
     78       1.1       pk #include <netns/ns.h>
     79       1.1       pk #include <netns/ns_if.h>
     80       1.1       pk #endif
     81       1.1       pk 
     82       1.1       pk #if NBPFILTER > 0
     83       1.1       pk #include <net/bpf.h>
     84       1.1       pk #include <net/bpfdesc.h>
     85       1.1       pk #endif
     86       1.1       pk 
     87       1.1       pk #include <dev/mii/mii.h>
     88       1.1       pk #include <dev/mii/miivar.h>
     89       1.1       pk 
     90       1.1       pk #include <machine/bus.h>
     91       1.1       pk 
     92       1.1       pk #include <dev/ic/hmereg.h>
     93       1.1       pk #include <dev/ic/hmevar.h>
     94       1.1       pk 
     95       1.1       pk void		hme_start __P((struct ifnet *));
     96       1.1       pk void		hme_stop __P((struct hme_softc *));
     97       1.1       pk int		hme_ioctl __P((struct ifnet *, u_long, caddr_t));
     98       1.5       pk void		hme_tick __P((void *));
     99       1.1       pk void		hme_watchdog __P((struct ifnet *));
    100       1.1       pk void		hme_shutdown __P((void *));
    101       1.1       pk void		hme_init __P((struct hme_softc *));
    102       1.1       pk void		hme_meminit __P((struct hme_softc *));
    103       1.4       pk void		hme_mifinit __P((struct hme_softc *));
    104       1.1       pk void		hme_reset __P((struct hme_softc *));
    105       1.1       pk void		hme_setladrf __P((struct hme_softc *));
    106       1.1       pk 
    107       1.1       pk /* MII methods & callbacks */
    108       1.1       pk static int	hme_mii_readreg __P((struct device *, int, int));
    109       1.1       pk static void	hme_mii_writereg __P((struct device *, int, int, int));
    110       1.1       pk static void	hme_mii_statchg __P((struct device *));
    111       1.1       pk 
    112       1.1       pk int		hme_mediachange __P((struct ifnet *));
    113       1.1       pk void		hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
    114       1.1       pk 
    115       1.1       pk struct mbuf	*hme_get __P((struct hme_softc *, int, int));
    116       1.1       pk int		hme_put __P((struct hme_softc *, int, struct mbuf *));
    117       1.1       pk void		hme_read __P((struct hme_softc *, int, int));
    118       1.1       pk int		hme_eint __P((struct hme_softc *, u_int));
    119       1.1       pk int		hme_rint __P((struct hme_softc *));
    120       1.1       pk int		hme_tint __P((struct hme_softc *));
    121       1.1       pk 
    122       1.1       pk static int	ether_cmp __P((u_char *, u_char *));
    123       1.1       pk 
    124       1.1       pk /* Default buffer copy routines */
    125       1.1       pk void	hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
    126       1.1       pk void	hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
    127       1.1       pk void	hme_zerobuf_contig __P((struct hme_softc *, int, int));
    128       1.1       pk 
    129       1.1       pk 
    130       1.1       pk void
    131       1.1       pk hme_config(sc)
    132       1.1       pk 	struct hme_softc *sc;
    133       1.1       pk {
    134       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    135       1.1       pk 	struct mii_data *mii = &sc->sc_mii;
    136       1.5       pk 	struct mii_softc *child;
    137      1.11       pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    138       1.1       pk 	bus_dma_segment_t seg;
    139       1.1       pk 	bus_size_t size;
    140       1.1       pk 	int rseg, error;
    141       1.1       pk 
    142       1.1       pk 	/*
    143       1.1       pk 	 * HME common initialization.
    144       1.1       pk 	 *
    145       1.1       pk 	 * hme_softc fields that must be initialized by the front-end:
    146       1.1       pk 	 *
    147       1.1       pk 	 * the bus tag:
    148       1.1       pk 	 *	sc_bustag
    149       1.1       pk 	 *
    150       1.1       pk 	 * the dma bus tag:
    151       1.1       pk 	 *	sc_dmatag
    152       1.1       pk 	 *
    153       1.1       pk 	 * the bus handles:
    154       1.1       pk 	 *	sc_seb		(Shared Ethernet Block registers)
    155       1.1       pk 	 *	sc_erx		(Receiver Unit registers)
    156       1.1       pk 	 *	sc_etx		(Transmitter Unit registers)
    157       1.1       pk 	 *	sc_mac		(MAC registers)
    158       1.1       pk 	 *	sc_mif		(Managment Interface registers)
    159       1.1       pk 	 *
    160       1.1       pk 	 * the maximum bus burst size:
    161       1.1       pk 	 *	sc_burst
    162       1.1       pk 	 *
    163       1.1       pk 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    164       1.1       pk 	 *	rb_membase, rb_dmabase)
    165       1.1       pk 	 *
    166       1.1       pk 	 * the local Ethernet address:
    167       1.1       pk 	 *	sc_enaddr
    168       1.1       pk 	 *
    169       1.1       pk 	 */
    170       1.1       pk 
    171       1.1       pk 	/* Make sure the chip is stopped. */
    172       1.1       pk 	hme_stop(sc);
    173       1.1       pk 
    174       1.1       pk 
    175       1.1       pk 	/*
    176       1.1       pk 	 * Allocate descriptors and buffers
    177       1.1       pk 	 * XXX - do all this differently.. and more configurably,
    178       1.1       pk 	 * eg. use things as `dma_load_mbuf()' on transmit,
    179       1.1       pk 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    180       1.1       pk 	 *     all the time) on the reveiver side.
    181       1.8       pk 	 *
    182       1.8       pk 	 * Note: receive buffers must be 64-byte aligned.
    183       1.8       pk 	 * Also, apparently, the buffers must extend to a DMA burst
    184       1.8       pk 	 * boundary beyond the maximum packet size.
    185       1.1       pk 	 */
    186       1.1       pk #define _HME_NDESC	32
    187       1.8       pk #define _HME_BUFSZ	1600
    188       1.1       pk 
    189       1.1       pk 	/* Note: the # of descriptors must be a multiple of 16 */
    190       1.1       pk 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    191       1.1       pk 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    192       1.1       pk 
    193       1.1       pk 	/*
    194       1.1       pk 	 * Allocate DMA capable memory
    195       1.1       pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    196       1.1       pk 	 * take this into account when calculating the size. Note that
    197       1.1       pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    198       1.1       pk 	 * so we allocate that much regardless of _HME_NDESC.
    199       1.1       pk 	 */
    200       1.1       pk 	size =	2048 +					/* TX descriptors */
    201       1.1       pk 		2048 +					/* RX descriptors */
    202       1.1       pk 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    203       1.1       pk 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* TX buffers */
    204      1.11       pk 
    205      1.11       pk 	/* Allocate DMA buffer */
    206      1.11       pk 	if ((error = bus_dmamem_alloc(dmatag, size,
    207       1.1       pk 				      2048, 0,
    208       1.1       pk 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    209       1.1       pk 		printf("%s: DMA buffer alloc error %d\n",
    210       1.1       pk 			sc->sc_dev.dv_xname, error);
    211      1.10      mrg 		return;
    212       1.1       pk 	}
    213       1.1       pk 
    214      1.11       pk 	/* Map DMA memory in CPU addressable space */
    215      1.11       pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    216       1.1       pk 				    &sc->sc_rb.rb_membase,
    217       1.1       pk 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    218       1.1       pk 		printf("%s: DMA buffer map error %d\n",
    219       1.1       pk 			sc->sc_dev.dv_xname, error);
    220      1.11       pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    221      1.11       pk 		bus_dmamem_free(dmatag, &seg, rseg);
    222       1.1       pk 		return;
    223       1.1       pk 	}
    224      1.13      mrg 
    225      1.13      mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    226      1.13      mrg 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    227      1.13      mrg 		printf("%s: DMA map create error %d\n",
    228      1.13      mrg 			sc->sc_dev.dv_xname, error);
    229      1.13      mrg 		return;
    230      1.13      mrg 	}
    231      1.13      mrg 
    232      1.13      mrg 	/* Load the buffer */
    233      1.13      mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    234      1.17      mrg 	    sc->sc_rb.rb_membase, size, NULL,
    235      1.17      mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    236      1.13      mrg 		printf("%s: DMA buffer map load error %d\n",
    237      1.13      mrg 			sc->sc_dev.dv_xname, error);
    238      1.13      mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    239      1.13      mrg 		return;
    240      1.13      mrg 	}
    241      1.13      mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    242       1.1       pk 
    243  1.21.4.1     fvdl 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    244  1.21.4.1     fvdl 	    ether_sprintf(sc->sc_enaddr));
    245       1.2       pk 
    246       1.1       pk 	/* Initialize ifnet structure. */
    247      1.21  thorpej 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    248       1.1       pk 	ifp->if_softc = sc;
    249       1.1       pk 	ifp->if_start = hme_start;
    250       1.1       pk 	ifp->if_ioctl = hme_ioctl;
    251       1.1       pk 	ifp->if_watchdog = hme_watchdog;
    252       1.1       pk 	ifp->if_flags =
    253       1.1       pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    254      1.20  thorpej 	IFQ_SET_READY(&ifp->if_snd);
    255       1.1       pk 
    256       1.1       pk 	/* Initialize ifmedia structures and MII info */
    257       1.1       pk 	mii->mii_ifp = ifp;
    258       1.1       pk 	mii->mii_readreg = hme_mii_readreg;
    259       1.1       pk 	mii->mii_writereg = hme_mii_writereg;
    260       1.1       pk 	mii->mii_statchg = hme_mii_statchg;
    261       1.1       pk 
    262       1.1       pk 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
    263       1.1       pk 
    264       1.4       pk 	hme_mifinit(sc);
    265       1.4       pk 
    266       1.6  thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    267       1.7  thorpej 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
    268       1.2       pk 
    269       1.5       pk 	child = LIST_FIRST(&mii->mii_phys);
    270       1.5       pk 	if (child == NULL) {
    271       1.1       pk 		/* No PHY attached */
    272       1.1       pk 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    273       1.1       pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    274       1.1       pk 	} else {
    275       1.1       pk 		/*
    276       1.5       pk 		 * Walk along the list of attached MII devices and
    277       1.5       pk 		 * establish an `MII instance' to `phy number'
    278       1.5       pk 		 * mapping. We'll use this mapping in media change
    279       1.5       pk 		 * requests to determine which phy to use to program
    280       1.5       pk 		 * the MIF configuration register.
    281       1.5       pk 		 */
    282       1.5       pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    283       1.5       pk 			/*
    284       1.5       pk 			 * Note: we support just two PHYs: the built-in
    285       1.5       pk 			 * internal device and an external on the MII
    286       1.5       pk 			 * connector.
    287       1.5       pk 			 */
    288       1.5       pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    289       1.5       pk 				printf("%s: cannot accomodate MII device %s"
    290       1.5       pk 				       " at phy %d, instance %d\n",
    291       1.5       pk 				       sc->sc_dev.dv_xname,
    292       1.5       pk 				       child->mii_dev.dv_xname,
    293       1.5       pk 				       child->mii_phy, child->mii_inst);
    294       1.5       pk 				continue;
    295       1.5       pk 			}
    296       1.5       pk 
    297       1.5       pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    298       1.5       pk 		}
    299       1.5       pk 
    300       1.5       pk 		/*
    301       1.1       pk 		 * XXX - we can really do the following ONLY if the
    302       1.1       pk 		 * phy indeed has the auto negotiation capability!!
    303       1.1       pk 		 */
    304       1.1       pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    305       1.1       pk 	}
    306       1.1       pk 
    307      1.19   bouyer 	/* claim 802.1q capability */
    308      1.19   bouyer 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    309      1.19   bouyer 
    310       1.1       pk 	/* Attach the interface. */
    311       1.1       pk 	if_attach(ifp);
    312       1.1       pk 	ether_ifattach(ifp, sc->sc_enaddr);
    313       1.1       pk 
    314       1.1       pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    315       1.1       pk 	if (sc->sc_sh == NULL)
    316       1.1       pk 		panic("hme_config: can't establish shutdownhook");
    317       1.1       pk 
    318       1.1       pk #if 0
    319       1.1       pk 	printf("%s: %d receive buffers, %d transmit buffers\n",
    320       1.1       pk 	    sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
    321       1.1       pk 	sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
    322       1.1       pk 					M_WAITOK);
    323       1.1       pk 	sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
    324       1.1       pk 					M_WAITOK);
    325       1.1       pk #endif
    326       1.1       pk 
    327       1.1       pk #if NRND > 0
    328       1.1       pk 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    329       1.1       pk 			  RND_TYPE_NET, 0);
    330       1.1       pk #endif
    331       1.5       pk 
    332       1.9  thorpej 	callout_init(&sc->sc_tick_ch);
    333       1.5       pk }
    334       1.5       pk 
    335       1.5       pk void
    336       1.5       pk hme_tick(arg)
    337       1.5       pk 	void *arg;
    338       1.5       pk {
    339       1.5       pk 	struct hme_softc *sc = arg;
    340       1.5       pk 	int s;
    341       1.5       pk 
    342       1.5       pk 	s = splnet();
    343       1.5       pk 	mii_tick(&sc->sc_mii);
    344       1.5       pk 	splx(s);
    345       1.5       pk 
    346       1.9  thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    347       1.1       pk }
    348       1.1       pk 
    349       1.1       pk void
    350       1.1       pk hme_reset(sc)
    351       1.1       pk 	struct hme_softc *sc;
    352       1.1       pk {
    353       1.1       pk 	int s;
    354       1.1       pk 
    355       1.1       pk 	s = splnet();
    356       1.1       pk 	hme_init(sc);
    357       1.1       pk 	splx(s);
    358       1.1       pk }
    359       1.1       pk 
    360       1.1       pk void
    361       1.1       pk hme_stop(sc)
    362       1.1       pk 	struct hme_softc *sc;
    363       1.1       pk {
    364       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    365       1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    366       1.1       pk 	int n;
    367       1.1       pk 
    368       1.9  thorpej 	callout_stop(&sc->sc_tick_ch);
    369       1.5       pk 	mii_down(&sc->sc_mii);
    370       1.5       pk 
    371       1.1       pk 	/* Reset transmitter and receiver */
    372       1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    373       1.1       pk 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    374       1.1       pk 
    375       1.1       pk 	for (n = 0; n < 20; n++) {
    376       1.1       pk 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    377       1.1       pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    378       1.1       pk 			return;
    379       1.1       pk 		DELAY(20);
    380       1.1       pk 	}
    381       1.1       pk 
    382       1.1       pk 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
    383       1.1       pk }
    384       1.1       pk 
    385       1.1       pk void
    386       1.1       pk hme_meminit(sc)
    387       1.1       pk 	struct hme_softc *sc;
    388       1.1       pk {
    389       1.1       pk 	bus_addr_t txbufdma, rxbufdma;
    390       1.1       pk 	bus_addr_t dma;
    391       1.1       pk 	caddr_t p;
    392       1.1       pk 	unsigned int ntbuf, nrbuf, i;
    393       1.1       pk 	struct hme_ring *hr = &sc->sc_rb;
    394       1.1       pk 
    395       1.1       pk 	p = hr->rb_membase;
    396       1.1       pk 	dma = hr->rb_dmabase;
    397       1.1       pk 
    398       1.1       pk 	ntbuf = hr->rb_ntbuf;
    399       1.1       pk 	nrbuf = hr->rb_nrbuf;
    400       1.1       pk 
    401       1.1       pk 	/*
    402       1.1       pk 	 * Allocate transmit descriptors
    403       1.1       pk 	 */
    404       1.1       pk 	hr->rb_txd = p;
    405       1.1       pk 	hr->rb_txddma = dma;
    406       1.1       pk 	p += ntbuf * HME_XD_SIZE;
    407       1.1       pk 	dma += ntbuf * HME_XD_SIZE;
    408       1.4       pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    409       1.4       pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    410       1.4       pk 	p = (caddr_t)roundup((u_long)p, 2048);
    411       1.1       pk 
    412       1.1       pk 	/*
    413       1.1       pk 	 * Allocate receive descriptors
    414       1.1       pk 	 */
    415       1.1       pk 	hr->rb_rxd = p;
    416       1.1       pk 	hr->rb_rxddma = dma;
    417       1.1       pk 	p += nrbuf * HME_XD_SIZE;
    418       1.1       pk 	dma += nrbuf * HME_XD_SIZE;
    419       1.4       pk 	/* Again move forward to the next 2048 byte boundary.*/
    420       1.4       pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    421       1.4       pk 	p = (caddr_t)roundup((u_long)p, 2048);
    422       1.1       pk 
    423       1.1       pk 
    424       1.1       pk 	/*
    425       1.1       pk 	 * Allocate transmit buffers
    426       1.1       pk 	 */
    427       1.1       pk 	hr->rb_txbuf = p;
    428       1.1       pk 	txbufdma = dma;
    429       1.1       pk 	p += ntbuf * _HME_BUFSZ;
    430       1.1       pk 	dma += ntbuf * _HME_BUFSZ;
    431       1.1       pk 
    432       1.1       pk 	/*
    433       1.1       pk 	 * Allocate receive buffers
    434       1.1       pk 	 */
    435       1.1       pk 	hr->rb_rxbuf = p;
    436       1.1       pk 	rxbufdma = dma;
    437       1.1       pk 	p += nrbuf * _HME_BUFSZ;
    438       1.1       pk 	dma += nrbuf * _HME_BUFSZ;
    439       1.1       pk 
    440       1.1       pk 	/*
    441       1.1       pk 	 * Initialize transmit buffer descriptors
    442       1.1       pk 	 */
    443       1.1       pk 	for (i = 0; i < ntbuf; i++) {
    444      1.15      eeh 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    445      1.15      eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    446       1.1       pk 	}
    447       1.1       pk 
    448       1.1       pk 	/*
    449       1.1       pk 	 * Initialize receive buffer descriptors
    450       1.1       pk 	 */
    451       1.1       pk 	for (i = 0; i < nrbuf; i++) {
    452      1.15      eeh 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    453      1.15      eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    454       1.1       pk 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    455       1.1       pk 	}
    456       1.1       pk 
    457       1.1       pk 	hr->rb_tdhead = hr->rb_tdtail = 0;
    458       1.1       pk 	hr->rb_td_nbusy = 0;
    459       1.1       pk 	hr->rb_rdtail = 0;
    460       1.1       pk }
    461       1.1       pk 
    462       1.1       pk /*
    463       1.1       pk  * Initialization of interface; set up initialization block
    464       1.1       pk  * and transmit/receive descriptor rings.
    465       1.1       pk  */
    466       1.1       pk void
    467       1.1       pk hme_init(sc)
    468       1.1       pk 	struct hme_softc *sc;
    469       1.1       pk {
    470       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    471       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    472       1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    473       1.1       pk 	bus_space_handle_t etx = sc->sc_etx;
    474       1.1       pk 	bus_space_handle_t erx = sc->sc_erx;
    475       1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
    476       1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
    477       1.1       pk 	u_int8_t *ea;
    478       1.1       pk 	u_int32_t v;
    479       1.1       pk 
    480       1.1       pk 	/*
    481       1.1       pk 	 * Initialization sequence. The numbered steps below correspond
    482       1.1       pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    483       1.1       pk 	 * Channel Engine manual (part of the PCIO manual).
    484       1.1       pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    485       1.1       pk 	 */
    486       1.1       pk 
    487       1.1       pk 	/* step 1 & 2. Reset the Ethernet Channel */
    488       1.1       pk 	hme_stop(sc);
    489       1.1       pk 
    490       1.4       pk 	/* Re-initialize the MIF */
    491       1.4       pk 	hme_mifinit(sc);
    492       1.4       pk 
    493       1.1       pk 	/* Call MI reset function if any */
    494       1.1       pk 	if (sc->sc_hwreset)
    495       1.1       pk 		(*sc->sc_hwreset)(sc);
    496       1.1       pk 
    497       1.1       pk #if 0
    498       1.1       pk 	/* Mask all MIF interrupts, just in case */
    499       1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    500       1.1       pk #endif
    501       1.1       pk 
    502       1.1       pk 	/* step 3. Setup data structures in host memory */
    503       1.1       pk 	hme_meminit(sc);
    504       1.1       pk 
    505       1.1       pk 	/* step 4. TX MAC registers & counters */
    506       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    507       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    508       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    509       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    510      1.19   bouyer 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    511      1.19   bouyer 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    512      1.19   bouyer 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
    513      1.19   bouyer             ETHER_MAX_LEN);
    514       1.1       pk 
    515       1.1       pk 	/* Load station MAC address */
    516       1.1       pk 	ea = sc->sc_enaddr;
    517       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    518       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    519       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    520       1.1       pk 
    521       1.1       pk 	/*
    522       1.1       pk 	 * Init seed for backoff
    523       1.1       pk 	 * (source suggested by manual: low 10 bits of MAC address)
    524       1.1       pk 	 */
    525       1.1       pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    526       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    527       1.1       pk 
    528       1.1       pk 
    529       1.1       pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    530       1.1       pk 
    531       1.1       pk 
    532       1.1       pk 	/* step 5. RX MAC registers & counters */
    533       1.1       pk 	hme_setladrf(sc);
    534       1.1       pk 
    535       1.1       pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    536       1.1       pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    537       1.1       pk 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    538       1.1       pk 
    539       1.1       pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    540      1.19   bouyer 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    541      1.19   bouyer 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    542      1.19   bouyer 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
    543      1.19   bouyer             ETHER_MAX_LEN);
    544       1.1       pk 
    545       1.1       pk 
    546       1.1       pk 	/* step 8. Global Configuration & Interrupt Mask */
    547       1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    548       1.2       pk 			~(
    549       1.2       pk 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    550       1.2       pk 			  HME_SEB_STAT_HOSTTOTX |
    551       1.2       pk 			  HME_SEB_STAT_RXTOHOST |
    552       1.2       pk 			  HME_SEB_STAT_TXALL |
    553       1.2       pk 			  HME_SEB_STAT_TXPERR |
    554       1.2       pk 			  HME_SEB_STAT_RCNTEXP |
    555       1.2       pk 			  HME_SEB_STAT_ALL_ERRORS ));
    556       1.1       pk 
    557       1.1       pk 	switch (sc->sc_burst) {
    558       1.1       pk 	default:
    559       1.1       pk 		v = 0;
    560       1.1       pk 		break;
    561       1.1       pk 	case 16:
    562       1.1       pk 		v = HME_SEB_CFG_BURST16;
    563       1.1       pk 		break;
    564       1.1       pk 	case 32:
    565       1.1       pk 		v = HME_SEB_CFG_BURST32;
    566       1.1       pk 		break;
    567       1.1       pk 	case 64:
    568       1.1       pk 		v = HME_SEB_CFG_BURST64;
    569       1.1       pk 		break;
    570       1.1       pk 	}
    571       1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    572       1.1       pk 
    573       1.1       pk 	/* step 9. ETX Configuration: use mostly default values */
    574       1.1       pk 
    575       1.1       pk 	/* Enable DMA */
    576       1.2       pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    577       1.1       pk 	v |= HME_ETX_CFG_DMAENABLE;
    578       1.2       pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    579       1.1       pk 
    580       1.3       pk 	/* Transmit Descriptor ring size: in increments of 16 */
    581       1.3       pk 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    582       1.1       pk 
    583       1.1       pk 
    584       1.3       pk 	/* step 10. ERX Configuration */
    585       1.2       pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    586       1.3       pk 
    587       1.3       pk 	/* Encode Receive Descriptor ring size: four possible values */
    588       1.3       pk 	switch (_HME_NDESC /*XXX*/) {
    589       1.3       pk 	case 32:
    590       1.3       pk 		v |= HME_ERX_CFG_RINGSIZE32;
    591       1.3       pk 		break;
    592       1.3       pk 	case 64:
    593       1.3       pk 		v |= HME_ERX_CFG_RINGSIZE64;
    594       1.3       pk 		break;
    595       1.3       pk 	case 128:
    596       1.3       pk 		v |= HME_ERX_CFG_RINGSIZE128;
    597       1.3       pk 		break;
    598       1.3       pk 	case 256:
    599       1.3       pk 		v |= HME_ERX_CFG_RINGSIZE256;
    600       1.3       pk 		break;
    601       1.3       pk 	default:
    602       1.3       pk 		printf("hme: invalid Receive Descriptor ring size\n");
    603       1.3       pk 		break;
    604       1.3       pk 	}
    605       1.3       pk 
    606       1.3       pk 	/* Enable DMA */
    607       1.1       pk 	v |= HME_ERX_CFG_DMAENABLE;
    608       1.2       pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    609       1.1       pk 
    610       1.1       pk 	/* step 11. XIF Configuration */
    611       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    612       1.1       pk 	v |= HME_MAC_XIF_OE;
    613       1.4       pk 	/* If an external transceiver is connected, enable its MII drivers */
    614       1.2       pk 	if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
    615       1.4       pk 		v |= HME_MAC_XIF_MIIENABLE;
    616       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    617       1.1       pk 
    618       1.2       pk 
    619       1.1       pk 	/* step 12. RX_MAC Configuration Register */
    620       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    621       1.1       pk 	v |= HME_MAC_RXCFG_ENABLE;
    622       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    623       1.1       pk 
    624       1.1       pk 	/* step 13. TX_MAC Configuration Register */
    625       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    626       1.2       pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    627       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    628       1.1       pk 
    629       1.1       pk 	/* step 14. Issue Transmit Pending command */
    630       1.1       pk 
    631       1.1       pk 	/* Call MI initialization function if any */
    632       1.1       pk 	if (sc->sc_hwinit)
    633       1.1       pk 		(*sc->sc_hwinit)(sc);
    634       1.9  thorpej 
    635       1.9  thorpej 	/* Start the one second timer. */
    636       1.9  thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    637       1.1       pk 
    638       1.1       pk 	ifp->if_flags |= IFF_RUNNING;
    639       1.1       pk 	ifp->if_flags &= ~IFF_OACTIVE;
    640       1.1       pk 	ifp->if_timer = 0;
    641       1.1       pk 	hme_start(ifp);
    642       1.1       pk }
    643       1.1       pk 
    644       1.1       pk /*
    645       1.1       pk  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    646       1.1       pk  * speed.
    647       1.1       pk  */
    648       1.1       pk static __inline__ int
    649       1.1       pk ether_cmp(a, b)
    650       1.1       pk 	u_char *a, *b;
    651       1.1       pk {
    652       1.1       pk 
    653       1.1       pk 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    654       1.1       pk 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    655       1.1       pk 		return (0);
    656       1.1       pk 	return (1);
    657       1.1       pk }
    658       1.1       pk 
    659       1.1       pk 
    660       1.1       pk /*
    661       1.1       pk  * Routine to copy from mbuf chain to transmit buffer in
    662       1.1       pk  * network buffer memory.
    663       1.1       pk  * Returns the amount of data copied.
    664       1.1       pk  */
    665       1.1       pk int
    666       1.1       pk hme_put(sc, ri, m)
    667       1.1       pk 	struct hme_softc *sc;
    668       1.1       pk 	int ri;			/* Ring index */
    669       1.1       pk 	struct mbuf *m;
    670       1.1       pk {
    671       1.1       pk 	struct mbuf *n;
    672       1.1       pk 	int len, tlen = 0;
    673       1.1       pk 	caddr_t bp;
    674       1.1       pk 
    675       1.1       pk 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    676       1.1       pk 	for (; m; m = n) {
    677       1.1       pk 		len = m->m_len;
    678       1.1       pk 		if (len == 0) {
    679       1.1       pk 			MFREE(m, n);
    680       1.1       pk 			continue;
    681       1.1       pk 		}
    682      1.21  thorpej 		memcpy(bp, mtod(m, caddr_t), len);
    683       1.1       pk 		bp += len;
    684       1.1       pk 		tlen += len;
    685       1.1       pk 		MFREE(m, n);
    686       1.1       pk 	}
    687       1.1       pk 	return (tlen);
    688       1.1       pk }
    689       1.1       pk 
    690       1.1       pk /*
    691       1.1       pk  * Pull data off an interface.
    692       1.1       pk  * Len is length of data, with local net header stripped.
    693       1.1       pk  * We copy the data into mbufs.  When full cluster sized units are present
    694       1.1       pk  * we copy into clusters.
    695       1.1       pk  */
    696       1.1       pk struct mbuf *
    697       1.1       pk hme_get(sc, ri, totlen)
    698       1.1       pk 	struct hme_softc *sc;
    699       1.1       pk 	int ri, totlen;
    700       1.1       pk {
    701       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    702       1.1       pk 	struct mbuf *m, *m0, *newm;
    703       1.1       pk 	caddr_t bp;
    704       1.1       pk 	int len;
    705       1.1       pk 
    706       1.1       pk 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    707       1.1       pk 	if (m0 == 0)
    708       1.1       pk 		return (0);
    709       1.1       pk 	m0->m_pkthdr.rcvif = ifp;
    710       1.1       pk 	m0->m_pkthdr.len = totlen;
    711       1.1       pk 	len = MHLEN;
    712       1.1       pk 	m = m0;
    713       1.1       pk 
    714       1.1       pk 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    715       1.1       pk 
    716       1.1       pk 	while (totlen > 0) {
    717       1.1       pk 		if (totlen >= MINCLSIZE) {
    718       1.1       pk 			MCLGET(m, M_DONTWAIT);
    719       1.1       pk 			if ((m->m_flags & M_EXT) == 0)
    720       1.1       pk 				goto bad;
    721       1.1       pk 			len = MCLBYTES;
    722       1.1       pk 		}
    723       1.1       pk 
    724       1.1       pk 		if (m == m0) {
    725       1.1       pk 			caddr_t newdata = (caddr_t)
    726       1.1       pk 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    727       1.1       pk 			    sizeof(struct ether_header);
    728       1.1       pk 			len -= newdata - m->m_data;
    729       1.1       pk 			m->m_data = newdata;
    730       1.1       pk 		}
    731       1.1       pk 
    732       1.1       pk 		m->m_len = len = min(totlen, len);
    733      1.21  thorpej 		memcpy(mtod(m, caddr_t), bp, len);
    734       1.1       pk 		bp += len;
    735       1.1       pk 
    736       1.1       pk 		totlen -= len;
    737       1.1       pk 		if (totlen > 0) {
    738       1.1       pk 			MGET(newm, M_DONTWAIT, MT_DATA);
    739       1.1       pk 			if (newm == 0)
    740       1.1       pk 				goto bad;
    741       1.1       pk 			len = MLEN;
    742       1.1       pk 			m = m->m_next = newm;
    743       1.1       pk 		}
    744       1.1       pk 	}
    745       1.1       pk 
    746       1.1       pk 	return (m0);
    747       1.1       pk 
    748       1.1       pk bad:
    749       1.1       pk 	m_freem(m0);
    750       1.1       pk 	return (0);
    751       1.1       pk }
    752       1.1       pk 
    753       1.1       pk /*
    754       1.1       pk  * Pass a packet to the higher levels.
    755       1.1       pk  */
    756       1.1       pk void
    757       1.1       pk hme_read(sc, ix, len)
    758       1.1       pk 	struct hme_softc *sc;
    759       1.1       pk 	int ix, len;
    760       1.1       pk {
    761       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    762       1.1       pk 	struct mbuf *m;
    763       1.1       pk 
    764       1.1       pk 	if (len <= sizeof(struct ether_header) ||
    765      1.19   bouyer 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    766      1.19   bouyer 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    767      1.19   bouyer 	    ETHERMTU + sizeof(struct ether_header))) {
    768       1.1       pk #ifdef HMEDEBUG
    769       1.1       pk 		printf("%s: invalid packet size %d; dropping\n",
    770       1.1       pk 		    sc->sc_dev.dv_xname, len);
    771       1.1       pk #endif
    772       1.1       pk 		ifp->if_ierrors++;
    773       1.1       pk 		return;
    774       1.1       pk 	}
    775       1.1       pk 
    776       1.1       pk 	/* Pull packet off interface. */
    777       1.1       pk 	m = hme_get(sc, ix, len);
    778       1.1       pk 	if (m == 0) {
    779       1.1       pk 		ifp->if_ierrors++;
    780       1.1       pk 		return;
    781       1.1       pk 	}
    782       1.1       pk 
    783       1.1       pk 	ifp->if_ipackets++;
    784       1.1       pk 
    785       1.1       pk #if NBPFILTER > 0
    786       1.1       pk 	/*
    787       1.1       pk 	 * Check if there's a BPF listener on this interface.
    788       1.1       pk 	 * If so, hand off the raw packet to BPF.
    789       1.1       pk 	 */
    790      1.16  thorpej 	if (ifp->if_bpf)
    791       1.1       pk 		bpf_mtap(ifp->if_bpf, m);
    792       1.1       pk #endif
    793       1.1       pk 
    794       1.1       pk 	/* Pass the packet up. */
    795       1.1       pk 	(*ifp->if_input)(ifp, m);
    796       1.1       pk }
    797       1.1       pk 
    798       1.1       pk void
    799       1.1       pk hme_start(ifp)
    800       1.1       pk 	struct ifnet *ifp;
    801       1.1       pk {
    802       1.1       pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    803       1.1       pk 	caddr_t txd = sc->sc_rb.rb_txd;
    804       1.1       pk 	struct mbuf *m;
    805       1.1       pk 	unsigned int ri, len;
    806       1.1       pk 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    807       1.1       pk 
    808       1.1       pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    809       1.1       pk 		return;
    810       1.1       pk 
    811       1.1       pk 	ri = sc->sc_rb.rb_tdhead;
    812       1.1       pk 
    813       1.1       pk 	for (;;) {
    814      1.20  thorpej 		IFQ_DEQUEUE(&ifp->if_snd, m);
    815       1.1       pk 		if (m == 0)
    816       1.1       pk 			break;
    817       1.1       pk 
    818       1.1       pk #if NBPFILTER > 0
    819       1.1       pk 		/*
    820       1.1       pk 		 * If BPF is listening on this interface, let it see the
    821       1.1       pk 		 * packet before we commit it to the wire.
    822       1.1       pk 		 */
    823       1.1       pk 		if (ifp->if_bpf)
    824       1.1       pk 			bpf_mtap(ifp->if_bpf, m);
    825       1.1       pk #endif
    826       1.1       pk 
    827       1.1       pk 		/*
    828       1.1       pk 		 * Copy the mbuf chain into the transmit buffer.
    829       1.1       pk 		 */
    830       1.1       pk 		len = hme_put(sc, ri, m);
    831       1.1       pk 
    832       1.1       pk 		/*
    833       1.1       pk 		 * Initialize transmit registers and start transmission
    834       1.1       pk 		 */
    835      1.15      eeh 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    836       1.1       pk 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    837       1.1       pk 			HME_XD_ENCODE_TSIZE(len));
    838       1.1       pk 
    839       1.3       pk 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    840       1.1       pk 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    841       1.1       pk 				  HME_ETX_TP_DMAWAKEUP);
    842       1.1       pk 
    843       1.1       pk 		if (++ri == ntbuf)
    844       1.1       pk 			ri = 0;
    845       1.1       pk 
    846       1.1       pk 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    847       1.1       pk 			ifp->if_flags |= IFF_OACTIVE;
    848       1.1       pk 			break;
    849       1.1       pk 		}
    850       1.1       pk 	}
    851       1.1       pk 
    852       1.1       pk 	sc->sc_rb.rb_tdhead = ri;
    853       1.1       pk }
    854       1.1       pk 
    855       1.1       pk /*
    856       1.1       pk  * Transmit interrupt.
    857       1.1       pk  */
    858       1.1       pk int
    859       1.1       pk hme_tint(sc)
    860       1.1       pk 	struct hme_softc *sc;
    861       1.1       pk {
    862       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    863       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    864       1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
    865       1.1       pk 	unsigned int ri, txflags;
    866       1.1       pk 
    867       1.1       pk 	/*
    868       1.1       pk 	 * Unload collision counters
    869       1.1       pk 	 */
    870       1.1       pk 	ifp->if_collisions +=
    871       1.1       pk 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    872       1.1       pk 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
    873       1.1       pk 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    874       1.1       pk 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    875       1.1       pk 
    876       1.1       pk 	/*
    877       1.1       pk 	 * then clear the hardware counters.
    878       1.1       pk 	 */
    879       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    880       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    881       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    882       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    883       1.1       pk 
    884       1.1       pk 	/* Fetch current position in the transmit ring */
    885       1.1       pk 	ri = sc->sc_rb.rb_tdtail;
    886       1.1       pk 
    887       1.1       pk 	for (;;) {
    888       1.1       pk 		if (sc->sc_rb.rb_td_nbusy <= 0)
    889       1.1       pk 			break;
    890       1.1       pk 
    891      1.15      eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
    892       1.1       pk 
    893       1.1       pk 		if (txflags & HME_XD_OWN)
    894       1.1       pk 			break;
    895       1.1       pk 
    896       1.1       pk 		ifp->if_flags &= ~IFF_OACTIVE;
    897       1.1       pk 		ifp->if_opackets++;
    898       1.1       pk 
    899       1.3       pk 		if (++ri == sc->sc_rb.rb_ntbuf)
    900       1.1       pk 			ri = 0;
    901       1.1       pk 
    902       1.1       pk 		--sc->sc_rb.rb_td_nbusy;
    903       1.1       pk 	}
    904       1.1       pk 
    905       1.3       pk 	/* Update ring */
    906       1.1       pk 	sc->sc_rb.rb_tdtail = ri;
    907       1.1       pk 
    908       1.1       pk 	hme_start(ifp);
    909       1.1       pk 
    910       1.1       pk 	if (sc->sc_rb.rb_td_nbusy == 0)
    911       1.1       pk 		ifp->if_timer = 0;
    912       1.1       pk 
    913       1.1       pk 	return (1);
    914       1.1       pk }
    915       1.1       pk 
    916       1.1       pk /*
    917       1.1       pk  * Receive interrupt.
    918       1.1       pk  */
    919       1.1       pk int
    920       1.1       pk hme_rint(sc)
    921       1.1       pk 	struct hme_softc *sc;
    922       1.1       pk {
    923       1.1       pk 	caddr_t xdr = sc->sc_rb.rb_rxd;
    924       1.1       pk 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
    925       1.1       pk 	unsigned int ri, len;
    926       1.1       pk 	u_int32_t flags;
    927       1.1       pk 
    928       1.1       pk 	ri = sc->sc_rb.rb_rdtail;
    929       1.1       pk 
    930       1.1       pk 	/*
    931       1.1       pk 	 * Process all buffers with valid data.
    932       1.1       pk 	 */
    933       1.1       pk 	for (;;) {
    934      1.15      eeh 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
    935       1.1       pk 		if (flags & HME_XD_OWN)
    936       1.1       pk 			break;
    937       1.1       pk 
    938       1.4       pk 		if (flags & HME_XD_OFL) {
    939       1.4       pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
    940       1.4       pk 					sc->sc_dev.dv_xname, ri, flags);
    941       1.4       pk 		} else {
    942       1.4       pk 			len = HME_XD_DECODE_RSIZE(flags);
    943       1.4       pk 			hme_read(sc, ri, len);
    944       1.4       pk 		}
    945       1.1       pk 
    946       1.1       pk 		/* This buffer can be used by the hardware again */
    947      1.15      eeh 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
    948       1.1       pk 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    949       1.1       pk 
    950       1.1       pk 		if (++ri == nrbuf)
    951       1.1       pk 			ri = 0;
    952       1.1       pk 	}
    953       1.1       pk 
    954       1.1       pk 	sc->sc_rb.rb_rdtail = ri;
    955       1.1       pk 
    956       1.1       pk 	return (1);
    957       1.1       pk }
    958       1.1       pk 
    959       1.1       pk int
    960       1.1       pk hme_eint(sc, status)
    961       1.1       pk 	struct hme_softc *sc;
    962       1.1       pk 	u_int status;
    963       1.1       pk {
    964       1.1       pk 	char bits[128];
    965       1.1       pk 
    966       1.1       pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
    967       1.1       pk 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
    968       1.1       pk 		return (1);
    969       1.1       pk 	}
    970       1.1       pk 
    971       1.1       pk 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
    972       1.1       pk 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
    973       1.1       pk 	return (1);
    974       1.1       pk }
    975       1.1       pk 
    976       1.1       pk int
    977       1.1       pk hme_intr(v)
    978       1.1       pk 	void *v;
    979       1.1       pk {
    980       1.1       pk 	struct hme_softc *sc = (struct hme_softc *)v;
    981       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    982       1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    983       1.1       pk 	u_int32_t status;
    984       1.1       pk 	int r = 0;
    985       1.1       pk 
    986       1.1       pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
    987       1.1       pk 
    988       1.1       pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
    989       1.1       pk 		r |= hme_eint(sc, status);
    990       1.1       pk 
    991       1.1       pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
    992       1.1       pk 		r |= hme_tint(sc);
    993       1.1       pk 
    994       1.1       pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
    995       1.1       pk 		r |= hme_rint(sc);
    996       1.1       pk 
    997       1.1       pk 	return (r);
    998       1.1       pk }
    999       1.1       pk 
   1000       1.1       pk 
   1001       1.1       pk void
   1002       1.1       pk hme_watchdog(ifp)
   1003       1.1       pk 	struct ifnet *ifp;
   1004       1.1       pk {
   1005       1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1006       1.1       pk 
   1007       1.1       pk 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1008       1.1       pk 	++ifp->if_oerrors;
   1009       1.1       pk 
   1010       1.1       pk 	hme_reset(sc);
   1011       1.4       pk }
   1012       1.4       pk 
   1013       1.4       pk /*
   1014       1.4       pk  * Initialize the MII Management Interface
   1015       1.4       pk  */
   1016       1.4       pk void
   1017       1.4       pk hme_mifinit(sc)
   1018       1.4       pk 	struct hme_softc *sc;
   1019       1.4       pk {
   1020       1.4       pk 	bus_space_tag_t t = sc->sc_bustag;
   1021       1.4       pk 	bus_space_handle_t mif = sc->sc_mif;
   1022       1.4       pk 	u_int32_t v;
   1023       1.4       pk 
   1024       1.4       pk 	/* Configure the MIF in frame mode */
   1025       1.4       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1026       1.4       pk 	v &= ~HME_MIF_CFG_BBMODE;
   1027       1.4       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1028       1.1       pk }
   1029       1.1       pk 
   1030       1.1       pk /*
   1031       1.1       pk  * MII interface
   1032       1.1       pk  */
   1033       1.1       pk static int
   1034       1.1       pk hme_mii_readreg(self, phy, reg)
   1035       1.1       pk 	struct device *self;
   1036       1.1       pk 	int phy, reg;
   1037       1.1       pk {
   1038       1.1       pk 	struct hme_softc *sc = (void *)self;
   1039       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1040       1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
   1041       1.1       pk 	int n;
   1042       1.1       pk 	u_int32_t v;
   1043       1.1       pk 
   1044       1.5       pk 	/* Select the desired PHY in the MIF configuration register */
   1045       1.5       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1046       1.5       pk 	/* Clear PHY select bit */
   1047       1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1048       1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1049       1.5       pk 		/* Set PHY select bit to get at external device */
   1050       1.5       pk 		v |= HME_MIF_CFG_PHY;
   1051       1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1052       1.5       pk 
   1053       1.1       pk 	/* Construct the frame command */
   1054       1.1       pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1055       1.1       pk 	    HME_MIF_FO_TAMSB |
   1056       1.1       pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1057       1.1       pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1058       1.1       pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1059       1.1       pk 
   1060       1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1061       1.1       pk 	for (n = 0; n < 100; n++) {
   1062       1.2       pk 		DELAY(1);
   1063       1.1       pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1064       1.1       pk 		if (v & HME_MIF_FO_TALSB)
   1065       1.1       pk 			return (v & HME_MIF_FO_DATA);
   1066       1.1       pk 	}
   1067       1.1       pk 
   1068       1.1       pk 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1069       1.1       pk 	return (0);
   1070       1.1       pk }
   1071       1.1       pk 
   1072       1.1       pk static void
   1073       1.1       pk hme_mii_writereg(self, phy, reg, val)
   1074       1.1       pk 	struct device *self;
   1075       1.1       pk 	int phy, reg, val;
   1076       1.1       pk {
   1077       1.1       pk 	struct hme_softc *sc = (void *)self;
   1078       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1079       1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
   1080       1.1       pk 	int n;
   1081       1.1       pk 	u_int32_t v;
   1082       1.1       pk 
   1083       1.5       pk 	/* Select the desired PHY in the MIF configuration register */
   1084       1.5       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1085       1.5       pk 	/* Clear PHY select bit */
   1086       1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1087       1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1088       1.5       pk 		/* Set PHY select bit to get at external device */
   1089       1.5       pk 		v |= HME_MIF_CFG_PHY;
   1090       1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1091       1.5       pk 
   1092       1.1       pk 	/* Construct the frame command */
   1093       1.1       pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1094       1.1       pk 	    HME_MIF_FO_TAMSB				|
   1095       1.1       pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1096       1.1       pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1097       1.1       pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1098       1.1       pk 	    (val & HME_MIF_FO_DATA);
   1099       1.1       pk 
   1100       1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1101       1.1       pk 	for (n = 0; n < 100; n++) {
   1102       1.2       pk 		DELAY(1);
   1103       1.1       pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1104       1.1       pk 		if (v & HME_MIF_FO_TALSB)
   1105       1.1       pk 			return;
   1106       1.1       pk 	}
   1107       1.1       pk 
   1108       1.2       pk 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1109       1.1       pk }
   1110       1.1       pk 
   1111       1.1       pk static void
   1112       1.1       pk hme_mii_statchg(dev)
   1113       1.1       pk 	struct device *dev;
   1114       1.1       pk {
   1115       1.3       pk 	struct hme_softc *sc = (void *)dev;
   1116       1.5       pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1117       1.5       pk 	int phy = sc->sc_phys[instance];
   1118       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1119       1.5       pk 	bus_space_handle_t mif = sc->sc_mif;
   1120       1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
   1121       1.1       pk 	u_int32_t v;
   1122       1.1       pk 
   1123       1.5       pk #ifdef HMEDEBUG
   1124       1.5       pk 	if (sc->sc_debug)
   1125       1.5       pk 		printf("hme_mii_statchg: status change: phy = %d\n", phy);
   1126       1.5       pk #endif
   1127       1.1       pk 
   1128       1.5       pk 	/* Select the current PHY in the MIF configuration register */
   1129       1.5       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1130       1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1131       1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1132       1.5       pk 		v |= HME_MIF_CFG_PHY;
   1133       1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1134       1.1       pk 
   1135       1.5       pk 	/* Set the MAC Full Duplex bit appropriately */
   1136       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1137       1.1       pk 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1138       1.1       pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1139       1.1       pk 	else
   1140       1.1       pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1141       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1142       1.1       pk 
   1143       1.5       pk 	/* If an external transceiver is selected, enable its MII drivers */
   1144       1.5       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1145       1.5       pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1146       1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1147       1.5       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1148       1.5       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1149       1.5       pk }
   1150       1.5       pk 
   1151       1.5       pk int
   1152       1.5       pk hme_mediachange(ifp)
   1153       1.5       pk 	struct ifnet *ifp;
   1154       1.5       pk {
   1155       1.5       pk 	struct hme_softc *sc = ifp->if_softc;
   1156       1.5       pk 
   1157       1.5       pk 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1158       1.5       pk 		return (EINVAL);
   1159       1.5       pk 
   1160       1.5       pk 	return (mii_mediachg(&sc->sc_mii));
   1161       1.1       pk }
   1162       1.1       pk 
   1163       1.1       pk void
   1164       1.1       pk hme_mediastatus(ifp, ifmr)
   1165       1.1       pk 	struct ifnet *ifp;
   1166       1.1       pk 	struct ifmediareq *ifmr;
   1167       1.1       pk {
   1168       1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1169       1.1       pk 
   1170       1.1       pk 	if ((ifp->if_flags & IFF_UP) == 0)
   1171       1.1       pk 		return;
   1172       1.1       pk 
   1173       1.1       pk 	mii_pollstat(&sc->sc_mii);
   1174       1.1       pk 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1175       1.1       pk 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1176       1.1       pk }
   1177       1.1       pk 
   1178       1.1       pk /*
   1179       1.1       pk  * Process an ioctl request.
   1180       1.1       pk  */
   1181       1.1       pk int
   1182       1.1       pk hme_ioctl(ifp, cmd, data)
   1183       1.1       pk 	struct ifnet *ifp;
   1184       1.1       pk 	u_long cmd;
   1185       1.1       pk 	caddr_t data;
   1186       1.1       pk {
   1187       1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1188       1.1       pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1189       1.1       pk 	struct ifreq *ifr = (struct ifreq *)data;
   1190       1.1       pk 	int s, error = 0;
   1191       1.1       pk 
   1192       1.1       pk 	s = splnet();
   1193       1.1       pk 
   1194       1.1       pk 	switch (cmd) {
   1195       1.1       pk 
   1196       1.1       pk 	case SIOCSIFADDR:
   1197       1.1       pk 		ifp->if_flags |= IFF_UP;
   1198       1.1       pk 
   1199       1.1       pk 		switch (ifa->ifa_addr->sa_family) {
   1200       1.1       pk #ifdef INET
   1201       1.1       pk 		case AF_INET:
   1202       1.1       pk 			hme_init(sc);
   1203       1.1       pk 			arp_ifinit(ifp, ifa);
   1204       1.1       pk 			break;
   1205       1.1       pk #endif
   1206       1.1       pk #ifdef NS
   1207       1.1       pk 		case AF_NS:
   1208       1.1       pk 		    {
   1209       1.1       pk 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1210       1.1       pk 
   1211       1.1       pk 			if (ns_nullhost(*ina))
   1212       1.1       pk 				ina->x_host =
   1213       1.1       pk 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1214       1.1       pk 			else {
   1215      1.21  thorpej 				memcpy(LLADDR(ifp->if_sadl),
   1216      1.21  thorpej 				    ina->x_host.c_host, sizeof(sc->sc_enaddr));
   1217       1.1       pk 			}
   1218       1.1       pk 			/* Set new address. */
   1219       1.1       pk 			hme_init(sc);
   1220       1.1       pk 			break;
   1221       1.1       pk 		    }
   1222       1.1       pk #endif
   1223       1.1       pk 		default:
   1224       1.1       pk 			hme_init(sc);
   1225       1.1       pk 			break;
   1226       1.1       pk 		}
   1227       1.1       pk 		break;
   1228       1.1       pk 
   1229       1.1       pk 	case SIOCSIFFLAGS:
   1230       1.1       pk 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1231       1.1       pk 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1232       1.1       pk 			/*
   1233       1.1       pk 			 * If interface is marked down and it is running, then
   1234       1.1       pk 			 * stop it.
   1235       1.1       pk 			 */
   1236       1.1       pk 			hme_stop(sc);
   1237       1.1       pk 			ifp->if_flags &= ~IFF_RUNNING;
   1238       1.1       pk 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1239       1.1       pk 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
   1240       1.1       pk 			/*
   1241       1.1       pk 			 * If interface is marked up and it is stopped, then
   1242       1.1       pk 			 * start it.
   1243       1.1       pk 			 */
   1244       1.1       pk 			hme_init(sc);
   1245       1.1       pk 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1246       1.1       pk 			/*
   1247       1.1       pk 			 * Reset the interface to pick up changes in any other
   1248       1.1       pk 			 * flags that affect hardware registers.
   1249       1.1       pk 			 */
   1250       1.1       pk 			/*hme_stop(sc);*/
   1251       1.1       pk 			hme_init(sc);
   1252       1.1       pk 		}
   1253       1.1       pk #ifdef HMEDEBUG
   1254       1.1       pk 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1255       1.1       pk #endif
   1256       1.1       pk 		break;
   1257       1.1       pk 
   1258       1.1       pk 	case SIOCADDMULTI:
   1259       1.1       pk 	case SIOCDELMULTI:
   1260       1.1       pk 		error = (cmd == SIOCADDMULTI) ?
   1261       1.1       pk 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1262       1.1       pk 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1263       1.1       pk 
   1264       1.1       pk 		if (error == ENETRESET) {
   1265       1.1       pk 			/*
   1266       1.1       pk 			 * Multicast list has changed; set the hardware filter
   1267       1.1       pk 			 * accordingly.
   1268       1.1       pk 			 */
   1269       1.1       pk 			hme_setladrf(sc);
   1270       1.1       pk 			error = 0;
   1271       1.1       pk 		}
   1272       1.1       pk 		break;
   1273       1.1       pk 
   1274       1.1       pk 	case SIOCGIFMEDIA:
   1275       1.1       pk 	case SIOCSIFMEDIA:
   1276       1.1       pk 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1277       1.1       pk 		break;
   1278       1.1       pk 
   1279       1.1       pk 	default:
   1280       1.1       pk 		error = EINVAL;
   1281       1.1       pk 		break;
   1282       1.1       pk 	}
   1283       1.1       pk 
   1284       1.1       pk 	splx(s);
   1285       1.1       pk 	return (error);
   1286       1.1       pk }
   1287       1.1       pk 
   1288       1.1       pk void
   1289       1.1       pk hme_shutdown(arg)
   1290       1.1       pk 	void *arg;
   1291       1.1       pk {
   1292       1.1       pk 
   1293       1.1       pk 	hme_stop((struct hme_softc *)arg);
   1294       1.1       pk }
   1295       1.1       pk 
   1296       1.1       pk /*
   1297       1.1       pk  * Set up the logical address filter.
   1298       1.1       pk  */
   1299       1.1       pk void
   1300       1.1       pk hme_setladrf(sc)
   1301       1.1       pk 	struct hme_softc *sc;
   1302       1.1       pk {
   1303       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1304       1.1       pk 	struct ether_multi *enm;
   1305       1.1       pk 	struct ether_multistep step;
   1306       1.1       pk 	struct ethercom *ec = &sc->sc_ethercom;
   1307       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1308       1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
   1309       1.1       pk 	u_char *cp;
   1310       1.1       pk 	u_int32_t crc;
   1311       1.1       pk 	u_int32_t hash[4];
   1312      1.14       pk 	u_int32_t v;
   1313       1.1       pk 	int len;
   1314       1.1       pk 
   1315      1.14       pk 	/* Clear hash table */
   1316      1.14       pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1317      1.14       pk 
   1318      1.14       pk 	/* Get current RX configuration */
   1319      1.14       pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1320      1.14       pk 
   1321      1.14       pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1322      1.14       pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1323      1.14       pk 		v |= HME_MAC_RXCFG_PMISC;
   1324      1.14       pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1325      1.14       pk 		ifp->if_flags |= IFF_ALLMULTI;
   1326      1.14       pk 		goto chipit;
   1327      1.14       pk 	}
   1328      1.14       pk 
   1329      1.14       pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1330      1.14       pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1331      1.14       pk 	v |= HME_MAC_RXCFG_HENABLE;
   1332      1.14       pk 
   1333       1.1       pk 	/*
   1334       1.1       pk 	 * Set up multicast address filter by passing all multicast addresses
   1335       1.1       pk 	 * through a crc generator, and then using the high order 6 bits as an
   1336       1.1       pk 	 * index into the 64 bit logical address filter.  The high order bit
   1337       1.1       pk 	 * selects the word, while the rest of the bits select the bit within
   1338       1.1       pk 	 * the word.
   1339       1.1       pk 	 */
   1340       1.1       pk 
   1341       1.1       pk 	ETHER_FIRST_MULTI(step, ec, enm);
   1342       1.1       pk 	while (enm != NULL) {
   1343       1.1       pk 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1344       1.1       pk 			/*
   1345       1.1       pk 			 * We must listen to a range of multicast addresses.
   1346       1.1       pk 			 * For now, just accept all multicasts, rather than
   1347       1.1       pk 			 * trying to set only those filter bits needed to match
   1348       1.1       pk 			 * the range.  (At this time, the only use of address
   1349       1.1       pk 			 * ranges is for IP multicast routing, for which the
   1350       1.1       pk 			 * range is big enough to require all bits set.)
   1351       1.1       pk 			 */
   1352      1.14       pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1353      1.14       pk 			ifp->if_flags |= IFF_ALLMULTI;
   1354      1.14       pk 			goto chipit;
   1355       1.1       pk 		}
   1356       1.1       pk 
   1357       1.1       pk 		cp = enm->enm_addrlo;
   1358       1.1       pk 		crc = 0xffffffff;
   1359       1.1       pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1360       1.1       pk 			int octet = *cp++;
   1361       1.1       pk 			int i;
   1362       1.1       pk 
   1363       1.1       pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1364       1.1       pk 			for (i = 0; i < 8; i++) {
   1365       1.1       pk 				if ((crc & 1) ^ (octet & 1)) {
   1366       1.1       pk 					crc >>= 1;
   1367       1.1       pk 					crc ^= MC_POLY_LE;
   1368       1.1       pk 				} else {
   1369       1.1       pk 					crc >>= 1;
   1370       1.1       pk 				}
   1371       1.1       pk 				octet >>= 1;
   1372       1.1       pk 			}
   1373       1.1       pk 		}
   1374       1.1       pk 		/* Just want the 6 most significant bits. */
   1375       1.1       pk 		crc >>= 26;
   1376       1.1       pk 
   1377       1.1       pk 		/* Set the corresponding bit in the filter. */
   1378       1.1       pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1379       1.1       pk 
   1380       1.1       pk 		ETHER_NEXT_MULTI(step, enm);
   1381       1.1       pk 	}
   1382       1.1       pk 
   1383      1.14       pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1384      1.14       pk 
   1385      1.14       pk chipit:
   1386      1.14       pk 	/* Now load the hash table into the chip */
   1387       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1388       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1389       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1390       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1391      1.14       pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1392       1.1       pk }
   1393       1.1       pk 
   1394       1.1       pk /*
   1395       1.1       pk  * Routines for accessing the transmit and receive buffers.
   1396       1.1       pk  * The various CPU and adapter configurations supported by this
   1397       1.1       pk  * driver require three different access methods for buffers
   1398       1.1       pk  * and descriptors:
   1399       1.1       pk  *	(1) contig (contiguous data; no padding),
   1400       1.1       pk  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1401       1.1       pk  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1402       1.1       pk  */
   1403       1.1       pk 
   1404       1.1       pk #if 0
   1405       1.1       pk /*
   1406       1.1       pk  * contig: contiguous data with no padding.
   1407       1.1       pk  *
   1408       1.1       pk  * Buffers may have any alignment.
   1409       1.1       pk  */
   1410       1.1       pk 
   1411       1.1       pk void
   1412       1.1       pk hme_copytobuf_contig(sc, from, ri, len)
   1413       1.1       pk 	struct hme_softc *sc;
   1414       1.1       pk 	void *from;
   1415       1.1       pk 	int ri, len;
   1416       1.1       pk {
   1417       1.1       pk 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1418       1.1       pk 
   1419       1.1       pk 	/*
   1420      1.21  thorpej 	 * Just call memcpy() to do the work.
   1421       1.1       pk 	 */
   1422      1.21  thorpej 	memcpy(buf, from, len);
   1423       1.1       pk }
   1424       1.1       pk 
   1425       1.1       pk void
   1426       1.1       pk hme_copyfrombuf_contig(sc, to, boff, len)
   1427       1.1       pk 	struct hme_softc *sc;
   1428       1.1       pk 	void *to;
   1429       1.1       pk 	int boff, len;
   1430       1.1       pk {
   1431       1.1       pk 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1432       1.1       pk 
   1433       1.1       pk 	/*
   1434      1.21  thorpej 	 * Just call memcpy() to do the work.
   1435       1.1       pk 	 */
   1436      1.21  thorpej 	memcpy(to, buf, len);
   1437       1.1       pk }
   1438       1.1       pk #endif
   1439