hme.c revision 1.27 1 1.27 tron /* $NetBSD: hme.c,v 1.27 2001/11/26 06:51:12 tron Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk * 3. All advertising materials mentioning features or use of this software
19 1.1 pk * must display the following acknowledgement:
20 1.1 pk * This product includes software developed by the NetBSD
21 1.1 pk * Foundation, Inc. and its contributors.
22 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 pk * contributors may be used to endorse or promote products derived
24 1.1 pk * from this software without specific prior written permission.
25 1.1 pk *
26 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
37 1.1 pk */
38 1.1 pk
39 1.1 pk /*
40 1.1 pk * HME Ethernet module driver.
41 1.1 pk */
42 1.25 lukem
43 1.25 lukem #include <sys/cdefs.h>
44 1.27 tron __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.27 2001/11/26 06:51:12 tron Exp $");
45 1.1 pk
46 1.26 tron #undef HMEDEBUG
47 1.1 pk
48 1.1 pk #include "opt_inet.h"
49 1.1 pk #include "opt_ns.h"
50 1.1 pk #include "bpfilter.h"
51 1.1 pk #include "rnd.h"
52 1.1 pk
53 1.1 pk #include <sys/param.h>
54 1.1 pk #include <sys/systm.h>
55 1.5 pk #include <sys/kernel.h>
56 1.1 pk #include <sys/mbuf.h>
57 1.1 pk #include <sys/syslog.h>
58 1.1 pk #include <sys/socket.h>
59 1.1 pk #include <sys/device.h>
60 1.1 pk #include <sys/malloc.h>
61 1.1 pk #include <sys/ioctl.h>
62 1.1 pk #include <sys/errno.h>
63 1.1 pk #if NRND > 0
64 1.1 pk #include <sys/rnd.h>
65 1.1 pk #endif
66 1.1 pk
67 1.1 pk #include <net/if.h>
68 1.1 pk #include <net/if_dl.h>
69 1.1 pk #include <net/if_ether.h>
70 1.1 pk #include <net/if_media.h>
71 1.1 pk
72 1.1 pk #ifdef INET
73 1.1 pk #include <netinet/in.h>
74 1.1 pk #include <netinet/if_inarp.h>
75 1.1 pk #include <netinet/in_systm.h>
76 1.1 pk #include <netinet/in_var.h>
77 1.1 pk #include <netinet/ip.h>
78 1.1 pk #endif
79 1.1 pk
80 1.1 pk #ifdef NS
81 1.1 pk #include <netns/ns.h>
82 1.1 pk #include <netns/ns_if.h>
83 1.1 pk #endif
84 1.1 pk
85 1.1 pk #if NBPFILTER > 0
86 1.1 pk #include <net/bpf.h>
87 1.1 pk #include <net/bpfdesc.h>
88 1.1 pk #endif
89 1.1 pk
90 1.1 pk #include <dev/mii/mii.h>
91 1.1 pk #include <dev/mii/miivar.h>
92 1.1 pk
93 1.1 pk #include <machine/bus.h>
94 1.1 pk
95 1.1 pk #include <dev/ic/hmereg.h>
96 1.1 pk #include <dev/ic/hmevar.h>
97 1.1 pk
98 1.26 tron #define HME_RX_OFFSET 2
99 1.26 tron
100 1.1 pk void hme_start __P((struct ifnet *));
101 1.1 pk void hme_stop __P((struct hme_softc *));
102 1.1 pk int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
103 1.5 pk void hme_tick __P((void *));
104 1.1 pk void hme_watchdog __P((struct ifnet *));
105 1.1 pk void hme_shutdown __P((void *));
106 1.1 pk void hme_init __P((struct hme_softc *));
107 1.1 pk void hme_meminit __P((struct hme_softc *));
108 1.4 pk void hme_mifinit __P((struct hme_softc *));
109 1.1 pk void hme_reset __P((struct hme_softc *));
110 1.1 pk void hme_setladrf __P((struct hme_softc *));
111 1.26 tron int hme_newbuf __P((struct hme_softc *, struct hme_sxd *, int));
112 1.26 tron int hme_encap __P((struct hme_softc *, struct mbuf *, int *));
113 1.1 pk
114 1.1 pk /* MII methods & callbacks */
115 1.1 pk static int hme_mii_readreg __P((struct device *, int, int));
116 1.1 pk static void hme_mii_writereg __P((struct device *, int, int, int));
117 1.1 pk static void hme_mii_statchg __P((struct device *));
118 1.1 pk
119 1.1 pk int hme_mediachange __P((struct ifnet *));
120 1.1 pk void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
121 1.1 pk
122 1.1 pk int hme_eint __P((struct hme_softc *, u_int));
123 1.1 pk int hme_rint __P((struct hme_softc *));
124 1.1 pk int hme_tint __P((struct hme_softc *));
125 1.1 pk
126 1.1 pk void
127 1.1 pk hme_config(sc)
128 1.1 pk struct hme_softc *sc;
129 1.1 pk {
130 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
131 1.1 pk struct mii_data *mii = &sc->sc_mii;
132 1.5 pk struct mii_softc *child;
133 1.11 pk bus_dma_tag_t dmatag = sc->sc_dmatag;
134 1.1 pk bus_dma_segment_t seg;
135 1.1 pk bus_size_t size;
136 1.26 tron int rseg, error, i;
137 1.1 pk
138 1.1 pk /*
139 1.1 pk * HME common initialization.
140 1.1 pk *
141 1.1 pk * hme_softc fields that must be initialized by the front-end:
142 1.1 pk *
143 1.1 pk * the bus tag:
144 1.1 pk * sc_bustag
145 1.1 pk *
146 1.1 pk * the dma bus tag:
147 1.1 pk * sc_dmatag
148 1.1 pk *
149 1.1 pk * the bus handles:
150 1.1 pk * sc_seb (Shared Ethernet Block registers)
151 1.1 pk * sc_erx (Receiver Unit registers)
152 1.1 pk * sc_etx (Transmitter Unit registers)
153 1.1 pk * sc_mac (MAC registers)
154 1.1 pk * sc_mif (Managment Interface registers)
155 1.1 pk *
156 1.1 pk * the maximum bus burst size:
157 1.1 pk * sc_burst
158 1.1 pk *
159 1.1 pk * the local Ethernet address:
160 1.1 pk * sc_enaddr
161 1.1 pk *
162 1.1 pk */
163 1.1 pk
164 1.1 pk /* Make sure the chip is stopped. */
165 1.1 pk hme_stop(sc);
166 1.1 pk
167 1.1 pk
168 1.26 tron for (i = 0; i < HME_TX_RING_SIZE; i++) {
169 1.26 tron if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
170 1.26 tron MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
171 1.26 tron &sc->sc_txd[i].sd_map) != 0) {
172 1.26 tron sc->sc_txd[i].sd_map = NULL;
173 1.26 tron goto fail;
174 1.26 tron }
175 1.26 tron }
176 1.26 tron for (i = 0; i < HME_RX_RING_SIZE; i++) {
177 1.26 tron if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
178 1.26 tron MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
179 1.26 tron &sc->sc_rxd[i].sd_map) != 0) {
180 1.26 tron sc->sc_rxd[i].sd_map = NULL;
181 1.26 tron goto fail;
182 1.26 tron }
183 1.26 tron }
184 1.26 tron if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES, 0,
185 1.26 tron BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->sc_rxmap_spare) != 0) {
186 1.26 tron sc->sc_rxmap_spare = NULL;
187 1.26 tron goto fail;
188 1.26 tron }
189 1.1 pk
190 1.1 pk /*
191 1.1 pk * Allocate DMA capable memory
192 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
193 1.1 pk * take this into account when calculating the size. Note that
194 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
195 1.26 tron * so we allocate that much regardless of the number of descriptors.
196 1.1 pk */
197 1.26 tron size = (HME_XD_SIZE * HME_RX_RING_MAX) + /* RX descriptors */
198 1.26 tron (HME_XD_SIZE * HME_TX_RING_MAX); /* TX descriptors */
199 1.11 pk
200 1.11 pk /* Allocate DMA buffer */
201 1.26 tron if ((error = bus_dmamem_alloc(dmatag, size, 2048, 0, &seg, 1, &rseg,
202 1.26 tron BUS_DMA_NOWAIT)) != 0) {
203 1.1 pk printf("%s: DMA buffer alloc error %d\n",
204 1.26 tron sc->sc_dev.dv_xname, error);
205 1.10 mrg return;
206 1.1 pk }
207 1.1 pk
208 1.11 pk /* Map DMA memory in CPU addressable space */
209 1.11 pk if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
210 1.26 tron &sc->sc_rb.rb_membase, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
211 1.1 pk printf("%s: DMA buffer map error %d\n",
212 1.26 tron sc->sc_dev.dv_xname, error);
213 1.11 pk bus_dmamap_unload(dmatag, sc->sc_dmamap);
214 1.11 pk bus_dmamem_free(dmatag, &seg, rseg);
215 1.1 pk return;
216 1.1 pk }
217 1.13 mrg
218 1.13 mrg if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
219 1.26 tron BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
220 1.13 mrg printf("%s: DMA map create error %d\n",
221 1.26 tron sc->sc_dev.dv_xname, error);
222 1.13 mrg return;
223 1.13 mrg }
224 1.13 mrg
225 1.13 mrg /* Load the buffer */
226 1.13 mrg if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
227 1.17 mrg sc->sc_rb.rb_membase, size, NULL,
228 1.17 mrg BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
229 1.13 mrg printf("%s: DMA buffer map load error %d\n",
230 1.26 tron sc->sc_dev.dv_xname, error);
231 1.13 mrg bus_dmamem_free(dmatag, &seg, rseg);
232 1.13 mrg return;
233 1.13 mrg }
234 1.13 mrg sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
235 1.1 pk
236 1.22 thorpej printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
237 1.22 thorpej ether_sprintf(sc->sc_enaddr));
238 1.2 pk
239 1.1 pk /* Initialize ifnet structure. */
240 1.21 thorpej strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
241 1.1 pk ifp->if_softc = sc;
242 1.1 pk ifp->if_start = hme_start;
243 1.1 pk ifp->if_ioctl = hme_ioctl;
244 1.1 pk ifp->if_watchdog = hme_watchdog;
245 1.1 pk ifp->if_flags =
246 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
247 1.20 thorpej IFQ_SET_READY(&ifp->if_snd);
248 1.1 pk
249 1.1 pk /* Initialize ifmedia structures and MII info */
250 1.1 pk mii->mii_ifp = ifp;
251 1.1 pk mii->mii_readreg = hme_mii_readreg;
252 1.1 pk mii->mii_writereg = hme_mii_writereg;
253 1.1 pk mii->mii_statchg = hme_mii_statchg;
254 1.1 pk
255 1.1 pk ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
256 1.1 pk
257 1.4 pk hme_mifinit(sc);
258 1.4 pk
259 1.6 thorpej mii_attach(&sc->sc_dev, mii, 0xffffffff,
260 1.26 tron MII_PHY_ANY, MII_OFFSET_ANY, 0);
261 1.2 pk
262 1.5 pk child = LIST_FIRST(&mii->mii_phys);
263 1.5 pk if (child == NULL) {
264 1.1 pk /* No PHY attached */
265 1.1 pk ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
266 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
267 1.1 pk } else {
268 1.1 pk /*
269 1.5 pk * Walk along the list of attached MII devices and
270 1.5 pk * establish an `MII instance' to `phy number'
271 1.5 pk * mapping. We'll use this mapping in media change
272 1.5 pk * requests to determine which phy to use to program
273 1.5 pk * the MIF configuration register.
274 1.5 pk */
275 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
276 1.5 pk /*
277 1.5 pk * Note: we support just two PHYs: the built-in
278 1.5 pk * internal device and an external on the MII
279 1.5 pk * connector.
280 1.5 pk */
281 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) {
282 1.5 pk printf("%s: cannot accomodate MII device %s"
283 1.26 tron " at phy %d, instance %d\n",
284 1.26 tron sc->sc_dev.dv_xname,
285 1.26 tron child->mii_dev.dv_xname,
286 1.26 tron child->mii_phy, child->mii_inst);
287 1.5 pk continue;
288 1.5 pk }
289 1.5 pk
290 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy;
291 1.5 pk }
292 1.5 pk
293 1.5 pk /*
294 1.1 pk * XXX - we can really do the following ONLY if the
295 1.1 pk * phy indeed has the auto negotiation capability!!
296 1.1 pk */
297 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
298 1.1 pk }
299 1.27 tron
300 1.27 tron /* We can support 802.1Q VLAN-sized frames. */
301 1.27 tron sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
302 1.1 pk
303 1.1 pk /* Attach the interface. */
304 1.1 pk if_attach(ifp);
305 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
306 1.1 pk
307 1.1 pk sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
308 1.1 pk if (sc->sc_sh == NULL)
309 1.1 pk panic("hme_config: can't establish shutdownhook");
310 1.1 pk
311 1.1 pk #if NRND > 0
312 1.1 pk rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
313 1.1 pk RND_TYPE_NET, 0);
314 1.1 pk #endif
315 1.5 pk
316 1.9 thorpej callout_init(&sc->sc_tick_ch);
317 1.26 tron return;
318 1.26 tron
319 1.26 tron fail:
320 1.26 tron if (sc->sc_rxmap_spare != NULL)
321 1.26 tron bus_dmamap_destroy(sc->sc_dmatag, sc->sc_rxmap_spare);
322 1.26 tron for (i = 0; i < HME_TX_RING_SIZE; i++)
323 1.26 tron if (sc->sc_txd[i].sd_map != NULL)
324 1.26 tron bus_dmamap_destroy(sc->sc_dmatag, sc->sc_txd[i].sd_map);
325 1.26 tron for (i = 0; i < HME_RX_RING_SIZE; i++)
326 1.26 tron if (sc->sc_rxd[i].sd_map != NULL)
327 1.26 tron bus_dmamap_destroy(sc->sc_dmatag, sc->sc_rxd[i].sd_map);
328 1.5 pk }
329 1.5 pk
330 1.5 pk void
331 1.5 pk hme_tick(arg)
332 1.5 pk void *arg;
333 1.5 pk {
334 1.5 pk struct hme_softc *sc = arg;
335 1.26 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
336 1.26 tron bus_space_tag_t t = sc->sc_bustag;
337 1.26 tron bus_space_handle_t mac = sc->sc_mac;
338 1.5 pk int s;
339 1.5 pk
340 1.5 pk s = splnet();
341 1.26 tron /*
342 1.26 tron * Unload collision counters
343 1.26 tron */
344 1.26 tron ifp->if_collisions +=
345 1.26 tron bus_space_read_4(t, mac, HME_MACI_NCCNT) +
346 1.26 tron bus_space_read_4(t, mac, HME_MACI_FCCNT) +
347 1.26 tron bus_space_read_4(t, mac, HME_MACI_EXCNT) +
348 1.26 tron bus_space_read_4(t, mac, HME_MACI_LTCNT);
349 1.26 tron
350 1.26 tron /*
351 1.26 tron * then clear the hardware counters.
352 1.26 tron */
353 1.26 tron bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
354 1.26 tron bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
355 1.26 tron bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
356 1.26 tron bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
357 1.26 tron
358 1.5 pk mii_tick(&sc->sc_mii);
359 1.5 pk splx(s);
360 1.5 pk
361 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
362 1.1 pk }
363 1.1 pk
364 1.1 pk void
365 1.1 pk hme_reset(sc)
366 1.1 pk struct hme_softc *sc;
367 1.1 pk {
368 1.1 pk int s;
369 1.1 pk
370 1.1 pk s = splnet();
371 1.1 pk hme_init(sc);
372 1.1 pk splx(s);
373 1.1 pk }
374 1.1 pk
375 1.1 pk void
376 1.1 pk hme_stop(sc)
377 1.1 pk struct hme_softc *sc;
378 1.1 pk {
379 1.1 pk bus_space_tag_t t = sc->sc_bustag;
380 1.1 pk bus_space_handle_t seb = sc->sc_seb;
381 1.1 pk int n;
382 1.1 pk
383 1.9 thorpej callout_stop(&sc->sc_tick_ch);
384 1.5 pk mii_down(&sc->sc_mii);
385 1.5 pk
386 1.1 pk /* Reset transmitter and receiver */
387 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
388 1.26 tron (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
389 1.1 pk
390 1.1 pk for (n = 0; n < 20; n++) {
391 1.1 pk u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
392 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
393 1.1 pk return;
394 1.1 pk DELAY(20);
395 1.1 pk }
396 1.1 pk
397 1.26 tron for (n = 0; n < HME_TX_RING_SIZE; n++) {
398 1.26 tron if (sc->sc_txd[n].sd_loaded) {
399 1.26 tron bus_dmamap_sync(sc->sc_dmatag, sc->sc_txd[n].sd_map,
400 1.26 tron 0, sc->sc_txd[n].sd_map->dm_mapsize,
401 1.26 tron BUS_DMASYNC_POSTWRITE);
402 1.26 tron bus_dmamap_unload(sc->sc_dmatag, sc->sc_txd[n].sd_map);
403 1.26 tron sc->sc_txd[n].sd_loaded = 0;
404 1.26 tron }
405 1.26 tron if (sc->sc_txd[n].sd_mbuf != NULL) {
406 1.26 tron m_freem(sc->sc_txd[n].sd_mbuf);
407 1.26 tron sc->sc_txd[n].sd_mbuf = NULL;
408 1.26 tron }
409 1.26 tron }
410 1.26 tron
411 1.1 pk printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
412 1.1 pk }
413 1.1 pk
414 1.1 pk void
415 1.1 pk hme_meminit(sc)
416 1.1 pk struct hme_softc *sc;
417 1.1 pk {
418 1.1 pk bus_addr_t dma;
419 1.1 pk caddr_t p;
420 1.26 tron unsigned int i;
421 1.1 pk struct hme_ring *hr = &sc->sc_rb;
422 1.1 pk
423 1.1 pk p = hr->rb_membase;
424 1.1 pk dma = hr->rb_dmabase;
425 1.1 pk
426 1.1 pk /*
427 1.1 pk * Allocate transmit descriptors
428 1.1 pk */
429 1.1 pk hr->rb_txd = p;
430 1.1 pk hr->rb_txddma = dma;
431 1.26 tron p += HME_TX_RING_SIZE * HME_XD_SIZE;
432 1.26 tron dma += HME_TX_RING_SIZE * HME_XD_SIZE;
433 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/
434 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
435 1.4 pk p = (caddr_t)roundup((u_long)p, 2048);
436 1.1 pk
437 1.1 pk /*
438 1.1 pk * Allocate receive descriptors
439 1.1 pk */
440 1.1 pk hr->rb_rxd = p;
441 1.1 pk hr->rb_rxddma = dma;
442 1.26 tron p += HME_RX_RING_SIZE * HME_XD_SIZE;
443 1.26 tron dma += HME_RX_RING_SIZE * HME_XD_SIZE;
444 1.4 pk /* Again move forward to the next 2048 byte boundary.*/
445 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
446 1.4 pk p = (caddr_t)roundup((u_long)p, 2048);
447 1.1 pk
448 1.1 pk /*
449 1.26 tron * Initialize transmit descriptors
450 1.1 pk */
451 1.26 tron for (i = 0; i < HME_TX_RING_SIZE; i++) {
452 1.26 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, 0);
453 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
454 1.26 tron sc->sc_txd[i].sd_mbuf = NULL;
455 1.1 pk }
456 1.1 pk
457 1.1 pk /*
458 1.26 tron * Initialize receive descriptors
459 1.1 pk */
460 1.26 tron for (i = 0; i < HME_RX_RING_SIZE; i++) {
461 1.26 tron if (hme_newbuf(sc, &sc->sc_rxd[i], 1)) {
462 1.26 tron printf("%s: rx allocation failed\n",
463 1.26 tron sc->sc_dev.dv_xname);
464 1.26 tron break;
465 1.26 tron }
466 1.26 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i,
467 1.26 tron sc->sc_rxd[i].sd_map->dm_segs[0].ds_addr);
468 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
469 1.26 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_RX_PKTSIZE));
470 1.1 pk }
471 1.1 pk
472 1.26 tron sc->sc_tx_prod = sc->sc_tx_cons = sc->sc_tx_cnt = 0;
473 1.26 tron sc->sc_last_rd = 0;
474 1.1 pk }
475 1.1 pk
476 1.1 pk /*
477 1.1 pk * Initialization of interface; set up initialization block
478 1.1 pk * and transmit/receive descriptor rings.
479 1.1 pk */
480 1.1 pk void
481 1.1 pk hme_init(sc)
482 1.1 pk struct hme_softc *sc;
483 1.1 pk {
484 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
485 1.1 pk bus_space_tag_t t = sc->sc_bustag;
486 1.1 pk bus_space_handle_t seb = sc->sc_seb;
487 1.1 pk bus_space_handle_t etx = sc->sc_etx;
488 1.1 pk bus_space_handle_t erx = sc->sc_erx;
489 1.1 pk bus_space_handle_t mac = sc->sc_mac;
490 1.1 pk bus_space_handle_t mif = sc->sc_mif;
491 1.1 pk u_int8_t *ea;
492 1.1 pk u_int32_t v;
493 1.1 pk
494 1.1 pk /*
495 1.1 pk * Initialization sequence. The numbered steps below correspond
496 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
497 1.1 pk * Channel Engine manual (part of the PCIO manual).
498 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
499 1.1 pk */
500 1.1 pk
501 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
502 1.1 pk hme_stop(sc);
503 1.1 pk
504 1.4 pk /* Re-initialize the MIF */
505 1.4 pk hme_mifinit(sc);
506 1.4 pk
507 1.1 pk /* Call MI reset function if any */
508 1.1 pk if (sc->sc_hwreset)
509 1.1 pk (*sc->sc_hwreset)(sc);
510 1.1 pk
511 1.1 pk #if 0
512 1.1 pk /* Mask all MIF interrupts, just in case */
513 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
514 1.1 pk #endif
515 1.1 pk
516 1.1 pk /* step 3. Setup data structures in host memory */
517 1.1 pk hme_meminit(sc);
518 1.1 pk
519 1.1 pk /* step 4. TX MAC registers & counters */
520 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
521 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
522 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
523 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
524 1.26 tron bus_space_write_4(t, mac, HME_MACI_TXSIZE, HME_MTU);
525 1.1 pk
526 1.1 pk /* Load station MAC address */
527 1.1 pk ea = sc->sc_enaddr;
528 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
529 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
530 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
531 1.1 pk
532 1.1 pk /*
533 1.1 pk * Init seed for backoff
534 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
535 1.1 pk */
536 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
537 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
538 1.1 pk
539 1.1 pk
540 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
541 1.1 pk
542 1.1 pk
543 1.1 pk /* step 5. RX MAC registers & counters */
544 1.1 pk hme_setladrf(sc);
545 1.1 pk
546 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
547 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
548 1.26 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, HME_TX_RING_SIZE);
549 1.1 pk
550 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
551 1.26 tron bus_space_write_4(t, mac, HME_MACI_RXSIZE, HME_MTU);
552 1.1 pk
553 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
554 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
555 1.26 tron ~(HME_SEB_STAT_HOSTTOTX | HME_SEB_STAT_RXTOHOST |
556 1.26 tron HME_SEB_STAT_TXALL | HME_SEB_STAT_TXPERR |
557 1.26 tron HME_SEB_STAT_RCNTEXP | HME_SEB_STAT_ALL_ERRORS));
558 1.1 pk
559 1.1 pk switch (sc->sc_burst) {
560 1.1 pk default:
561 1.1 pk v = 0;
562 1.1 pk break;
563 1.1 pk case 16:
564 1.1 pk v = HME_SEB_CFG_BURST16;
565 1.1 pk break;
566 1.1 pk case 32:
567 1.1 pk v = HME_SEB_CFG_BURST32;
568 1.1 pk break;
569 1.1 pk case 64:
570 1.1 pk v = HME_SEB_CFG_BURST64;
571 1.1 pk break;
572 1.1 pk }
573 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
574 1.1 pk
575 1.1 pk /* step 9. ETX Configuration: use mostly default values */
576 1.1 pk
577 1.1 pk /* Enable DMA */
578 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
579 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
580 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
581 1.1 pk
582 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
583 1.26 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, HME_TX_RING_SIZE / 16 - 1);
584 1.1 pk
585 1.3 pk /* step 10. ERX Configuration */
586 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
587 1.26 tron v &= ~HME_ERX_CFG_RINGSIZE256;
588 1.26 tron #if HME_RX_RING_SIZE == 32
589 1.26 tron v |= HME_ERX_CFG_RINGSIZE32;
590 1.26 tron #elif HME_RX_RING_SIZE == 64
591 1.26 tron v |= HME_ERX_CFG_RINGSIZE64;
592 1.26 tron #elif HME_RX_RING_SIZE == 128
593 1.26 tron v |= HME_ERX_CFG_RINGSIZE128;
594 1.26 tron #elif HME_RX_RING_SIZE == 256
595 1.26 tron v |= HME_ERX_CFG_RINGSIZE256;
596 1.26 tron #else
597 1.26 tron # error "RX ring size must be 32, 64, 128, or 256"
598 1.26 tron #endif
599 1.3 pk /* Enable DMA */
600 1.26 tron v |= HME_ERX_CFG_DMAENABLE | (HME_RX_OFFSET << 3);
601 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
602 1.1 pk
603 1.1 pk /* step 11. XIF Configuration */
604 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
605 1.1 pk v |= HME_MAC_XIF_OE;
606 1.4 pk /* If an external transceiver is connected, enable its MII drivers */
607 1.2 pk if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
608 1.4 pk v |= HME_MAC_XIF_MIIENABLE;
609 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
610 1.1 pk
611 1.2 pk
612 1.1 pk /* step 12. RX_MAC Configuration Register */
613 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
614 1.1 pk v |= HME_MAC_RXCFG_ENABLE;
615 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
616 1.1 pk
617 1.1 pk /* step 13. TX_MAC Configuration Register */
618 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
619 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
620 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
621 1.1 pk
622 1.1 pk /* step 14. Issue Transmit Pending command */
623 1.1 pk
624 1.1 pk /* Call MI initialization function if any */
625 1.1 pk if (sc->sc_hwinit)
626 1.1 pk (*sc->sc_hwinit)(sc);
627 1.9 thorpej
628 1.9 thorpej /* Start the one second timer. */
629 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
630 1.1 pk
631 1.1 pk ifp->if_flags |= IFF_RUNNING;
632 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
633 1.1 pk ifp->if_timer = 0;
634 1.1 pk hme_start(ifp);
635 1.1 pk }
636 1.1 pk
637 1.1 pk void
638 1.1 pk hme_start(ifp)
639 1.1 pk struct ifnet *ifp;
640 1.1 pk {
641 1.1 pk struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
642 1.1 pk struct mbuf *m;
643 1.26 tron int bix;
644 1.1 pk
645 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
646 1.1 pk return;
647 1.1 pk
648 1.26 tron bix = sc->sc_tx_prod;
649 1.26 tron while (sc->sc_txd[bix].sd_mbuf == NULL) {
650 1.26 tron IFQ_POLL(&ifp->if_snd, m);
651 1.26 tron if (m == NULL)
652 1.1 pk break;
653 1.1 pk
654 1.1 pk #if NBPFILTER > 0
655 1.1 pk /*
656 1.1 pk * If BPF is listening on this interface, let it see the
657 1.1 pk * packet before we commit it to the wire.
658 1.1 pk */
659 1.1 pk if (ifp->if_bpf)
660 1.1 pk bpf_mtap(ifp->if_bpf, m);
661 1.1 pk #endif
662 1.1 pk
663 1.26 tron if (hme_encap(sc, m, &bix)) {
664 1.26 tron ifp->if_flags |= IFF_OACTIVE;
665 1.26 tron break;
666 1.26 tron }
667 1.1 pk
668 1.26 tron IFQ_DEQUEUE(&ifp->if_snd, m);
669 1.1 pk
670 1.1 pk bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
671 1.26 tron HME_ETX_TP_DMAWAKEUP);
672 1.1 pk }
673 1.1 pk
674 1.26 tron sc->sc_tx_prod = bix;
675 1.26 tron ifp->if_timer = 5;
676 1.1 pk }
677 1.1 pk
678 1.1 pk /*
679 1.1 pk * Transmit interrupt.
680 1.1 pk */
681 1.1 pk int
682 1.1 pk hme_tint(sc)
683 1.1 pk struct hme_softc *sc;
684 1.1 pk {
685 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
686 1.1 pk unsigned int ri, txflags;
687 1.26 tron struct hme_sxd *sd;
688 1.1 pk
689 1.1 pk /* Fetch current position in the transmit ring */
690 1.26 tron ri = sc->sc_tx_cons;
691 1.26 tron sd = &sc->sc_txd[ri];
692 1.1 pk
693 1.1 pk for (;;) {
694 1.26 tron if (sc->sc_tx_cnt <= 0)
695 1.1 pk break;
696 1.1 pk
697 1.15 eeh txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
698 1.1 pk
699 1.1 pk if (txflags & HME_XD_OWN)
700 1.1 pk break;
701 1.1 pk
702 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
703 1.26 tron if (txflags & HME_XD_EOP)
704 1.26 tron ifp->if_opackets++;
705 1.1 pk
706 1.26 tron bus_dmamap_sync(sc->sc_dmatag, sd->sd_map,
707 1.26 tron 0, sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
708 1.26 tron bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
709 1.26 tron sd->sd_loaded = 0;
710 1.26 tron
711 1.26 tron if (sd->sd_mbuf != NULL) {
712 1.26 tron m_freem(sd->sd_mbuf);
713 1.26 tron sd->sd_mbuf = NULL;
714 1.26 tron }
715 1.26 tron
716 1.26 tron if (++ri == HME_TX_RING_SIZE) {
717 1.1 pk ri = 0;
718 1.26 tron sd = sc->sc_txd;
719 1.26 tron } else
720 1.26 tron sd++;
721 1.1 pk
722 1.26 tron --sc->sc_tx_cnt;
723 1.1 pk }
724 1.1 pk
725 1.3 pk /* Update ring */
726 1.26 tron sc->sc_tx_cons = ri;
727 1.1 pk
728 1.1 pk hme_start(ifp);
729 1.1 pk
730 1.26 tron if (sc->sc_tx_cnt == 0)
731 1.1 pk ifp->if_timer = 0;
732 1.1 pk
733 1.1 pk return (1);
734 1.1 pk }
735 1.1 pk
736 1.1 pk /*
737 1.1 pk * Receive interrupt.
738 1.1 pk */
739 1.1 pk int
740 1.1 pk hme_rint(sc)
741 1.1 pk struct hme_softc *sc;
742 1.1 pk {
743 1.26 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
744 1.26 tron struct mbuf *m;
745 1.26 tron struct hme_sxd *sd;
746 1.1 pk unsigned int ri, len;
747 1.1 pk u_int32_t flags;
748 1.1 pk
749 1.26 tron ri = sc->sc_last_rd;
750 1.26 tron sd = &sc->sc_rxd[ri];
751 1.1 pk
752 1.1 pk /*
753 1.1 pk * Process all buffers with valid data.
754 1.1 pk */
755 1.1 pk for (;;) {
756 1.26 tron flags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ri);
757 1.1 pk if (flags & HME_XD_OWN)
758 1.1 pk break;
759 1.1 pk
760 1.4 pk if (flags & HME_XD_OFL) {
761 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
762 1.26 tron sc->sc_dev.dv_xname, ri, flags);
763 1.26 tron goto again;
764 1.4 pk }
765 1.1 pk
766 1.26 tron m = sd->sd_mbuf;
767 1.26 tron len = HME_XD_DECODE_RSIZE(flags);
768 1.26 tron m->m_pkthdr.len = m->m_len = len;
769 1.1 pk
770 1.26 tron if (hme_newbuf(sc, sd, 0)) {
771 1.26 tron /*
772 1.26 tron * Allocation of new mbuf cluster failed, leave the
773 1.26 tron * old one in place and keep going.
774 1.26 tron */
775 1.26 tron ifp->if_ierrors++;
776 1.26 tron goto again;
777 1.26 tron }
778 1.26 tron
779 1.26 tron ifp->if_ipackets++;
780 1.26 tron
781 1.26 tron #if NBPFILTER > 0
782 1.26 tron if (ifp->if_bpf) {
783 1.26 tron m->m_pkthdr.len = m->m_len = len;
784 1.26 tron bpf_mtap(ifp->if_bpf, m);
785 1.26 tron }
786 1.26 tron #endif
787 1.26 tron
788 1.26 tron /* Pass the packet up. */
789 1.26 tron (*ifp->if_input)(ifp, m);
790 1.26 tron
791 1.26 tron again:
792 1.26 tron HME_XD_SETADDR(sc->sc_pci, sc->sc_rb.rb_rxd, ri,
793 1.26 tron sd->sd_map->dm_segs[0].ds_addr);
794 1.26 tron HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ri,
795 1.26 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_RX_PKTSIZE));
796 1.26 tron
797 1.26 tron if (++ri == HME_RX_RING_SIZE) {
798 1.1 pk ri = 0;
799 1.26 tron sd = sc->sc_rxd;
800 1.26 tron } else
801 1.26 tron sd++;
802 1.1 pk }
803 1.1 pk
804 1.26 tron sc->sc_last_rd = ri;
805 1.1 pk return (1);
806 1.1 pk }
807 1.1 pk
808 1.1 pk int
809 1.1 pk hme_eint(sc, status)
810 1.1 pk struct hme_softc *sc;
811 1.1 pk u_int status;
812 1.1 pk {
813 1.1 pk char bits[128];
814 1.1 pk
815 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
816 1.1 pk printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
817 1.1 pk return (1);
818 1.1 pk }
819 1.1 pk
820 1.1 pk printf("%s: status=%s\n", sc->sc_dev.dv_xname,
821 1.26 tron bitmask_snprintf(status, HME_SEB_STAT_BITS, bits, sizeof(bits)));
822 1.1 pk return (1);
823 1.1 pk }
824 1.1 pk
825 1.1 pk int
826 1.1 pk hme_intr(v)
827 1.1 pk void *v;
828 1.1 pk {
829 1.1 pk struct hme_softc *sc = (struct hme_softc *)v;
830 1.1 pk bus_space_tag_t t = sc->sc_bustag;
831 1.1 pk bus_space_handle_t seb = sc->sc_seb;
832 1.1 pk u_int32_t status;
833 1.1 pk int r = 0;
834 1.1 pk
835 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
836 1.1 pk
837 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
838 1.1 pk r |= hme_eint(sc, status);
839 1.1 pk
840 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
841 1.1 pk r |= hme_tint(sc);
842 1.1 pk
843 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
844 1.1 pk r |= hme_rint(sc);
845 1.1 pk
846 1.1 pk return (r);
847 1.1 pk }
848 1.1 pk
849 1.1 pk
850 1.1 pk void
851 1.1 pk hme_watchdog(ifp)
852 1.1 pk struct ifnet *ifp;
853 1.1 pk {
854 1.1 pk struct hme_softc *sc = ifp->if_softc;
855 1.1 pk
856 1.1 pk log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
857 1.1 pk ++ifp->if_oerrors;
858 1.1 pk
859 1.1 pk hme_reset(sc);
860 1.4 pk }
861 1.4 pk
862 1.4 pk /*
863 1.4 pk * Initialize the MII Management Interface
864 1.4 pk */
865 1.4 pk void
866 1.4 pk hme_mifinit(sc)
867 1.4 pk struct hme_softc *sc;
868 1.4 pk {
869 1.4 pk bus_space_tag_t t = sc->sc_bustag;
870 1.4 pk bus_space_handle_t mif = sc->sc_mif;
871 1.4 pk u_int32_t v;
872 1.4 pk
873 1.4 pk /* Configure the MIF in frame mode */
874 1.4 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
875 1.4 pk v &= ~HME_MIF_CFG_BBMODE;
876 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
877 1.1 pk }
878 1.1 pk
879 1.1 pk /*
880 1.1 pk * MII interface
881 1.1 pk */
882 1.1 pk static int
883 1.1 pk hme_mii_readreg(self, phy, reg)
884 1.1 pk struct device *self;
885 1.1 pk int phy, reg;
886 1.1 pk {
887 1.1 pk struct hme_softc *sc = (void *)self;
888 1.1 pk bus_space_tag_t t = sc->sc_bustag;
889 1.1 pk bus_space_handle_t mif = sc->sc_mif;
890 1.1 pk int n;
891 1.1 pk u_int32_t v;
892 1.1 pk
893 1.5 pk /* Select the desired PHY in the MIF configuration register */
894 1.5 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
895 1.5 pk /* Clear PHY select bit */
896 1.5 pk v &= ~HME_MIF_CFG_PHY;
897 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
898 1.5 pk /* Set PHY select bit to get at external device */
899 1.5 pk v |= HME_MIF_CFG_PHY;
900 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
901 1.5 pk
902 1.1 pk /* Construct the frame command */
903 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
904 1.1 pk HME_MIF_FO_TAMSB |
905 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
906 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
907 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
908 1.1 pk
909 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
910 1.1 pk for (n = 0; n < 100; n++) {
911 1.2 pk DELAY(1);
912 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
913 1.1 pk if (v & HME_MIF_FO_TALSB)
914 1.1 pk return (v & HME_MIF_FO_DATA);
915 1.1 pk }
916 1.1 pk
917 1.1 pk printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
918 1.1 pk return (0);
919 1.1 pk }
920 1.1 pk
921 1.1 pk static void
922 1.1 pk hme_mii_writereg(self, phy, reg, val)
923 1.1 pk struct device *self;
924 1.1 pk int phy, reg, val;
925 1.1 pk {
926 1.1 pk struct hme_softc *sc = (void *)self;
927 1.1 pk bus_space_tag_t t = sc->sc_bustag;
928 1.1 pk bus_space_handle_t mif = sc->sc_mif;
929 1.1 pk int n;
930 1.1 pk u_int32_t v;
931 1.1 pk
932 1.5 pk /* Select the desired PHY in the MIF configuration register */
933 1.5 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
934 1.5 pk /* Clear PHY select bit */
935 1.5 pk v &= ~HME_MIF_CFG_PHY;
936 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
937 1.5 pk /* Set PHY select bit to get at external device */
938 1.5 pk v |= HME_MIF_CFG_PHY;
939 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
940 1.5 pk
941 1.1 pk /* Construct the frame command */
942 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
943 1.1 pk HME_MIF_FO_TAMSB |
944 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
945 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
946 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
947 1.1 pk (val & HME_MIF_FO_DATA);
948 1.1 pk
949 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
950 1.1 pk for (n = 0; n < 100; n++) {
951 1.2 pk DELAY(1);
952 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
953 1.1 pk if (v & HME_MIF_FO_TALSB)
954 1.1 pk return;
955 1.1 pk }
956 1.1 pk
957 1.2 pk printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
958 1.1 pk }
959 1.1 pk
960 1.1 pk static void
961 1.1 pk hme_mii_statchg(dev)
962 1.1 pk struct device *dev;
963 1.1 pk {
964 1.3 pk struct hme_softc *sc = (void *)dev;
965 1.5 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
966 1.5 pk int phy = sc->sc_phys[instance];
967 1.1 pk bus_space_tag_t t = sc->sc_bustag;
968 1.5 pk bus_space_handle_t mif = sc->sc_mif;
969 1.1 pk bus_space_handle_t mac = sc->sc_mac;
970 1.1 pk u_int32_t v;
971 1.1 pk
972 1.5 pk #ifdef HMEDEBUG
973 1.5 pk if (sc->sc_debug)
974 1.5 pk printf("hme_mii_statchg: status change: phy = %d\n", phy);
975 1.5 pk #endif
976 1.1 pk
977 1.5 pk /* Select the current PHY in the MIF configuration register */
978 1.5 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
979 1.5 pk v &= ~HME_MIF_CFG_PHY;
980 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
981 1.5 pk v |= HME_MIF_CFG_PHY;
982 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
983 1.1 pk
984 1.5 pk /* Set the MAC Full Duplex bit appropriately */
985 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
986 1.1 pk if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
987 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
988 1.1 pk else
989 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
990 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
991 1.1 pk
992 1.5 pk /* If an external transceiver is selected, enable its MII drivers */
993 1.5 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
994 1.5 pk v &= ~HME_MAC_XIF_MIIENABLE;
995 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
996 1.5 pk v |= HME_MAC_XIF_MIIENABLE;
997 1.5 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
998 1.5 pk }
999 1.5 pk
1000 1.5 pk int
1001 1.5 pk hme_mediachange(ifp)
1002 1.5 pk struct ifnet *ifp;
1003 1.5 pk {
1004 1.5 pk struct hme_softc *sc = ifp->if_softc;
1005 1.5 pk
1006 1.5 pk if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1007 1.5 pk return (EINVAL);
1008 1.5 pk
1009 1.5 pk return (mii_mediachg(&sc->sc_mii));
1010 1.1 pk }
1011 1.1 pk
1012 1.1 pk void
1013 1.1 pk hme_mediastatus(ifp, ifmr)
1014 1.1 pk struct ifnet *ifp;
1015 1.1 pk struct ifmediareq *ifmr;
1016 1.1 pk {
1017 1.1 pk struct hme_softc *sc = ifp->if_softc;
1018 1.1 pk
1019 1.1 pk if ((ifp->if_flags & IFF_UP) == 0)
1020 1.1 pk return;
1021 1.1 pk
1022 1.1 pk mii_pollstat(&sc->sc_mii);
1023 1.1 pk ifmr->ifm_active = sc->sc_mii.mii_media_active;
1024 1.1 pk ifmr->ifm_status = sc->sc_mii.mii_media_status;
1025 1.1 pk }
1026 1.1 pk
1027 1.1 pk /*
1028 1.1 pk * Process an ioctl request.
1029 1.1 pk */
1030 1.1 pk int
1031 1.1 pk hme_ioctl(ifp, cmd, data)
1032 1.1 pk struct ifnet *ifp;
1033 1.1 pk u_long cmd;
1034 1.1 pk caddr_t data;
1035 1.1 pk {
1036 1.1 pk struct hme_softc *sc = ifp->if_softc;
1037 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1038 1.1 pk struct ifreq *ifr = (struct ifreq *)data;
1039 1.1 pk int s, error = 0;
1040 1.1 pk
1041 1.1 pk s = splnet();
1042 1.1 pk
1043 1.1 pk switch (cmd) {
1044 1.1 pk
1045 1.1 pk case SIOCSIFADDR:
1046 1.1 pk ifp->if_flags |= IFF_UP;
1047 1.1 pk
1048 1.1 pk switch (ifa->ifa_addr->sa_family) {
1049 1.1 pk #ifdef INET
1050 1.1 pk case AF_INET:
1051 1.1 pk hme_init(sc);
1052 1.1 pk arp_ifinit(ifp, ifa);
1053 1.1 pk break;
1054 1.1 pk #endif
1055 1.1 pk #ifdef NS
1056 1.1 pk case AF_NS:
1057 1.1 pk {
1058 1.1 pk struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1059 1.1 pk
1060 1.1 pk if (ns_nullhost(*ina))
1061 1.1 pk ina->x_host =
1062 1.1 pk *(union ns_host *)LLADDR(ifp->if_sadl);
1063 1.1 pk else {
1064 1.21 thorpej memcpy(LLADDR(ifp->if_sadl),
1065 1.21 thorpej ina->x_host.c_host, sizeof(sc->sc_enaddr));
1066 1.1 pk }
1067 1.1 pk /* Set new address. */
1068 1.1 pk hme_init(sc);
1069 1.1 pk break;
1070 1.1 pk }
1071 1.1 pk #endif
1072 1.1 pk default:
1073 1.1 pk hme_init(sc);
1074 1.1 pk break;
1075 1.1 pk }
1076 1.1 pk break;
1077 1.1 pk
1078 1.1 pk case SIOCSIFFLAGS:
1079 1.1 pk if ((ifp->if_flags & IFF_UP) == 0 &&
1080 1.1 pk (ifp->if_flags & IFF_RUNNING) != 0) {
1081 1.1 pk /*
1082 1.1 pk * If interface is marked down and it is running, then
1083 1.1 pk * stop it.
1084 1.1 pk */
1085 1.1 pk hme_stop(sc);
1086 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1087 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0 &&
1088 1.1 pk (ifp->if_flags & IFF_RUNNING) == 0) {
1089 1.1 pk /*
1090 1.1 pk * If interface is marked up and it is stopped, then
1091 1.1 pk * start it.
1092 1.1 pk */
1093 1.1 pk hme_init(sc);
1094 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0) {
1095 1.1 pk /*
1096 1.1 pk * Reset the interface to pick up changes in any other
1097 1.1 pk * flags that affect hardware registers.
1098 1.1 pk */
1099 1.1 pk hme_init(sc);
1100 1.1 pk }
1101 1.1 pk #ifdef HMEDEBUG
1102 1.1 pk sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1103 1.1 pk #endif
1104 1.1 pk break;
1105 1.1 pk
1106 1.1 pk case SIOCADDMULTI:
1107 1.1 pk case SIOCDELMULTI:
1108 1.1 pk error = (cmd == SIOCADDMULTI) ?
1109 1.1 pk ether_addmulti(ifr, &sc->sc_ethercom) :
1110 1.1 pk ether_delmulti(ifr, &sc->sc_ethercom);
1111 1.1 pk
1112 1.1 pk if (error == ENETRESET) {
1113 1.1 pk /*
1114 1.1 pk * Multicast list has changed; set the hardware filter
1115 1.1 pk * accordingly.
1116 1.1 pk */
1117 1.1 pk hme_setladrf(sc);
1118 1.1 pk error = 0;
1119 1.1 pk }
1120 1.1 pk break;
1121 1.1 pk
1122 1.1 pk case SIOCGIFMEDIA:
1123 1.1 pk case SIOCSIFMEDIA:
1124 1.1 pk error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1125 1.1 pk break;
1126 1.1 pk
1127 1.1 pk default:
1128 1.1 pk error = EINVAL;
1129 1.1 pk break;
1130 1.1 pk }
1131 1.1 pk
1132 1.1 pk splx(s);
1133 1.1 pk return (error);
1134 1.1 pk }
1135 1.1 pk
1136 1.1 pk void
1137 1.1 pk hme_shutdown(arg)
1138 1.1 pk void *arg;
1139 1.1 pk {
1140 1.1 pk hme_stop((struct hme_softc *)arg);
1141 1.1 pk }
1142 1.1 pk
1143 1.1 pk /*
1144 1.1 pk * Set up the logical address filter.
1145 1.1 pk */
1146 1.1 pk void
1147 1.1 pk hme_setladrf(sc)
1148 1.1 pk struct hme_softc *sc;
1149 1.1 pk {
1150 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1151 1.1 pk struct ether_multi *enm;
1152 1.1 pk struct ether_multistep step;
1153 1.26 tron struct ethercom *ac = &sc->sc_ethercom;
1154 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1155 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1156 1.1 pk u_char *cp;
1157 1.1 pk u_int32_t crc;
1158 1.1 pk u_int32_t hash[4];
1159 1.14 pk u_int32_t v;
1160 1.1 pk int len;
1161 1.1 pk
1162 1.14 pk /* Clear hash table */
1163 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1164 1.14 pk
1165 1.14 pk /* Get current RX configuration */
1166 1.14 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1167 1.14 pk
1168 1.14 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1169 1.14 pk /* Turn on promiscuous mode; turn off the hash filter */
1170 1.14 pk v |= HME_MAC_RXCFG_PMISC;
1171 1.14 pk v &= ~HME_MAC_RXCFG_HENABLE;
1172 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1173 1.14 pk goto chipit;
1174 1.14 pk }
1175 1.14 pk
1176 1.14 pk /* Turn off promiscuous mode; turn on the hash filter */
1177 1.14 pk v &= ~HME_MAC_RXCFG_PMISC;
1178 1.14 pk v |= HME_MAC_RXCFG_HENABLE;
1179 1.14 pk
1180 1.1 pk /*
1181 1.1 pk * Set up multicast address filter by passing all multicast addresses
1182 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1183 1.1 pk * index into the 64 bit logical address filter. The high order bit
1184 1.1 pk * selects the word, while the rest of the bits select the bit within
1185 1.1 pk * the word.
1186 1.1 pk */
1187 1.1 pk
1188 1.26 tron ETHER_FIRST_MULTI(step, ac, enm);
1189 1.1 pk while (enm != NULL) {
1190 1.26 tron if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1191 1.1 pk /*
1192 1.1 pk * We must listen to a range of multicast addresses.
1193 1.1 pk * For now, just accept all multicasts, rather than
1194 1.1 pk * trying to set only those filter bits needed to match
1195 1.1 pk * the range. (At this time, the only use of address
1196 1.1 pk * ranges is for IP multicast routing, for which the
1197 1.1 pk * range is big enough to require all bits set.)
1198 1.1 pk */
1199 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1200 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1201 1.14 pk goto chipit;
1202 1.1 pk }
1203 1.1 pk
1204 1.1 pk cp = enm->enm_addrlo;
1205 1.1 pk crc = 0xffffffff;
1206 1.1 pk for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1207 1.1 pk int octet = *cp++;
1208 1.1 pk int i;
1209 1.1 pk
1210 1.1 pk #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1211 1.1 pk for (i = 0; i < 8; i++) {
1212 1.1 pk if ((crc & 1) ^ (octet & 1)) {
1213 1.1 pk crc >>= 1;
1214 1.1 pk crc ^= MC_POLY_LE;
1215 1.1 pk } else {
1216 1.1 pk crc >>= 1;
1217 1.1 pk }
1218 1.1 pk octet >>= 1;
1219 1.1 pk }
1220 1.1 pk }
1221 1.1 pk /* Just want the 6 most significant bits. */
1222 1.1 pk crc >>= 26;
1223 1.1 pk
1224 1.1 pk /* Set the corresponding bit in the filter. */
1225 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1226 1.1 pk
1227 1.1 pk ETHER_NEXT_MULTI(step, enm);
1228 1.1 pk }
1229 1.1 pk
1230 1.14 pk ifp->if_flags &= ~IFF_ALLMULTI;
1231 1.14 pk
1232 1.14 pk chipit:
1233 1.14 pk /* Now load the hash table into the chip */
1234 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1235 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1236 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1237 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1238 1.14 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1239 1.1 pk }
1240 1.1 pk
1241 1.26 tron int
1242 1.26 tron hme_encap(sc, mhead, bixp)
1243 1.26 tron struct hme_softc *sc;
1244 1.26 tron struct mbuf *mhead;
1245 1.26 tron int *bixp;
1246 1.26 tron {
1247 1.26 tron struct hme_sxd *sd;
1248 1.26 tron struct mbuf *m;
1249 1.26 tron int frag, cur, cnt = 0;
1250 1.26 tron u_int32_t flags;
1251 1.26 tron struct hme_ring *hr = &sc->sc_rb;
1252 1.26 tron
1253 1.26 tron cur = frag = *bixp;
1254 1.26 tron sd = &sc->sc_txd[frag];
1255 1.26 tron
1256 1.26 tron for (m = mhead; m != NULL; m = m->m_next) {
1257 1.26 tron if (m->m_len == 0)
1258 1.26 tron continue;
1259 1.26 tron
1260 1.26 tron if ((HME_TX_RING_SIZE - (sc->sc_tx_cnt + cnt)) < 5)
1261 1.26 tron goto err;
1262 1.26 tron
1263 1.26 tron if (bus_dmamap_load(sc->sc_dmatag, sd->sd_map,
1264 1.26 tron mtod(m, caddr_t), m->m_len, NULL, BUS_DMA_NOWAIT) != 0)
1265 1.26 tron goto err;
1266 1.26 tron
1267 1.26 tron sd->sd_loaded = 1;
1268 1.26 tron bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
1269 1.26 tron sd->sd_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1270 1.26 tron
1271 1.26 tron sd->sd_mbuf = NULL;
1272 1.26 tron
1273 1.26 tron flags = HME_XD_ENCODE_TSIZE(m->m_len);
1274 1.26 tron if (cnt == 0)
1275 1.26 tron flags |= HME_XD_SOP;
1276 1.26 tron else
1277 1.26 tron flags |= HME_XD_OWN;
1278 1.26 tron
1279 1.26 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, frag,
1280 1.26 tron sd->sd_map->dm_segs[0].ds_addr);
1281 1.26 tron HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, frag, flags);
1282 1.26 tron
1283 1.26 tron cur = frag;
1284 1.26 tron cnt++;
1285 1.26 tron if (++frag == HME_TX_RING_SIZE) {
1286 1.26 tron frag = 0;
1287 1.26 tron sd = sc->sc_txd;
1288 1.26 tron } else
1289 1.26 tron sd++;
1290 1.26 tron }
1291 1.26 tron
1292 1.26 tron /* Set end of packet on last descriptor. */
1293 1.26 tron flags = HME_XD_GETFLAGS(sc->sc_pci, hr->rb_txd, cur);
1294 1.26 tron flags |= HME_XD_EOP;
1295 1.26 tron HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, cur, flags);
1296 1.26 tron sc->sc_txd[cur].sd_mbuf = mhead;
1297 1.26 tron
1298 1.26 tron /* Give first frame over to the hardware. */
1299 1.26 tron flags = HME_XD_GETFLAGS(sc->sc_pci, hr->rb_txd, (*bixp));
1300 1.26 tron flags |= HME_XD_OWN;
1301 1.26 tron HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, (*bixp), flags);
1302 1.26 tron
1303 1.26 tron sc->sc_tx_cnt += cnt;
1304 1.26 tron *bixp = frag;
1305 1.1 pk
1306 1.26 tron /* sync descriptors */
1307 1.1 pk
1308 1.26 tron return (0);
1309 1.1 pk
1310 1.26 tron err:
1311 1.1 pk /*
1312 1.26 tron * Invalidate the stuff we may have already put into place. We
1313 1.26 tron * will be called again to queue it later.
1314 1.1 pk */
1315 1.26 tron for (; cnt > 0; cnt--) {
1316 1.26 tron if (--frag == -1)
1317 1.26 tron frag = HME_TX_RING_SIZE - 1;
1318 1.26 tron sd = &sc->sc_txd[frag];
1319 1.26 tron bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
1320 1.26 tron sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1321 1.26 tron bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
1322 1.26 tron sd->sd_loaded = 0;
1323 1.26 tron sd->sd_mbuf = NULL;
1324 1.26 tron }
1325 1.26 tron return (ENOBUFS);
1326 1.1 pk }
1327 1.1 pk
1328 1.26 tron int
1329 1.26 tron hme_newbuf(sc, d, freeit)
1330 1.1 pk struct hme_softc *sc;
1331 1.26 tron struct hme_sxd *d;
1332 1.26 tron int freeit;
1333 1.1 pk {
1334 1.26 tron struct mbuf *m;
1335 1.26 tron bus_dmamap_t map;
1336 1.26 tron
1337 1.26 tron MGETHDR(m, M_DONTWAIT, MT_DATA);
1338 1.26 tron if (m == NULL)
1339 1.26 tron return (ENOBUFS);
1340 1.26 tron m->m_pkthdr.rcvif = &sc->sc_ethercom.ec_if;
1341 1.1 pk
1342 1.26 tron MCLGET(m, M_DONTWAIT);
1343 1.26 tron if ((m->m_flags & M_EXT) == 0) {
1344 1.26 tron m_freem(m);
1345 1.26 tron return (ENOBUFS);
1346 1.26 tron }
1347 1.26 tron
1348 1.26 tron if (d->sd_loaded) {
1349 1.26 tron bus_dmamap_sync(sc->sc_dmatag, d->sd_map,
1350 1.26 tron 0, d->sd_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1351 1.26 tron bus_dmamap_unload(sc->sc_dmatag, d->sd_map);
1352 1.26 tron d->sd_loaded = 0;
1353 1.26 tron }
1354 1.26 tron
1355 1.26 tron if (bus_dmamap_load(sc->sc_dmatag, sc->sc_rxmap_spare,
1356 1.26 tron mtod(m, caddr_t), MCLBYTES - HME_RX_OFFSET, NULL,
1357 1.26 tron BUS_DMA_NOWAIT) != 0) {
1358 1.26 tron if (d->sd_mbuf == NULL)
1359 1.26 tron return (ENOBUFS);
1360 1.26 tron m_freem(m);
1361 1.26 tron return (ENOBUFS);
1362 1.26 tron }
1363 1.26 tron
1364 1.26 tron if (d->sd_loaded) {
1365 1.26 tron bus_dmamap_sync(sc->sc_dmatag, d->sd_map, 0,
1366 1.26 tron d->sd_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1367 1.26 tron bus_dmamap_unload(sc->sc_dmatag, d->sd_map);
1368 1.26 tron d->sd_loaded = 0;
1369 1.26 tron }
1370 1.26 tron if ((d->sd_mbuf != NULL) && freeit) {
1371 1.26 tron m_freem(d->sd_mbuf);
1372 1.26 tron d->sd_mbuf = NULL;
1373 1.26 tron }
1374 1.26 tron
1375 1.26 tron map = d->sd_map;
1376 1.26 tron d->sd_map = sc->sc_rxmap_spare;
1377 1.26 tron sc->sc_rxmap_spare = map;
1378 1.26 tron
1379 1.26 tron d->sd_loaded = 1;
1380 1.26 tron
1381 1.26 tron bus_dmamap_sync(sc->sc_dmatag, d->sd_map, 0, d->sd_map->dm_mapsize,
1382 1.26 tron BUS_DMASYNC_PREREAD);
1383 1.26 tron
1384 1.26 tron m->m_data += HME_RX_OFFSET;
1385 1.26 tron d->sd_mbuf = m;
1386 1.26 tron return (0);
1387 1.1 pk }
1388