hme.c revision 1.3 1 1.3 pk /* $NetBSD: hme.c,v 1.3 1999/12/15 10:33:31 pk Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk * 3. All advertising materials mentioning features or use of this software
19 1.1 pk * must display the following acknowledgement:
20 1.1 pk * This product includes software developed by the NetBSD
21 1.1 pk * Foundation, Inc. and its contributors.
22 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 pk * contributors may be used to endorse or promote products derived
24 1.1 pk * from this software without specific prior written permission.
25 1.1 pk *
26 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
37 1.1 pk */
38 1.1 pk
39 1.1 pk /*
40 1.1 pk * HME Ethernet module driver.
41 1.1 pk */
42 1.1 pk
43 1.1 pk #define HMEDEBUG
44 1.1 pk
45 1.1 pk #include "opt_inet.h"
46 1.1 pk #include "opt_ccitt.h"
47 1.1 pk #include "opt_llc.h"
48 1.1 pk #include "opt_ns.h"
49 1.1 pk #include "bpfilter.h"
50 1.1 pk #include "rnd.h"
51 1.1 pk
52 1.1 pk #include <sys/param.h>
53 1.1 pk #include <sys/systm.h>
54 1.1 pk #include <sys/mbuf.h>
55 1.1 pk #include <sys/syslog.h>
56 1.1 pk #include <sys/socket.h>
57 1.1 pk #include <sys/device.h>
58 1.1 pk #include <sys/malloc.h>
59 1.1 pk #include <sys/ioctl.h>
60 1.1 pk #include <sys/errno.h>
61 1.1 pk #if NRND > 0
62 1.1 pk #include <sys/rnd.h>
63 1.1 pk #endif
64 1.1 pk
65 1.1 pk #include <net/if.h>
66 1.1 pk #include <net/if_dl.h>
67 1.1 pk #include <net/if_ether.h>
68 1.1 pk #include <net/if_media.h>
69 1.1 pk
70 1.1 pk #ifdef INET
71 1.1 pk #include <netinet/in.h>
72 1.1 pk #include <netinet/if_inarp.h>
73 1.1 pk #include <netinet/in_systm.h>
74 1.1 pk #include <netinet/in_var.h>
75 1.1 pk #include <netinet/ip.h>
76 1.1 pk #endif
77 1.1 pk
78 1.1 pk #ifdef NS
79 1.1 pk #include <netns/ns.h>
80 1.1 pk #include <netns/ns_if.h>
81 1.1 pk #endif
82 1.1 pk
83 1.1 pk #if NBPFILTER > 0
84 1.1 pk #include <net/bpf.h>
85 1.1 pk #include <net/bpfdesc.h>
86 1.1 pk #endif
87 1.1 pk
88 1.1 pk #include <dev/mii/mii.h>
89 1.1 pk #include <dev/mii/miivar.h>
90 1.1 pk
91 1.1 pk #include <machine/bus.h>
92 1.1 pk
93 1.1 pk #include <dev/ic/hmereg.h>
94 1.1 pk #include <dev/ic/hmevar.h>
95 1.1 pk
96 1.1 pk void hme_start __P((struct ifnet *));
97 1.1 pk void hme_stop __P((struct hme_softc *));
98 1.1 pk int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
99 1.1 pk void hme_watchdog __P((struct ifnet *));
100 1.1 pk void hme_shutdown __P((void *));
101 1.1 pk void hme_init __P((struct hme_softc *));
102 1.1 pk void hme_meminit __P((struct hme_softc *));
103 1.1 pk void hme_reset __P((struct hme_softc *));
104 1.1 pk void hme_setladrf __P((struct hme_softc *));
105 1.1 pk
106 1.1 pk /* MII methods & callbacks */
107 1.1 pk static int hme_mii_readreg __P((struct device *, int, int));
108 1.1 pk static void hme_mii_writereg __P((struct device *, int, int, int));
109 1.1 pk static void hme_mii_statchg __P((struct device *));
110 1.1 pk
111 1.1 pk int hme_mediachange __P((struct ifnet *));
112 1.1 pk void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
113 1.1 pk
114 1.1 pk struct mbuf *hme_get __P((struct hme_softc *, int, int));
115 1.1 pk int hme_put __P((struct hme_softc *, int, struct mbuf *));
116 1.1 pk void hme_read __P((struct hme_softc *, int, int));
117 1.1 pk int hme_eint __P((struct hme_softc *, u_int));
118 1.1 pk int hme_rint __P((struct hme_softc *));
119 1.1 pk int hme_tint __P((struct hme_softc *));
120 1.1 pk
121 1.1 pk static int ether_cmp __P((u_char *, u_char *));
122 1.1 pk
123 1.1 pk /* Default buffer copy routines */
124 1.1 pk void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
125 1.1 pk void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
126 1.1 pk void hme_zerobuf_contig __P((struct hme_softc *, int, int));
127 1.1 pk
128 1.1 pk
129 1.1 pk void
130 1.1 pk hme_config(sc)
131 1.1 pk struct hme_softc *sc;
132 1.1 pk {
133 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
134 1.1 pk struct mii_data *mii = &sc->sc_mii;
135 1.1 pk bus_dma_segment_t seg;
136 1.1 pk bus_size_t size;
137 1.1 pk int rseg, error;
138 1.1 pk
139 1.1 pk /*
140 1.1 pk * HME common initialization.
141 1.1 pk *
142 1.1 pk * hme_softc fields that must be initialized by the front-end:
143 1.1 pk *
144 1.1 pk * the bus tag:
145 1.1 pk * sc_bustag
146 1.1 pk *
147 1.1 pk * the dma bus tag:
148 1.1 pk * sc_dmatag
149 1.1 pk *
150 1.1 pk * the bus handles:
151 1.1 pk * sc_seb (Shared Ethernet Block registers)
152 1.1 pk * sc_erx (Receiver Unit registers)
153 1.1 pk * sc_etx (Transmitter Unit registers)
154 1.1 pk * sc_mac (MAC registers)
155 1.1 pk * sc_mif (Managment Interface registers)
156 1.1 pk *
157 1.1 pk * the maximum bus burst size:
158 1.1 pk * sc_burst
159 1.1 pk *
160 1.1 pk * (notyet:DMA capable memory for the ring descriptors & packet buffers:
161 1.1 pk * rb_membase, rb_dmabase)
162 1.1 pk *
163 1.1 pk * the local Ethernet address:
164 1.1 pk * sc_enaddr
165 1.1 pk *
166 1.1 pk */
167 1.1 pk
168 1.1 pk /* Make sure the chip is stopped. */
169 1.1 pk hme_stop(sc);
170 1.1 pk
171 1.1 pk
172 1.1 pk /*
173 1.1 pk * Allocate descriptors and buffers
174 1.1 pk * XXX - do all this differently.. and more configurably,
175 1.1 pk * eg. use things as `dma_load_mbuf()' on transmit,
176 1.1 pk * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
177 1.1 pk * all the time) on the reveiver side.
178 1.1 pk */
179 1.1 pk #define _HME_NDESC 32
180 1.2 pk #define _HME_BUFSZ 1536
181 1.1 pk
182 1.1 pk /* Note: the # of descriptors must be a multiple of 16 */
183 1.1 pk sc->sc_rb.rb_ntbuf = _HME_NDESC;
184 1.1 pk sc->sc_rb.rb_nrbuf = _HME_NDESC;
185 1.1 pk
186 1.1 pk /*
187 1.1 pk * Allocate DMA capable memory
188 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
189 1.1 pk * take this into account when calculating the size. Note that
190 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
191 1.1 pk * so we allocate that much regardless of _HME_NDESC.
192 1.1 pk */
193 1.1 pk size = 2048 + /* TX descriptors */
194 1.1 pk 2048 + /* RX descriptors */
195 1.1 pk sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
196 1.1 pk sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
197 1.1 pk if ((error = bus_dmamem_alloc(sc->sc_dmatag, size,
198 1.1 pk 2048, 0,
199 1.1 pk &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
200 1.1 pk printf("%s: DMA buffer alloc error %d\n",
201 1.1 pk sc->sc_dev.dv_xname, error);
202 1.1 pk }
203 1.1 pk sc->sc_rb.rb_dmabase = seg.ds_addr;
204 1.1 pk
205 1.1 pk /* Map DMA memory in CPU adressable space */
206 1.1 pk if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, size,
207 1.1 pk &sc->sc_rb.rb_membase,
208 1.1 pk BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
209 1.1 pk printf("%s: DMA buffer map error %d\n",
210 1.1 pk sc->sc_dev.dv_xname, error);
211 1.1 pk bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
212 1.1 pk return;
213 1.1 pk }
214 1.1 pk
215 1.1 pk #if 0
216 1.1 pk /*
217 1.1 pk * Install default copy routines if not supplied.
218 1.1 pk */
219 1.1 pk if (sc->sc_copytobuf == NULL)
220 1.1 pk sc->sc_copytobuf = hme_copytobuf_contig;
221 1.1 pk
222 1.1 pk if (sc->sc_copyfrombuf == NULL)
223 1.1 pk sc->sc_copyfrombuf = hme_copyfrombuf_contig;
224 1.1 pk #endif
225 1.1 pk
226 1.2 pk printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
227 1.2 pk
228 1.1 pk /* Initialize ifnet structure. */
229 1.1 pk bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
230 1.1 pk ifp->if_softc = sc;
231 1.1 pk ifp->if_start = hme_start;
232 1.1 pk ifp->if_ioctl = hme_ioctl;
233 1.1 pk ifp->if_watchdog = hme_watchdog;
234 1.1 pk ifp->if_flags =
235 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
236 1.1 pk
237 1.1 pk /* Initialize ifmedia structures and MII info */
238 1.1 pk mii->mii_ifp = ifp;
239 1.1 pk mii->mii_readreg = hme_mii_readreg;
240 1.1 pk mii->mii_writereg = hme_mii_writereg;
241 1.1 pk mii->mii_statchg = hme_mii_statchg;
242 1.1 pk
243 1.1 pk ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
244 1.1 pk
245 1.2 pk mii_phy_probe(&sc->sc_dev, mii, 0xffffffff,
246 1.2 pk MII_PHY_ANY, MII_OFFSET_ANY);
247 1.2 pk
248 1.2 pk if (LIST_FIRST(&mii->mii_phys) == NULL) {
249 1.1 pk /* No PHY attached */
250 1.1 pk ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
251 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
252 1.1 pk } else {
253 1.1 pk /*
254 1.1 pk * XXX - we can really do the following ONLY if the
255 1.1 pk * phy indeed has the auto negotiation capability!!
256 1.1 pk */
257 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
258 1.1 pk }
259 1.1 pk
260 1.1 pk /* Attach the interface. */
261 1.1 pk if_attach(ifp);
262 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
263 1.1 pk
264 1.1 pk #if NBPFILTER > 0
265 1.1 pk bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
266 1.1 pk #endif
267 1.1 pk
268 1.1 pk sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
269 1.1 pk if (sc->sc_sh == NULL)
270 1.1 pk panic("hme_config: can't establish shutdownhook");
271 1.1 pk
272 1.1 pk #if 0
273 1.1 pk printf("%s: %d receive buffers, %d transmit buffers\n",
274 1.1 pk sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
275 1.1 pk sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
276 1.1 pk M_WAITOK);
277 1.1 pk sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
278 1.1 pk M_WAITOK);
279 1.1 pk #endif
280 1.1 pk
281 1.1 pk #if NRND > 0
282 1.1 pk rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
283 1.1 pk RND_TYPE_NET, 0);
284 1.1 pk #endif
285 1.1 pk }
286 1.1 pk
287 1.1 pk void
288 1.1 pk hme_reset(sc)
289 1.1 pk struct hme_softc *sc;
290 1.1 pk {
291 1.1 pk int s;
292 1.1 pk
293 1.1 pk s = splnet();
294 1.1 pk hme_init(sc);
295 1.1 pk splx(s);
296 1.1 pk }
297 1.1 pk
298 1.1 pk void
299 1.1 pk hme_stop(sc)
300 1.1 pk struct hme_softc *sc;
301 1.1 pk {
302 1.1 pk bus_space_tag_t t = sc->sc_bustag;
303 1.1 pk bus_space_handle_t seb = sc->sc_seb;
304 1.1 pk int n;
305 1.1 pk
306 1.1 pk /* Reset transmitter and receiver */
307 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
308 1.1 pk (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
309 1.1 pk
310 1.1 pk for (n = 0; n < 20; n++) {
311 1.1 pk u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
312 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
313 1.1 pk return;
314 1.1 pk DELAY(20);
315 1.1 pk }
316 1.1 pk
317 1.1 pk printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
318 1.1 pk }
319 1.1 pk
320 1.1 pk void
321 1.1 pk hme_meminit(sc)
322 1.1 pk struct hme_softc *sc;
323 1.1 pk {
324 1.1 pk bus_addr_t txbufdma, rxbufdma;
325 1.1 pk bus_addr_t dma;
326 1.1 pk caddr_t p;
327 1.1 pk unsigned int ntbuf, nrbuf, i;
328 1.1 pk struct hme_ring *hr = &sc->sc_rb;
329 1.1 pk
330 1.1 pk p = hr->rb_membase;
331 1.1 pk dma = hr->rb_dmabase;
332 1.1 pk
333 1.1 pk ntbuf = hr->rb_ntbuf;
334 1.1 pk nrbuf = hr->rb_nrbuf;
335 1.1 pk
336 1.1 pk /*
337 1.1 pk * Allocate transmit descriptors
338 1.1 pk */
339 1.1 pk hr->rb_txd = p;
340 1.1 pk hr->rb_txddma = dma;
341 1.1 pk p += ntbuf * HME_XD_SIZE;
342 1.1 pk dma += ntbuf * HME_XD_SIZE;
343 1.1 pk
344 1.1 pk /*
345 1.1 pk * Allocate receive descriptors
346 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary.
347 1.1 pk */
348 1.1 pk dma = (bus_addr_t)roundup((long)dma, 2048);
349 1.1 pk p = (caddr_t)roundup((long)p, 2048);
350 1.1 pk hr->rb_rxd = p;
351 1.1 pk hr->rb_rxddma = dma;
352 1.1 pk p += nrbuf * HME_XD_SIZE;
353 1.1 pk dma += nrbuf * HME_XD_SIZE;
354 1.1 pk
355 1.1 pk
356 1.1 pk /*
357 1.1 pk * Allocate transmit buffers
358 1.1 pk */
359 1.1 pk hr->rb_txbuf = p;
360 1.1 pk txbufdma = dma;
361 1.1 pk p += ntbuf * _HME_BUFSZ;
362 1.1 pk dma += ntbuf * _HME_BUFSZ;
363 1.1 pk
364 1.1 pk /*
365 1.1 pk * Allocate receive buffers
366 1.1 pk */
367 1.1 pk hr->rb_rxbuf = p;
368 1.1 pk rxbufdma = dma;
369 1.1 pk p += nrbuf * _HME_BUFSZ;
370 1.1 pk dma += nrbuf * _HME_BUFSZ;
371 1.1 pk
372 1.1 pk /*
373 1.1 pk * Initialize transmit buffer descriptors
374 1.1 pk */
375 1.1 pk for (i = 0; i < ntbuf; i++) {
376 1.1 pk HME_XD_SETADDR(hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
377 1.1 pk HME_XD_SETFLAGS(hr->rb_txd, i, 0);
378 1.1 pk }
379 1.1 pk
380 1.1 pk /*
381 1.1 pk * Initialize receive buffer descriptors
382 1.1 pk */
383 1.1 pk for (i = 0; i < nrbuf; i++) {
384 1.2 pk HME_XD_SETADDR(hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
385 1.2 pk HME_XD_SETFLAGS(hr->rb_rxd, i,
386 1.1 pk HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
387 1.1 pk }
388 1.1 pk
389 1.1 pk hr->rb_tdhead = hr->rb_tdtail = 0;
390 1.1 pk hr->rb_td_nbusy = 0;
391 1.1 pk hr->rb_rdtail = 0;
392 1.1 pk }
393 1.1 pk
394 1.1 pk /*
395 1.1 pk * Initialization of interface; set up initialization block
396 1.1 pk * and transmit/receive descriptor rings.
397 1.1 pk */
398 1.1 pk void
399 1.1 pk hme_init(sc)
400 1.1 pk struct hme_softc *sc;
401 1.1 pk {
402 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
403 1.1 pk bus_space_tag_t t = sc->sc_bustag;
404 1.1 pk bus_space_handle_t seb = sc->sc_seb;
405 1.1 pk bus_space_handle_t etx = sc->sc_etx;
406 1.1 pk bus_space_handle_t erx = sc->sc_erx;
407 1.1 pk bus_space_handle_t mac = sc->sc_mac;
408 1.1 pk bus_space_handle_t mif = sc->sc_mif;
409 1.1 pk u_int8_t *ea;
410 1.1 pk u_int32_t v;
411 1.1 pk
412 1.1 pk /*
413 1.1 pk * Initialization sequence. The numbered steps below correspond
414 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
415 1.1 pk * Channel Engine manual (part of the PCIO manual).
416 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
417 1.1 pk */
418 1.1 pk
419 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
420 1.1 pk hme_stop(sc);
421 1.1 pk
422 1.1 pk /* Call MI reset function if any */
423 1.1 pk if (sc->sc_hwreset)
424 1.1 pk (*sc->sc_hwreset)(sc);
425 1.1 pk
426 1.1 pk #if 0
427 1.1 pk /* Mask all MIF interrupts, just in case */
428 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
429 1.1 pk #endif
430 1.1 pk
431 1.1 pk /* step 3. Setup data structures in host memory */
432 1.1 pk hme_meminit(sc);
433 1.1 pk
434 1.1 pk /* step 4. TX MAC registers & counters */
435 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
436 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
437 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
438 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
439 1.1 pk
440 1.1 pk /* Load station MAC address */
441 1.1 pk ea = sc->sc_enaddr;
442 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
443 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
444 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
445 1.1 pk
446 1.1 pk /*
447 1.1 pk * Init seed for backoff
448 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
449 1.1 pk */
450 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
451 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
452 1.1 pk
453 1.1 pk
454 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
455 1.1 pk
456 1.1 pk
457 1.1 pk /* step 5. RX MAC registers & counters */
458 1.1 pk hme_setladrf(sc);
459 1.1 pk
460 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
461 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
462 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
463 1.1 pk
464 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
465 1.1 pk
466 1.1 pk
467 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
468 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
469 1.2 pk ~(
470 1.2 pk /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
471 1.2 pk HME_SEB_STAT_HOSTTOTX |
472 1.2 pk HME_SEB_STAT_RXTOHOST |
473 1.2 pk HME_SEB_STAT_TXALL |
474 1.2 pk HME_SEB_STAT_TXPERR |
475 1.2 pk HME_SEB_STAT_RCNTEXP |
476 1.2 pk HME_SEB_STAT_ALL_ERRORS ));
477 1.1 pk
478 1.1 pk switch (sc->sc_burst) {
479 1.1 pk default:
480 1.1 pk v = 0;
481 1.1 pk break;
482 1.1 pk case 16:
483 1.1 pk v = HME_SEB_CFG_BURST16;
484 1.1 pk break;
485 1.1 pk case 32:
486 1.1 pk v = HME_SEB_CFG_BURST32;
487 1.1 pk break;
488 1.1 pk case 64:
489 1.1 pk v = HME_SEB_CFG_BURST64;
490 1.1 pk break;
491 1.1 pk }
492 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
493 1.1 pk
494 1.1 pk /* step 9. ETX Configuration: use mostly default values */
495 1.1 pk
496 1.1 pk /* Enable DMA */
497 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
498 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
499 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
500 1.1 pk
501 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
502 1.3 pk bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
503 1.1 pk
504 1.1 pk
505 1.3 pk /* step 10. ERX Configuration */
506 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
507 1.3 pk
508 1.3 pk /* Encode Receive Descriptor ring size: four possible values */
509 1.3 pk switch (_HME_NDESC /*XXX*/) {
510 1.3 pk case 32:
511 1.3 pk v |= HME_ERX_CFG_RINGSIZE32;
512 1.3 pk break;
513 1.3 pk case 64:
514 1.3 pk v |= HME_ERX_CFG_RINGSIZE64;
515 1.3 pk break;
516 1.3 pk case 128:
517 1.3 pk v |= HME_ERX_CFG_RINGSIZE128;
518 1.3 pk break;
519 1.3 pk case 256:
520 1.3 pk v |= HME_ERX_CFG_RINGSIZE256;
521 1.3 pk break;
522 1.3 pk default:
523 1.3 pk printf("hme: invalid Receive Descriptor ring size\n");
524 1.3 pk break;
525 1.3 pk }
526 1.3 pk
527 1.3 pk /* Enable DMA */
528 1.1 pk v |= HME_ERX_CFG_DMAENABLE;
529 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
530 1.1 pk
531 1.1 pk /* step 11. XIF Configuration */
532 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
533 1.1 pk v |= HME_MAC_XIF_OE;
534 1.2 pk /* If an external transceiver is connected, disable MII drivers */
535 1.2 pk if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
536 1.2 pk v |= HME_MAC_XIF_MIIDISAB;
537 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
538 1.1 pk
539 1.2 pk
540 1.1 pk /* step 12. RX_MAC Configuration Register */
541 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
542 1.1 pk v |= HME_MAC_RXCFG_ENABLE;
543 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
544 1.1 pk
545 1.1 pk /* step 13. TX_MAC Configuration Register */
546 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
547 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
548 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
549 1.1 pk
550 1.1 pk /* step 14. Issue Transmit Pending command */
551 1.1 pk
552 1.1 pk /*
553 1.1 pk * Put MIF in frame mode
554 1.1 pk * XXX - do bit-bang mode later
555 1.1 pk */
556 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
557 1.1 pk v &= ~HME_MIF_CFG_BBMODE;
558 1.1 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
559 1.1 pk
560 1.1 pk /* Call MI initialization function if any */
561 1.1 pk if (sc->sc_hwinit)
562 1.1 pk (*sc->sc_hwinit)(sc);
563 1.1 pk
564 1.1 pk ifp->if_flags |= IFF_RUNNING;
565 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
566 1.1 pk ifp->if_timer = 0;
567 1.1 pk hme_start(ifp);
568 1.1 pk }
569 1.1 pk
570 1.1 pk /*
571 1.1 pk * Compare two Ether/802 addresses for equality, inlined and unrolled for
572 1.1 pk * speed.
573 1.1 pk */
574 1.1 pk static __inline__ int
575 1.1 pk ether_cmp(a, b)
576 1.1 pk u_char *a, *b;
577 1.1 pk {
578 1.1 pk
579 1.1 pk if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
580 1.1 pk a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
581 1.1 pk return (0);
582 1.1 pk return (1);
583 1.1 pk }
584 1.1 pk
585 1.1 pk
586 1.1 pk /*
587 1.1 pk * Routine to copy from mbuf chain to transmit buffer in
588 1.1 pk * network buffer memory.
589 1.1 pk * Returns the amount of data copied.
590 1.1 pk */
591 1.1 pk int
592 1.1 pk hme_put(sc, ri, m)
593 1.1 pk struct hme_softc *sc;
594 1.1 pk int ri; /* Ring index */
595 1.1 pk struct mbuf *m;
596 1.1 pk {
597 1.1 pk struct mbuf *n;
598 1.1 pk int len, tlen = 0;
599 1.1 pk caddr_t bp;
600 1.1 pk
601 1.1 pk bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
602 1.1 pk for (; m; m = n) {
603 1.1 pk len = m->m_len;
604 1.1 pk if (len == 0) {
605 1.1 pk MFREE(m, n);
606 1.1 pk continue;
607 1.1 pk }
608 1.1 pk bcopy(mtod(m, caddr_t), bp, len);
609 1.1 pk bp += len;
610 1.1 pk tlen += len;
611 1.1 pk MFREE(m, n);
612 1.1 pk }
613 1.1 pk return (tlen);
614 1.1 pk }
615 1.1 pk
616 1.1 pk /*
617 1.1 pk * Pull data off an interface.
618 1.1 pk * Len is length of data, with local net header stripped.
619 1.1 pk * We copy the data into mbufs. When full cluster sized units are present
620 1.1 pk * we copy into clusters.
621 1.1 pk */
622 1.1 pk struct mbuf *
623 1.1 pk hme_get(sc, ri, totlen)
624 1.1 pk struct hme_softc *sc;
625 1.1 pk int ri, totlen;
626 1.1 pk {
627 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
628 1.1 pk struct mbuf *m, *m0, *newm;
629 1.1 pk caddr_t bp;
630 1.1 pk int len;
631 1.1 pk
632 1.1 pk MGETHDR(m0, M_DONTWAIT, MT_DATA);
633 1.1 pk if (m0 == 0)
634 1.1 pk return (0);
635 1.1 pk m0->m_pkthdr.rcvif = ifp;
636 1.1 pk m0->m_pkthdr.len = totlen;
637 1.1 pk len = MHLEN;
638 1.1 pk m = m0;
639 1.1 pk
640 1.1 pk bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
641 1.1 pk
642 1.1 pk while (totlen > 0) {
643 1.1 pk if (totlen >= MINCLSIZE) {
644 1.1 pk MCLGET(m, M_DONTWAIT);
645 1.1 pk if ((m->m_flags & M_EXT) == 0)
646 1.1 pk goto bad;
647 1.1 pk len = MCLBYTES;
648 1.1 pk }
649 1.1 pk
650 1.1 pk if (m == m0) {
651 1.1 pk caddr_t newdata = (caddr_t)
652 1.1 pk ALIGN(m->m_data + sizeof(struct ether_header)) -
653 1.1 pk sizeof(struct ether_header);
654 1.1 pk len -= newdata - m->m_data;
655 1.1 pk m->m_data = newdata;
656 1.1 pk }
657 1.1 pk
658 1.1 pk m->m_len = len = min(totlen, len);
659 1.1 pk bcopy(bp, mtod(m, caddr_t), len);
660 1.1 pk bp += len;
661 1.1 pk
662 1.1 pk totlen -= len;
663 1.1 pk if (totlen > 0) {
664 1.1 pk MGET(newm, M_DONTWAIT, MT_DATA);
665 1.1 pk if (newm == 0)
666 1.1 pk goto bad;
667 1.1 pk len = MLEN;
668 1.1 pk m = m->m_next = newm;
669 1.1 pk }
670 1.1 pk }
671 1.1 pk
672 1.1 pk return (m0);
673 1.1 pk
674 1.1 pk bad:
675 1.1 pk m_freem(m0);
676 1.1 pk return (0);
677 1.1 pk }
678 1.1 pk
679 1.1 pk /*
680 1.1 pk * Pass a packet to the higher levels.
681 1.1 pk */
682 1.1 pk void
683 1.1 pk hme_read(sc, ix, len)
684 1.1 pk struct hme_softc *sc;
685 1.1 pk int ix, len;
686 1.1 pk {
687 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
688 1.1 pk struct mbuf *m;
689 1.1 pk
690 1.1 pk if (len <= sizeof(struct ether_header) ||
691 1.1 pk len > ETHERMTU + sizeof(struct ether_header)) {
692 1.1 pk #ifdef HMEDEBUG
693 1.1 pk printf("%s: invalid packet size %d; dropping\n",
694 1.1 pk sc->sc_dev.dv_xname, len);
695 1.1 pk #endif
696 1.1 pk ifp->if_ierrors++;
697 1.1 pk return;
698 1.1 pk }
699 1.1 pk
700 1.1 pk /* Pull packet off interface. */
701 1.1 pk m = hme_get(sc, ix, len);
702 1.1 pk if (m == 0) {
703 1.1 pk ifp->if_ierrors++;
704 1.1 pk return;
705 1.1 pk }
706 1.1 pk
707 1.1 pk ifp->if_ipackets++;
708 1.1 pk
709 1.1 pk #if NBPFILTER > 0
710 1.1 pk /*
711 1.1 pk * Check if there's a BPF listener on this interface.
712 1.1 pk * If so, hand off the raw packet to BPF.
713 1.1 pk */
714 1.1 pk if (ifp->if_bpf) {
715 1.2 pk struct ether_header *eh;
716 1.2 pk
717 1.1 pk bpf_mtap(ifp->if_bpf, m);
718 1.1 pk
719 1.1 pk /*
720 1.1 pk * Note that the interface cannot be in promiscuous mode if
721 1.1 pk * there are no BPF listeners. And if we are in promiscuous
722 1.1 pk * mode, we have to check if this packet is really ours.
723 1.1 pk */
724 1.2 pk
725 1.2 pk /* We assume that the header fit entirely in one mbuf. */
726 1.2 pk eh = mtod(m, struct ether_header *);
727 1.2 pk
728 1.1 pk if ((ifp->if_flags & IFF_PROMISC) != 0 &&
729 1.1 pk (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
730 1.1 pk ether_cmp(eh->ether_dhost, sc->sc_enaddr)) {
731 1.1 pk m_freem(m);
732 1.1 pk return;
733 1.1 pk }
734 1.1 pk }
735 1.1 pk #endif
736 1.1 pk
737 1.1 pk /* Pass the packet up. */
738 1.1 pk (*ifp->if_input)(ifp, m);
739 1.1 pk }
740 1.1 pk
741 1.1 pk void
742 1.1 pk hme_start(ifp)
743 1.1 pk struct ifnet *ifp;
744 1.1 pk {
745 1.1 pk struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
746 1.1 pk caddr_t txd = sc->sc_rb.rb_txd;
747 1.1 pk struct mbuf *m;
748 1.1 pk unsigned int ri, len;
749 1.1 pk unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
750 1.1 pk
751 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
752 1.1 pk return;
753 1.1 pk
754 1.1 pk ri = sc->sc_rb.rb_tdhead;
755 1.1 pk
756 1.1 pk for (;;) {
757 1.1 pk IF_DEQUEUE(&ifp->if_snd, m);
758 1.1 pk if (m == 0)
759 1.1 pk break;
760 1.1 pk
761 1.1 pk #if NBPFILTER > 0
762 1.1 pk /*
763 1.1 pk * If BPF is listening on this interface, let it see the
764 1.1 pk * packet before we commit it to the wire.
765 1.1 pk */
766 1.1 pk if (ifp->if_bpf)
767 1.1 pk bpf_mtap(ifp->if_bpf, m);
768 1.1 pk #endif
769 1.1 pk
770 1.1 pk /*
771 1.1 pk * Copy the mbuf chain into the transmit buffer.
772 1.1 pk */
773 1.1 pk len = hme_put(sc, ri, m);
774 1.1 pk
775 1.1 pk /*
776 1.1 pk * Initialize transmit registers and start transmission
777 1.1 pk */
778 1.1 pk HME_XD_SETFLAGS(txd, ri,
779 1.1 pk HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
780 1.1 pk HME_XD_ENCODE_TSIZE(len));
781 1.1 pk
782 1.3 pk /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
783 1.1 pk bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
784 1.1 pk HME_ETX_TP_DMAWAKEUP);
785 1.1 pk
786 1.1 pk if (++ri == ntbuf)
787 1.1 pk ri = 0;
788 1.1 pk
789 1.1 pk if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
790 1.1 pk ifp->if_flags |= IFF_OACTIVE;
791 1.1 pk break;
792 1.1 pk }
793 1.1 pk }
794 1.1 pk
795 1.1 pk sc->sc_rb.rb_tdhead = ri;
796 1.1 pk }
797 1.1 pk
798 1.1 pk /*
799 1.1 pk * Transmit interrupt.
800 1.1 pk */
801 1.1 pk int
802 1.1 pk hme_tint(sc)
803 1.1 pk struct hme_softc *sc;
804 1.1 pk {
805 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
806 1.1 pk bus_space_tag_t t = sc->sc_bustag;
807 1.1 pk bus_space_handle_t mac = sc->sc_mac;
808 1.1 pk unsigned int ri, txflags;
809 1.1 pk
810 1.1 pk /*
811 1.1 pk * Unload collision counters
812 1.1 pk */
813 1.1 pk ifp->if_collisions +=
814 1.1 pk bus_space_read_4(t, mac, HME_MACI_NCCNT) +
815 1.1 pk bus_space_read_4(t, mac, HME_MACI_FCCNT) +
816 1.1 pk bus_space_read_4(t, mac, HME_MACI_EXCNT) +
817 1.1 pk bus_space_read_4(t, mac, HME_MACI_LTCNT);
818 1.1 pk
819 1.1 pk /*
820 1.1 pk * then clear the hardware counters.
821 1.1 pk */
822 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
823 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
824 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
825 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
826 1.1 pk
827 1.1 pk /* Fetch current position in the transmit ring */
828 1.1 pk ri = sc->sc_rb.rb_tdtail;
829 1.1 pk
830 1.1 pk for (;;) {
831 1.1 pk if (sc->sc_rb.rb_td_nbusy <= 0)
832 1.1 pk break;
833 1.1 pk
834 1.1 pk txflags = HME_XD_GETFLAGS(sc->sc_rb.rb_txd, ri);
835 1.1 pk
836 1.1 pk if (txflags & HME_XD_OWN)
837 1.1 pk break;
838 1.1 pk
839 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
840 1.1 pk ifp->if_opackets++;
841 1.1 pk
842 1.3 pk if (++ri == sc->sc_rb.rb_ntbuf)
843 1.1 pk ri = 0;
844 1.1 pk
845 1.1 pk --sc->sc_rb.rb_td_nbusy;
846 1.1 pk }
847 1.1 pk
848 1.3 pk /* Update ring */
849 1.1 pk sc->sc_rb.rb_tdtail = ri;
850 1.1 pk
851 1.1 pk hme_start(ifp);
852 1.1 pk
853 1.1 pk if (sc->sc_rb.rb_td_nbusy == 0)
854 1.1 pk ifp->if_timer = 0;
855 1.1 pk
856 1.1 pk return (1);
857 1.1 pk }
858 1.1 pk
859 1.1 pk /*
860 1.1 pk * Receive interrupt.
861 1.1 pk */
862 1.1 pk int
863 1.1 pk hme_rint(sc)
864 1.1 pk struct hme_softc *sc;
865 1.1 pk {
866 1.1 pk caddr_t xdr = sc->sc_rb.rb_rxd;
867 1.1 pk unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
868 1.1 pk unsigned int ri, len;
869 1.1 pk u_int32_t flags;
870 1.1 pk
871 1.1 pk ri = sc->sc_rb.rb_rdtail;
872 1.1 pk
873 1.1 pk /*
874 1.1 pk * Process all buffers with valid data.
875 1.1 pk */
876 1.1 pk for (;;) {
877 1.1 pk flags = HME_XD_GETFLAGS(xdr, ri);
878 1.1 pk if (flags & HME_XD_OWN)
879 1.1 pk break;
880 1.1 pk
881 1.1 pk len = HME_XD_DECODE_RSIZE(flags);
882 1.1 pk hme_read(sc, ri, len);
883 1.1 pk
884 1.1 pk /* This buffer can be used by the hardware again */
885 1.1 pk HME_XD_SETFLAGS(xdr, ri,
886 1.1 pk HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
887 1.1 pk
888 1.1 pk if (++ri == nrbuf)
889 1.1 pk ri = 0;
890 1.1 pk }
891 1.1 pk
892 1.1 pk sc->sc_rb.rb_rdtail = ri;
893 1.1 pk
894 1.1 pk return (1);
895 1.1 pk }
896 1.1 pk
897 1.1 pk int
898 1.1 pk hme_eint(sc, status)
899 1.1 pk struct hme_softc *sc;
900 1.1 pk u_int status;
901 1.1 pk {
902 1.1 pk char bits[128];
903 1.1 pk
904 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
905 1.1 pk printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
906 1.1 pk return (1);
907 1.1 pk }
908 1.1 pk
909 1.1 pk printf("%s: status=%s\n", sc->sc_dev.dv_xname,
910 1.1 pk bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
911 1.1 pk return (1);
912 1.1 pk }
913 1.1 pk
914 1.1 pk int
915 1.1 pk hme_intr(v)
916 1.1 pk void *v;
917 1.1 pk {
918 1.1 pk struct hme_softc *sc = (struct hme_softc *)v;
919 1.1 pk bus_space_tag_t t = sc->sc_bustag;
920 1.1 pk bus_space_handle_t seb = sc->sc_seb;
921 1.1 pk u_int32_t status;
922 1.1 pk int r = 0;
923 1.1 pk
924 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
925 1.1 pk
926 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
927 1.1 pk r |= hme_eint(sc, status);
928 1.1 pk
929 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
930 1.1 pk r |= hme_tint(sc);
931 1.1 pk
932 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
933 1.1 pk r |= hme_rint(sc);
934 1.1 pk
935 1.1 pk return (r);
936 1.1 pk }
937 1.1 pk
938 1.1 pk
939 1.1 pk void
940 1.1 pk hme_watchdog(ifp)
941 1.1 pk struct ifnet *ifp;
942 1.1 pk {
943 1.1 pk struct hme_softc *sc = ifp->if_softc;
944 1.1 pk
945 1.1 pk log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
946 1.1 pk ++ifp->if_oerrors;
947 1.1 pk
948 1.1 pk hme_reset(sc);
949 1.1 pk }
950 1.1 pk
951 1.1 pk /*
952 1.1 pk * MII interface
953 1.1 pk */
954 1.1 pk static int
955 1.1 pk hme_mii_readreg(self, phy, reg)
956 1.1 pk struct device *self;
957 1.1 pk int phy, reg;
958 1.1 pk {
959 1.1 pk struct hme_softc *sc = (void *)self;
960 1.1 pk bus_space_tag_t t = sc->sc_bustag;
961 1.1 pk bus_space_handle_t mif = sc->sc_mif;
962 1.1 pk int n;
963 1.1 pk u_int32_t v;
964 1.1 pk
965 1.1 pk /* Construct the frame command */
966 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
967 1.1 pk HME_MIF_FO_TAMSB |
968 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
969 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
970 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
971 1.1 pk
972 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
973 1.1 pk for (n = 0; n < 100; n++) {
974 1.2 pk DELAY(1);
975 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
976 1.1 pk if (v & HME_MIF_FO_TALSB)
977 1.1 pk return (v & HME_MIF_FO_DATA);
978 1.1 pk }
979 1.1 pk
980 1.1 pk printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
981 1.1 pk return (0);
982 1.1 pk }
983 1.1 pk
984 1.1 pk static void
985 1.1 pk hme_mii_writereg(self, phy, reg, val)
986 1.1 pk struct device *self;
987 1.1 pk int phy, reg, val;
988 1.1 pk {
989 1.1 pk struct hme_softc *sc = (void *)self;
990 1.1 pk bus_space_tag_t t = sc->sc_bustag;
991 1.1 pk bus_space_handle_t mif = sc->sc_mif;
992 1.1 pk int n;
993 1.1 pk u_int32_t v;
994 1.1 pk
995 1.1 pk /* Construct the frame command */
996 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
997 1.1 pk HME_MIF_FO_TAMSB |
998 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
999 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1000 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
1001 1.1 pk (val & HME_MIF_FO_DATA);
1002 1.1 pk
1003 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1004 1.1 pk for (n = 0; n < 100; n++) {
1005 1.2 pk DELAY(1);
1006 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1007 1.1 pk if (v & HME_MIF_FO_TALSB)
1008 1.1 pk return;
1009 1.1 pk }
1010 1.1 pk
1011 1.2 pk printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1012 1.1 pk }
1013 1.1 pk
1014 1.1 pk static void
1015 1.1 pk hme_mii_statchg(dev)
1016 1.1 pk struct device *dev;
1017 1.1 pk {
1018 1.3 pk #ifdef HMEDEBUG
1019 1.3 pk struct hme_softc *sc = (void *)dev;
1020 1.3 pk if (sc->sc_debug)
1021 1.3 pk printf("hme_mii_statchg: status change\n");
1022 1.3 pk #endif
1023 1.1 pk }
1024 1.1 pk
1025 1.1 pk int
1026 1.1 pk hme_mediachange(ifp)
1027 1.1 pk struct ifnet *ifp;
1028 1.1 pk {
1029 1.1 pk struct hme_softc *sc = ifp->if_softc;
1030 1.1 pk struct ifmedia *ifm = &sc->sc_media;
1031 1.1 pk int newmedia = ifm->ifm_media;
1032 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1033 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1034 1.1 pk u_int32_t v;
1035 1.1 pk int error;
1036 1.1 pk
1037 1.1 pk if (IFM_TYPE(newmedia) != IFM_ETHER)
1038 1.1 pk return (EINVAL);
1039 1.1 pk
1040 1.1 pk if ((ifp->if_flags & IFF_UP) == 0)
1041 1.1 pk return (0);
1042 1.1 pk
1043 1.1 pk if ((error = mii_mediachg(&sc->sc_mii)) != 0)
1044 1.1 pk return (error);
1045 1.1 pk
1046 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1047 1.1 pk if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1048 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
1049 1.1 pk else
1050 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
1051 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1052 1.1 pk
1053 1.1 pk return (0);
1054 1.1 pk }
1055 1.1 pk
1056 1.1 pk void
1057 1.1 pk hme_mediastatus(ifp, ifmr)
1058 1.1 pk struct ifnet *ifp;
1059 1.1 pk struct ifmediareq *ifmr;
1060 1.1 pk {
1061 1.1 pk struct hme_softc *sc = ifp->if_softc;
1062 1.1 pk
1063 1.1 pk if ((ifp->if_flags & IFF_UP) == 0)
1064 1.1 pk return;
1065 1.1 pk
1066 1.1 pk mii_pollstat(&sc->sc_mii);
1067 1.1 pk ifmr->ifm_active = sc->sc_mii.mii_media_active;
1068 1.1 pk ifmr->ifm_status = sc->sc_mii.mii_media_status;
1069 1.1 pk }
1070 1.1 pk
1071 1.1 pk /*
1072 1.1 pk * Process an ioctl request.
1073 1.1 pk */
1074 1.1 pk int
1075 1.1 pk hme_ioctl(ifp, cmd, data)
1076 1.1 pk struct ifnet *ifp;
1077 1.1 pk u_long cmd;
1078 1.1 pk caddr_t data;
1079 1.1 pk {
1080 1.1 pk struct hme_softc *sc = ifp->if_softc;
1081 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1082 1.1 pk struct ifreq *ifr = (struct ifreq *)data;
1083 1.1 pk int s, error = 0;
1084 1.1 pk
1085 1.1 pk s = splnet();
1086 1.1 pk
1087 1.1 pk switch (cmd) {
1088 1.1 pk
1089 1.1 pk case SIOCSIFADDR:
1090 1.1 pk ifp->if_flags |= IFF_UP;
1091 1.1 pk
1092 1.1 pk switch (ifa->ifa_addr->sa_family) {
1093 1.1 pk #ifdef INET
1094 1.1 pk case AF_INET:
1095 1.1 pk hme_init(sc);
1096 1.1 pk arp_ifinit(ifp, ifa);
1097 1.1 pk break;
1098 1.1 pk #endif
1099 1.1 pk #ifdef NS
1100 1.1 pk case AF_NS:
1101 1.1 pk {
1102 1.1 pk struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1103 1.1 pk
1104 1.1 pk if (ns_nullhost(*ina))
1105 1.1 pk ina->x_host =
1106 1.1 pk *(union ns_host *)LLADDR(ifp->if_sadl);
1107 1.1 pk else {
1108 1.1 pk bcopy(ina->x_host.c_host,
1109 1.1 pk LLADDR(ifp->if_sadl),
1110 1.1 pk sizeof(sc->sc_enaddr));
1111 1.1 pk }
1112 1.1 pk /* Set new address. */
1113 1.1 pk hme_init(sc);
1114 1.1 pk break;
1115 1.1 pk }
1116 1.1 pk #endif
1117 1.1 pk default:
1118 1.1 pk hme_init(sc);
1119 1.1 pk break;
1120 1.1 pk }
1121 1.1 pk break;
1122 1.1 pk
1123 1.1 pk case SIOCSIFFLAGS:
1124 1.1 pk if ((ifp->if_flags & IFF_UP) == 0 &&
1125 1.1 pk (ifp->if_flags & IFF_RUNNING) != 0) {
1126 1.1 pk /*
1127 1.1 pk * If interface is marked down and it is running, then
1128 1.1 pk * stop it.
1129 1.1 pk */
1130 1.1 pk hme_stop(sc);
1131 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1132 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0 &&
1133 1.1 pk (ifp->if_flags & IFF_RUNNING) == 0) {
1134 1.1 pk /*
1135 1.1 pk * If interface is marked up and it is stopped, then
1136 1.1 pk * start it.
1137 1.1 pk */
1138 1.1 pk hme_init(sc);
1139 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0) {
1140 1.1 pk /*
1141 1.1 pk * Reset the interface to pick up changes in any other
1142 1.1 pk * flags that affect hardware registers.
1143 1.1 pk */
1144 1.1 pk /*hme_stop(sc);*/
1145 1.1 pk hme_init(sc);
1146 1.1 pk }
1147 1.1 pk #ifdef HMEDEBUG
1148 1.1 pk sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1149 1.1 pk #endif
1150 1.1 pk break;
1151 1.1 pk
1152 1.1 pk case SIOCADDMULTI:
1153 1.1 pk case SIOCDELMULTI:
1154 1.1 pk error = (cmd == SIOCADDMULTI) ?
1155 1.1 pk ether_addmulti(ifr, &sc->sc_ethercom) :
1156 1.1 pk ether_delmulti(ifr, &sc->sc_ethercom);
1157 1.1 pk
1158 1.1 pk if (error == ENETRESET) {
1159 1.1 pk /*
1160 1.1 pk * Multicast list has changed; set the hardware filter
1161 1.1 pk * accordingly.
1162 1.1 pk */
1163 1.1 pk hme_setladrf(sc);
1164 1.1 pk error = 0;
1165 1.1 pk }
1166 1.1 pk break;
1167 1.1 pk
1168 1.1 pk case SIOCGIFMEDIA:
1169 1.1 pk case SIOCSIFMEDIA:
1170 1.1 pk error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1171 1.1 pk break;
1172 1.1 pk
1173 1.1 pk default:
1174 1.1 pk error = EINVAL;
1175 1.1 pk break;
1176 1.1 pk }
1177 1.1 pk
1178 1.1 pk splx(s);
1179 1.1 pk return (error);
1180 1.1 pk }
1181 1.1 pk
1182 1.1 pk void
1183 1.1 pk hme_shutdown(arg)
1184 1.1 pk void *arg;
1185 1.1 pk {
1186 1.1 pk
1187 1.1 pk hme_stop((struct hme_softc *)arg);
1188 1.1 pk }
1189 1.1 pk
1190 1.1 pk /*
1191 1.1 pk * Set up the logical address filter.
1192 1.1 pk */
1193 1.1 pk void
1194 1.1 pk hme_setladrf(sc)
1195 1.1 pk struct hme_softc *sc;
1196 1.1 pk {
1197 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1198 1.1 pk struct ether_multi *enm;
1199 1.1 pk struct ether_multistep step;
1200 1.1 pk struct ethercom *ec = &sc->sc_ethercom;
1201 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1202 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1203 1.1 pk u_char *cp;
1204 1.1 pk u_int32_t crc;
1205 1.1 pk u_int32_t hash[4];
1206 1.1 pk int len;
1207 1.1 pk
1208 1.1 pk /*
1209 1.1 pk * Set up multicast address filter by passing all multicast addresses
1210 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1211 1.1 pk * index into the 64 bit logical address filter. The high order bit
1212 1.1 pk * selects the word, while the rest of the bits select the bit within
1213 1.1 pk * the word.
1214 1.1 pk */
1215 1.1 pk
1216 1.1 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1217 1.1 pk u_int32_t v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1218 1.1 pk v |= HME_MAC_RXCFG_PMISC;
1219 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1220 1.1 pk goto allmulti;
1221 1.1 pk }
1222 1.1 pk
1223 1.1 pk /* Clear hash table */
1224 1.1 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1225 1.1 pk ETHER_FIRST_MULTI(step, ec, enm);
1226 1.1 pk while (enm != NULL) {
1227 1.1 pk if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1228 1.1 pk /*
1229 1.1 pk * We must listen to a range of multicast addresses.
1230 1.1 pk * For now, just accept all multicasts, rather than
1231 1.1 pk * trying to set only those filter bits needed to match
1232 1.1 pk * the range. (At this time, the only use of address
1233 1.1 pk * ranges is for IP multicast routing, for which the
1234 1.1 pk * range is big enough to require all bits set.)
1235 1.1 pk */
1236 1.1 pk goto allmulti;
1237 1.1 pk }
1238 1.1 pk
1239 1.1 pk cp = enm->enm_addrlo;
1240 1.1 pk crc = 0xffffffff;
1241 1.1 pk for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1242 1.1 pk int octet = *cp++;
1243 1.1 pk int i;
1244 1.1 pk
1245 1.1 pk #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1246 1.1 pk for (i = 0; i < 8; i++) {
1247 1.1 pk if ((crc & 1) ^ (octet & 1)) {
1248 1.1 pk crc >>= 1;
1249 1.1 pk crc ^= MC_POLY_LE;
1250 1.1 pk } else {
1251 1.1 pk crc >>= 1;
1252 1.1 pk }
1253 1.1 pk octet >>= 1;
1254 1.1 pk }
1255 1.1 pk }
1256 1.1 pk /* Just want the 6 most significant bits. */
1257 1.1 pk crc >>= 26;
1258 1.1 pk
1259 1.1 pk /* Set the corresponding bit in the filter. */
1260 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1261 1.1 pk
1262 1.1 pk ETHER_NEXT_MULTI(step, enm);
1263 1.1 pk }
1264 1.1 pk
1265 1.1 pk /* Now load the hash table onto the chip */
1266 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1267 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1268 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1269 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1270 1.1 pk
1271 1.1 pk ifp->if_flags &= ~IFF_ALLMULTI;
1272 1.1 pk return;
1273 1.1 pk
1274 1.1 pk allmulti:
1275 1.1 pk ifp->if_flags |= IFF_ALLMULTI;
1276 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, 0xffff);
1277 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, 0xffff);
1278 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, 0xffff);
1279 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, 0xffff);
1280 1.1 pk }
1281 1.1 pk
1282 1.1 pk /*
1283 1.1 pk * Routines for accessing the transmit and receive buffers.
1284 1.1 pk * The various CPU and adapter configurations supported by this
1285 1.1 pk * driver require three different access methods for buffers
1286 1.1 pk * and descriptors:
1287 1.1 pk * (1) contig (contiguous data; no padding),
1288 1.1 pk * (2) gap2 (two bytes of data followed by two bytes of padding),
1289 1.1 pk * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1290 1.1 pk */
1291 1.1 pk
1292 1.1 pk #if 0
1293 1.1 pk /*
1294 1.1 pk * contig: contiguous data with no padding.
1295 1.1 pk *
1296 1.1 pk * Buffers may have any alignment.
1297 1.1 pk */
1298 1.1 pk
1299 1.1 pk void
1300 1.1 pk hme_copytobuf_contig(sc, from, ri, len)
1301 1.1 pk struct hme_softc *sc;
1302 1.1 pk void *from;
1303 1.1 pk int ri, len;
1304 1.1 pk {
1305 1.1 pk volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1306 1.1 pk
1307 1.1 pk /*
1308 1.1 pk * Just call bcopy() to do the work.
1309 1.1 pk */
1310 1.1 pk bcopy(from, buf, len);
1311 1.1 pk }
1312 1.1 pk
1313 1.1 pk void
1314 1.1 pk hme_copyfrombuf_contig(sc, to, boff, len)
1315 1.1 pk struct hme_softc *sc;
1316 1.1 pk void *to;
1317 1.1 pk int boff, len;
1318 1.1 pk {
1319 1.1 pk volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1320 1.1 pk
1321 1.1 pk /*
1322 1.1 pk * Just call bcopy() to do the work.
1323 1.1 pk */
1324 1.1 pk bcopy(buf, to, len);
1325 1.1 pk }
1326 1.1 pk #endif
1327