hme.c revision 1.34 1 1.34 petrov /* $NetBSD: hme.c,v 1.34 2003/02/20 20:09:56 petrov Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk * 3. All advertising materials mentioning features or use of this software
19 1.1 pk * must display the following acknowledgement:
20 1.1 pk * This product includes software developed by the NetBSD
21 1.1 pk * Foundation, Inc. and its contributors.
22 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 pk * contributors may be used to endorse or promote products derived
24 1.1 pk * from this software without specific prior written permission.
25 1.1 pk *
26 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
37 1.1 pk */
38 1.1 pk
39 1.1 pk /*
40 1.1 pk * HME Ethernet module driver.
41 1.1 pk */
42 1.25 lukem
43 1.25 lukem #include <sys/cdefs.h>
44 1.34 petrov __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.34 2003/02/20 20:09:56 petrov Exp $");
45 1.1 pk
46 1.28 tron #define HMEDEBUG
47 1.1 pk
48 1.1 pk #include "opt_inet.h"
49 1.1 pk #include "opt_ns.h"
50 1.1 pk #include "bpfilter.h"
51 1.1 pk #include "rnd.h"
52 1.1 pk
53 1.1 pk #include <sys/param.h>
54 1.1 pk #include <sys/systm.h>
55 1.5 pk #include <sys/kernel.h>
56 1.1 pk #include <sys/mbuf.h>
57 1.1 pk #include <sys/syslog.h>
58 1.1 pk #include <sys/socket.h>
59 1.1 pk #include <sys/device.h>
60 1.1 pk #include <sys/malloc.h>
61 1.1 pk #include <sys/ioctl.h>
62 1.1 pk #include <sys/errno.h>
63 1.1 pk #if NRND > 0
64 1.1 pk #include <sys/rnd.h>
65 1.1 pk #endif
66 1.1 pk
67 1.1 pk #include <net/if.h>
68 1.1 pk #include <net/if_dl.h>
69 1.1 pk #include <net/if_ether.h>
70 1.1 pk #include <net/if_media.h>
71 1.1 pk
72 1.1 pk #ifdef INET
73 1.1 pk #include <netinet/in.h>
74 1.1 pk #include <netinet/if_inarp.h>
75 1.1 pk #include <netinet/in_systm.h>
76 1.1 pk #include <netinet/in_var.h>
77 1.1 pk #include <netinet/ip.h>
78 1.1 pk #endif
79 1.1 pk
80 1.1 pk #ifdef NS
81 1.1 pk #include <netns/ns.h>
82 1.1 pk #include <netns/ns_if.h>
83 1.1 pk #endif
84 1.1 pk
85 1.1 pk #if NBPFILTER > 0
86 1.1 pk #include <net/bpf.h>
87 1.1 pk #include <net/bpfdesc.h>
88 1.1 pk #endif
89 1.1 pk
90 1.1 pk #include <dev/mii/mii.h>
91 1.1 pk #include <dev/mii/miivar.h>
92 1.1 pk
93 1.1 pk #include <machine/bus.h>
94 1.1 pk
95 1.1 pk #include <dev/ic/hmereg.h>
96 1.1 pk #include <dev/ic/hmevar.h>
97 1.1 pk
98 1.1 pk void hme_start __P((struct ifnet *));
99 1.1 pk void hme_stop __P((struct hme_softc *));
100 1.1 pk int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
101 1.5 pk void hme_tick __P((void *));
102 1.1 pk void hme_watchdog __P((struct ifnet *));
103 1.1 pk void hme_shutdown __P((void *));
104 1.1 pk void hme_init __P((struct hme_softc *));
105 1.1 pk void hme_meminit __P((struct hme_softc *));
106 1.4 pk void hme_mifinit __P((struct hme_softc *));
107 1.1 pk void hme_reset __P((struct hme_softc *));
108 1.1 pk void hme_setladrf __P((struct hme_softc *));
109 1.1 pk
110 1.1 pk /* MII methods & callbacks */
111 1.1 pk static int hme_mii_readreg __P((struct device *, int, int));
112 1.1 pk static void hme_mii_writereg __P((struct device *, int, int, int));
113 1.1 pk static void hme_mii_statchg __P((struct device *));
114 1.1 pk
115 1.1 pk int hme_mediachange __P((struct ifnet *));
116 1.1 pk void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
117 1.1 pk
118 1.28 tron struct mbuf *hme_get __P((struct hme_softc *, int, int));
119 1.28 tron int hme_put __P((struct hme_softc *, int, struct mbuf *));
120 1.28 tron void hme_read __P((struct hme_softc *, int, int));
121 1.1 pk int hme_eint __P((struct hme_softc *, u_int));
122 1.1 pk int hme_rint __P((struct hme_softc *));
123 1.1 pk int hme_tint __P((struct hme_softc *));
124 1.1 pk
125 1.28 tron static int ether_cmp __P((u_char *, u_char *));
126 1.28 tron
127 1.28 tron /* Default buffer copy routines */
128 1.28 tron void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
129 1.28 tron void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
130 1.28 tron void hme_zerobuf_contig __P((struct hme_softc *, int, int));
131 1.28 tron
132 1.28 tron
133 1.1 pk void
134 1.1 pk hme_config(sc)
135 1.1 pk struct hme_softc *sc;
136 1.1 pk {
137 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
138 1.1 pk struct mii_data *mii = &sc->sc_mii;
139 1.5 pk struct mii_softc *child;
140 1.11 pk bus_dma_tag_t dmatag = sc->sc_dmatag;
141 1.1 pk bus_dma_segment_t seg;
142 1.1 pk bus_size_t size;
143 1.28 tron int rseg, error;
144 1.1 pk
145 1.1 pk /*
146 1.1 pk * HME common initialization.
147 1.1 pk *
148 1.1 pk * hme_softc fields that must be initialized by the front-end:
149 1.1 pk *
150 1.1 pk * the bus tag:
151 1.1 pk * sc_bustag
152 1.1 pk *
153 1.1 pk * the dma bus tag:
154 1.1 pk * sc_dmatag
155 1.1 pk *
156 1.1 pk * the bus handles:
157 1.1 pk * sc_seb (Shared Ethernet Block registers)
158 1.1 pk * sc_erx (Receiver Unit registers)
159 1.1 pk * sc_etx (Transmitter Unit registers)
160 1.1 pk * sc_mac (MAC registers)
161 1.1 pk * sc_mif (Managment Interface registers)
162 1.1 pk *
163 1.1 pk * the maximum bus burst size:
164 1.1 pk * sc_burst
165 1.1 pk *
166 1.28 tron * (notyet:DMA capable memory for the ring descriptors & packet buffers:
167 1.28 tron * rb_membase, rb_dmabase)
168 1.28 tron *
169 1.1 pk * the local Ethernet address:
170 1.1 pk * sc_enaddr
171 1.1 pk *
172 1.1 pk */
173 1.1 pk
174 1.1 pk /* Make sure the chip is stopped. */
175 1.1 pk hme_stop(sc);
176 1.1 pk
177 1.1 pk
178 1.28 tron /*
179 1.28 tron * Allocate descriptors and buffers
180 1.28 tron * XXX - do all this differently.. and more configurably,
181 1.28 tron * eg. use things as `dma_load_mbuf()' on transmit,
182 1.28 tron * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
183 1.28 tron * all the time) on the reveiver side.
184 1.28 tron *
185 1.28 tron * Note: receive buffers must be 64-byte aligned.
186 1.28 tron * Also, apparently, the buffers must extend to a DMA burst
187 1.28 tron * boundary beyond the maximum packet size.
188 1.28 tron */
189 1.28 tron #define _HME_NDESC 128
190 1.28 tron #define _HME_BUFSZ 1600
191 1.28 tron
192 1.28 tron /* Note: the # of descriptors must be a multiple of 16 */
193 1.28 tron sc->sc_rb.rb_ntbuf = _HME_NDESC;
194 1.28 tron sc->sc_rb.rb_nrbuf = _HME_NDESC;
195 1.1 pk
196 1.1 pk /*
197 1.1 pk * Allocate DMA capable memory
198 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
199 1.1 pk * take this into account when calculating the size. Note that
200 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
201 1.28 tron * so we allocate that much regardless of _HME_NDESC.
202 1.1 pk */
203 1.28 tron size = 2048 + /* TX descriptors */
204 1.28 tron 2048 + /* RX descriptors */
205 1.28 tron sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
206 1.28 tron sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
207 1.11 pk
208 1.11 pk /* Allocate DMA buffer */
209 1.28 tron if ((error = bus_dmamem_alloc(dmatag, size,
210 1.28 tron 2048, 0,
211 1.28 tron &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
212 1.1 pk printf("%s: DMA buffer alloc error %d\n",
213 1.28 tron sc->sc_dev.dv_xname, error);
214 1.10 mrg return;
215 1.1 pk }
216 1.1 pk
217 1.11 pk /* Map DMA memory in CPU addressable space */
218 1.11 pk if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
219 1.28 tron &sc->sc_rb.rb_membase,
220 1.28 tron BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
221 1.1 pk printf("%s: DMA buffer map error %d\n",
222 1.28 tron sc->sc_dev.dv_xname, error);
223 1.11 pk bus_dmamap_unload(dmatag, sc->sc_dmamap);
224 1.11 pk bus_dmamem_free(dmatag, &seg, rseg);
225 1.1 pk return;
226 1.1 pk }
227 1.13 mrg
228 1.13 mrg if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
229 1.28 tron BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
230 1.13 mrg printf("%s: DMA map create error %d\n",
231 1.28 tron sc->sc_dev.dv_xname, error);
232 1.13 mrg return;
233 1.13 mrg }
234 1.13 mrg
235 1.13 mrg /* Load the buffer */
236 1.13 mrg if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
237 1.17 mrg sc->sc_rb.rb_membase, size, NULL,
238 1.17 mrg BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
239 1.13 mrg printf("%s: DMA buffer map load error %d\n",
240 1.28 tron sc->sc_dev.dv_xname, error);
241 1.13 mrg bus_dmamem_free(dmatag, &seg, rseg);
242 1.13 mrg return;
243 1.13 mrg }
244 1.13 mrg sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
245 1.1 pk
246 1.22 thorpej printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
247 1.22 thorpej ether_sprintf(sc->sc_enaddr));
248 1.2 pk
249 1.1 pk /* Initialize ifnet structure. */
250 1.21 thorpej strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
251 1.1 pk ifp->if_softc = sc;
252 1.1 pk ifp->if_start = hme_start;
253 1.1 pk ifp->if_ioctl = hme_ioctl;
254 1.1 pk ifp->if_watchdog = hme_watchdog;
255 1.1 pk ifp->if_flags =
256 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
257 1.20 thorpej IFQ_SET_READY(&ifp->if_snd);
258 1.1 pk
259 1.1 pk /* Initialize ifmedia structures and MII info */
260 1.1 pk mii->mii_ifp = ifp;
261 1.34 petrov mii->mii_readreg = hme_mii_readreg;
262 1.1 pk mii->mii_writereg = hme_mii_writereg;
263 1.1 pk mii->mii_statchg = hme_mii_statchg;
264 1.1 pk
265 1.33 pk ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
266 1.1 pk
267 1.4 pk hme_mifinit(sc);
268 1.4 pk
269 1.6 thorpej mii_attach(&sc->sc_dev, mii, 0xffffffff,
270 1.34 petrov MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
271 1.2 pk
272 1.5 pk child = LIST_FIRST(&mii->mii_phys);
273 1.5 pk if (child == NULL) {
274 1.1 pk /* No PHY attached */
275 1.1 pk ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
276 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
277 1.1 pk } else {
278 1.1 pk /*
279 1.5 pk * Walk along the list of attached MII devices and
280 1.5 pk * establish an `MII instance' to `phy number'
281 1.5 pk * mapping. We'll use this mapping in media change
282 1.5 pk * requests to determine which phy to use to program
283 1.5 pk * the MIF configuration register.
284 1.5 pk */
285 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
286 1.5 pk /*
287 1.5 pk * Note: we support just two PHYs: the built-in
288 1.5 pk * internal device and an external on the MII
289 1.5 pk * connector.
290 1.5 pk */
291 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) {
292 1.5 pk printf("%s: cannot accomodate MII device %s"
293 1.28 tron " at phy %d, instance %d\n",
294 1.28 tron sc->sc_dev.dv_xname,
295 1.28 tron child->mii_dev.dv_xname,
296 1.28 tron child->mii_phy, child->mii_inst);
297 1.5 pk continue;
298 1.5 pk }
299 1.5 pk
300 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy;
301 1.5 pk }
302 1.5 pk
303 1.5 pk /*
304 1.1 pk * XXX - we can really do the following ONLY if the
305 1.1 pk * phy indeed has the auto negotiation capability!!
306 1.1 pk */
307 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
308 1.1 pk }
309 1.27 tron
310 1.28 tron /* claim 802.1q capability */
311 1.27 tron sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
312 1.1 pk
313 1.1 pk /* Attach the interface. */
314 1.1 pk if_attach(ifp);
315 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
316 1.1 pk
317 1.1 pk sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
318 1.1 pk if (sc->sc_sh == NULL)
319 1.1 pk panic("hme_config: can't establish shutdownhook");
320 1.1 pk
321 1.1 pk #if NRND > 0
322 1.1 pk rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
323 1.1 pk RND_TYPE_NET, 0);
324 1.1 pk #endif
325 1.5 pk
326 1.9 thorpej callout_init(&sc->sc_tick_ch);
327 1.5 pk }
328 1.5 pk
329 1.5 pk void
330 1.5 pk hme_tick(arg)
331 1.5 pk void *arg;
332 1.5 pk {
333 1.5 pk struct hme_softc *sc = arg;
334 1.5 pk int s;
335 1.5 pk
336 1.5 pk s = splnet();
337 1.5 pk mii_tick(&sc->sc_mii);
338 1.5 pk splx(s);
339 1.5 pk
340 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
341 1.1 pk }
342 1.1 pk
343 1.1 pk void
344 1.1 pk hme_reset(sc)
345 1.1 pk struct hme_softc *sc;
346 1.1 pk {
347 1.1 pk int s;
348 1.1 pk
349 1.1 pk s = splnet();
350 1.1 pk hme_init(sc);
351 1.1 pk splx(s);
352 1.1 pk }
353 1.1 pk
354 1.1 pk void
355 1.1 pk hme_stop(sc)
356 1.1 pk struct hme_softc *sc;
357 1.1 pk {
358 1.1 pk bus_space_tag_t t = sc->sc_bustag;
359 1.1 pk bus_space_handle_t seb = sc->sc_seb;
360 1.1 pk int n;
361 1.1 pk
362 1.9 thorpej callout_stop(&sc->sc_tick_ch);
363 1.5 pk mii_down(&sc->sc_mii);
364 1.5 pk
365 1.33 pk /* Mask all interrupts */
366 1.33 pk bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
367 1.33 pk
368 1.1 pk /* Reset transmitter and receiver */
369 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
370 1.28 tron (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
371 1.1 pk
372 1.1 pk for (n = 0; n < 20; n++) {
373 1.1 pk u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
374 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
375 1.1 pk return;
376 1.1 pk DELAY(20);
377 1.1 pk }
378 1.1 pk
379 1.1 pk printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
380 1.1 pk }
381 1.1 pk
382 1.1 pk void
383 1.1 pk hme_meminit(sc)
384 1.1 pk struct hme_softc *sc;
385 1.1 pk {
386 1.28 tron bus_addr_t txbufdma, rxbufdma;
387 1.1 pk bus_addr_t dma;
388 1.1 pk caddr_t p;
389 1.28 tron unsigned int ntbuf, nrbuf, i;
390 1.1 pk struct hme_ring *hr = &sc->sc_rb;
391 1.1 pk
392 1.1 pk p = hr->rb_membase;
393 1.1 pk dma = hr->rb_dmabase;
394 1.1 pk
395 1.28 tron ntbuf = hr->rb_ntbuf;
396 1.28 tron nrbuf = hr->rb_nrbuf;
397 1.28 tron
398 1.1 pk /*
399 1.1 pk * Allocate transmit descriptors
400 1.1 pk */
401 1.1 pk hr->rb_txd = p;
402 1.1 pk hr->rb_txddma = dma;
403 1.28 tron p += ntbuf * HME_XD_SIZE;
404 1.28 tron dma += ntbuf * HME_XD_SIZE;
405 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/
406 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
407 1.4 pk p = (caddr_t)roundup((u_long)p, 2048);
408 1.1 pk
409 1.1 pk /*
410 1.1 pk * Allocate receive descriptors
411 1.1 pk */
412 1.1 pk hr->rb_rxd = p;
413 1.1 pk hr->rb_rxddma = dma;
414 1.28 tron p += nrbuf * HME_XD_SIZE;
415 1.28 tron dma += nrbuf * HME_XD_SIZE;
416 1.4 pk /* Again move forward to the next 2048 byte boundary.*/
417 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
418 1.4 pk p = (caddr_t)roundup((u_long)p, 2048);
419 1.1 pk
420 1.28 tron
421 1.1 pk /*
422 1.28 tron * Allocate transmit buffers
423 1.1 pk */
424 1.28 tron hr->rb_txbuf = p;
425 1.28 tron txbufdma = dma;
426 1.28 tron p += ntbuf * _HME_BUFSZ;
427 1.28 tron dma += ntbuf * _HME_BUFSZ;
428 1.28 tron
429 1.28 tron /*
430 1.28 tron * Allocate receive buffers
431 1.28 tron */
432 1.28 tron hr->rb_rxbuf = p;
433 1.28 tron rxbufdma = dma;
434 1.28 tron p += nrbuf * _HME_BUFSZ;
435 1.28 tron dma += nrbuf * _HME_BUFSZ;
436 1.28 tron
437 1.28 tron /*
438 1.28 tron * Initialize transmit buffer descriptors
439 1.28 tron */
440 1.28 tron for (i = 0; i < ntbuf; i++) {
441 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
442 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
443 1.1 pk }
444 1.1 pk
445 1.1 pk /*
446 1.28 tron * Initialize receive buffer descriptors
447 1.1 pk */
448 1.28 tron for (i = 0; i < nrbuf; i++) {
449 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
450 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
451 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
452 1.1 pk }
453 1.1 pk
454 1.28 tron hr->rb_tdhead = hr->rb_tdtail = 0;
455 1.28 tron hr->rb_td_nbusy = 0;
456 1.28 tron hr->rb_rdtail = 0;
457 1.1 pk }
458 1.1 pk
459 1.1 pk /*
460 1.1 pk * Initialization of interface; set up initialization block
461 1.1 pk * and transmit/receive descriptor rings.
462 1.1 pk */
463 1.1 pk void
464 1.1 pk hme_init(sc)
465 1.1 pk struct hme_softc *sc;
466 1.1 pk {
467 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
468 1.1 pk bus_space_tag_t t = sc->sc_bustag;
469 1.1 pk bus_space_handle_t seb = sc->sc_seb;
470 1.1 pk bus_space_handle_t etx = sc->sc_etx;
471 1.1 pk bus_space_handle_t erx = sc->sc_erx;
472 1.1 pk bus_space_handle_t mac = sc->sc_mac;
473 1.1 pk bus_space_handle_t mif = sc->sc_mif;
474 1.1 pk u_int8_t *ea;
475 1.1 pk u_int32_t v;
476 1.1 pk
477 1.1 pk /*
478 1.1 pk * Initialization sequence. The numbered steps below correspond
479 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
480 1.1 pk * Channel Engine manual (part of the PCIO manual).
481 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
482 1.1 pk */
483 1.1 pk
484 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
485 1.1 pk hme_stop(sc);
486 1.1 pk
487 1.4 pk /* Re-initialize the MIF */
488 1.4 pk hme_mifinit(sc);
489 1.4 pk
490 1.1 pk /* Call MI reset function if any */
491 1.1 pk if (sc->sc_hwreset)
492 1.1 pk (*sc->sc_hwreset)(sc);
493 1.1 pk
494 1.1 pk #if 0
495 1.1 pk /* Mask all MIF interrupts, just in case */
496 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
497 1.1 pk #endif
498 1.1 pk
499 1.1 pk /* step 3. Setup data structures in host memory */
500 1.1 pk hme_meminit(sc);
501 1.1 pk
502 1.1 pk /* step 4. TX MAC registers & counters */
503 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
504 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
505 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
506 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
507 1.28 tron bus_space_write_4(t, mac, HME_MACI_TXSIZE,
508 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
509 1.28 tron ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
510 1.28 tron ETHER_MAX_LEN);
511 1.1 pk
512 1.1 pk /* Load station MAC address */
513 1.1 pk ea = sc->sc_enaddr;
514 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
515 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
516 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
517 1.1 pk
518 1.1 pk /*
519 1.1 pk * Init seed for backoff
520 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
521 1.1 pk */
522 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
523 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
524 1.1 pk
525 1.1 pk
526 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
527 1.1 pk
528 1.1 pk
529 1.1 pk /* step 5. RX MAC registers & counters */
530 1.1 pk hme_setladrf(sc);
531 1.1 pk
532 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
533 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
534 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
535 1.1 pk
536 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
537 1.28 tron bus_space_write_4(t, mac, HME_MACI_RXSIZE,
538 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
539 1.28 tron ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
540 1.28 tron ETHER_MAX_LEN);
541 1.28 tron
542 1.1 pk
543 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
544 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
545 1.28 tron ~(
546 1.28 tron /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
547 1.28 tron HME_SEB_STAT_HOSTTOTX |
548 1.28 tron HME_SEB_STAT_RXTOHOST |
549 1.28 tron HME_SEB_STAT_TXALL |
550 1.28 tron HME_SEB_STAT_TXPERR |
551 1.28 tron HME_SEB_STAT_RCNTEXP |
552 1.33 pk /*HME_SEB_STAT_MIFIRQ |*/
553 1.28 tron HME_SEB_STAT_ALL_ERRORS ));
554 1.1 pk
555 1.1 pk switch (sc->sc_burst) {
556 1.1 pk default:
557 1.1 pk v = 0;
558 1.1 pk break;
559 1.1 pk case 16:
560 1.1 pk v = HME_SEB_CFG_BURST16;
561 1.1 pk break;
562 1.1 pk case 32:
563 1.1 pk v = HME_SEB_CFG_BURST32;
564 1.1 pk break;
565 1.1 pk case 64:
566 1.1 pk v = HME_SEB_CFG_BURST64;
567 1.1 pk break;
568 1.1 pk }
569 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
570 1.1 pk
571 1.1 pk /* step 9. ETX Configuration: use mostly default values */
572 1.1 pk
573 1.1 pk /* Enable DMA */
574 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
575 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
576 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
577 1.1 pk
578 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
579 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
580 1.28 tron
581 1.1 pk
582 1.3 pk /* step 10. ERX Configuration */
583 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
584 1.28 tron
585 1.28 tron /* Encode Receive Descriptor ring size: four possible values */
586 1.28 tron switch (_HME_NDESC /*XXX*/) {
587 1.28 tron case 32:
588 1.28 tron v |= HME_ERX_CFG_RINGSIZE32;
589 1.28 tron break;
590 1.28 tron case 64:
591 1.28 tron v |= HME_ERX_CFG_RINGSIZE64;
592 1.28 tron break;
593 1.28 tron case 128:
594 1.28 tron v |= HME_ERX_CFG_RINGSIZE128;
595 1.28 tron break;
596 1.28 tron case 256:
597 1.28 tron v |= HME_ERX_CFG_RINGSIZE256;
598 1.28 tron break;
599 1.28 tron default:
600 1.28 tron printf("hme: invalid Receive Descriptor ring size\n");
601 1.28 tron break;
602 1.28 tron }
603 1.28 tron
604 1.3 pk /* Enable DMA */
605 1.28 tron v |= HME_ERX_CFG_DMAENABLE;
606 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
607 1.1 pk
608 1.1 pk /* step 11. XIF Configuration */
609 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
610 1.1 pk v |= HME_MAC_XIF_OE;
611 1.4 pk /* If an external transceiver is connected, enable its MII drivers */
612 1.2 pk if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
613 1.4 pk v |= HME_MAC_XIF_MIIENABLE;
614 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
615 1.1 pk
616 1.2 pk
617 1.1 pk /* step 12. RX_MAC Configuration Register */
618 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
619 1.1 pk v |= HME_MAC_RXCFG_ENABLE;
620 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
621 1.1 pk
622 1.1 pk /* step 13. TX_MAC Configuration Register */
623 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
624 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
625 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
626 1.1 pk
627 1.1 pk /* step 14. Issue Transmit Pending command */
628 1.1 pk
629 1.1 pk /* Call MI initialization function if any */
630 1.1 pk if (sc->sc_hwinit)
631 1.1 pk (*sc->sc_hwinit)(sc);
632 1.29 thorpej
633 1.29 thorpej /* Set the current media. */
634 1.29 thorpej mii_mediachg(&sc->sc_mii);
635 1.9 thorpej
636 1.9 thorpej /* Start the one second timer. */
637 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
638 1.1 pk
639 1.1 pk ifp->if_flags |= IFF_RUNNING;
640 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
641 1.1 pk ifp->if_timer = 0;
642 1.1 pk hme_start(ifp);
643 1.1 pk }
644 1.1 pk
645 1.28 tron /*
646 1.28 tron * Compare two Ether/802 addresses for equality, inlined and unrolled for
647 1.28 tron * speed.
648 1.28 tron */
649 1.28 tron static __inline__ int
650 1.28 tron ether_cmp(a, b)
651 1.28 tron u_char *a, *b;
652 1.28 tron {
653 1.28 tron
654 1.28 tron if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
655 1.28 tron a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
656 1.28 tron return (0);
657 1.28 tron return (1);
658 1.28 tron }
659 1.28 tron
660 1.28 tron
661 1.28 tron /*
662 1.28 tron * Routine to copy from mbuf chain to transmit buffer in
663 1.28 tron * network buffer memory.
664 1.28 tron * Returns the amount of data copied.
665 1.28 tron */
666 1.28 tron int
667 1.28 tron hme_put(sc, ri, m)
668 1.28 tron struct hme_softc *sc;
669 1.28 tron int ri; /* Ring index */
670 1.28 tron struct mbuf *m;
671 1.28 tron {
672 1.28 tron struct mbuf *n;
673 1.28 tron int len, tlen = 0;
674 1.28 tron caddr_t bp;
675 1.28 tron
676 1.28 tron bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
677 1.28 tron for (; m; m = n) {
678 1.28 tron len = m->m_len;
679 1.28 tron if (len == 0) {
680 1.28 tron MFREE(m, n);
681 1.28 tron continue;
682 1.28 tron }
683 1.28 tron memcpy(bp, mtod(m, caddr_t), len);
684 1.28 tron bp += len;
685 1.28 tron tlen += len;
686 1.28 tron MFREE(m, n);
687 1.28 tron }
688 1.28 tron return (tlen);
689 1.28 tron }
690 1.28 tron
691 1.28 tron /*
692 1.28 tron * Pull data off an interface.
693 1.28 tron * Len is length of data, with local net header stripped.
694 1.28 tron * We copy the data into mbufs. When full cluster sized units are present
695 1.28 tron * we copy into clusters.
696 1.28 tron */
697 1.28 tron struct mbuf *
698 1.28 tron hme_get(sc, ri, totlen)
699 1.28 tron struct hme_softc *sc;
700 1.28 tron int ri, totlen;
701 1.28 tron {
702 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
703 1.28 tron struct mbuf *m, *m0, *newm;
704 1.28 tron caddr_t bp;
705 1.28 tron int len;
706 1.28 tron
707 1.28 tron MGETHDR(m0, M_DONTWAIT, MT_DATA);
708 1.28 tron if (m0 == 0)
709 1.28 tron return (0);
710 1.28 tron m0->m_pkthdr.rcvif = ifp;
711 1.28 tron m0->m_pkthdr.len = totlen;
712 1.28 tron len = MHLEN;
713 1.28 tron m = m0;
714 1.28 tron
715 1.28 tron bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
716 1.28 tron
717 1.28 tron while (totlen > 0) {
718 1.28 tron if (totlen >= MINCLSIZE) {
719 1.28 tron MCLGET(m, M_DONTWAIT);
720 1.28 tron if ((m->m_flags & M_EXT) == 0)
721 1.28 tron goto bad;
722 1.28 tron len = MCLBYTES;
723 1.28 tron }
724 1.28 tron
725 1.28 tron if (m == m0) {
726 1.28 tron caddr_t newdata = (caddr_t)
727 1.28 tron ALIGN(m->m_data + sizeof(struct ether_header)) -
728 1.28 tron sizeof(struct ether_header);
729 1.28 tron len -= newdata - m->m_data;
730 1.28 tron m->m_data = newdata;
731 1.28 tron }
732 1.28 tron
733 1.28 tron m->m_len = len = min(totlen, len);
734 1.28 tron memcpy(mtod(m, caddr_t), bp, len);
735 1.28 tron bp += len;
736 1.28 tron
737 1.28 tron totlen -= len;
738 1.28 tron if (totlen > 0) {
739 1.28 tron MGET(newm, M_DONTWAIT, MT_DATA);
740 1.28 tron if (newm == 0)
741 1.28 tron goto bad;
742 1.28 tron len = MLEN;
743 1.28 tron m = m->m_next = newm;
744 1.28 tron }
745 1.28 tron }
746 1.28 tron
747 1.28 tron return (m0);
748 1.28 tron
749 1.28 tron bad:
750 1.28 tron m_freem(m0);
751 1.28 tron return (0);
752 1.28 tron }
753 1.28 tron
754 1.28 tron /*
755 1.28 tron * Pass a packet to the higher levels.
756 1.28 tron */
757 1.28 tron void
758 1.28 tron hme_read(sc, ix, len)
759 1.28 tron struct hme_softc *sc;
760 1.28 tron int ix, len;
761 1.28 tron {
762 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
763 1.28 tron struct mbuf *m;
764 1.28 tron
765 1.28 tron if (len <= sizeof(struct ether_header) ||
766 1.28 tron len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
767 1.28 tron ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
768 1.28 tron ETHERMTU + sizeof(struct ether_header))) {
769 1.28 tron #ifdef HMEDEBUG
770 1.28 tron printf("%s: invalid packet size %d; dropping\n",
771 1.28 tron sc->sc_dev.dv_xname, len);
772 1.28 tron #endif
773 1.28 tron ifp->if_ierrors++;
774 1.28 tron return;
775 1.28 tron }
776 1.28 tron
777 1.28 tron /* Pull packet off interface. */
778 1.28 tron m = hme_get(sc, ix, len);
779 1.28 tron if (m == 0) {
780 1.28 tron ifp->if_ierrors++;
781 1.28 tron return;
782 1.28 tron }
783 1.28 tron
784 1.28 tron ifp->if_ipackets++;
785 1.28 tron
786 1.28 tron #if NBPFILTER > 0
787 1.28 tron /*
788 1.28 tron * Check if there's a BPF listener on this interface.
789 1.28 tron * If so, hand off the raw packet to BPF.
790 1.28 tron */
791 1.28 tron if (ifp->if_bpf)
792 1.28 tron bpf_mtap(ifp->if_bpf, m);
793 1.28 tron #endif
794 1.28 tron
795 1.28 tron /* Pass the packet up. */
796 1.28 tron (*ifp->if_input)(ifp, m);
797 1.28 tron }
798 1.28 tron
799 1.1 pk void
800 1.1 pk hme_start(ifp)
801 1.1 pk struct ifnet *ifp;
802 1.1 pk {
803 1.1 pk struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
804 1.28 tron caddr_t txd = sc->sc_rb.rb_txd;
805 1.1 pk struct mbuf *m;
806 1.28 tron unsigned int ri, len;
807 1.28 tron unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
808 1.1 pk
809 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
810 1.1 pk return;
811 1.1 pk
812 1.28 tron ri = sc->sc_rb.rb_tdhead;
813 1.28 tron
814 1.28 tron for (;;) {
815 1.28 tron IFQ_DEQUEUE(&ifp->if_snd, m);
816 1.28 tron if (m == 0)
817 1.1 pk break;
818 1.1 pk
819 1.1 pk #if NBPFILTER > 0
820 1.1 pk /*
821 1.1 pk * If BPF is listening on this interface, let it see the
822 1.1 pk * packet before we commit it to the wire.
823 1.1 pk */
824 1.1 pk if (ifp->if_bpf)
825 1.1 pk bpf_mtap(ifp->if_bpf, m);
826 1.1 pk #endif
827 1.1 pk
828 1.28 tron /*
829 1.28 tron * Copy the mbuf chain into the transmit buffer.
830 1.28 tron */
831 1.28 tron len = hme_put(sc, ri, m);
832 1.28 tron
833 1.28 tron /*
834 1.28 tron * Initialize transmit registers and start transmission
835 1.28 tron */
836 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
837 1.28 tron HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
838 1.28 tron HME_XD_ENCODE_TSIZE(len));
839 1.28 tron
840 1.28 tron /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
841 1.28 tron bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
842 1.28 tron HME_ETX_TP_DMAWAKEUP);
843 1.28 tron
844 1.28 tron if (++ri == ntbuf)
845 1.28 tron ri = 0;
846 1.28 tron
847 1.28 tron if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
848 1.26 tron ifp->if_flags |= IFF_OACTIVE;
849 1.26 tron break;
850 1.26 tron }
851 1.1 pk }
852 1.1 pk
853 1.28 tron sc->sc_rb.rb_tdhead = ri;
854 1.1 pk }
855 1.1 pk
856 1.1 pk /*
857 1.1 pk * Transmit interrupt.
858 1.1 pk */
859 1.1 pk int
860 1.1 pk hme_tint(sc)
861 1.1 pk struct hme_softc *sc;
862 1.1 pk {
863 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
864 1.28 tron bus_space_tag_t t = sc->sc_bustag;
865 1.28 tron bus_space_handle_t mac = sc->sc_mac;
866 1.1 pk unsigned int ri, txflags;
867 1.28 tron
868 1.28 tron /*
869 1.28 tron * Unload collision counters
870 1.28 tron */
871 1.28 tron ifp->if_collisions +=
872 1.28 tron bus_space_read_4(t, mac, HME_MACI_NCCNT) +
873 1.28 tron bus_space_read_4(t, mac, HME_MACI_FCCNT) +
874 1.28 tron bus_space_read_4(t, mac, HME_MACI_EXCNT) +
875 1.28 tron bus_space_read_4(t, mac, HME_MACI_LTCNT);
876 1.28 tron
877 1.28 tron /*
878 1.28 tron * then clear the hardware counters.
879 1.28 tron */
880 1.28 tron bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
881 1.28 tron bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
882 1.28 tron bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
883 1.28 tron bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
884 1.1 pk
885 1.1 pk /* Fetch current position in the transmit ring */
886 1.28 tron ri = sc->sc_rb.rb_tdtail;
887 1.1 pk
888 1.1 pk for (;;) {
889 1.28 tron if (sc->sc_rb.rb_td_nbusy <= 0)
890 1.1 pk break;
891 1.1 pk
892 1.15 eeh txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
893 1.1 pk
894 1.1 pk if (txflags & HME_XD_OWN)
895 1.1 pk break;
896 1.1 pk
897 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
898 1.28 tron ifp->if_opackets++;
899 1.26 tron
900 1.28 tron if (++ri == sc->sc_rb.rb_ntbuf)
901 1.1 pk ri = 0;
902 1.1 pk
903 1.28 tron --sc->sc_rb.rb_td_nbusy;
904 1.1 pk }
905 1.1 pk
906 1.3 pk /* Update ring */
907 1.28 tron sc->sc_rb.rb_tdtail = ri;
908 1.1 pk
909 1.1 pk hme_start(ifp);
910 1.1 pk
911 1.28 tron if (sc->sc_rb.rb_td_nbusy == 0)
912 1.1 pk ifp->if_timer = 0;
913 1.1 pk
914 1.1 pk return (1);
915 1.1 pk }
916 1.1 pk
917 1.1 pk /*
918 1.1 pk * Receive interrupt.
919 1.1 pk */
920 1.1 pk int
921 1.1 pk hme_rint(sc)
922 1.1 pk struct hme_softc *sc;
923 1.1 pk {
924 1.28 tron caddr_t xdr = sc->sc_rb.rb_rxd;
925 1.28 tron unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
926 1.1 pk unsigned int ri, len;
927 1.1 pk u_int32_t flags;
928 1.1 pk
929 1.28 tron ri = sc->sc_rb.rb_rdtail;
930 1.1 pk
931 1.1 pk /*
932 1.1 pk * Process all buffers with valid data.
933 1.1 pk */
934 1.1 pk for (;;) {
935 1.28 tron flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
936 1.1 pk if (flags & HME_XD_OWN)
937 1.1 pk break;
938 1.1 pk
939 1.4 pk if (flags & HME_XD_OFL) {
940 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
941 1.28 tron sc->sc_dev.dv_xname, ri, flags);
942 1.28 tron } else {
943 1.28 tron len = HME_XD_DECODE_RSIZE(flags);
944 1.28 tron hme_read(sc, ri, len);
945 1.4 pk }
946 1.1 pk
947 1.28 tron /* This buffer can be used by the hardware again */
948 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
949 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
950 1.26 tron
951 1.28 tron if (++ri == nrbuf)
952 1.1 pk ri = 0;
953 1.1 pk }
954 1.1 pk
955 1.28 tron sc->sc_rb.rb_rdtail = ri;
956 1.28 tron
957 1.1 pk return (1);
958 1.1 pk }
959 1.1 pk
960 1.1 pk int
961 1.1 pk hme_eint(sc, status)
962 1.1 pk struct hme_softc *sc;
963 1.1 pk u_int status;
964 1.1 pk {
965 1.1 pk char bits[128];
966 1.1 pk
967 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
968 1.33 pk bus_space_tag_t t = sc->sc_bustag;
969 1.33 pk bus_space_handle_t mif = sc->sc_mif;
970 1.33 pk u_int32_t cf, st, sm;
971 1.33 pk cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
972 1.33 pk st = bus_space_read_4(t, mif, HME_MIFI_STAT);
973 1.33 pk sm = bus_space_read_4(t, mif, HME_MIFI_SM);
974 1.33 pk printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
975 1.33 pk sc->sc_dev.dv_xname, cf, st, sm);
976 1.1 pk return (1);
977 1.1 pk }
978 1.1 pk
979 1.1 pk printf("%s: status=%s\n", sc->sc_dev.dv_xname,
980 1.28 tron bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
981 1.1 pk return (1);
982 1.1 pk }
983 1.1 pk
984 1.1 pk int
985 1.1 pk hme_intr(v)
986 1.1 pk void *v;
987 1.1 pk {
988 1.1 pk struct hme_softc *sc = (struct hme_softc *)v;
989 1.1 pk bus_space_tag_t t = sc->sc_bustag;
990 1.1 pk bus_space_handle_t seb = sc->sc_seb;
991 1.1 pk u_int32_t status;
992 1.1 pk int r = 0;
993 1.1 pk
994 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
995 1.1 pk
996 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
997 1.1 pk r |= hme_eint(sc, status);
998 1.1 pk
999 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1000 1.1 pk r |= hme_tint(sc);
1001 1.1 pk
1002 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1003 1.1 pk r |= hme_rint(sc);
1004 1.1 pk
1005 1.1 pk return (r);
1006 1.1 pk }
1007 1.1 pk
1008 1.1 pk
1009 1.1 pk void
1010 1.1 pk hme_watchdog(ifp)
1011 1.1 pk struct ifnet *ifp;
1012 1.1 pk {
1013 1.1 pk struct hme_softc *sc = ifp->if_softc;
1014 1.1 pk
1015 1.1 pk log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1016 1.1 pk ++ifp->if_oerrors;
1017 1.1 pk
1018 1.1 pk hme_reset(sc);
1019 1.4 pk }
1020 1.4 pk
1021 1.4 pk /*
1022 1.4 pk * Initialize the MII Management Interface
1023 1.4 pk */
1024 1.4 pk void
1025 1.4 pk hme_mifinit(sc)
1026 1.4 pk struct hme_softc *sc;
1027 1.4 pk {
1028 1.4 pk bus_space_tag_t t = sc->sc_bustag;
1029 1.4 pk bus_space_handle_t mif = sc->sc_mif;
1030 1.33 pk int instance, phy;
1031 1.4 pk u_int32_t v;
1032 1.4 pk
1033 1.33 pk if (sc->sc_media.ifm_cur != NULL) {
1034 1.33 pk instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1035 1.33 pk phy = sc->sc_phys[instance];
1036 1.33 pk } else
1037 1.33 pk /* No media set yet, pick phy arbitrarily.. */
1038 1.33 pk phy = HME_PHYAD_EXTERNAL;
1039 1.33 pk
1040 1.33 pk /* Configure the MIF in frame mode, no poll, current phy select */
1041 1.33 pk v = 0;
1042 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1043 1.33 pk v |= HME_MIF_CFG_PHY;
1044 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1045 1.1 pk }
1046 1.1 pk
1047 1.1 pk /*
1048 1.1 pk * MII interface
1049 1.1 pk */
1050 1.1 pk static int
1051 1.1 pk hme_mii_readreg(self, phy, reg)
1052 1.1 pk struct device *self;
1053 1.1 pk int phy, reg;
1054 1.1 pk {
1055 1.1 pk struct hme_softc *sc = (void *)self;
1056 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1057 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1058 1.33 pk u_int32_t v, mifi_cfg;
1059 1.1 pk int n;
1060 1.1 pk
1061 1.33 pk /* We can at most have two PHYs */
1062 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1063 1.32 martin return (0);
1064 1.32 martin
1065 1.5 pk /* Select the desired PHY in the MIF configuration register */
1066 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1067 1.5 pk v &= ~HME_MIF_CFG_PHY;
1068 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1069 1.5 pk v |= HME_MIF_CFG_PHY;
1070 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1071 1.5 pk
1072 1.33 pk #if 0
1073 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1074 1.33 pk /*
1075 1.33 pk * Check whether a transceiver is connected by testing
1076 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1077 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1078 1.33 pk */
1079 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1080 1.33 pk delay(100);
1081 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1082 1.33 pk if ((v & mif_mdi_bit) == 0)
1083 1.33 pk return (0);
1084 1.33 pk #endif
1085 1.33 pk
1086 1.1 pk /* Construct the frame command */
1087 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1088 1.1 pk HME_MIF_FO_TAMSB |
1089 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1090 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1091 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
1092 1.1 pk
1093 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1094 1.1 pk for (n = 0; n < 100; n++) {
1095 1.2 pk DELAY(1);
1096 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1097 1.33 pk if (v & HME_MIF_FO_TALSB) {
1098 1.33 pk v &= HME_MIF_FO_DATA;
1099 1.33 pk goto out;
1100 1.33 pk }
1101 1.1 pk }
1102 1.1 pk
1103 1.33 pk v = 0;
1104 1.1 pk printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1105 1.33 pk
1106 1.33 pk out:
1107 1.33 pk /* Restore MIFI_CFG register */
1108 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1109 1.33 pk return (v);
1110 1.1 pk }
1111 1.1 pk
1112 1.1 pk static void
1113 1.1 pk hme_mii_writereg(self, phy, reg, val)
1114 1.1 pk struct device *self;
1115 1.1 pk int phy, reg, val;
1116 1.1 pk {
1117 1.1 pk struct hme_softc *sc = (void *)self;
1118 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1119 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1120 1.33 pk u_int32_t v, mifi_cfg;
1121 1.1 pk int n;
1122 1.32 martin
1123 1.33 pk /* We can at most have two PHYs */
1124 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1125 1.32 martin return;
1126 1.1 pk
1127 1.5 pk /* Select the desired PHY in the MIF configuration register */
1128 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1129 1.5 pk v &= ~HME_MIF_CFG_PHY;
1130 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1131 1.5 pk v |= HME_MIF_CFG_PHY;
1132 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1133 1.5 pk
1134 1.33 pk #if 0
1135 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1136 1.33 pk /*
1137 1.33 pk * Check whether a transceiver is connected by testing
1138 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1139 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1140 1.33 pk */
1141 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1142 1.33 pk delay(100);
1143 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1144 1.33 pk if ((v & mif_mdi_bit) == 0)
1145 1.33 pk return;
1146 1.33 pk #endif
1147 1.33 pk
1148 1.1 pk /* Construct the frame command */
1149 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1150 1.1 pk HME_MIF_FO_TAMSB |
1151 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1152 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1153 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
1154 1.1 pk (val & HME_MIF_FO_DATA);
1155 1.1 pk
1156 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1157 1.1 pk for (n = 0; n < 100; n++) {
1158 1.2 pk DELAY(1);
1159 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1160 1.1 pk if (v & HME_MIF_FO_TALSB)
1161 1.33 pk goto out;
1162 1.1 pk }
1163 1.1 pk
1164 1.2 pk printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1165 1.33 pk out:
1166 1.33 pk /* Restore MIFI_CFG register */
1167 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1168 1.1 pk }
1169 1.1 pk
1170 1.1 pk static void
1171 1.1 pk hme_mii_statchg(dev)
1172 1.1 pk struct device *dev;
1173 1.1 pk {
1174 1.3 pk struct hme_softc *sc = (void *)dev;
1175 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1176 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1177 1.1 pk u_int32_t v;
1178 1.1 pk
1179 1.5 pk #ifdef HMEDEBUG
1180 1.5 pk if (sc->sc_debug)
1181 1.33 pk printf("hme_mii_statchg: status change\n");
1182 1.5 pk #endif
1183 1.1 pk
1184 1.5 pk /* Set the MAC Full Duplex bit appropriately */
1185 1.30 martin /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1186 1.30 martin but not otherwise. */
1187 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1188 1.30 martin if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1189 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
1190 1.30 martin sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1191 1.30 martin } else {
1192 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
1193 1.30 martin sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1194 1.30 martin }
1195 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1196 1.5 pk }
1197 1.5 pk
1198 1.5 pk int
1199 1.5 pk hme_mediachange(ifp)
1200 1.5 pk struct ifnet *ifp;
1201 1.5 pk {
1202 1.5 pk struct hme_softc *sc = ifp->if_softc;
1203 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1204 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1205 1.33 pk bus_space_handle_t mac = sc->sc_mac;
1206 1.33 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1207 1.33 pk int phy = sc->sc_phys[instance];
1208 1.33 pk u_int32_t v;
1209 1.5 pk
1210 1.33 pk #ifdef HMEDEBUG
1211 1.33 pk if (sc->sc_debug)
1212 1.33 pk printf("hme_mediachange: phy = %d\n", phy);
1213 1.33 pk #endif
1214 1.5 pk if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1215 1.5 pk return (EINVAL);
1216 1.33 pk
1217 1.33 pk /* Select the current PHY in the MIF configuration register */
1218 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1219 1.33 pk v &= ~HME_MIF_CFG_PHY;
1220 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1221 1.33 pk v |= HME_MIF_CFG_PHY;
1222 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1223 1.33 pk
1224 1.33 pk /* If an external transceiver is selected, enable its MII drivers */
1225 1.33 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1226 1.33 pk v &= ~HME_MAC_XIF_MIIENABLE;
1227 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1228 1.33 pk v |= HME_MAC_XIF_MIIENABLE;
1229 1.33 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1230 1.5 pk
1231 1.5 pk return (mii_mediachg(&sc->sc_mii));
1232 1.1 pk }
1233 1.1 pk
1234 1.1 pk void
1235 1.1 pk hme_mediastatus(ifp, ifmr)
1236 1.1 pk struct ifnet *ifp;
1237 1.1 pk struct ifmediareq *ifmr;
1238 1.1 pk {
1239 1.1 pk struct hme_softc *sc = ifp->if_softc;
1240 1.1 pk
1241 1.1 pk if ((ifp->if_flags & IFF_UP) == 0)
1242 1.1 pk return;
1243 1.1 pk
1244 1.1 pk mii_pollstat(&sc->sc_mii);
1245 1.1 pk ifmr->ifm_active = sc->sc_mii.mii_media_active;
1246 1.1 pk ifmr->ifm_status = sc->sc_mii.mii_media_status;
1247 1.1 pk }
1248 1.1 pk
1249 1.1 pk /*
1250 1.1 pk * Process an ioctl request.
1251 1.1 pk */
1252 1.1 pk int
1253 1.1 pk hme_ioctl(ifp, cmd, data)
1254 1.1 pk struct ifnet *ifp;
1255 1.1 pk u_long cmd;
1256 1.1 pk caddr_t data;
1257 1.1 pk {
1258 1.1 pk struct hme_softc *sc = ifp->if_softc;
1259 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1260 1.1 pk struct ifreq *ifr = (struct ifreq *)data;
1261 1.1 pk int s, error = 0;
1262 1.1 pk
1263 1.1 pk s = splnet();
1264 1.1 pk
1265 1.1 pk switch (cmd) {
1266 1.1 pk
1267 1.1 pk case SIOCSIFADDR:
1268 1.1 pk ifp->if_flags |= IFF_UP;
1269 1.1 pk
1270 1.1 pk switch (ifa->ifa_addr->sa_family) {
1271 1.1 pk #ifdef INET
1272 1.1 pk case AF_INET:
1273 1.1 pk hme_init(sc);
1274 1.1 pk arp_ifinit(ifp, ifa);
1275 1.1 pk break;
1276 1.1 pk #endif
1277 1.1 pk #ifdef NS
1278 1.1 pk case AF_NS:
1279 1.1 pk {
1280 1.1 pk struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1281 1.1 pk
1282 1.1 pk if (ns_nullhost(*ina))
1283 1.1 pk ina->x_host =
1284 1.1 pk *(union ns_host *)LLADDR(ifp->if_sadl);
1285 1.1 pk else {
1286 1.21 thorpej memcpy(LLADDR(ifp->if_sadl),
1287 1.21 thorpej ina->x_host.c_host, sizeof(sc->sc_enaddr));
1288 1.1 pk }
1289 1.1 pk /* Set new address. */
1290 1.1 pk hme_init(sc);
1291 1.1 pk break;
1292 1.1 pk }
1293 1.1 pk #endif
1294 1.1 pk default:
1295 1.1 pk hme_init(sc);
1296 1.1 pk break;
1297 1.1 pk }
1298 1.1 pk break;
1299 1.1 pk
1300 1.1 pk case SIOCSIFFLAGS:
1301 1.1 pk if ((ifp->if_flags & IFF_UP) == 0 &&
1302 1.1 pk (ifp->if_flags & IFF_RUNNING) != 0) {
1303 1.1 pk /*
1304 1.1 pk * If interface is marked down and it is running, then
1305 1.1 pk * stop it.
1306 1.1 pk */
1307 1.1 pk hme_stop(sc);
1308 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1309 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0 &&
1310 1.1 pk (ifp->if_flags & IFF_RUNNING) == 0) {
1311 1.1 pk /*
1312 1.1 pk * If interface is marked up and it is stopped, then
1313 1.1 pk * start it.
1314 1.1 pk */
1315 1.1 pk hme_init(sc);
1316 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0) {
1317 1.1 pk /*
1318 1.1 pk * Reset the interface to pick up changes in any other
1319 1.1 pk * flags that affect hardware registers.
1320 1.1 pk */
1321 1.28 tron /*hme_stop(sc);*/
1322 1.1 pk hme_init(sc);
1323 1.1 pk }
1324 1.1 pk #ifdef HMEDEBUG
1325 1.1 pk sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1326 1.1 pk #endif
1327 1.1 pk break;
1328 1.1 pk
1329 1.1 pk case SIOCADDMULTI:
1330 1.1 pk case SIOCDELMULTI:
1331 1.1 pk error = (cmd == SIOCADDMULTI) ?
1332 1.1 pk ether_addmulti(ifr, &sc->sc_ethercom) :
1333 1.1 pk ether_delmulti(ifr, &sc->sc_ethercom);
1334 1.1 pk
1335 1.1 pk if (error == ENETRESET) {
1336 1.1 pk /*
1337 1.1 pk * Multicast list has changed; set the hardware filter
1338 1.1 pk * accordingly.
1339 1.1 pk */
1340 1.1 pk hme_setladrf(sc);
1341 1.1 pk error = 0;
1342 1.1 pk }
1343 1.1 pk break;
1344 1.1 pk
1345 1.1 pk case SIOCGIFMEDIA:
1346 1.1 pk case SIOCSIFMEDIA:
1347 1.1 pk error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1348 1.1 pk break;
1349 1.1 pk
1350 1.1 pk default:
1351 1.1 pk error = EINVAL;
1352 1.1 pk break;
1353 1.1 pk }
1354 1.1 pk
1355 1.1 pk splx(s);
1356 1.1 pk return (error);
1357 1.1 pk }
1358 1.1 pk
1359 1.1 pk void
1360 1.1 pk hme_shutdown(arg)
1361 1.1 pk void *arg;
1362 1.1 pk {
1363 1.28 tron
1364 1.1 pk hme_stop((struct hme_softc *)arg);
1365 1.1 pk }
1366 1.1 pk
1367 1.1 pk /*
1368 1.1 pk * Set up the logical address filter.
1369 1.1 pk */
1370 1.1 pk void
1371 1.1 pk hme_setladrf(sc)
1372 1.1 pk struct hme_softc *sc;
1373 1.1 pk {
1374 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1375 1.1 pk struct ether_multi *enm;
1376 1.1 pk struct ether_multistep step;
1377 1.28 tron struct ethercom *ec = &sc->sc_ethercom;
1378 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1379 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1380 1.1 pk u_char *cp;
1381 1.1 pk u_int32_t crc;
1382 1.1 pk u_int32_t hash[4];
1383 1.14 pk u_int32_t v;
1384 1.1 pk int len;
1385 1.1 pk
1386 1.14 pk /* Clear hash table */
1387 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1388 1.14 pk
1389 1.14 pk /* Get current RX configuration */
1390 1.14 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1391 1.14 pk
1392 1.14 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1393 1.14 pk /* Turn on promiscuous mode; turn off the hash filter */
1394 1.14 pk v |= HME_MAC_RXCFG_PMISC;
1395 1.14 pk v &= ~HME_MAC_RXCFG_HENABLE;
1396 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1397 1.14 pk goto chipit;
1398 1.14 pk }
1399 1.14 pk
1400 1.14 pk /* Turn off promiscuous mode; turn on the hash filter */
1401 1.14 pk v &= ~HME_MAC_RXCFG_PMISC;
1402 1.14 pk v |= HME_MAC_RXCFG_HENABLE;
1403 1.14 pk
1404 1.1 pk /*
1405 1.1 pk * Set up multicast address filter by passing all multicast addresses
1406 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1407 1.1 pk * index into the 64 bit logical address filter. The high order bit
1408 1.1 pk * selects the word, while the rest of the bits select the bit within
1409 1.1 pk * the word.
1410 1.1 pk */
1411 1.1 pk
1412 1.28 tron ETHER_FIRST_MULTI(step, ec, enm);
1413 1.1 pk while (enm != NULL) {
1414 1.28 tron if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1415 1.1 pk /*
1416 1.1 pk * We must listen to a range of multicast addresses.
1417 1.1 pk * For now, just accept all multicasts, rather than
1418 1.1 pk * trying to set only those filter bits needed to match
1419 1.1 pk * the range. (At this time, the only use of address
1420 1.1 pk * ranges is for IP multicast routing, for which the
1421 1.1 pk * range is big enough to require all bits set.)
1422 1.1 pk */
1423 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1424 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1425 1.14 pk goto chipit;
1426 1.1 pk }
1427 1.1 pk
1428 1.1 pk cp = enm->enm_addrlo;
1429 1.1 pk crc = 0xffffffff;
1430 1.1 pk for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1431 1.1 pk int octet = *cp++;
1432 1.1 pk int i;
1433 1.1 pk
1434 1.1 pk #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1435 1.1 pk for (i = 0; i < 8; i++) {
1436 1.1 pk if ((crc & 1) ^ (octet & 1)) {
1437 1.1 pk crc >>= 1;
1438 1.1 pk crc ^= MC_POLY_LE;
1439 1.1 pk } else {
1440 1.1 pk crc >>= 1;
1441 1.1 pk }
1442 1.1 pk octet >>= 1;
1443 1.1 pk }
1444 1.1 pk }
1445 1.1 pk /* Just want the 6 most significant bits. */
1446 1.1 pk crc >>= 26;
1447 1.1 pk
1448 1.1 pk /* Set the corresponding bit in the filter. */
1449 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1450 1.1 pk
1451 1.1 pk ETHER_NEXT_MULTI(step, enm);
1452 1.1 pk }
1453 1.1 pk
1454 1.14 pk ifp->if_flags &= ~IFF_ALLMULTI;
1455 1.14 pk
1456 1.14 pk chipit:
1457 1.14 pk /* Now load the hash table into the chip */
1458 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1459 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1460 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1461 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1462 1.14 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1463 1.1 pk }
1464 1.1 pk
1465 1.28 tron /*
1466 1.28 tron * Routines for accessing the transmit and receive buffers.
1467 1.28 tron * The various CPU and adapter configurations supported by this
1468 1.28 tron * driver require three different access methods for buffers
1469 1.28 tron * and descriptors:
1470 1.28 tron * (1) contig (contiguous data; no padding),
1471 1.28 tron * (2) gap2 (two bytes of data followed by two bytes of padding),
1472 1.28 tron * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1473 1.28 tron */
1474 1.28 tron
1475 1.28 tron #if 0
1476 1.28 tron /*
1477 1.28 tron * contig: contiguous data with no padding.
1478 1.28 tron *
1479 1.28 tron * Buffers may have any alignment.
1480 1.28 tron */
1481 1.28 tron
1482 1.28 tron void
1483 1.28 tron hme_copytobuf_contig(sc, from, ri, len)
1484 1.26 tron struct hme_softc *sc;
1485 1.28 tron void *from;
1486 1.28 tron int ri, len;
1487 1.26 tron {
1488 1.28 tron volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1489 1.26 tron
1490 1.1 pk /*
1491 1.28 tron * Just call memcpy() to do the work.
1492 1.1 pk */
1493 1.28 tron memcpy(buf, from, len);
1494 1.1 pk }
1495 1.1 pk
1496 1.28 tron void
1497 1.28 tron hme_copyfrombuf_contig(sc, to, boff, len)
1498 1.1 pk struct hme_softc *sc;
1499 1.28 tron void *to;
1500 1.28 tron int boff, len;
1501 1.1 pk {
1502 1.28 tron volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1503 1.26 tron
1504 1.28 tron /*
1505 1.28 tron * Just call memcpy() to do the work.
1506 1.28 tron */
1507 1.28 tron memcpy(to, buf, len);
1508 1.1 pk }
1509 1.28 tron #endif
1510