Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.37.2.5
      1  1.37.2.5    skrll /*	$NetBSD: hme.c,v 1.37.2.5 2005/02/04 11:45:25 skrll Exp $	*/
      2       1.1       pk 
      3       1.1       pk /*-
      4       1.1       pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5       1.1       pk  * All rights reserved.
      6       1.1       pk  *
      7       1.1       pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1       pk  * by Paul Kranenburg.
      9       1.1       pk  *
     10       1.1       pk  * Redistribution and use in source and binary forms, with or without
     11       1.1       pk  * modification, are permitted provided that the following conditions
     12       1.1       pk  * are met:
     13       1.1       pk  * 1. Redistributions of source code must retain the above copyright
     14       1.1       pk  *    notice, this list of conditions and the following disclaimer.
     15       1.1       pk  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1       pk  *    notice, this list of conditions and the following disclaimer in the
     17       1.1       pk  *    documentation and/or other materials provided with the distribution.
     18       1.1       pk  * 3. All advertising materials mentioning features or use of this software
     19       1.1       pk  *    must display the following acknowledgement:
     20       1.1       pk  *        This product includes software developed by the NetBSD
     21       1.1       pk  *        Foundation, Inc. and its contributors.
     22       1.1       pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.1       pk  *    contributors may be used to endorse or promote products derived
     24       1.1       pk  *    from this software without specific prior written permission.
     25       1.1       pk  *
     26       1.1       pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.1       pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.1       pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.1       pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.1       pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.1       pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.1       pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.1       pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.1       pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.1       pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.1       pk  * POSSIBILITY OF SUCH DAMAGE.
     37       1.1       pk  */
     38       1.1       pk 
     39       1.1       pk /*
     40       1.1       pk  * HME Ethernet module driver.
     41       1.1       pk  */
     42      1.25    lukem 
     43      1.25    lukem #include <sys/cdefs.h>
     44  1.37.2.5    skrll __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.37.2.5 2005/02/04 11:45:25 skrll Exp $");
     45       1.1       pk 
     46  1.37.2.1    skrll /* #define HMEDEBUG */
     47       1.1       pk 
     48       1.1       pk #include "opt_inet.h"
     49       1.1       pk #include "opt_ns.h"
     50       1.1       pk #include "bpfilter.h"
     51       1.1       pk #include "rnd.h"
     52       1.1       pk 
     53       1.1       pk #include <sys/param.h>
     54       1.1       pk #include <sys/systm.h>
     55       1.5       pk #include <sys/kernel.h>
     56  1.37.2.4    skrll #include <sys/mbuf.h>
     57       1.1       pk #include <sys/syslog.h>
     58       1.1       pk #include <sys/socket.h>
     59       1.1       pk #include <sys/device.h>
     60       1.1       pk #include <sys/malloc.h>
     61       1.1       pk #include <sys/ioctl.h>
     62       1.1       pk #include <sys/errno.h>
     63       1.1       pk #if NRND > 0
     64       1.1       pk #include <sys/rnd.h>
     65       1.1       pk #endif
     66       1.1       pk 
     67       1.1       pk #include <net/if.h>
     68       1.1       pk #include <net/if_dl.h>
     69       1.1       pk #include <net/if_ether.h>
     70       1.1       pk #include <net/if_media.h>
     71       1.1       pk 
     72       1.1       pk #ifdef INET
     73       1.1       pk #include <netinet/in.h>
     74       1.1       pk #include <netinet/if_inarp.h>
     75       1.1       pk #include <netinet/in_systm.h>
     76       1.1       pk #include <netinet/in_var.h>
     77       1.1       pk #include <netinet/ip.h>
     78       1.1       pk #endif
     79       1.1       pk 
     80       1.1       pk #ifdef NS
     81       1.1       pk #include <netns/ns.h>
     82       1.1       pk #include <netns/ns_if.h>
     83       1.1       pk #endif
     84       1.1       pk 
     85       1.1       pk #if NBPFILTER > 0
     86       1.1       pk #include <net/bpf.h>
     87       1.1       pk #include <net/bpfdesc.h>
     88       1.1       pk #endif
     89       1.1       pk 
     90       1.1       pk #include <dev/mii/mii.h>
     91       1.1       pk #include <dev/mii/miivar.h>
     92       1.1       pk 
     93       1.1       pk #include <machine/bus.h>
     94       1.1       pk 
     95       1.1       pk #include <dev/ic/hmereg.h>
     96       1.1       pk #include <dev/ic/hmevar.h>
     97       1.1       pk 
     98  1.37.2.5    skrll void		hme_start(struct ifnet *);
     99  1.37.2.5    skrll void		hme_stop(struct hme_softc *);
    100  1.37.2.5    skrll int		hme_ioctl(struct ifnet *, u_long, caddr_t);
    101  1.37.2.5    skrll void		hme_tick(void *);
    102  1.37.2.5    skrll void		hme_watchdog(struct ifnet *);
    103  1.37.2.5    skrll void		hme_shutdown(void *);
    104  1.37.2.5    skrll void		hme_init(struct hme_softc *);
    105  1.37.2.5    skrll void		hme_meminit(struct hme_softc *);
    106  1.37.2.5    skrll void		hme_mifinit(struct hme_softc *);
    107  1.37.2.5    skrll void		hme_reset(struct hme_softc *);
    108  1.37.2.5    skrll void		hme_setladrf(struct hme_softc *);
    109       1.1       pk 
    110       1.1       pk /* MII methods & callbacks */
    111  1.37.2.5    skrll static int	hme_mii_readreg(struct device *, int, int);
    112  1.37.2.5    skrll static void	hme_mii_writereg(struct device *, int, int, int);
    113  1.37.2.5    skrll static void	hme_mii_statchg(struct device *);
    114  1.37.2.5    skrll 
    115  1.37.2.5    skrll int		hme_mediachange(struct ifnet *);
    116  1.37.2.5    skrll void		hme_mediastatus(struct ifnet *, struct ifmediareq *);
    117  1.37.2.5    skrll 
    118  1.37.2.5    skrll struct mbuf	*hme_get(struct hme_softc *, int, int);
    119  1.37.2.5    skrll int		hme_put(struct hme_softc *, int, struct mbuf *);
    120  1.37.2.5    skrll void		hme_read(struct hme_softc *, int, int);
    121  1.37.2.5    skrll int		hme_eint(struct hme_softc *, u_int);
    122  1.37.2.5    skrll int		hme_rint(struct hme_softc *);
    123  1.37.2.5    skrll int		hme_tint(struct hme_softc *);
    124       1.1       pk 
    125  1.37.2.5    skrll static int	ether_cmp(u_char *, u_char *);
    126      1.28     tron 
    127      1.28     tron /* Default buffer copy routines */
    128  1.37.2.5    skrll void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    129  1.37.2.5    skrll void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    130  1.37.2.5    skrll void	hme_zerobuf_contig(struct hme_softc *, int, int);
    131      1.28     tron 
    132      1.28     tron 
    133       1.1       pk void
    134       1.1       pk hme_config(sc)
    135       1.1       pk 	struct hme_softc *sc;
    136       1.1       pk {
    137       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    138       1.1       pk 	struct mii_data *mii = &sc->sc_mii;
    139       1.5       pk 	struct mii_softc *child;
    140      1.11       pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    141       1.1       pk 	bus_dma_segment_t seg;
    142       1.1       pk 	bus_size_t size;
    143      1.28     tron 	int rseg, error;
    144       1.1       pk 
    145       1.1       pk 	/*
    146       1.1       pk 	 * HME common initialization.
    147       1.1       pk 	 *
    148       1.1       pk 	 * hme_softc fields that must be initialized by the front-end:
    149       1.1       pk 	 *
    150       1.1       pk 	 * the bus tag:
    151       1.1       pk 	 *	sc_bustag
    152       1.1       pk 	 *
    153      1.37      wiz 	 * the DMA bus tag:
    154       1.1       pk 	 *	sc_dmatag
    155       1.1       pk 	 *
    156       1.1       pk 	 * the bus handles:
    157       1.1       pk 	 *	sc_seb		(Shared Ethernet Block registers)
    158       1.1       pk 	 *	sc_erx		(Receiver Unit registers)
    159       1.1       pk 	 *	sc_etx		(Transmitter Unit registers)
    160       1.1       pk 	 *	sc_mac		(MAC registers)
    161      1.36      wiz 	 *	sc_mif		(Management Interface registers)
    162       1.1       pk 	 *
    163       1.1       pk 	 * the maximum bus burst size:
    164       1.1       pk 	 *	sc_burst
    165       1.1       pk 	 *
    166      1.28     tron 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    167      1.28     tron 	 *	rb_membase, rb_dmabase)
    168      1.28     tron 	 *
    169       1.1       pk 	 * the local Ethernet address:
    170       1.1       pk 	 *	sc_enaddr
    171       1.1       pk 	 *
    172       1.1       pk 	 */
    173       1.1       pk 
    174       1.1       pk 	/* Make sure the chip is stopped. */
    175       1.1       pk 	hme_stop(sc);
    176       1.1       pk 
    177       1.1       pk 
    178      1.28     tron 	/*
    179      1.28     tron 	 * Allocate descriptors and buffers
    180      1.28     tron 	 * XXX - do all this differently.. and more configurably,
    181      1.28     tron 	 * eg. use things as `dma_load_mbuf()' on transmit,
    182      1.28     tron 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    183  1.37.2.1    skrll 	 *     all the time) on the receiver side.
    184      1.28     tron 	 *
    185      1.28     tron 	 * Note: receive buffers must be 64-byte aligned.
    186      1.28     tron 	 * Also, apparently, the buffers must extend to a DMA burst
    187      1.28     tron 	 * boundary beyond the maximum packet size.
    188      1.28     tron 	 */
    189      1.28     tron #define _HME_NDESC	128
    190      1.28     tron #define _HME_BUFSZ	1600
    191      1.28     tron 
    192      1.28     tron 	/* Note: the # of descriptors must be a multiple of 16 */
    193      1.28     tron 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    194      1.28     tron 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    195       1.1       pk 
    196       1.1       pk 	/*
    197       1.1       pk 	 * Allocate DMA capable memory
    198       1.1       pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    199       1.1       pk 	 * take this into account when calculating the size. Note that
    200       1.1       pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    201      1.28     tron 	 * so we allocate that much regardless of _HME_NDESC.
    202       1.1       pk 	 */
    203      1.28     tron 	size =	2048 +					/* TX descriptors */
    204      1.28     tron 		2048 +					/* RX descriptors */
    205      1.28     tron 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    206      1.28     tron 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* TX buffers */
    207      1.11       pk 
    208      1.11       pk 	/* Allocate DMA buffer */
    209      1.28     tron 	if ((error = bus_dmamem_alloc(dmatag, size,
    210      1.28     tron 				      2048, 0,
    211      1.28     tron 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    212       1.1       pk 		printf("%s: DMA buffer alloc error %d\n",
    213      1.28     tron 			sc->sc_dev.dv_xname, error);
    214      1.10      mrg 		return;
    215       1.1       pk 	}
    216       1.1       pk 
    217      1.11       pk 	/* Map DMA memory in CPU addressable space */
    218      1.11       pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    219      1.28     tron 				    &sc->sc_rb.rb_membase,
    220      1.28     tron 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    221       1.1       pk 		printf("%s: DMA buffer map error %d\n",
    222      1.28     tron 			sc->sc_dev.dv_xname, error);
    223      1.11       pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    224      1.11       pk 		bus_dmamem_free(dmatag, &seg, rseg);
    225       1.1       pk 		return;
    226       1.1       pk 	}
    227      1.13      mrg 
    228      1.13      mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    229      1.28     tron 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    230      1.13      mrg 		printf("%s: DMA map create error %d\n",
    231      1.28     tron 			sc->sc_dev.dv_xname, error);
    232      1.13      mrg 		return;
    233      1.13      mrg 	}
    234      1.13      mrg 
    235      1.13      mrg 	/* Load the buffer */
    236      1.13      mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    237      1.17      mrg 	    sc->sc_rb.rb_membase, size, NULL,
    238      1.17      mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    239      1.13      mrg 		printf("%s: DMA buffer map load error %d\n",
    240      1.28     tron 			sc->sc_dev.dv_xname, error);
    241      1.13      mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    242      1.13      mrg 		return;
    243      1.13      mrg 	}
    244      1.13      mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    245       1.1       pk 
    246      1.22  thorpej 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    247      1.22  thorpej 	    ether_sprintf(sc->sc_enaddr));
    248       1.2       pk 
    249       1.1       pk 	/* Initialize ifnet structure. */
    250      1.21  thorpej 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    251       1.1       pk 	ifp->if_softc = sc;
    252       1.1       pk 	ifp->if_start = hme_start;
    253       1.1       pk 	ifp->if_ioctl = hme_ioctl;
    254       1.1       pk 	ifp->if_watchdog = hme_watchdog;
    255       1.1       pk 	ifp->if_flags =
    256       1.1       pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    257  1.37.2.1    skrll 	sc->sc_if_flags = ifp->if_flags;
    258      1.20  thorpej 	IFQ_SET_READY(&ifp->if_snd);
    259       1.1       pk 
    260       1.1       pk 	/* Initialize ifmedia structures and MII info */
    261       1.1       pk 	mii->mii_ifp = ifp;
    262      1.34   petrov 	mii->mii_readreg = hme_mii_readreg;
    263       1.1       pk 	mii->mii_writereg = hme_mii_writereg;
    264       1.1       pk 	mii->mii_statchg = hme_mii_statchg;
    265       1.1       pk 
    266      1.33       pk 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
    267       1.1       pk 
    268       1.4       pk 	hme_mifinit(sc);
    269       1.4       pk 
    270       1.6  thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    271      1.34   petrov 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    272       1.2       pk 
    273       1.5       pk 	child = LIST_FIRST(&mii->mii_phys);
    274       1.5       pk 	if (child == NULL) {
    275       1.1       pk 		/* No PHY attached */
    276       1.1       pk 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    277       1.1       pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    278       1.1       pk 	} else {
    279       1.1       pk 		/*
    280       1.5       pk 		 * Walk along the list of attached MII devices and
    281       1.5       pk 		 * establish an `MII instance' to `phy number'
    282       1.5       pk 		 * mapping. We'll use this mapping in media change
    283       1.5       pk 		 * requests to determine which phy to use to program
    284       1.5       pk 		 * the MIF configuration register.
    285       1.5       pk 		 */
    286       1.5       pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    287       1.5       pk 			/*
    288       1.5       pk 			 * Note: we support just two PHYs: the built-in
    289       1.5       pk 			 * internal device and an external on the MII
    290       1.5       pk 			 * connector.
    291       1.5       pk 			 */
    292       1.5       pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    293       1.5       pk 				printf("%s: cannot accomodate MII device %s"
    294      1.28     tron 				       " at phy %d, instance %d\n",
    295      1.28     tron 				       sc->sc_dev.dv_xname,
    296      1.28     tron 				       child->mii_dev.dv_xname,
    297      1.28     tron 				       child->mii_phy, child->mii_inst);
    298       1.5       pk 				continue;
    299       1.5       pk 			}
    300       1.5       pk 
    301       1.5       pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    302       1.5       pk 		}
    303       1.5       pk 
    304       1.5       pk 		/*
    305       1.1       pk 		 * XXX - we can really do the following ONLY if the
    306       1.1       pk 		 * phy indeed has the auto negotiation capability!!
    307       1.1       pk 		 */
    308       1.1       pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    309       1.1       pk 	}
    310      1.27     tron 
    311      1.28     tron 	/* claim 802.1q capability */
    312      1.27     tron 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    313       1.1       pk 
    314       1.1       pk 	/* Attach the interface. */
    315       1.1       pk 	if_attach(ifp);
    316       1.1       pk 	ether_ifattach(ifp, sc->sc_enaddr);
    317       1.1       pk 
    318       1.1       pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    319       1.1       pk 	if (sc->sc_sh == NULL)
    320       1.1       pk 		panic("hme_config: can't establish shutdownhook");
    321       1.1       pk 
    322       1.1       pk #if NRND > 0
    323       1.1       pk 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    324       1.1       pk 			  RND_TYPE_NET, 0);
    325       1.1       pk #endif
    326       1.5       pk 
    327       1.9  thorpej 	callout_init(&sc->sc_tick_ch);
    328       1.5       pk }
    329       1.5       pk 
    330       1.5       pk void
    331       1.5       pk hme_tick(arg)
    332       1.5       pk 	void *arg;
    333       1.5       pk {
    334       1.5       pk 	struct hme_softc *sc = arg;
    335       1.5       pk 	int s;
    336       1.5       pk 
    337       1.5       pk 	s = splnet();
    338       1.5       pk 	mii_tick(&sc->sc_mii);
    339       1.5       pk 	splx(s);
    340       1.5       pk 
    341       1.9  thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    342       1.1       pk }
    343       1.1       pk 
    344       1.1       pk void
    345       1.1       pk hme_reset(sc)
    346       1.1       pk 	struct hme_softc *sc;
    347       1.1       pk {
    348       1.1       pk 	int s;
    349       1.1       pk 
    350       1.1       pk 	s = splnet();
    351       1.1       pk 	hme_init(sc);
    352       1.1       pk 	splx(s);
    353       1.1       pk }
    354       1.1       pk 
    355       1.1       pk void
    356       1.1       pk hme_stop(sc)
    357       1.1       pk 	struct hme_softc *sc;
    358       1.1       pk {
    359       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    360       1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    361       1.1       pk 	int n;
    362       1.1       pk 
    363       1.9  thorpej 	callout_stop(&sc->sc_tick_ch);
    364       1.5       pk 	mii_down(&sc->sc_mii);
    365       1.5       pk 
    366      1.33       pk 	/* Mask all interrupts */
    367      1.33       pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    368      1.33       pk 
    369       1.1       pk 	/* Reset transmitter and receiver */
    370       1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    371      1.28     tron 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    372       1.1       pk 
    373       1.1       pk 	for (n = 0; n < 20; n++) {
    374       1.1       pk 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    375       1.1       pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    376       1.1       pk 			return;
    377       1.1       pk 		DELAY(20);
    378       1.1       pk 	}
    379       1.1       pk 
    380       1.1       pk 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
    381       1.1       pk }
    382       1.1       pk 
    383       1.1       pk void
    384       1.1       pk hme_meminit(sc)
    385       1.1       pk 	struct hme_softc *sc;
    386       1.1       pk {
    387      1.28     tron 	bus_addr_t txbufdma, rxbufdma;
    388       1.1       pk 	bus_addr_t dma;
    389       1.1       pk 	caddr_t p;
    390      1.28     tron 	unsigned int ntbuf, nrbuf, i;
    391       1.1       pk 	struct hme_ring *hr = &sc->sc_rb;
    392       1.1       pk 
    393       1.1       pk 	p = hr->rb_membase;
    394       1.1       pk 	dma = hr->rb_dmabase;
    395       1.1       pk 
    396      1.28     tron 	ntbuf = hr->rb_ntbuf;
    397      1.28     tron 	nrbuf = hr->rb_nrbuf;
    398      1.28     tron 
    399       1.1       pk 	/*
    400       1.1       pk 	 * Allocate transmit descriptors
    401       1.1       pk 	 */
    402       1.1       pk 	hr->rb_txd = p;
    403       1.1       pk 	hr->rb_txddma = dma;
    404      1.28     tron 	p += ntbuf * HME_XD_SIZE;
    405      1.28     tron 	dma += ntbuf * HME_XD_SIZE;
    406       1.4       pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    407       1.4       pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    408       1.4       pk 	p = (caddr_t)roundup((u_long)p, 2048);
    409       1.1       pk 
    410       1.1       pk 	/*
    411       1.1       pk 	 * Allocate receive descriptors
    412       1.1       pk 	 */
    413       1.1       pk 	hr->rb_rxd = p;
    414       1.1       pk 	hr->rb_rxddma = dma;
    415      1.28     tron 	p += nrbuf * HME_XD_SIZE;
    416      1.28     tron 	dma += nrbuf * HME_XD_SIZE;
    417       1.4       pk 	/* Again move forward to the next 2048 byte boundary.*/
    418       1.4       pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    419       1.4       pk 	p = (caddr_t)roundup((u_long)p, 2048);
    420       1.1       pk 
    421      1.28     tron 
    422       1.1       pk 	/*
    423      1.28     tron 	 * Allocate transmit buffers
    424       1.1       pk 	 */
    425      1.28     tron 	hr->rb_txbuf = p;
    426      1.28     tron 	txbufdma = dma;
    427      1.28     tron 	p += ntbuf * _HME_BUFSZ;
    428      1.28     tron 	dma += ntbuf * _HME_BUFSZ;
    429      1.28     tron 
    430      1.28     tron 	/*
    431      1.28     tron 	 * Allocate receive buffers
    432      1.28     tron 	 */
    433      1.28     tron 	hr->rb_rxbuf = p;
    434      1.28     tron 	rxbufdma = dma;
    435      1.28     tron 	p += nrbuf * _HME_BUFSZ;
    436      1.28     tron 	dma += nrbuf * _HME_BUFSZ;
    437      1.28     tron 
    438      1.28     tron 	/*
    439      1.28     tron 	 * Initialize transmit buffer descriptors
    440      1.28     tron 	 */
    441      1.28     tron 	for (i = 0; i < ntbuf; i++) {
    442      1.28     tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    443      1.15      eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    444       1.1       pk 	}
    445       1.1       pk 
    446       1.1       pk 	/*
    447      1.28     tron 	 * Initialize receive buffer descriptors
    448       1.1       pk 	 */
    449      1.28     tron 	for (i = 0; i < nrbuf; i++) {
    450      1.28     tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    451      1.15      eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    452      1.28     tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    453       1.1       pk 	}
    454       1.1       pk 
    455      1.28     tron 	hr->rb_tdhead = hr->rb_tdtail = 0;
    456      1.28     tron 	hr->rb_td_nbusy = 0;
    457      1.28     tron 	hr->rb_rdtail = 0;
    458       1.1       pk }
    459       1.1       pk 
    460       1.1       pk /*
    461       1.1       pk  * Initialization of interface; set up initialization block
    462       1.1       pk  * and transmit/receive descriptor rings.
    463       1.1       pk  */
    464       1.1       pk void
    465       1.1       pk hme_init(sc)
    466       1.1       pk 	struct hme_softc *sc;
    467       1.1       pk {
    468       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    469       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    470       1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    471       1.1       pk 	bus_space_handle_t etx = sc->sc_etx;
    472       1.1       pk 	bus_space_handle_t erx = sc->sc_erx;
    473       1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
    474       1.1       pk 	u_int8_t *ea;
    475       1.1       pk 	u_int32_t v;
    476       1.1       pk 
    477       1.1       pk 	/*
    478       1.1       pk 	 * Initialization sequence. The numbered steps below correspond
    479       1.1       pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    480       1.1       pk 	 * Channel Engine manual (part of the PCIO manual).
    481       1.1       pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    482       1.1       pk 	 */
    483       1.1       pk 
    484       1.1       pk 	/* step 1 & 2. Reset the Ethernet Channel */
    485       1.1       pk 	hme_stop(sc);
    486       1.1       pk 
    487       1.4       pk 	/* Re-initialize the MIF */
    488       1.4       pk 	hme_mifinit(sc);
    489       1.4       pk 
    490       1.1       pk 	/* Call MI reset function if any */
    491       1.1       pk 	if (sc->sc_hwreset)
    492       1.1       pk 		(*sc->sc_hwreset)(sc);
    493       1.1       pk 
    494       1.1       pk #if 0
    495       1.1       pk 	/* Mask all MIF interrupts, just in case */
    496       1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    497       1.1       pk #endif
    498       1.1       pk 
    499       1.1       pk 	/* step 3. Setup data structures in host memory */
    500       1.1       pk 	hme_meminit(sc);
    501       1.1       pk 
    502       1.1       pk 	/* step 4. TX MAC registers & counters */
    503       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    504       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    505       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    506       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    507      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    508      1.28     tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    509      1.28     tron 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
    510      1.28     tron             ETHER_MAX_LEN);
    511       1.1       pk 
    512       1.1       pk 	/* Load station MAC address */
    513       1.1       pk 	ea = sc->sc_enaddr;
    514       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    515       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    516       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    517       1.1       pk 
    518       1.1       pk 	/*
    519       1.1       pk 	 * Init seed for backoff
    520       1.1       pk 	 * (source suggested by manual: low 10 bits of MAC address)
    521  1.37.2.4    skrll 	 */
    522       1.1       pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    523       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    524       1.1       pk 
    525       1.1       pk 
    526       1.1       pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    527       1.1       pk 
    528       1.1       pk 
    529       1.1       pk 	/* step 5. RX MAC registers & counters */
    530       1.1       pk 	hme_setladrf(sc);
    531       1.1       pk 
    532       1.1       pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    533       1.1       pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    534      1.28     tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    535       1.1       pk 
    536       1.1       pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    537      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    538      1.28     tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    539      1.28     tron 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
    540      1.28     tron             ETHER_MAX_LEN);
    541      1.28     tron 
    542       1.1       pk 
    543       1.1       pk 	/* step 8. Global Configuration & Interrupt Mask */
    544       1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    545      1.28     tron 			~(
    546      1.28     tron 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    547      1.28     tron 			  HME_SEB_STAT_HOSTTOTX |
    548      1.28     tron 			  HME_SEB_STAT_RXTOHOST |
    549      1.28     tron 			  HME_SEB_STAT_TXALL |
    550      1.28     tron 			  HME_SEB_STAT_TXPERR |
    551      1.28     tron 			  HME_SEB_STAT_RCNTEXP |
    552      1.33       pk 			  /*HME_SEB_STAT_MIFIRQ |*/
    553      1.28     tron 			  HME_SEB_STAT_ALL_ERRORS ));
    554       1.1       pk 
    555       1.1       pk 	switch (sc->sc_burst) {
    556       1.1       pk 	default:
    557       1.1       pk 		v = 0;
    558       1.1       pk 		break;
    559       1.1       pk 	case 16:
    560       1.1       pk 		v = HME_SEB_CFG_BURST16;
    561       1.1       pk 		break;
    562       1.1       pk 	case 32:
    563       1.1       pk 		v = HME_SEB_CFG_BURST32;
    564       1.1       pk 		break;
    565       1.1       pk 	case 64:
    566       1.1       pk 		v = HME_SEB_CFG_BURST64;
    567       1.1       pk 		break;
    568       1.1       pk 	}
    569       1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    570       1.1       pk 
    571       1.1       pk 	/* step 9. ETX Configuration: use mostly default values */
    572       1.1       pk 
    573       1.1       pk 	/* Enable DMA */
    574       1.2       pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    575       1.1       pk 	v |= HME_ETX_CFG_DMAENABLE;
    576       1.2       pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    577       1.1       pk 
    578       1.3       pk 	/* Transmit Descriptor ring size: in increments of 16 */
    579      1.28     tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    580      1.28     tron 
    581       1.1       pk 
    582       1.3       pk 	/* step 10. ERX Configuration */
    583       1.2       pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    584      1.28     tron 
    585      1.28     tron 	/* Encode Receive Descriptor ring size: four possible values */
    586      1.28     tron 	switch (_HME_NDESC /*XXX*/) {
    587      1.28     tron 	case 32:
    588      1.28     tron 		v |= HME_ERX_CFG_RINGSIZE32;
    589      1.28     tron 		break;
    590      1.28     tron 	case 64:
    591      1.28     tron 		v |= HME_ERX_CFG_RINGSIZE64;
    592      1.28     tron 		break;
    593      1.28     tron 	case 128:
    594      1.28     tron 		v |= HME_ERX_CFG_RINGSIZE128;
    595      1.28     tron 		break;
    596      1.28     tron 	case 256:
    597      1.28     tron 		v |= HME_ERX_CFG_RINGSIZE256;
    598      1.28     tron 		break;
    599      1.28     tron 	default:
    600      1.28     tron 		printf("hme: invalid Receive Descriptor ring size\n");
    601      1.28     tron 		break;
    602      1.28     tron 	}
    603      1.28     tron 
    604       1.3       pk 	/* Enable DMA */
    605      1.28     tron 	v |= HME_ERX_CFG_DMAENABLE;
    606       1.2       pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    607       1.1       pk 
    608       1.1       pk 	/* step 11. XIF Configuration */
    609       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    610       1.1       pk 	v |= HME_MAC_XIF_OE;
    611       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    612       1.1       pk 
    613       1.1       pk 	/* step 12. RX_MAC Configuration Register */
    614       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    615       1.1       pk 	v |= HME_MAC_RXCFG_ENABLE;
    616       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    617       1.1       pk 
    618       1.1       pk 	/* step 13. TX_MAC Configuration Register */
    619       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    620       1.2       pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    621       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    622       1.1       pk 
    623       1.1       pk 	/* step 14. Issue Transmit Pending command */
    624       1.1       pk 
    625       1.1       pk 	/* Call MI initialization function if any */
    626       1.1       pk 	if (sc->sc_hwinit)
    627       1.1       pk 		(*sc->sc_hwinit)(sc);
    628      1.29  thorpej 
    629      1.29  thorpej 	/* Set the current media. */
    630      1.29  thorpej 	mii_mediachg(&sc->sc_mii);
    631       1.9  thorpej 
    632       1.9  thorpej 	/* Start the one second timer. */
    633       1.9  thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    634       1.1       pk 
    635       1.1       pk 	ifp->if_flags |= IFF_RUNNING;
    636       1.1       pk 	ifp->if_flags &= ~IFF_OACTIVE;
    637  1.37.2.1    skrll 	sc->sc_if_flags = ifp->if_flags;
    638       1.1       pk 	ifp->if_timer = 0;
    639       1.1       pk 	hme_start(ifp);
    640       1.1       pk }
    641       1.1       pk 
    642      1.28     tron /*
    643      1.28     tron  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    644      1.28     tron  * speed.
    645      1.28     tron  */
    646      1.28     tron static __inline__ int
    647      1.28     tron ether_cmp(a, b)
    648      1.28     tron 	u_char *a, *b;
    649  1.37.2.4    skrll {
    650  1.37.2.4    skrll 
    651      1.28     tron 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    652      1.28     tron 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    653      1.28     tron 		return (0);
    654      1.28     tron 	return (1);
    655      1.28     tron }
    656      1.28     tron 
    657      1.28     tron 
    658      1.28     tron /*
    659      1.28     tron  * Routine to copy from mbuf chain to transmit buffer in
    660      1.28     tron  * network buffer memory.
    661      1.28     tron  * Returns the amount of data copied.
    662      1.28     tron  */
    663      1.28     tron int
    664      1.28     tron hme_put(sc, ri, m)
    665      1.28     tron 	struct hme_softc *sc;
    666      1.28     tron 	int ri;			/* Ring index */
    667      1.28     tron 	struct mbuf *m;
    668      1.28     tron {
    669      1.28     tron 	struct mbuf *n;
    670      1.28     tron 	int len, tlen = 0;
    671      1.28     tron 	caddr_t bp;
    672      1.28     tron 
    673      1.28     tron 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    674      1.28     tron 	for (; m; m = n) {
    675      1.28     tron 		len = m->m_len;
    676      1.28     tron 		if (len == 0) {
    677      1.28     tron 			MFREE(m, n);
    678      1.28     tron 			continue;
    679      1.28     tron 		}
    680      1.28     tron 		memcpy(bp, mtod(m, caddr_t), len);
    681      1.28     tron 		bp += len;
    682      1.28     tron 		tlen += len;
    683      1.28     tron 		MFREE(m, n);
    684      1.28     tron 	}
    685      1.28     tron 	return (tlen);
    686      1.28     tron }
    687      1.28     tron 
    688      1.28     tron /*
    689      1.28     tron  * Pull data off an interface.
    690      1.28     tron  * Len is length of data, with local net header stripped.
    691      1.28     tron  * We copy the data into mbufs.  When full cluster sized units are present
    692      1.28     tron  * we copy into clusters.
    693      1.28     tron  */
    694      1.28     tron struct mbuf *
    695      1.28     tron hme_get(sc, ri, totlen)
    696      1.28     tron 	struct hme_softc *sc;
    697      1.28     tron 	int ri, totlen;
    698      1.28     tron {
    699      1.28     tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    700      1.28     tron 	struct mbuf *m, *m0, *newm;
    701      1.28     tron 	caddr_t bp;
    702      1.28     tron 	int len;
    703      1.28     tron 
    704      1.28     tron 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    705      1.28     tron 	if (m0 == 0)
    706      1.28     tron 		return (0);
    707      1.28     tron 	m0->m_pkthdr.rcvif = ifp;
    708      1.28     tron 	m0->m_pkthdr.len = totlen;
    709      1.28     tron 	len = MHLEN;
    710      1.28     tron 	m = m0;
    711      1.28     tron 
    712      1.28     tron 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    713      1.28     tron 
    714      1.28     tron 	while (totlen > 0) {
    715      1.28     tron 		if (totlen >= MINCLSIZE) {
    716      1.28     tron 			MCLGET(m, M_DONTWAIT);
    717      1.28     tron 			if ((m->m_flags & M_EXT) == 0)
    718      1.28     tron 				goto bad;
    719      1.28     tron 			len = MCLBYTES;
    720      1.28     tron 		}
    721      1.28     tron 
    722      1.28     tron 		if (m == m0) {
    723      1.28     tron 			caddr_t newdata = (caddr_t)
    724      1.28     tron 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    725      1.28     tron 			    sizeof(struct ether_header);
    726      1.28     tron 			len -= newdata - m->m_data;
    727      1.28     tron 			m->m_data = newdata;
    728      1.28     tron 		}
    729      1.28     tron 
    730      1.28     tron 		m->m_len = len = min(totlen, len);
    731      1.28     tron 		memcpy(mtod(m, caddr_t), bp, len);
    732      1.28     tron 		bp += len;
    733      1.28     tron 
    734      1.28     tron 		totlen -= len;
    735      1.28     tron 		if (totlen > 0) {
    736      1.28     tron 			MGET(newm, M_DONTWAIT, MT_DATA);
    737      1.28     tron 			if (newm == 0)
    738      1.28     tron 				goto bad;
    739      1.28     tron 			len = MLEN;
    740      1.28     tron 			m = m->m_next = newm;
    741      1.28     tron 		}
    742      1.28     tron 	}
    743      1.28     tron 
    744      1.28     tron 	return (m0);
    745      1.28     tron 
    746      1.28     tron bad:
    747      1.28     tron 	m_freem(m0);
    748      1.28     tron 	return (0);
    749      1.28     tron }
    750      1.28     tron 
    751      1.28     tron /*
    752      1.28     tron  * Pass a packet to the higher levels.
    753      1.28     tron  */
    754      1.28     tron void
    755      1.28     tron hme_read(sc, ix, len)
    756      1.28     tron 	struct hme_softc *sc;
    757      1.28     tron 	int ix, len;
    758      1.28     tron {
    759      1.28     tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    760      1.28     tron 	struct mbuf *m;
    761      1.28     tron 
    762      1.28     tron 	if (len <= sizeof(struct ether_header) ||
    763      1.28     tron 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    764      1.28     tron 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    765      1.28     tron 	    ETHERMTU + sizeof(struct ether_header))) {
    766      1.28     tron #ifdef HMEDEBUG
    767      1.28     tron 		printf("%s: invalid packet size %d; dropping\n",
    768      1.28     tron 		    sc->sc_dev.dv_xname, len);
    769      1.28     tron #endif
    770      1.28     tron 		ifp->if_ierrors++;
    771      1.28     tron 		return;
    772      1.28     tron 	}
    773      1.28     tron 
    774      1.28     tron 	/* Pull packet off interface. */
    775      1.28     tron 	m = hme_get(sc, ix, len);
    776      1.28     tron 	if (m == 0) {
    777      1.28     tron 		ifp->if_ierrors++;
    778      1.28     tron 		return;
    779      1.28     tron 	}
    780      1.28     tron 
    781      1.28     tron 	ifp->if_ipackets++;
    782      1.28     tron 
    783      1.28     tron #if NBPFILTER > 0
    784      1.28     tron 	/*
    785      1.28     tron 	 * Check if there's a BPF listener on this interface.
    786      1.28     tron 	 * If so, hand off the raw packet to BPF.
    787      1.28     tron 	 */
    788      1.28     tron 	if (ifp->if_bpf)
    789      1.28     tron 		bpf_mtap(ifp->if_bpf, m);
    790      1.28     tron #endif
    791      1.28     tron 
    792      1.28     tron 	/* Pass the packet up. */
    793      1.28     tron 	(*ifp->if_input)(ifp, m);
    794      1.28     tron }
    795      1.28     tron 
    796       1.1       pk void
    797       1.1       pk hme_start(ifp)
    798       1.1       pk 	struct ifnet *ifp;
    799       1.1       pk {
    800       1.1       pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    801      1.28     tron 	caddr_t txd = sc->sc_rb.rb_txd;
    802       1.1       pk 	struct mbuf *m;
    803      1.28     tron 	unsigned int ri, len;
    804      1.28     tron 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    805       1.1       pk 
    806       1.1       pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    807       1.1       pk 		return;
    808       1.1       pk 
    809      1.28     tron 	ri = sc->sc_rb.rb_tdhead;
    810      1.28     tron 
    811      1.28     tron 	for (;;) {
    812      1.28     tron 		IFQ_DEQUEUE(&ifp->if_snd, m);
    813      1.28     tron 		if (m == 0)
    814       1.1       pk 			break;
    815       1.1       pk 
    816       1.1       pk #if NBPFILTER > 0
    817       1.1       pk 		/*
    818       1.1       pk 		 * If BPF is listening on this interface, let it see the
    819       1.1       pk 		 * packet before we commit it to the wire.
    820       1.1       pk 		 */
    821       1.1       pk 		if (ifp->if_bpf)
    822       1.1       pk 			bpf_mtap(ifp->if_bpf, m);
    823       1.1       pk #endif
    824       1.1       pk 
    825      1.28     tron 		/*
    826      1.28     tron 		 * Copy the mbuf chain into the transmit buffer.
    827      1.28     tron 		 */
    828      1.28     tron 		len = hme_put(sc, ri, m);
    829      1.28     tron 
    830      1.28     tron 		/*
    831      1.28     tron 		 * Initialize transmit registers and start transmission
    832      1.28     tron 		 */
    833      1.28     tron 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    834      1.28     tron 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    835      1.28     tron 			HME_XD_ENCODE_TSIZE(len));
    836      1.28     tron 
    837      1.28     tron 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    838      1.28     tron 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    839      1.28     tron 				  HME_ETX_TP_DMAWAKEUP);
    840      1.28     tron 
    841      1.28     tron 		if (++ri == ntbuf)
    842      1.28     tron 			ri = 0;
    843      1.28     tron 
    844      1.28     tron 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    845      1.26     tron 			ifp->if_flags |= IFF_OACTIVE;
    846      1.26     tron 			break;
    847      1.26     tron 		}
    848       1.1       pk 	}
    849       1.1       pk 
    850      1.28     tron 	sc->sc_rb.rb_tdhead = ri;
    851       1.1       pk }
    852       1.1       pk 
    853       1.1       pk /*
    854       1.1       pk  * Transmit interrupt.
    855       1.1       pk  */
    856       1.1       pk int
    857       1.1       pk hme_tint(sc)
    858       1.1       pk 	struct hme_softc *sc;
    859       1.1       pk {
    860       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    861      1.28     tron 	bus_space_tag_t t = sc->sc_bustag;
    862      1.28     tron 	bus_space_handle_t mac = sc->sc_mac;
    863       1.1       pk 	unsigned int ri, txflags;
    864      1.28     tron 
    865      1.28     tron 	/*
    866      1.28     tron 	 * Unload collision counters
    867      1.28     tron 	 */
    868      1.28     tron 	ifp->if_collisions +=
    869      1.28     tron 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    870      1.28     tron 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
    871      1.28     tron 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    872      1.28     tron 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    873      1.28     tron 
    874      1.28     tron 	/*
    875      1.28     tron 	 * then clear the hardware counters.
    876      1.28     tron 	 */
    877      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    878      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    879      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    880      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    881       1.1       pk 
    882       1.1       pk 	/* Fetch current position in the transmit ring */
    883      1.28     tron 	ri = sc->sc_rb.rb_tdtail;
    884       1.1       pk 
    885       1.1       pk 	for (;;) {
    886      1.28     tron 		if (sc->sc_rb.rb_td_nbusy <= 0)
    887       1.1       pk 			break;
    888       1.1       pk 
    889      1.15      eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
    890       1.1       pk 
    891       1.1       pk 		if (txflags & HME_XD_OWN)
    892       1.1       pk 			break;
    893       1.1       pk 
    894       1.1       pk 		ifp->if_flags &= ~IFF_OACTIVE;
    895      1.28     tron 		ifp->if_opackets++;
    896      1.26     tron 
    897      1.28     tron 		if (++ri == sc->sc_rb.rb_ntbuf)
    898       1.1       pk 			ri = 0;
    899       1.1       pk 
    900      1.28     tron 		--sc->sc_rb.rb_td_nbusy;
    901       1.1       pk 	}
    902       1.1       pk 
    903       1.3       pk 	/* Update ring */
    904      1.28     tron 	sc->sc_rb.rb_tdtail = ri;
    905       1.1       pk 
    906       1.1       pk 	hme_start(ifp);
    907       1.1       pk 
    908      1.28     tron 	if (sc->sc_rb.rb_td_nbusy == 0)
    909       1.1       pk 		ifp->if_timer = 0;
    910       1.1       pk 
    911       1.1       pk 	return (1);
    912       1.1       pk }
    913       1.1       pk 
    914       1.1       pk /*
    915       1.1       pk  * Receive interrupt.
    916       1.1       pk  */
    917       1.1       pk int
    918       1.1       pk hme_rint(sc)
    919       1.1       pk 	struct hme_softc *sc;
    920       1.1       pk {
    921      1.28     tron 	caddr_t xdr = sc->sc_rb.rb_rxd;
    922      1.28     tron 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
    923       1.1       pk 	unsigned int ri, len;
    924       1.1       pk 	u_int32_t flags;
    925       1.1       pk 
    926      1.28     tron 	ri = sc->sc_rb.rb_rdtail;
    927       1.1       pk 
    928       1.1       pk 	/*
    929       1.1       pk 	 * Process all buffers with valid data.
    930       1.1       pk 	 */
    931       1.1       pk 	for (;;) {
    932      1.28     tron 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
    933       1.1       pk 		if (flags & HME_XD_OWN)
    934       1.1       pk 			break;
    935       1.1       pk 
    936       1.4       pk 		if (flags & HME_XD_OFL) {
    937       1.4       pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
    938      1.28     tron 					sc->sc_dev.dv_xname, ri, flags);
    939      1.28     tron 		} else {
    940      1.28     tron 			len = HME_XD_DECODE_RSIZE(flags);
    941      1.28     tron 			hme_read(sc, ri, len);
    942       1.4       pk 		}
    943       1.1       pk 
    944      1.28     tron 		/* This buffer can be used by the hardware again */
    945      1.28     tron 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
    946      1.28     tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    947      1.26     tron 
    948      1.28     tron 		if (++ri == nrbuf)
    949       1.1       pk 			ri = 0;
    950       1.1       pk 	}
    951       1.1       pk 
    952      1.28     tron 	sc->sc_rb.rb_rdtail = ri;
    953      1.28     tron 
    954       1.1       pk 	return (1);
    955       1.1       pk }
    956       1.1       pk 
    957       1.1       pk int
    958       1.1       pk hme_eint(sc, status)
    959       1.1       pk 	struct hme_softc *sc;
    960       1.1       pk 	u_int status;
    961       1.1       pk {
    962       1.1       pk 	char bits[128];
    963       1.1       pk 
    964       1.1       pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
    965      1.33       pk 		bus_space_tag_t t = sc->sc_bustag;
    966      1.33       pk 		bus_space_handle_t mif = sc->sc_mif;
    967      1.33       pk 		u_int32_t cf, st, sm;
    968      1.33       pk 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
    969      1.33       pk 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
    970      1.33       pk 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
    971      1.33       pk 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
    972      1.33       pk 			sc->sc_dev.dv_xname, cf, st, sm);
    973       1.1       pk 		return (1);
    974       1.1       pk 	}
    975       1.1       pk 
    976       1.1       pk 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
    977      1.28     tron 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
    978       1.1       pk 	return (1);
    979       1.1       pk }
    980       1.1       pk 
    981       1.1       pk int
    982       1.1       pk hme_intr(v)
    983       1.1       pk 	void *v;
    984       1.1       pk {
    985       1.1       pk 	struct hme_softc *sc = (struct hme_softc *)v;
    986       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    987       1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    988       1.1       pk 	u_int32_t status;
    989       1.1       pk 	int r = 0;
    990       1.1       pk 
    991       1.1       pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
    992       1.1       pk 
    993       1.1       pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
    994       1.1       pk 		r |= hme_eint(sc, status);
    995       1.1       pk 
    996       1.1       pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
    997       1.1       pk 		r |= hme_tint(sc);
    998       1.1       pk 
    999       1.1       pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1000       1.1       pk 		r |= hme_rint(sc);
   1001       1.1       pk 
   1002  1.37.2.1    skrll #if NRND > 0
   1003  1.37.2.1    skrll 	rnd_add_uint32(&sc->rnd_source, status);
   1004  1.37.2.1    skrll #endif
   1005  1.37.2.1    skrll 
   1006       1.1       pk 	return (r);
   1007       1.1       pk }
   1008       1.1       pk 
   1009       1.1       pk 
   1010       1.1       pk void
   1011       1.1       pk hme_watchdog(ifp)
   1012       1.1       pk 	struct ifnet *ifp;
   1013       1.1       pk {
   1014       1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1015       1.1       pk 
   1016       1.1       pk 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1017       1.1       pk 	++ifp->if_oerrors;
   1018       1.1       pk 
   1019       1.1       pk 	hme_reset(sc);
   1020       1.4       pk }
   1021       1.4       pk 
   1022       1.4       pk /*
   1023       1.4       pk  * Initialize the MII Management Interface
   1024       1.4       pk  */
   1025       1.4       pk void
   1026       1.4       pk hme_mifinit(sc)
   1027       1.4       pk 	struct hme_softc *sc;
   1028       1.4       pk {
   1029       1.4       pk 	bus_space_tag_t t = sc->sc_bustag;
   1030       1.4       pk 	bus_space_handle_t mif = sc->sc_mif;
   1031      1.35       pk 	bus_space_handle_t mac = sc->sc_mac;
   1032      1.33       pk 	int instance, phy;
   1033       1.4       pk 	u_int32_t v;
   1034       1.4       pk 
   1035      1.33       pk 	if (sc->sc_media.ifm_cur != NULL) {
   1036      1.33       pk 		instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
   1037      1.33       pk 		phy = sc->sc_phys[instance];
   1038      1.33       pk 	} else
   1039      1.33       pk 		/* No media set yet, pick phy arbitrarily.. */
   1040      1.33       pk 		phy = HME_PHYAD_EXTERNAL;
   1041      1.33       pk 
   1042      1.33       pk 	/* Configure the MIF in frame mode, no poll, current phy select */
   1043      1.33       pk 	v = 0;
   1044      1.33       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1045      1.33       pk 		v |= HME_MIF_CFG_PHY;
   1046       1.4       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1047      1.35       pk 
   1048      1.35       pk 	/* If an external transceiver is selected, enable its MII drivers */
   1049      1.35       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1050      1.35       pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1051      1.35       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1052      1.35       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1053      1.35       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1054       1.1       pk }
   1055       1.1       pk 
   1056       1.1       pk /*
   1057       1.1       pk  * MII interface
   1058       1.1       pk  */
   1059       1.1       pk static int
   1060       1.1       pk hme_mii_readreg(self, phy, reg)
   1061       1.1       pk 	struct device *self;
   1062       1.1       pk 	int phy, reg;
   1063       1.1       pk {
   1064       1.1       pk 	struct hme_softc *sc = (void *)self;
   1065       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1066       1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
   1067      1.35       pk 	bus_space_handle_t mac = sc->sc_mac;
   1068      1.35       pk 	u_int32_t v, xif_cfg, mifi_cfg;
   1069       1.1       pk 	int n;
   1070       1.1       pk 
   1071      1.33       pk 	/* We can at most have two PHYs */
   1072      1.33       pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1073      1.32   martin 		return (0);
   1074      1.32   martin 
   1075       1.5       pk 	/* Select the desired PHY in the MIF configuration register */
   1076      1.33       pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1077       1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1078       1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1079       1.5       pk 		v |= HME_MIF_CFG_PHY;
   1080       1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1081       1.5       pk 
   1082  1.37.2.4    skrll 	/* Enable MII drivers on external transceiver */
   1083      1.35       pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1084      1.35       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1085      1.35       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1086      1.35       pk 	else
   1087      1.35       pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1088      1.35       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1089      1.35       pk 
   1090      1.33       pk #if 0
   1091      1.33       pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1092      1.33       pk 	/*
   1093      1.33       pk 	 * Check whether a transceiver is connected by testing
   1094      1.33       pk 	 * the MIF configuration register's MDI_X bits. Note that
   1095      1.33       pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1096      1.33       pk 	 */
   1097      1.33       pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1098      1.33       pk 	delay(100);
   1099      1.33       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1100      1.33       pk 	if ((v & mif_mdi_bit) == 0)
   1101      1.33       pk 		return (0);
   1102      1.33       pk #endif
   1103      1.33       pk 
   1104       1.1       pk 	/* Construct the frame command */
   1105       1.1       pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1106       1.1       pk 	    HME_MIF_FO_TAMSB |
   1107       1.1       pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1108       1.1       pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1109       1.1       pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1110       1.1       pk 
   1111       1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1112       1.1       pk 	for (n = 0; n < 100; n++) {
   1113       1.2       pk 		DELAY(1);
   1114       1.1       pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1115      1.33       pk 		if (v & HME_MIF_FO_TALSB) {
   1116      1.33       pk 			v &= HME_MIF_FO_DATA;
   1117      1.33       pk 			goto out;
   1118      1.33       pk 		}
   1119       1.1       pk 	}
   1120       1.1       pk 
   1121      1.33       pk 	v = 0;
   1122       1.1       pk 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1123      1.33       pk 
   1124      1.33       pk out:
   1125      1.33       pk 	/* Restore MIFI_CFG register */
   1126      1.33       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1127      1.35       pk 	/* Restore XIF register */
   1128      1.35       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1129      1.33       pk 	return (v);
   1130       1.1       pk }
   1131       1.1       pk 
   1132       1.1       pk static void
   1133       1.1       pk hme_mii_writereg(self, phy, reg, val)
   1134       1.1       pk 	struct device *self;
   1135       1.1       pk 	int phy, reg, val;
   1136       1.1       pk {
   1137       1.1       pk 	struct hme_softc *sc = (void *)self;
   1138       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1139       1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
   1140      1.35       pk 	bus_space_handle_t mac = sc->sc_mac;
   1141      1.35       pk 	u_int32_t v, xif_cfg, mifi_cfg;
   1142       1.1       pk 	int n;
   1143      1.32   martin 
   1144      1.33       pk 	/* We can at most have two PHYs */
   1145      1.33       pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1146      1.32   martin 		return;
   1147       1.1       pk 
   1148       1.5       pk 	/* Select the desired PHY in the MIF configuration register */
   1149      1.33       pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1150       1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1151       1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1152       1.5       pk 		v |= HME_MIF_CFG_PHY;
   1153       1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1154       1.5       pk 
   1155  1.37.2.4    skrll 	/* Enable MII drivers on external transceiver */
   1156      1.35       pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1157      1.35       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1158      1.35       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1159      1.35       pk 	else
   1160      1.35       pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1161      1.35       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1162      1.35       pk 
   1163      1.33       pk #if 0
   1164      1.33       pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1165      1.33       pk 	/*
   1166      1.33       pk 	 * Check whether a transceiver is connected by testing
   1167      1.33       pk 	 * the MIF configuration register's MDI_X bits. Note that
   1168      1.33       pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1169      1.33       pk 	 */
   1170      1.33       pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1171      1.33       pk 	delay(100);
   1172      1.33       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1173      1.33       pk 	if ((v & mif_mdi_bit) == 0)
   1174      1.33       pk 		return;
   1175      1.33       pk #endif
   1176      1.33       pk 
   1177       1.1       pk 	/* Construct the frame command */
   1178       1.1       pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1179       1.1       pk 	    HME_MIF_FO_TAMSB				|
   1180       1.1       pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1181       1.1       pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1182       1.1       pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1183       1.1       pk 	    (val & HME_MIF_FO_DATA);
   1184       1.1       pk 
   1185       1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1186       1.1       pk 	for (n = 0; n < 100; n++) {
   1187       1.2       pk 		DELAY(1);
   1188       1.1       pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1189       1.1       pk 		if (v & HME_MIF_FO_TALSB)
   1190      1.33       pk 			goto out;
   1191       1.1       pk 	}
   1192       1.1       pk 
   1193       1.2       pk 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1194      1.33       pk out:
   1195      1.33       pk 	/* Restore MIFI_CFG register */
   1196      1.33       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1197      1.35       pk 	/* Restore XIF register */
   1198      1.35       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1199       1.1       pk }
   1200       1.1       pk 
   1201       1.1       pk static void
   1202       1.1       pk hme_mii_statchg(dev)
   1203       1.1       pk 	struct device *dev;
   1204       1.1       pk {
   1205       1.3       pk 	struct hme_softc *sc = (void *)dev;
   1206       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1207       1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
   1208       1.1       pk 	u_int32_t v;
   1209       1.1       pk 
   1210       1.5       pk #ifdef HMEDEBUG
   1211       1.5       pk 	if (sc->sc_debug)
   1212      1.33       pk 		printf("hme_mii_statchg: status change\n");
   1213       1.5       pk #endif
   1214       1.1       pk 
   1215       1.5       pk 	/* Set the MAC Full Duplex bit appropriately */
   1216      1.30   martin 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1217      1.30   martin 	   but not otherwise. */
   1218       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1219      1.30   martin 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1220       1.1       pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1221      1.30   martin 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1222      1.30   martin 	} else {
   1223       1.1       pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1224      1.30   martin 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1225      1.30   martin 	}
   1226  1.37.2.1    skrll 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1227       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1228       1.5       pk }
   1229       1.5       pk 
   1230       1.5       pk int
   1231       1.5       pk hme_mediachange(ifp)
   1232       1.5       pk 	struct ifnet *ifp;
   1233       1.5       pk {
   1234       1.5       pk 	struct hme_softc *sc = ifp->if_softc;
   1235      1.33       pk 	bus_space_tag_t t = sc->sc_bustag;
   1236      1.33       pk 	bus_space_handle_t mif = sc->sc_mif;
   1237      1.33       pk 	bus_space_handle_t mac = sc->sc_mac;
   1238      1.33       pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1239      1.33       pk 	int phy = sc->sc_phys[instance];
   1240      1.33       pk 	u_int32_t v;
   1241       1.5       pk 
   1242      1.33       pk #ifdef HMEDEBUG
   1243      1.33       pk 	if (sc->sc_debug)
   1244      1.33       pk 		printf("hme_mediachange: phy = %d\n", phy);
   1245      1.33       pk #endif
   1246       1.5       pk 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1247       1.5       pk 		return (EINVAL);
   1248      1.33       pk 
   1249      1.33       pk 	/* Select the current PHY in the MIF configuration register */
   1250      1.33       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1251      1.33       pk 	v &= ~HME_MIF_CFG_PHY;
   1252      1.33       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1253      1.33       pk 		v |= HME_MIF_CFG_PHY;
   1254      1.33       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1255      1.33       pk 
   1256      1.33       pk 	/* If an external transceiver is selected, enable its MII drivers */
   1257      1.33       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1258      1.33       pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1259      1.33       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1260      1.33       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1261      1.33       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1262       1.5       pk 
   1263       1.5       pk 	return (mii_mediachg(&sc->sc_mii));
   1264       1.1       pk }
   1265       1.1       pk 
   1266       1.1       pk void
   1267       1.1       pk hme_mediastatus(ifp, ifmr)
   1268       1.1       pk 	struct ifnet *ifp;
   1269       1.1       pk 	struct ifmediareq *ifmr;
   1270       1.1       pk {
   1271       1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1272       1.1       pk 
   1273       1.1       pk 	if ((ifp->if_flags & IFF_UP) == 0)
   1274       1.1       pk 		return;
   1275       1.1       pk 
   1276       1.1       pk 	mii_pollstat(&sc->sc_mii);
   1277       1.1       pk 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1278       1.1       pk 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1279       1.1       pk }
   1280       1.1       pk 
   1281       1.1       pk /*
   1282       1.1       pk  * Process an ioctl request.
   1283       1.1       pk  */
   1284       1.1       pk int
   1285       1.1       pk hme_ioctl(ifp, cmd, data)
   1286       1.1       pk 	struct ifnet *ifp;
   1287       1.1       pk 	u_long cmd;
   1288       1.1       pk 	caddr_t data;
   1289       1.1       pk {
   1290       1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1291       1.1       pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1292       1.1       pk 	struct ifreq *ifr = (struct ifreq *)data;
   1293       1.1       pk 	int s, error = 0;
   1294       1.1       pk 
   1295       1.1       pk 	s = splnet();
   1296       1.1       pk 
   1297       1.1       pk 	switch (cmd) {
   1298       1.1       pk 
   1299       1.1       pk 	case SIOCSIFADDR:
   1300       1.1       pk 		switch (ifa->ifa_addr->sa_family) {
   1301       1.1       pk #ifdef INET
   1302       1.1       pk 		case AF_INET:
   1303  1.37.2.1    skrll 			if (ifp->if_flags & IFF_UP)
   1304  1.37.2.1    skrll 				hme_setladrf(sc);
   1305  1.37.2.1    skrll 			else {
   1306  1.37.2.1    skrll 				ifp->if_flags |= IFF_UP;
   1307  1.37.2.1    skrll 				hme_init(sc);
   1308  1.37.2.1    skrll 			}
   1309       1.1       pk 			arp_ifinit(ifp, ifa);
   1310       1.1       pk 			break;
   1311       1.1       pk #endif
   1312       1.1       pk #ifdef NS
   1313       1.1       pk 		case AF_NS:
   1314       1.1       pk 		    {
   1315       1.1       pk 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1316       1.1       pk 
   1317       1.1       pk 			if (ns_nullhost(*ina))
   1318       1.1       pk 				ina->x_host =
   1319       1.1       pk 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1320       1.1       pk 			else {
   1321      1.21  thorpej 				memcpy(LLADDR(ifp->if_sadl),
   1322      1.21  thorpej 				    ina->x_host.c_host, sizeof(sc->sc_enaddr));
   1323  1.37.2.4    skrll 			}
   1324       1.1       pk 			/* Set new address. */
   1325  1.37.2.1    skrll 			if (ifp->if_flags & IFF_UP)
   1326  1.37.2.1    skrll 				hme_setladrf(sc);
   1327  1.37.2.1    skrll 			else {
   1328  1.37.2.1    skrll 				ifp->if_flags |= IFF_UP;
   1329  1.37.2.1    skrll 				hme_init(sc);
   1330  1.37.2.1    skrll 			}
   1331       1.1       pk 			break;
   1332       1.1       pk 		    }
   1333       1.1       pk #endif
   1334       1.1       pk 		default:
   1335  1.37.2.1    skrll 			ifp->if_flags |= IFF_UP;
   1336       1.1       pk 			hme_init(sc);
   1337       1.1       pk 			break;
   1338       1.1       pk 		}
   1339       1.1       pk 		break;
   1340       1.1       pk 
   1341       1.1       pk 	case SIOCSIFFLAGS:
   1342       1.1       pk 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1343       1.1       pk 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1344       1.1       pk 			/*
   1345       1.1       pk 			 * If interface is marked down and it is running, then
   1346       1.1       pk 			 * stop it.
   1347       1.1       pk 			 */
   1348       1.1       pk 			hme_stop(sc);
   1349       1.1       pk 			ifp->if_flags &= ~IFF_RUNNING;
   1350       1.1       pk 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1351       1.1       pk 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
   1352       1.1       pk 			/*
   1353       1.1       pk 			 * If interface is marked up and it is stopped, then
   1354       1.1       pk 			 * start it.
   1355       1.1       pk 			 */
   1356       1.1       pk 			hme_init(sc);
   1357       1.1       pk 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1358       1.1       pk 			/*
   1359  1.37.2.1    skrll 			 * If setting debug or promiscuous mode, do not reset
   1360  1.37.2.1    skrll 			 * the chip; for everything else, call hme_init()
   1361  1.37.2.1    skrll 			 * which will trigger a reset.
   1362       1.1       pk 			 */
   1363  1.37.2.1    skrll #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1364  1.37.2.1    skrll 			if (ifp->if_flags == sc->sc_if_flags)
   1365  1.37.2.1    skrll 				break;
   1366  1.37.2.1    skrll 			if ((ifp->if_flags & (~RESETIGN))
   1367  1.37.2.1    skrll 			    == (sc->sc_if_flags & (~RESETIGN)))
   1368  1.37.2.1    skrll 				hme_setladrf(sc);
   1369  1.37.2.1    skrll 			else
   1370  1.37.2.1    skrll 				hme_init(sc);
   1371  1.37.2.1    skrll #undef RESETIGN
   1372       1.1       pk 		}
   1373       1.1       pk #ifdef HMEDEBUG
   1374       1.1       pk 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1375       1.1       pk #endif
   1376       1.1       pk 		break;
   1377       1.1       pk 
   1378       1.1       pk 	case SIOCADDMULTI:
   1379       1.1       pk 	case SIOCDELMULTI:
   1380       1.1       pk 		error = (cmd == SIOCADDMULTI) ?
   1381       1.1       pk 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1382       1.1       pk 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1383       1.1       pk 
   1384       1.1       pk 		if (error == ENETRESET) {
   1385       1.1       pk 			/*
   1386       1.1       pk 			 * Multicast list has changed; set the hardware filter
   1387       1.1       pk 			 * accordingly.
   1388       1.1       pk 			 */
   1389  1.37.2.4    skrll 			if (ifp->if_flags & IFF_RUNNING)
   1390  1.37.2.4    skrll 				hme_setladrf(sc);
   1391       1.1       pk 			error = 0;
   1392       1.1       pk 		}
   1393       1.1       pk 		break;
   1394       1.1       pk 
   1395       1.1       pk 	case SIOCGIFMEDIA:
   1396       1.1       pk 	case SIOCSIFMEDIA:
   1397       1.1       pk 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1398       1.1       pk 		break;
   1399       1.1       pk 
   1400       1.1       pk 	default:
   1401       1.1       pk 		error = EINVAL;
   1402       1.1       pk 		break;
   1403       1.1       pk 	}
   1404       1.1       pk 
   1405  1.37.2.1    skrll 	sc->sc_if_flags = ifp->if_flags;
   1406       1.1       pk 	splx(s);
   1407       1.1       pk 	return (error);
   1408       1.1       pk }
   1409       1.1       pk 
   1410       1.1       pk void
   1411       1.1       pk hme_shutdown(arg)
   1412       1.1       pk 	void *arg;
   1413       1.1       pk {
   1414      1.28     tron 
   1415       1.1       pk 	hme_stop((struct hme_softc *)arg);
   1416       1.1       pk }
   1417       1.1       pk 
   1418       1.1       pk /*
   1419       1.1       pk  * Set up the logical address filter.
   1420       1.1       pk  */
   1421       1.1       pk void
   1422       1.1       pk hme_setladrf(sc)
   1423       1.1       pk 	struct hme_softc *sc;
   1424       1.1       pk {
   1425       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1426       1.1       pk 	struct ether_multi *enm;
   1427       1.1       pk 	struct ether_multistep step;
   1428      1.28     tron 	struct ethercom *ec = &sc->sc_ethercom;
   1429       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1430       1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
   1431       1.1       pk 	u_char *cp;
   1432       1.1       pk 	u_int32_t crc;
   1433       1.1       pk 	u_int32_t hash[4];
   1434      1.14       pk 	u_int32_t v;
   1435       1.1       pk 	int len;
   1436       1.1       pk 
   1437      1.14       pk 	/* Clear hash table */
   1438      1.14       pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1439      1.14       pk 
   1440      1.14       pk 	/* Get current RX configuration */
   1441      1.14       pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1442      1.14       pk 
   1443      1.14       pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1444      1.14       pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1445      1.14       pk 		v |= HME_MAC_RXCFG_PMISC;
   1446      1.14       pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1447      1.14       pk 		ifp->if_flags |= IFF_ALLMULTI;
   1448      1.14       pk 		goto chipit;
   1449      1.14       pk 	}
   1450      1.14       pk 
   1451      1.14       pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1452      1.14       pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1453      1.14       pk 	v |= HME_MAC_RXCFG_HENABLE;
   1454      1.14       pk 
   1455       1.1       pk 	/*
   1456       1.1       pk 	 * Set up multicast address filter by passing all multicast addresses
   1457       1.1       pk 	 * through a crc generator, and then using the high order 6 bits as an
   1458       1.1       pk 	 * index into the 64 bit logical address filter.  The high order bit
   1459       1.1       pk 	 * selects the word, while the rest of the bits select the bit within
   1460       1.1       pk 	 * the word.
   1461       1.1       pk 	 */
   1462       1.1       pk 
   1463      1.28     tron 	ETHER_FIRST_MULTI(step, ec, enm);
   1464       1.1       pk 	while (enm != NULL) {
   1465      1.28     tron 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1466       1.1       pk 			/*
   1467       1.1       pk 			 * We must listen to a range of multicast addresses.
   1468       1.1       pk 			 * For now, just accept all multicasts, rather than
   1469       1.1       pk 			 * trying to set only those filter bits needed to match
   1470       1.1       pk 			 * the range.  (At this time, the only use of address
   1471       1.1       pk 			 * ranges is for IP multicast routing, for which the
   1472       1.1       pk 			 * range is big enough to require all bits set.)
   1473       1.1       pk 			 */
   1474      1.14       pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1475      1.14       pk 			ifp->if_flags |= IFF_ALLMULTI;
   1476      1.14       pk 			goto chipit;
   1477       1.1       pk 		}
   1478       1.1       pk 
   1479       1.1       pk 		cp = enm->enm_addrlo;
   1480       1.1       pk 		crc = 0xffffffff;
   1481       1.1       pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1482       1.1       pk 			int octet = *cp++;
   1483       1.1       pk 			int i;
   1484       1.1       pk 
   1485       1.1       pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1486       1.1       pk 			for (i = 0; i < 8; i++) {
   1487       1.1       pk 				if ((crc & 1) ^ (octet & 1)) {
   1488       1.1       pk 					crc >>= 1;
   1489       1.1       pk 					crc ^= MC_POLY_LE;
   1490       1.1       pk 				} else {
   1491       1.1       pk 					crc >>= 1;
   1492       1.1       pk 				}
   1493       1.1       pk 				octet >>= 1;
   1494       1.1       pk 			}
   1495       1.1       pk 		}
   1496       1.1       pk 		/* Just want the 6 most significant bits. */
   1497       1.1       pk 		crc >>= 26;
   1498       1.1       pk 
   1499       1.1       pk 		/* Set the corresponding bit in the filter. */
   1500       1.1       pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1501       1.1       pk 
   1502       1.1       pk 		ETHER_NEXT_MULTI(step, enm);
   1503       1.1       pk 	}
   1504       1.1       pk 
   1505      1.14       pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1506      1.14       pk 
   1507      1.14       pk chipit:
   1508      1.14       pk 	/* Now load the hash table into the chip */
   1509       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1510       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1511       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1512       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1513      1.14       pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1514       1.1       pk }
   1515       1.1       pk 
   1516      1.28     tron /*
   1517      1.28     tron  * Routines for accessing the transmit and receive buffers.
   1518      1.28     tron  * The various CPU and adapter configurations supported by this
   1519      1.28     tron  * driver require three different access methods for buffers
   1520      1.28     tron  * and descriptors:
   1521      1.28     tron  *	(1) contig (contiguous data; no padding),
   1522      1.28     tron  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1523      1.28     tron  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1524      1.28     tron  */
   1525      1.28     tron 
   1526      1.28     tron #if 0
   1527      1.28     tron /*
   1528      1.28     tron  * contig: contiguous data with no padding.
   1529      1.28     tron  *
   1530      1.28     tron  * Buffers may have any alignment.
   1531      1.28     tron  */
   1532      1.28     tron 
   1533      1.28     tron void
   1534      1.28     tron hme_copytobuf_contig(sc, from, ri, len)
   1535      1.26     tron 	struct hme_softc *sc;
   1536      1.28     tron 	void *from;
   1537      1.28     tron 	int ri, len;
   1538      1.26     tron {
   1539      1.28     tron 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1540      1.26     tron 
   1541       1.1       pk 	/*
   1542      1.28     tron 	 * Just call memcpy() to do the work.
   1543       1.1       pk 	 */
   1544      1.28     tron 	memcpy(buf, from, len);
   1545       1.1       pk }
   1546       1.1       pk 
   1547      1.28     tron void
   1548      1.28     tron hme_copyfrombuf_contig(sc, to, boff, len)
   1549       1.1       pk 	struct hme_softc *sc;
   1550      1.28     tron 	void *to;
   1551      1.28     tron 	int boff, len;
   1552       1.1       pk {
   1553      1.28     tron 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1554      1.26     tron 
   1555      1.28     tron 	/*
   1556      1.28     tron 	 * Just call memcpy() to do the work.
   1557      1.28     tron 	 */
   1558      1.28     tron 	memcpy(to, buf, len);
   1559       1.1       pk }
   1560      1.28     tron #endif
   1561