Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.43.4.1
      1  1.43.4.1     kent /*	$NetBSD: hme.c,v 1.43.4.1 2005/04/29 11:28:50 kent Exp $	*/
      2       1.1       pk 
      3       1.1       pk /*-
      4       1.1       pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5       1.1       pk  * All rights reserved.
      6       1.1       pk  *
      7       1.1       pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1       pk  * by Paul Kranenburg.
      9       1.1       pk  *
     10       1.1       pk  * Redistribution and use in source and binary forms, with or without
     11       1.1       pk  * modification, are permitted provided that the following conditions
     12       1.1       pk  * are met:
     13       1.1       pk  * 1. Redistributions of source code must retain the above copyright
     14       1.1       pk  *    notice, this list of conditions and the following disclaimer.
     15       1.1       pk  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1       pk  *    notice, this list of conditions and the following disclaimer in the
     17       1.1       pk  *    documentation and/or other materials provided with the distribution.
     18       1.1       pk  * 3. All advertising materials mentioning features or use of this software
     19       1.1       pk  *    must display the following acknowledgement:
     20       1.1       pk  *        This product includes software developed by the NetBSD
     21       1.1       pk  *        Foundation, Inc. and its contributors.
     22       1.1       pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.1       pk  *    contributors may be used to endorse or promote products derived
     24       1.1       pk  *    from this software without specific prior written permission.
     25       1.1       pk  *
     26       1.1       pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.1       pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.1       pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.1       pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.1       pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.1       pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.1       pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.1       pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.1       pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.1       pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.1       pk  * POSSIBILITY OF SUCH DAMAGE.
     37       1.1       pk  */
     38       1.1       pk 
     39       1.1       pk /*
     40       1.1       pk  * HME Ethernet module driver.
     41       1.1       pk  */
     42      1.25    lukem 
     43      1.25    lukem #include <sys/cdefs.h>
     44  1.43.4.1     kent __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.43.4.1 2005/04/29 11:28:50 kent Exp $");
     45       1.1       pk 
     46      1.39   petrov /* #define HMEDEBUG */
     47       1.1       pk 
     48       1.1       pk #include "opt_inet.h"
     49       1.1       pk #include "opt_ns.h"
     50       1.1       pk #include "bpfilter.h"
     51       1.1       pk #include "rnd.h"
     52       1.1       pk 
     53       1.1       pk #include <sys/param.h>
     54       1.1       pk #include <sys/systm.h>
     55       1.5       pk #include <sys/kernel.h>
     56      1.42     heas #include <sys/mbuf.h>
     57       1.1       pk #include <sys/syslog.h>
     58       1.1       pk #include <sys/socket.h>
     59       1.1       pk #include <sys/device.h>
     60       1.1       pk #include <sys/malloc.h>
     61       1.1       pk #include <sys/ioctl.h>
     62       1.1       pk #include <sys/errno.h>
     63       1.1       pk #if NRND > 0
     64       1.1       pk #include <sys/rnd.h>
     65       1.1       pk #endif
     66       1.1       pk 
     67       1.1       pk #include <net/if.h>
     68       1.1       pk #include <net/if_dl.h>
     69       1.1       pk #include <net/if_ether.h>
     70       1.1       pk #include <net/if_media.h>
     71       1.1       pk 
     72       1.1       pk #ifdef INET
     73       1.1       pk #include <netinet/in.h>
     74       1.1       pk #include <netinet/if_inarp.h>
     75       1.1       pk #include <netinet/in_systm.h>
     76       1.1       pk #include <netinet/in_var.h>
     77       1.1       pk #include <netinet/ip.h>
     78  1.43.4.1     kent #include <netinet/tcp.h>
     79  1.43.4.1     kent #include <netinet/udp.h>
     80       1.1       pk #endif
     81       1.1       pk 
     82       1.1       pk #ifdef NS
     83       1.1       pk #include <netns/ns.h>
     84       1.1       pk #include <netns/ns_if.h>
     85       1.1       pk #endif
     86       1.1       pk 
     87       1.1       pk #if NBPFILTER > 0
     88       1.1       pk #include <net/bpf.h>
     89       1.1       pk #include <net/bpfdesc.h>
     90       1.1       pk #endif
     91       1.1       pk 
     92       1.1       pk #include <dev/mii/mii.h>
     93       1.1       pk #include <dev/mii/miivar.h>
     94       1.1       pk 
     95       1.1       pk #include <machine/bus.h>
     96       1.1       pk 
     97       1.1       pk #include <dev/ic/hmereg.h>
     98       1.1       pk #include <dev/ic/hmevar.h>
     99       1.1       pk 
    100  1.43.4.1     kent void		hme_start(struct ifnet *);
    101  1.43.4.1     kent void		hme_stop(struct hme_softc *);
    102  1.43.4.1     kent int		hme_ioctl(struct ifnet *, u_long, caddr_t);
    103  1.43.4.1     kent void		hme_tick(void *);
    104  1.43.4.1     kent void		hme_watchdog(struct ifnet *);
    105  1.43.4.1     kent void		hme_shutdown(void *);
    106  1.43.4.1     kent void		hme_init(struct hme_softc *);
    107  1.43.4.1     kent void		hme_meminit(struct hme_softc *);
    108  1.43.4.1     kent void		hme_mifinit(struct hme_softc *);
    109  1.43.4.1     kent void		hme_reset(struct hme_softc *);
    110  1.43.4.1     kent void		hme_setladrf(struct hme_softc *);
    111       1.1       pk 
    112       1.1       pk /* MII methods & callbacks */
    113  1.43.4.1     kent static int	hme_mii_readreg(struct device *, int, int);
    114  1.43.4.1     kent static void	hme_mii_writereg(struct device *, int, int, int);
    115  1.43.4.1     kent static void	hme_mii_statchg(struct device *);
    116  1.43.4.1     kent 
    117  1.43.4.1     kent int		hme_mediachange(struct ifnet *);
    118  1.43.4.1     kent void		hme_mediastatus(struct ifnet *, struct ifmediareq *);
    119  1.43.4.1     kent 
    120  1.43.4.1     kent struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    121  1.43.4.1     kent int		hme_put(struct hme_softc *, int, struct mbuf *);
    122  1.43.4.1     kent void		hme_read(struct hme_softc *, int, uint32_t);
    123  1.43.4.1     kent int		hme_eint(struct hme_softc *, u_int);
    124  1.43.4.1     kent int		hme_rint(struct hme_softc *);
    125  1.43.4.1     kent int		hme_tint(struct hme_softc *);
    126       1.1       pk 
    127  1.43.4.1     kent static int	ether_cmp(u_char *, u_char *);
    128      1.28     tron 
    129      1.28     tron /* Default buffer copy routines */
    130  1.43.4.1     kent void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    131  1.43.4.1     kent void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    132  1.43.4.1     kent void	hme_zerobuf_contig(struct hme_softc *, int, int);
    133      1.28     tron 
    134      1.28     tron 
    135       1.1       pk void
    136       1.1       pk hme_config(sc)
    137       1.1       pk 	struct hme_softc *sc;
    138       1.1       pk {
    139       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    140       1.1       pk 	struct mii_data *mii = &sc->sc_mii;
    141       1.5       pk 	struct mii_softc *child;
    142      1.11       pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    143       1.1       pk 	bus_dma_segment_t seg;
    144       1.1       pk 	bus_size_t size;
    145      1.28     tron 	int rseg, error;
    146       1.1       pk 
    147       1.1       pk 	/*
    148       1.1       pk 	 * HME common initialization.
    149       1.1       pk 	 *
    150       1.1       pk 	 * hme_softc fields that must be initialized by the front-end:
    151       1.1       pk 	 *
    152       1.1       pk 	 * the bus tag:
    153       1.1       pk 	 *	sc_bustag
    154       1.1       pk 	 *
    155      1.37      wiz 	 * the DMA bus tag:
    156       1.1       pk 	 *	sc_dmatag
    157       1.1       pk 	 *
    158       1.1       pk 	 * the bus handles:
    159       1.1       pk 	 *	sc_seb		(Shared Ethernet Block registers)
    160       1.1       pk 	 *	sc_erx		(Receiver Unit registers)
    161       1.1       pk 	 *	sc_etx		(Transmitter Unit registers)
    162       1.1       pk 	 *	sc_mac		(MAC registers)
    163      1.36      wiz 	 *	sc_mif		(Management Interface registers)
    164       1.1       pk 	 *
    165       1.1       pk 	 * the maximum bus burst size:
    166       1.1       pk 	 *	sc_burst
    167       1.1       pk 	 *
    168      1.28     tron 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    169      1.28     tron 	 *	rb_membase, rb_dmabase)
    170      1.28     tron 	 *
    171       1.1       pk 	 * the local Ethernet address:
    172       1.1       pk 	 *	sc_enaddr
    173       1.1       pk 	 *
    174       1.1       pk 	 */
    175       1.1       pk 
    176       1.1       pk 	/* Make sure the chip is stopped. */
    177       1.1       pk 	hme_stop(sc);
    178       1.1       pk 
    179       1.1       pk 
    180      1.28     tron 	/*
    181      1.28     tron 	 * Allocate descriptors and buffers
    182      1.28     tron 	 * XXX - do all this differently.. and more configurably,
    183      1.28     tron 	 * eg. use things as `dma_load_mbuf()' on transmit,
    184      1.28     tron 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    185      1.38      wiz 	 *     all the time) on the receiver side.
    186      1.28     tron 	 *
    187      1.28     tron 	 * Note: receive buffers must be 64-byte aligned.
    188      1.28     tron 	 * Also, apparently, the buffers must extend to a DMA burst
    189      1.28     tron 	 * boundary beyond the maximum packet size.
    190      1.28     tron 	 */
    191      1.28     tron #define _HME_NDESC	128
    192      1.28     tron #define _HME_BUFSZ	1600
    193      1.28     tron 
    194      1.28     tron 	/* Note: the # of descriptors must be a multiple of 16 */
    195      1.28     tron 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    196      1.28     tron 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    197       1.1       pk 
    198       1.1       pk 	/*
    199       1.1       pk 	 * Allocate DMA capable memory
    200       1.1       pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    201       1.1       pk 	 * take this into account when calculating the size. Note that
    202       1.1       pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    203      1.28     tron 	 * so we allocate that much regardless of _HME_NDESC.
    204       1.1       pk 	 */
    205      1.28     tron 	size =	2048 +					/* TX descriptors */
    206      1.28     tron 		2048 +					/* RX descriptors */
    207      1.28     tron 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    208  1.43.4.1     kent 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    209      1.11       pk 
    210      1.11       pk 	/* Allocate DMA buffer */
    211      1.28     tron 	if ((error = bus_dmamem_alloc(dmatag, size,
    212      1.28     tron 				      2048, 0,
    213      1.28     tron 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    214       1.1       pk 		printf("%s: DMA buffer alloc error %d\n",
    215      1.28     tron 			sc->sc_dev.dv_xname, error);
    216      1.10      mrg 		return;
    217       1.1       pk 	}
    218       1.1       pk 
    219      1.11       pk 	/* Map DMA memory in CPU addressable space */
    220      1.11       pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    221      1.28     tron 				    &sc->sc_rb.rb_membase,
    222      1.28     tron 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    223       1.1       pk 		printf("%s: DMA buffer map error %d\n",
    224      1.28     tron 			sc->sc_dev.dv_xname, error);
    225      1.11       pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    226      1.11       pk 		bus_dmamem_free(dmatag, &seg, rseg);
    227       1.1       pk 		return;
    228       1.1       pk 	}
    229      1.13      mrg 
    230      1.13      mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    231      1.28     tron 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    232      1.13      mrg 		printf("%s: DMA map create error %d\n",
    233      1.28     tron 			sc->sc_dev.dv_xname, error);
    234      1.13      mrg 		return;
    235      1.13      mrg 	}
    236      1.13      mrg 
    237      1.13      mrg 	/* Load the buffer */
    238      1.13      mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    239      1.17      mrg 	    sc->sc_rb.rb_membase, size, NULL,
    240      1.17      mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    241      1.13      mrg 		printf("%s: DMA buffer map load error %d\n",
    242      1.28     tron 			sc->sc_dev.dv_xname, error);
    243      1.13      mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    244      1.13      mrg 		return;
    245      1.13      mrg 	}
    246      1.13      mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    247       1.1       pk 
    248      1.22  thorpej 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    249      1.22  thorpej 	    ether_sprintf(sc->sc_enaddr));
    250       1.2       pk 
    251       1.1       pk 	/* Initialize ifnet structure. */
    252      1.21  thorpej 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    253       1.1       pk 	ifp->if_softc = sc;
    254       1.1       pk 	ifp->if_start = hme_start;
    255       1.1       pk 	ifp->if_ioctl = hme_ioctl;
    256       1.1       pk 	ifp->if_watchdog = hme_watchdog;
    257       1.1       pk 	ifp->if_flags =
    258       1.1       pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    259      1.41     heas 	sc->sc_if_flags = ifp->if_flags;
    260  1.43.4.1     kent 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
    261  1.43.4.1     kent 				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    262      1.20  thorpej 	IFQ_SET_READY(&ifp->if_snd);
    263       1.1       pk 
    264       1.1       pk 	/* Initialize ifmedia structures and MII info */
    265       1.1       pk 	mii->mii_ifp = ifp;
    266      1.34   petrov 	mii->mii_readreg = hme_mii_readreg;
    267       1.1       pk 	mii->mii_writereg = hme_mii_writereg;
    268       1.1       pk 	mii->mii_statchg = hme_mii_statchg;
    269       1.1       pk 
    270      1.33       pk 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
    271       1.1       pk 
    272       1.4       pk 	hme_mifinit(sc);
    273       1.4       pk 
    274       1.6  thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    275      1.34   petrov 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    276       1.2       pk 
    277       1.5       pk 	child = LIST_FIRST(&mii->mii_phys);
    278       1.5       pk 	if (child == NULL) {
    279       1.1       pk 		/* No PHY attached */
    280       1.1       pk 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    281       1.1       pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    282       1.1       pk 	} else {
    283       1.1       pk 		/*
    284       1.5       pk 		 * Walk along the list of attached MII devices and
    285       1.5       pk 		 * establish an `MII instance' to `phy number'
    286       1.5       pk 		 * mapping. We'll use this mapping in media change
    287       1.5       pk 		 * requests to determine which phy to use to program
    288       1.5       pk 		 * the MIF configuration register.
    289       1.5       pk 		 */
    290       1.5       pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    291       1.5       pk 			/*
    292       1.5       pk 			 * Note: we support just two PHYs: the built-in
    293       1.5       pk 			 * internal device and an external on the MII
    294       1.5       pk 			 * connector.
    295       1.5       pk 			 */
    296       1.5       pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    297       1.5       pk 				printf("%s: cannot accomodate MII device %s"
    298      1.28     tron 				       " at phy %d, instance %d\n",
    299      1.28     tron 				       sc->sc_dev.dv_xname,
    300      1.28     tron 				       child->mii_dev.dv_xname,
    301      1.28     tron 				       child->mii_phy, child->mii_inst);
    302       1.5       pk 				continue;
    303       1.5       pk 			}
    304       1.5       pk 
    305       1.5       pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    306       1.5       pk 		}
    307       1.5       pk 
    308       1.5       pk 		/*
    309       1.1       pk 		 * XXX - we can really do the following ONLY if the
    310       1.1       pk 		 * phy indeed has the auto negotiation capability!!
    311       1.1       pk 		 */
    312       1.1       pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    313       1.1       pk 	}
    314      1.27     tron 
    315      1.28     tron 	/* claim 802.1q capability */
    316      1.27     tron 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    317       1.1       pk 
    318       1.1       pk 	/* Attach the interface. */
    319       1.1       pk 	if_attach(ifp);
    320       1.1       pk 	ether_ifattach(ifp, sc->sc_enaddr);
    321       1.1       pk 
    322       1.1       pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    323       1.1       pk 	if (sc->sc_sh == NULL)
    324       1.1       pk 		panic("hme_config: can't establish shutdownhook");
    325       1.1       pk 
    326       1.1       pk #if NRND > 0
    327       1.1       pk 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    328       1.1       pk 			  RND_TYPE_NET, 0);
    329       1.1       pk #endif
    330       1.5       pk 
    331       1.9  thorpej 	callout_init(&sc->sc_tick_ch);
    332       1.5       pk }
    333       1.5       pk 
    334       1.5       pk void
    335       1.5       pk hme_tick(arg)
    336       1.5       pk 	void *arg;
    337       1.5       pk {
    338       1.5       pk 	struct hme_softc *sc = arg;
    339       1.5       pk 	int s;
    340       1.5       pk 
    341       1.5       pk 	s = splnet();
    342       1.5       pk 	mii_tick(&sc->sc_mii);
    343       1.5       pk 	splx(s);
    344       1.5       pk 
    345       1.9  thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    346       1.1       pk }
    347       1.1       pk 
    348       1.1       pk void
    349       1.1       pk hme_reset(sc)
    350       1.1       pk 	struct hme_softc *sc;
    351       1.1       pk {
    352       1.1       pk 	int s;
    353       1.1       pk 
    354       1.1       pk 	s = splnet();
    355       1.1       pk 	hme_init(sc);
    356       1.1       pk 	splx(s);
    357       1.1       pk }
    358       1.1       pk 
    359       1.1       pk void
    360       1.1       pk hme_stop(sc)
    361       1.1       pk 	struct hme_softc *sc;
    362       1.1       pk {
    363       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    364       1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    365       1.1       pk 	int n;
    366       1.1       pk 
    367       1.9  thorpej 	callout_stop(&sc->sc_tick_ch);
    368       1.5       pk 	mii_down(&sc->sc_mii);
    369       1.5       pk 
    370      1.33       pk 	/* Mask all interrupts */
    371      1.33       pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    372      1.33       pk 
    373       1.1       pk 	/* Reset transmitter and receiver */
    374       1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    375      1.28     tron 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    376       1.1       pk 
    377       1.1       pk 	for (n = 0; n < 20; n++) {
    378       1.1       pk 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    379       1.1       pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    380       1.1       pk 			return;
    381       1.1       pk 		DELAY(20);
    382       1.1       pk 	}
    383       1.1       pk 
    384       1.1       pk 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
    385       1.1       pk }
    386       1.1       pk 
    387       1.1       pk void
    388       1.1       pk hme_meminit(sc)
    389       1.1       pk 	struct hme_softc *sc;
    390       1.1       pk {
    391      1.28     tron 	bus_addr_t txbufdma, rxbufdma;
    392       1.1       pk 	bus_addr_t dma;
    393       1.1       pk 	caddr_t p;
    394      1.28     tron 	unsigned int ntbuf, nrbuf, i;
    395       1.1       pk 	struct hme_ring *hr = &sc->sc_rb;
    396       1.1       pk 
    397       1.1       pk 	p = hr->rb_membase;
    398       1.1       pk 	dma = hr->rb_dmabase;
    399       1.1       pk 
    400      1.28     tron 	ntbuf = hr->rb_ntbuf;
    401      1.28     tron 	nrbuf = hr->rb_nrbuf;
    402      1.28     tron 
    403       1.1       pk 	/*
    404       1.1       pk 	 * Allocate transmit descriptors
    405       1.1       pk 	 */
    406       1.1       pk 	hr->rb_txd = p;
    407       1.1       pk 	hr->rb_txddma = dma;
    408      1.28     tron 	p += ntbuf * HME_XD_SIZE;
    409      1.28     tron 	dma += ntbuf * HME_XD_SIZE;
    410       1.4       pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    411       1.4       pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    412       1.4       pk 	p = (caddr_t)roundup((u_long)p, 2048);
    413       1.1       pk 
    414       1.1       pk 	/*
    415       1.1       pk 	 * Allocate receive descriptors
    416       1.1       pk 	 */
    417       1.1       pk 	hr->rb_rxd = p;
    418       1.1       pk 	hr->rb_rxddma = dma;
    419      1.28     tron 	p += nrbuf * HME_XD_SIZE;
    420      1.28     tron 	dma += nrbuf * HME_XD_SIZE;
    421       1.4       pk 	/* Again move forward to the next 2048 byte boundary.*/
    422       1.4       pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    423       1.4       pk 	p = (caddr_t)roundup((u_long)p, 2048);
    424       1.1       pk 
    425      1.28     tron 
    426       1.1       pk 	/*
    427      1.28     tron 	 * Allocate transmit buffers
    428       1.1       pk 	 */
    429      1.28     tron 	hr->rb_txbuf = p;
    430      1.28     tron 	txbufdma = dma;
    431      1.28     tron 	p += ntbuf * _HME_BUFSZ;
    432      1.28     tron 	dma += ntbuf * _HME_BUFSZ;
    433      1.28     tron 
    434      1.28     tron 	/*
    435      1.28     tron 	 * Allocate receive buffers
    436      1.28     tron 	 */
    437      1.28     tron 	hr->rb_rxbuf = p;
    438      1.28     tron 	rxbufdma = dma;
    439      1.28     tron 	p += nrbuf * _HME_BUFSZ;
    440      1.28     tron 	dma += nrbuf * _HME_BUFSZ;
    441      1.28     tron 
    442      1.28     tron 	/*
    443      1.28     tron 	 * Initialize transmit buffer descriptors
    444      1.28     tron 	 */
    445      1.28     tron 	for (i = 0; i < ntbuf; i++) {
    446      1.28     tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    447      1.15      eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    448       1.1       pk 	}
    449       1.1       pk 
    450       1.1       pk 	/*
    451      1.28     tron 	 * Initialize receive buffer descriptors
    452       1.1       pk 	 */
    453      1.28     tron 	for (i = 0; i < nrbuf; i++) {
    454      1.28     tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    455      1.15      eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    456      1.28     tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    457       1.1       pk 	}
    458       1.1       pk 
    459      1.28     tron 	hr->rb_tdhead = hr->rb_tdtail = 0;
    460      1.28     tron 	hr->rb_td_nbusy = 0;
    461      1.28     tron 	hr->rb_rdtail = 0;
    462       1.1       pk }
    463       1.1       pk 
    464       1.1       pk /*
    465       1.1       pk  * Initialization of interface; set up initialization block
    466       1.1       pk  * and transmit/receive descriptor rings.
    467       1.1       pk  */
    468       1.1       pk void
    469       1.1       pk hme_init(sc)
    470       1.1       pk 	struct hme_softc *sc;
    471       1.1       pk {
    472       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    473       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    474       1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    475       1.1       pk 	bus_space_handle_t etx = sc->sc_etx;
    476       1.1       pk 	bus_space_handle_t erx = sc->sc_erx;
    477       1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
    478       1.1       pk 	u_int8_t *ea;
    479       1.1       pk 	u_int32_t v;
    480       1.1       pk 
    481       1.1       pk 	/*
    482       1.1       pk 	 * Initialization sequence. The numbered steps below correspond
    483       1.1       pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    484       1.1       pk 	 * Channel Engine manual (part of the PCIO manual).
    485       1.1       pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    486       1.1       pk 	 */
    487       1.1       pk 
    488       1.1       pk 	/* step 1 & 2. Reset the Ethernet Channel */
    489       1.1       pk 	hme_stop(sc);
    490       1.1       pk 
    491       1.4       pk 	/* Re-initialize the MIF */
    492       1.4       pk 	hme_mifinit(sc);
    493       1.4       pk 
    494       1.1       pk 	/* Call MI reset function if any */
    495       1.1       pk 	if (sc->sc_hwreset)
    496       1.1       pk 		(*sc->sc_hwreset)(sc);
    497       1.1       pk 
    498       1.1       pk #if 0
    499       1.1       pk 	/* Mask all MIF interrupts, just in case */
    500       1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    501       1.1       pk #endif
    502       1.1       pk 
    503       1.1       pk 	/* step 3. Setup data structures in host memory */
    504       1.1       pk 	hme_meminit(sc);
    505       1.1       pk 
    506       1.1       pk 	/* step 4. TX MAC registers & counters */
    507       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    508       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    509       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    510       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    511      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    512      1.28     tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    513  1.43.4.1     kent 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    514  1.43.4.1     kent 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    515       1.1       pk 
    516       1.1       pk 	/* Load station MAC address */
    517       1.1       pk 	ea = sc->sc_enaddr;
    518       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    519       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    520       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    521       1.1       pk 
    522       1.1       pk 	/*
    523       1.1       pk 	 * Init seed for backoff
    524       1.1       pk 	 * (source suggested by manual: low 10 bits of MAC address)
    525      1.42     heas 	 */
    526       1.1       pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    527       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    528       1.1       pk 
    529       1.1       pk 
    530       1.1       pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    531       1.1       pk 
    532       1.1       pk 
    533       1.1       pk 	/* step 5. RX MAC registers & counters */
    534       1.1       pk 	hme_setladrf(sc);
    535       1.1       pk 
    536       1.1       pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    537       1.1       pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    538      1.28     tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    539       1.1       pk 
    540       1.1       pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    541      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    542      1.28     tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    543  1.43.4.1     kent 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    544       1.1       pk 
    545       1.1       pk 	/* step 8. Global Configuration & Interrupt Mask */
    546       1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    547      1.28     tron 			~(
    548      1.28     tron 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    549      1.28     tron 			  HME_SEB_STAT_HOSTTOTX |
    550      1.28     tron 			  HME_SEB_STAT_RXTOHOST |
    551      1.28     tron 			  HME_SEB_STAT_TXALL |
    552      1.28     tron 			  HME_SEB_STAT_TXPERR |
    553      1.28     tron 			  HME_SEB_STAT_RCNTEXP |
    554      1.33       pk 			  /*HME_SEB_STAT_MIFIRQ |*/
    555      1.28     tron 			  HME_SEB_STAT_ALL_ERRORS ));
    556       1.1       pk 
    557       1.1       pk 	switch (sc->sc_burst) {
    558       1.1       pk 	default:
    559       1.1       pk 		v = 0;
    560       1.1       pk 		break;
    561       1.1       pk 	case 16:
    562       1.1       pk 		v = HME_SEB_CFG_BURST16;
    563       1.1       pk 		break;
    564       1.1       pk 	case 32:
    565       1.1       pk 		v = HME_SEB_CFG_BURST32;
    566       1.1       pk 		break;
    567       1.1       pk 	case 64:
    568       1.1       pk 		v = HME_SEB_CFG_BURST64;
    569       1.1       pk 		break;
    570       1.1       pk 	}
    571       1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    572       1.1       pk 
    573       1.1       pk 	/* step 9. ETX Configuration: use mostly default values */
    574       1.1       pk 
    575       1.1       pk 	/* Enable DMA */
    576       1.2       pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    577       1.1       pk 	v |= HME_ETX_CFG_DMAENABLE;
    578       1.2       pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    579       1.1       pk 
    580       1.3       pk 	/* Transmit Descriptor ring size: in increments of 16 */
    581      1.28     tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    582      1.28     tron 
    583       1.1       pk 
    584       1.3       pk 	/* step 10. ERX Configuration */
    585       1.2       pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    586      1.28     tron 
    587      1.28     tron 	/* Encode Receive Descriptor ring size: four possible values */
    588      1.28     tron 	switch (_HME_NDESC /*XXX*/) {
    589      1.28     tron 	case 32:
    590      1.28     tron 		v |= HME_ERX_CFG_RINGSIZE32;
    591      1.28     tron 		break;
    592      1.28     tron 	case 64:
    593      1.28     tron 		v |= HME_ERX_CFG_RINGSIZE64;
    594      1.28     tron 		break;
    595      1.28     tron 	case 128:
    596      1.28     tron 		v |= HME_ERX_CFG_RINGSIZE128;
    597      1.28     tron 		break;
    598      1.28     tron 	case 256:
    599      1.28     tron 		v |= HME_ERX_CFG_RINGSIZE256;
    600      1.28     tron 		break;
    601      1.28     tron 	default:
    602      1.28     tron 		printf("hme: invalid Receive Descriptor ring size\n");
    603      1.28     tron 		break;
    604      1.28     tron 	}
    605      1.28     tron 
    606       1.3       pk 	/* Enable DMA */
    607      1.28     tron 	v |= HME_ERX_CFG_DMAENABLE;
    608  1.43.4.1     kent 
    609  1.43.4.1     kent 	/* set h/w rx checksum start offset (# of half-words) */
    610  1.43.4.1     kent #ifdef INET
    611  1.43.4.1     kent 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
    612  1.43.4.1     kent 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    613  1.43.4.1     kent 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
    614  1.43.4.1     kent 		HME_ERX_CFG_CSUMSTART;
    615  1.43.4.1     kent #endif
    616       1.2       pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    617       1.1       pk 
    618       1.1       pk 	/* step 11. XIF Configuration */
    619       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    620       1.1       pk 	v |= HME_MAC_XIF_OE;
    621       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    622       1.1       pk 
    623       1.1       pk 	/* step 12. RX_MAC Configuration Register */
    624       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    625  1.43.4.1     kent 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    626       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    627       1.1       pk 
    628       1.1       pk 	/* step 13. TX_MAC Configuration Register */
    629       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    630       1.2       pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    631       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    632       1.1       pk 
    633       1.1       pk 	/* step 14. Issue Transmit Pending command */
    634       1.1       pk 
    635       1.1       pk 	/* Call MI initialization function if any */
    636       1.1       pk 	if (sc->sc_hwinit)
    637       1.1       pk 		(*sc->sc_hwinit)(sc);
    638      1.29  thorpej 
    639      1.29  thorpej 	/* Set the current media. */
    640      1.29  thorpej 	mii_mediachg(&sc->sc_mii);
    641       1.9  thorpej 
    642       1.9  thorpej 	/* Start the one second timer. */
    643       1.9  thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    644       1.1       pk 
    645       1.1       pk 	ifp->if_flags |= IFF_RUNNING;
    646       1.1       pk 	ifp->if_flags &= ~IFF_OACTIVE;
    647      1.41     heas 	sc->sc_if_flags = ifp->if_flags;
    648       1.1       pk 	ifp->if_timer = 0;
    649       1.1       pk 	hme_start(ifp);
    650       1.1       pk }
    651       1.1       pk 
    652      1.28     tron /*
    653      1.28     tron  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    654      1.28     tron  * speed.
    655      1.28     tron  */
    656      1.28     tron static __inline__ int
    657      1.28     tron ether_cmp(a, b)
    658      1.28     tron 	u_char *a, *b;
    659      1.42     heas {
    660      1.42     heas 
    661      1.28     tron 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    662      1.28     tron 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    663      1.28     tron 		return (0);
    664      1.28     tron 	return (1);
    665      1.28     tron }
    666      1.28     tron 
    667      1.28     tron 
    668      1.28     tron /*
    669      1.28     tron  * Routine to copy from mbuf chain to transmit buffer in
    670      1.28     tron  * network buffer memory.
    671      1.28     tron  * Returns the amount of data copied.
    672      1.28     tron  */
    673      1.28     tron int
    674      1.28     tron hme_put(sc, ri, m)
    675      1.28     tron 	struct hme_softc *sc;
    676      1.28     tron 	int ri;			/* Ring index */
    677      1.28     tron 	struct mbuf *m;
    678      1.28     tron {
    679      1.28     tron 	struct mbuf *n;
    680      1.28     tron 	int len, tlen = 0;
    681      1.28     tron 	caddr_t bp;
    682      1.28     tron 
    683      1.28     tron 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    684      1.28     tron 	for (; m; m = n) {
    685      1.28     tron 		len = m->m_len;
    686      1.28     tron 		if (len == 0) {
    687      1.28     tron 			MFREE(m, n);
    688      1.28     tron 			continue;
    689      1.28     tron 		}
    690      1.28     tron 		memcpy(bp, mtod(m, caddr_t), len);
    691      1.28     tron 		bp += len;
    692      1.28     tron 		tlen += len;
    693      1.28     tron 		MFREE(m, n);
    694      1.28     tron 	}
    695      1.28     tron 	return (tlen);
    696      1.28     tron }
    697      1.28     tron 
    698      1.28     tron /*
    699      1.28     tron  * Pull data off an interface.
    700      1.28     tron  * Len is length of data, with local net header stripped.
    701      1.28     tron  * We copy the data into mbufs.  When full cluster sized units are present
    702      1.28     tron  * we copy into clusters.
    703      1.28     tron  */
    704      1.28     tron struct mbuf *
    705  1.43.4.1     kent hme_get(sc, ri, flags)
    706      1.28     tron 	struct hme_softc *sc;
    707  1.43.4.1     kent 	int ri;
    708  1.43.4.1     kent 	u_int32_t flags;
    709      1.28     tron {
    710      1.28     tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    711      1.28     tron 	struct mbuf *m, *m0, *newm;
    712      1.28     tron 	caddr_t bp;
    713  1.43.4.1     kent 	int len, totlen;
    714      1.28     tron 
    715  1.43.4.1     kent 	totlen = HME_XD_DECODE_RSIZE(flags);
    716      1.28     tron 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    717      1.28     tron 	if (m0 == 0)
    718      1.28     tron 		return (0);
    719      1.28     tron 	m0->m_pkthdr.rcvif = ifp;
    720      1.28     tron 	m0->m_pkthdr.len = totlen;
    721      1.28     tron 	len = MHLEN;
    722      1.28     tron 	m = m0;
    723      1.28     tron 
    724      1.28     tron 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    725      1.28     tron 
    726      1.28     tron 	while (totlen > 0) {
    727      1.28     tron 		if (totlen >= MINCLSIZE) {
    728      1.28     tron 			MCLGET(m, M_DONTWAIT);
    729      1.28     tron 			if ((m->m_flags & M_EXT) == 0)
    730      1.28     tron 				goto bad;
    731      1.28     tron 			len = MCLBYTES;
    732      1.28     tron 		}
    733      1.28     tron 
    734      1.28     tron 		if (m == m0) {
    735      1.28     tron 			caddr_t newdata = (caddr_t)
    736      1.28     tron 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    737      1.28     tron 			    sizeof(struct ether_header);
    738      1.28     tron 			len -= newdata - m->m_data;
    739      1.28     tron 			m->m_data = newdata;
    740      1.28     tron 		}
    741      1.28     tron 
    742      1.28     tron 		m->m_len = len = min(totlen, len);
    743      1.28     tron 		memcpy(mtod(m, caddr_t), bp, len);
    744      1.28     tron 		bp += len;
    745      1.28     tron 
    746      1.28     tron 		totlen -= len;
    747      1.28     tron 		if (totlen > 0) {
    748      1.28     tron 			MGET(newm, M_DONTWAIT, MT_DATA);
    749      1.28     tron 			if (newm == 0)
    750      1.28     tron 				goto bad;
    751      1.28     tron 			len = MLEN;
    752      1.28     tron 			m = m->m_next = newm;
    753      1.28     tron 		}
    754      1.28     tron 	}
    755      1.28     tron 
    756  1.43.4.1     kent #ifdef INET
    757  1.43.4.1     kent 	/* hardware checksum */
    758  1.43.4.1     kent 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    759  1.43.4.1     kent 		struct ether_header *eh;
    760  1.43.4.1     kent 		struct ip *ip;
    761  1.43.4.1     kent 		struct udphdr *uh;
    762  1.43.4.1     kent 		uint16_t *opts;
    763  1.43.4.1     kent 		int32_t hlen, pktlen;
    764  1.43.4.1     kent 		uint32_t temp;
    765  1.43.4.1     kent 
    766  1.43.4.1     kent 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
    767  1.43.4.1     kent 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
    768  1.43.4.1     kent 				ETHER_VLAN_ENCAP_LEN;
    769  1.43.4.1     kent 			eh = (struct ether_header *) mtod(m0, caddr_t) +
    770  1.43.4.1     kent 				ETHER_VLAN_ENCAP_LEN;
    771  1.43.4.1     kent 		} else {
    772  1.43.4.1     kent 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    773  1.43.4.1     kent 			eh = mtod(m0, struct ether_header *);
    774  1.43.4.1     kent 		}
    775  1.43.4.1     kent 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
    776  1.43.4.1     kent 			goto swcsum;
    777  1.43.4.1     kent 		ip = (struct ip *) ((caddr_t) eh + ETHER_HDR_LEN);
    778  1.43.4.1     kent 
    779  1.43.4.1     kent 		/* IPv4 only */
    780  1.43.4.1     kent 		if (ip->ip_v != IPVERSION)
    781  1.43.4.1     kent 			goto swcsum;
    782  1.43.4.1     kent 
    783  1.43.4.1     kent 		hlen = ip->ip_hl << 2;
    784  1.43.4.1     kent 		if (hlen < sizeof(struct ip))
    785  1.43.4.1     kent 			goto swcsum;
    786  1.43.4.1     kent 
    787  1.43.4.1     kent 		/*
    788  1.43.4.1     kent 		 * bail if too short, has random trailing garbage, truncated,
    789  1.43.4.1     kent 		 * fragment, or has ethernet pad.
    790  1.43.4.1     kent 		 */
    791  1.43.4.1     kent 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
    792  1.43.4.1     kent 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
    793  1.43.4.1     kent 			goto swcsum;
    794  1.43.4.1     kent 
    795  1.43.4.1     kent 		switch (ip->ip_p) {
    796  1.43.4.1     kent 		case IPPROTO_TCP:
    797  1.43.4.1     kent 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
    798  1.43.4.1     kent 				goto swcsum;
    799  1.43.4.1     kent 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    800  1.43.4.1     kent 				goto swcsum;
    801  1.43.4.1     kent 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
    802  1.43.4.1     kent 			break;
    803  1.43.4.1     kent 		case IPPROTO_UDP:
    804  1.43.4.1     kent 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
    805  1.43.4.1     kent 				goto swcsum;
    806  1.43.4.1     kent 			if (pktlen < (hlen + sizeof(struct udphdr)))
    807  1.43.4.1     kent 				goto swcsum;
    808  1.43.4.1     kent 			uh = (struct udphdr *)((caddr_t)ip + hlen);
    809  1.43.4.1     kent 			/* no checksum */
    810  1.43.4.1     kent 			if (uh->uh_sum == 0)
    811  1.43.4.1     kent 				goto swcsum;
    812  1.43.4.1     kent 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
    813  1.43.4.1     kent 			break;
    814  1.43.4.1     kent 		default:
    815  1.43.4.1     kent 			goto swcsum;
    816  1.43.4.1     kent 		}
    817  1.43.4.1     kent 
    818  1.43.4.1     kent 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    819  1.43.4.1     kent 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
    820  1.43.4.1     kent 
    821  1.43.4.1     kent 		/* if the pkt had ip options, we have to deduct them */
    822  1.43.4.1     kent 		if (hlen > sizeof(struct ip)) {
    823  1.43.4.1     kent 			uint32_t optsum;
    824  1.43.4.1     kent 
    825  1.43.4.1     kent 			optsum = 0;
    826  1.43.4.1     kent 			temp = hlen - sizeof(struct ip);
    827  1.43.4.1     kent 			opts = (uint16_t *) ((caddr_t) ip + sizeof(struct ip));
    828  1.43.4.1     kent 
    829  1.43.4.1     kent 			while (temp > 1) {
    830  1.43.4.1     kent 				optsum += ntohs(*opts++);
    831  1.43.4.1     kent 				temp -= 2;
    832  1.43.4.1     kent 			}
    833  1.43.4.1     kent 			while (optsum >> 16)
    834  1.43.4.1     kent 				optsum = (optsum >> 16) + (optsum & 0xffff);
    835  1.43.4.1     kent 
    836  1.43.4.1     kent 			/* Deduct the ip opts sum from the hwsum (rfc 1624). */
    837  1.43.4.1     kent 			m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
    838  1.43.4.1     kent 						   ~optsum);
    839  1.43.4.1     kent 
    840  1.43.4.1     kent 			while (m0->m_pkthdr.csum_data >> 16)
    841  1.43.4.1     kent 				m0->m_pkthdr.csum_data =
    842  1.43.4.1     kent 					(m0->m_pkthdr.csum_data >> 16) +
    843  1.43.4.1     kent 					(m0->m_pkthdr.csum_data & 0xffff);
    844  1.43.4.1     kent 		}
    845  1.43.4.1     kent 
    846  1.43.4.1     kent 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    847  1.43.4.1     kent 	}
    848  1.43.4.1     kent swcsum:
    849  1.43.4.1     kent 		m0->m_pkthdr.csum_flags = 0;
    850  1.43.4.1     kent #endif
    851  1.43.4.1     kent 
    852      1.28     tron 	return (m0);
    853      1.28     tron 
    854      1.28     tron bad:
    855      1.28     tron 	m_freem(m0);
    856      1.28     tron 	return (0);
    857      1.28     tron }
    858      1.28     tron 
    859      1.28     tron /*
    860      1.28     tron  * Pass a packet to the higher levels.
    861      1.28     tron  */
    862      1.28     tron void
    863  1.43.4.1     kent hme_read(sc, ix, flags)
    864      1.28     tron 	struct hme_softc *sc;
    865  1.43.4.1     kent 	int ix;
    866  1.43.4.1     kent 	u_int32_t flags;
    867      1.28     tron {
    868      1.28     tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    869      1.28     tron 	struct mbuf *m;
    870  1.43.4.1     kent 	int len;
    871      1.28     tron 
    872  1.43.4.1     kent 	len = HME_XD_DECODE_RSIZE(flags);
    873      1.28     tron 	if (len <= sizeof(struct ether_header) ||
    874      1.28     tron 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    875      1.28     tron 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    876      1.28     tron 	    ETHERMTU + sizeof(struct ether_header))) {
    877      1.28     tron #ifdef HMEDEBUG
    878      1.28     tron 		printf("%s: invalid packet size %d; dropping\n",
    879      1.28     tron 		    sc->sc_dev.dv_xname, len);
    880      1.28     tron #endif
    881      1.28     tron 		ifp->if_ierrors++;
    882      1.28     tron 		return;
    883      1.28     tron 	}
    884      1.28     tron 
    885      1.28     tron 	/* Pull packet off interface. */
    886  1.43.4.1     kent 	m = hme_get(sc, ix, flags);
    887      1.28     tron 	if (m == 0) {
    888      1.28     tron 		ifp->if_ierrors++;
    889      1.28     tron 		return;
    890      1.28     tron 	}
    891      1.28     tron 
    892      1.28     tron 	ifp->if_ipackets++;
    893      1.28     tron 
    894      1.28     tron #if NBPFILTER > 0
    895      1.28     tron 	/*
    896      1.28     tron 	 * Check if there's a BPF listener on this interface.
    897      1.28     tron 	 * If so, hand off the raw packet to BPF.
    898      1.28     tron 	 */
    899      1.28     tron 	if (ifp->if_bpf)
    900      1.28     tron 		bpf_mtap(ifp->if_bpf, m);
    901      1.28     tron #endif
    902      1.28     tron 
    903      1.28     tron 	/* Pass the packet up. */
    904      1.28     tron 	(*ifp->if_input)(ifp, m);
    905      1.28     tron }
    906      1.28     tron 
    907       1.1       pk void
    908       1.1       pk hme_start(ifp)
    909       1.1       pk 	struct ifnet *ifp;
    910       1.1       pk {
    911       1.1       pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    912      1.28     tron 	caddr_t txd = sc->sc_rb.rb_txd;
    913       1.1       pk 	struct mbuf *m;
    914  1.43.4.1     kent 	unsigned int txflags;
    915      1.28     tron 	unsigned int ri, len;
    916      1.28     tron 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    917       1.1       pk 
    918       1.1       pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    919       1.1       pk 		return;
    920       1.1       pk 
    921      1.28     tron 	ri = sc->sc_rb.rb_tdhead;
    922      1.28     tron 
    923      1.28     tron 	for (;;) {
    924      1.28     tron 		IFQ_DEQUEUE(&ifp->if_snd, m);
    925      1.28     tron 		if (m == 0)
    926       1.1       pk 			break;
    927       1.1       pk 
    928       1.1       pk #if NBPFILTER > 0
    929       1.1       pk 		/*
    930       1.1       pk 		 * If BPF is listening on this interface, let it see the
    931       1.1       pk 		 * packet before we commit it to the wire.
    932       1.1       pk 		 */
    933       1.1       pk 		if (ifp->if_bpf)
    934       1.1       pk 			bpf_mtap(ifp->if_bpf, m);
    935       1.1       pk #endif
    936       1.1       pk 
    937  1.43.4.1     kent #ifdef INET
    938  1.43.4.1     kent 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    939  1.43.4.1     kent 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    940  1.43.4.1     kent 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    941  1.43.4.1     kent 			struct ether_header *eh;
    942  1.43.4.1     kent 			uint16_t offset, start;
    943  1.43.4.1     kent 
    944  1.43.4.1     kent 			eh = mtod(m, struct ether_header *);
    945  1.43.4.1     kent 			switch (ntohs(eh->ether_type)) {
    946  1.43.4.1     kent 			case ETHERTYPE_IP:
    947  1.43.4.1     kent 				start = ETHER_HDR_LEN;
    948  1.43.4.1     kent 				break;
    949  1.43.4.1     kent 			case ETHERTYPE_VLAN:
    950  1.43.4.1     kent 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    951  1.43.4.1     kent 				break;
    952  1.43.4.1     kent 			default:
    953  1.43.4.1     kent 				/* unsupported, drop it */
    954  1.43.4.1     kent 				m_free(m);
    955  1.43.4.1     kent 				continue;
    956  1.43.4.1     kent 			}
    957  1.43.4.1     kent 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    958  1.43.4.1     kent 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    959  1.43.4.1     kent 			    + start;
    960  1.43.4.1     kent 			txflags = HME_XD_TXCKSUM |
    961  1.43.4.1     kent 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    962  1.43.4.1     kent 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    963  1.43.4.1     kent 		} else
    964  1.43.4.1     kent #endif
    965  1.43.4.1     kent 			txflags = 0;
    966  1.43.4.1     kent 
    967      1.28     tron 		/*
    968      1.28     tron 		 * Copy the mbuf chain into the transmit buffer.
    969      1.28     tron 		 */
    970      1.28     tron 		len = hme_put(sc, ri, m);
    971      1.28     tron 
    972      1.28     tron 		/*
    973      1.28     tron 		 * Initialize transmit registers and start transmission
    974      1.28     tron 		 */
    975      1.28     tron 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    976      1.28     tron 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    977  1.43.4.1     kent 			HME_XD_ENCODE_TSIZE(len) | txflags);
    978      1.28     tron 
    979      1.28     tron 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    980      1.28     tron 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    981      1.28     tron 				  HME_ETX_TP_DMAWAKEUP);
    982      1.28     tron 
    983      1.28     tron 		if (++ri == ntbuf)
    984      1.28     tron 			ri = 0;
    985      1.28     tron 
    986      1.28     tron 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    987      1.26     tron 			ifp->if_flags |= IFF_OACTIVE;
    988      1.26     tron 			break;
    989      1.26     tron 		}
    990       1.1       pk 	}
    991       1.1       pk 
    992      1.28     tron 	sc->sc_rb.rb_tdhead = ri;
    993       1.1       pk }
    994       1.1       pk 
    995       1.1       pk /*
    996       1.1       pk  * Transmit interrupt.
    997       1.1       pk  */
    998       1.1       pk int
    999       1.1       pk hme_tint(sc)
   1000       1.1       pk 	struct hme_softc *sc;
   1001       1.1       pk {
   1002       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1003      1.28     tron 	bus_space_tag_t t = sc->sc_bustag;
   1004      1.28     tron 	bus_space_handle_t mac = sc->sc_mac;
   1005       1.1       pk 	unsigned int ri, txflags;
   1006      1.28     tron 
   1007      1.28     tron 	/*
   1008      1.28     tron 	 * Unload collision counters
   1009      1.28     tron 	 */
   1010      1.28     tron 	ifp->if_collisions +=
   1011      1.28     tron 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
   1012      1.28     tron 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
   1013      1.28     tron 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
   1014      1.28     tron 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
   1015      1.28     tron 
   1016      1.28     tron 	/*
   1017      1.28     tron 	 * then clear the hardware counters.
   1018      1.28     tron 	 */
   1019      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1020      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1021      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1022      1.28     tron 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1023       1.1       pk 
   1024       1.1       pk 	/* Fetch current position in the transmit ring */
   1025      1.28     tron 	ri = sc->sc_rb.rb_tdtail;
   1026       1.1       pk 
   1027       1.1       pk 	for (;;) {
   1028      1.28     tron 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1029       1.1       pk 			break;
   1030       1.1       pk 
   1031      1.15      eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1032       1.1       pk 
   1033       1.1       pk 		if (txflags & HME_XD_OWN)
   1034       1.1       pk 			break;
   1035       1.1       pk 
   1036       1.1       pk 		ifp->if_flags &= ~IFF_OACTIVE;
   1037      1.28     tron 		ifp->if_opackets++;
   1038      1.26     tron 
   1039      1.28     tron 		if (++ri == sc->sc_rb.rb_ntbuf)
   1040       1.1       pk 			ri = 0;
   1041       1.1       pk 
   1042      1.28     tron 		--sc->sc_rb.rb_td_nbusy;
   1043       1.1       pk 	}
   1044       1.1       pk 
   1045       1.3       pk 	/* Update ring */
   1046      1.28     tron 	sc->sc_rb.rb_tdtail = ri;
   1047       1.1       pk 
   1048       1.1       pk 	hme_start(ifp);
   1049       1.1       pk 
   1050      1.28     tron 	if (sc->sc_rb.rb_td_nbusy == 0)
   1051       1.1       pk 		ifp->if_timer = 0;
   1052       1.1       pk 
   1053       1.1       pk 	return (1);
   1054       1.1       pk }
   1055       1.1       pk 
   1056       1.1       pk /*
   1057       1.1       pk  * Receive interrupt.
   1058       1.1       pk  */
   1059       1.1       pk int
   1060       1.1       pk hme_rint(sc)
   1061       1.1       pk 	struct hme_softc *sc;
   1062       1.1       pk {
   1063      1.28     tron 	caddr_t xdr = sc->sc_rb.rb_rxd;
   1064      1.28     tron 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1065  1.43.4.1     kent 	unsigned int ri;
   1066       1.1       pk 	u_int32_t flags;
   1067       1.1       pk 
   1068      1.28     tron 	ri = sc->sc_rb.rb_rdtail;
   1069       1.1       pk 
   1070       1.1       pk 	/*
   1071       1.1       pk 	 * Process all buffers with valid data.
   1072       1.1       pk 	 */
   1073       1.1       pk 	for (;;) {
   1074      1.28     tron 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1075       1.1       pk 		if (flags & HME_XD_OWN)
   1076       1.1       pk 			break;
   1077       1.1       pk 
   1078       1.4       pk 		if (flags & HME_XD_OFL) {
   1079       1.4       pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1080      1.28     tron 					sc->sc_dev.dv_xname, ri, flags);
   1081  1.43.4.1     kent 		} else
   1082  1.43.4.1     kent 			hme_read(sc, ri, flags);
   1083       1.1       pk 
   1084      1.28     tron 		/* This buffer can be used by the hardware again */
   1085      1.28     tron 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1086      1.28     tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1087      1.26     tron 
   1088      1.28     tron 		if (++ri == nrbuf)
   1089       1.1       pk 			ri = 0;
   1090       1.1       pk 	}
   1091       1.1       pk 
   1092      1.28     tron 	sc->sc_rb.rb_rdtail = ri;
   1093      1.28     tron 
   1094       1.1       pk 	return (1);
   1095       1.1       pk }
   1096       1.1       pk 
   1097       1.1       pk int
   1098       1.1       pk hme_eint(sc, status)
   1099       1.1       pk 	struct hme_softc *sc;
   1100       1.1       pk 	u_int status;
   1101       1.1       pk {
   1102       1.1       pk 	char bits[128];
   1103       1.1       pk 
   1104       1.1       pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1105      1.33       pk 		bus_space_tag_t t = sc->sc_bustag;
   1106      1.33       pk 		bus_space_handle_t mif = sc->sc_mif;
   1107      1.33       pk 		u_int32_t cf, st, sm;
   1108      1.33       pk 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1109      1.33       pk 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1110      1.33       pk 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1111      1.33       pk 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1112      1.33       pk 			sc->sc_dev.dv_xname, cf, st, sm);
   1113       1.1       pk 		return (1);
   1114       1.1       pk 	}
   1115       1.1       pk 
   1116       1.1       pk 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1117      1.28     tron 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
   1118       1.1       pk 	return (1);
   1119       1.1       pk }
   1120       1.1       pk 
   1121       1.1       pk int
   1122       1.1       pk hme_intr(v)
   1123       1.1       pk 	void *v;
   1124       1.1       pk {
   1125       1.1       pk 	struct hme_softc *sc = (struct hme_softc *)v;
   1126       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1127       1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
   1128       1.1       pk 	u_int32_t status;
   1129       1.1       pk 	int r = 0;
   1130       1.1       pk 
   1131       1.1       pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1132       1.1       pk 
   1133       1.1       pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1134       1.1       pk 		r |= hme_eint(sc, status);
   1135       1.1       pk 
   1136       1.1       pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1137       1.1       pk 		r |= hme_tint(sc);
   1138       1.1       pk 
   1139       1.1       pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1140       1.1       pk 		r |= hme_rint(sc);
   1141       1.1       pk 
   1142      1.40      abs #if NRND > 0
   1143      1.40      abs 	rnd_add_uint32(&sc->rnd_source, status);
   1144      1.40      abs #endif
   1145      1.40      abs 
   1146       1.1       pk 	return (r);
   1147       1.1       pk }
   1148       1.1       pk 
   1149       1.1       pk 
   1150       1.1       pk void
   1151       1.1       pk hme_watchdog(ifp)
   1152       1.1       pk 	struct ifnet *ifp;
   1153       1.1       pk {
   1154       1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1155       1.1       pk 
   1156       1.1       pk 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1157       1.1       pk 	++ifp->if_oerrors;
   1158       1.1       pk 
   1159       1.1       pk 	hme_reset(sc);
   1160       1.4       pk }
   1161       1.4       pk 
   1162       1.4       pk /*
   1163       1.4       pk  * Initialize the MII Management Interface
   1164       1.4       pk  */
   1165       1.4       pk void
   1166       1.4       pk hme_mifinit(sc)
   1167       1.4       pk 	struct hme_softc *sc;
   1168       1.4       pk {
   1169       1.4       pk 	bus_space_tag_t t = sc->sc_bustag;
   1170       1.4       pk 	bus_space_handle_t mif = sc->sc_mif;
   1171      1.35       pk 	bus_space_handle_t mac = sc->sc_mac;
   1172      1.33       pk 	int instance, phy;
   1173       1.4       pk 	u_int32_t v;
   1174       1.4       pk 
   1175      1.33       pk 	if (sc->sc_media.ifm_cur != NULL) {
   1176      1.33       pk 		instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
   1177      1.33       pk 		phy = sc->sc_phys[instance];
   1178      1.33       pk 	} else
   1179      1.33       pk 		/* No media set yet, pick phy arbitrarily.. */
   1180      1.33       pk 		phy = HME_PHYAD_EXTERNAL;
   1181      1.33       pk 
   1182      1.33       pk 	/* Configure the MIF in frame mode, no poll, current phy select */
   1183      1.33       pk 	v = 0;
   1184      1.33       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1185      1.33       pk 		v |= HME_MIF_CFG_PHY;
   1186       1.4       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1187      1.35       pk 
   1188      1.35       pk 	/* If an external transceiver is selected, enable its MII drivers */
   1189      1.35       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1190      1.35       pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1191      1.35       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1192      1.35       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1193      1.35       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1194       1.1       pk }
   1195       1.1       pk 
   1196       1.1       pk /*
   1197       1.1       pk  * MII interface
   1198       1.1       pk  */
   1199       1.1       pk static int
   1200       1.1       pk hme_mii_readreg(self, phy, reg)
   1201       1.1       pk 	struct device *self;
   1202       1.1       pk 	int phy, reg;
   1203       1.1       pk {
   1204       1.1       pk 	struct hme_softc *sc = (void *)self;
   1205       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1206       1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
   1207      1.35       pk 	bus_space_handle_t mac = sc->sc_mac;
   1208      1.35       pk 	u_int32_t v, xif_cfg, mifi_cfg;
   1209       1.1       pk 	int n;
   1210       1.1       pk 
   1211      1.33       pk 	/* We can at most have two PHYs */
   1212      1.33       pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1213      1.32   martin 		return (0);
   1214      1.32   martin 
   1215       1.5       pk 	/* Select the desired PHY in the MIF configuration register */
   1216      1.33       pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1217       1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1218       1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1219       1.5       pk 		v |= HME_MIF_CFG_PHY;
   1220       1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1221       1.5       pk 
   1222      1.42     heas 	/* Enable MII drivers on external transceiver */
   1223      1.35       pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1224      1.35       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1225      1.35       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1226      1.35       pk 	else
   1227      1.35       pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1228      1.35       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1229      1.35       pk 
   1230      1.33       pk #if 0
   1231      1.33       pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1232      1.33       pk 	/*
   1233      1.33       pk 	 * Check whether a transceiver is connected by testing
   1234      1.33       pk 	 * the MIF configuration register's MDI_X bits. Note that
   1235      1.33       pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1236      1.33       pk 	 */
   1237      1.33       pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1238      1.33       pk 	delay(100);
   1239      1.33       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1240      1.33       pk 	if ((v & mif_mdi_bit) == 0)
   1241      1.33       pk 		return (0);
   1242      1.33       pk #endif
   1243      1.33       pk 
   1244       1.1       pk 	/* Construct the frame command */
   1245       1.1       pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1246       1.1       pk 	    HME_MIF_FO_TAMSB |
   1247       1.1       pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1248       1.1       pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1249       1.1       pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1250       1.1       pk 
   1251       1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1252       1.1       pk 	for (n = 0; n < 100; n++) {
   1253       1.2       pk 		DELAY(1);
   1254       1.1       pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1255      1.33       pk 		if (v & HME_MIF_FO_TALSB) {
   1256      1.33       pk 			v &= HME_MIF_FO_DATA;
   1257      1.33       pk 			goto out;
   1258      1.33       pk 		}
   1259       1.1       pk 	}
   1260       1.1       pk 
   1261      1.33       pk 	v = 0;
   1262       1.1       pk 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1263      1.33       pk 
   1264      1.33       pk out:
   1265      1.33       pk 	/* Restore MIFI_CFG register */
   1266      1.33       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1267      1.35       pk 	/* Restore XIF register */
   1268      1.35       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1269      1.33       pk 	return (v);
   1270       1.1       pk }
   1271       1.1       pk 
   1272       1.1       pk static void
   1273       1.1       pk hme_mii_writereg(self, phy, reg, val)
   1274       1.1       pk 	struct device *self;
   1275       1.1       pk 	int phy, reg, val;
   1276       1.1       pk {
   1277       1.1       pk 	struct hme_softc *sc = (void *)self;
   1278       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1279       1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
   1280      1.35       pk 	bus_space_handle_t mac = sc->sc_mac;
   1281      1.35       pk 	u_int32_t v, xif_cfg, mifi_cfg;
   1282       1.1       pk 	int n;
   1283      1.32   martin 
   1284      1.33       pk 	/* We can at most have two PHYs */
   1285      1.33       pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1286      1.32   martin 		return;
   1287       1.1       pk 
   1288       1.5       pk 	/* Select the desired PHY in the MIF configuration register */
   1289      1.33       pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1290       1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1291       1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1292       1.5       pk 		v |= HME_MIF_CFG_PHY;
   1293       1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1294       1.5       pk 
   1295      1.42     heas 	/* Enable MII drivers on external transceiver */
   1296      1.35       pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1297      1.35       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1298      1.35       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1299      1.35       pk 	else
   1300      1.35       pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1301      1.35       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1302      1.35       pk 
   1303      1.33       pk #if 0
   1304      1.33       pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1305      1.33       pk 	/*
   1306      1.33       pk 	 * Check whether a transceiver is connected by testing
   1307      1.33       pk 	 * the MIF configuration register's MDI_X bits. Note that
   1308      1.33       pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1309      1.33       pk 	 */
   1310      1.33       pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1311      1.33       pk 	delay(100);
   1312      1.33       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1313      1.33       pk 	if ((v & mif_mdi_bit) == 0)
   1314      1.33       pk 		return;
   1315      1.33       pk #endif
   1316      1.33       pk 
   1317       1.1       pk 	/* Construct the frame command */
   1318       1.1       pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1319       1.1       pk 	    HME_MIF_FO_TAMSB				|
   1320       1.1       pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1321       1.1       pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1322       1.1       pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1323       1.1       pk 	    (val & HME_MIF_FO_DATA);
   1324       1.1       pk 
   1325       1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1326       1.1       pk 	for (n = 0; n < 100; n++) {
   1327       1.2       pk 		DELAY(1);
   1328       1.1       pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1329       1.1       pk 		if (v & HME_MIF_FO_TALSB)
   1330      1.33       pk 			goto out;
   1331       1.1       pk 	}
   1332       1.1       pk 
   1333       1.2       pk 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1334      1.33       pk out:
   1335      1.33       pk 	/* Restore MIFI_CFG register */
   1336      1.33       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1337      1.35       pk 	/* Restore XIF register */
   1338      1.35       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1339       1.1       pk }
   1340       1.1       pk 
   1341       1.1       pk static void
   1342       1.1       pk hme_mii_statchg(dev)
   1343       1.1       pk 	struct device *dev;
   1344       1.1       pk {
   1345       1.3       pk 	struct hme_softc *sc = (void *)dev;
   1346       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1347       1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
   1348       1.1       pk 	u_int32_t v;
   1349       1.1       pk 
   1350       1.5       pk #ifdef HMEDEBUG
   1351       1.5       pk 	if (sc->sc_debug)
   1352      1.33       pk 		printf("hme_mii_statchg: status change\n");
   1353       1.5       pk #endif
   1354       1.1       pk 
   1355       1.5       pk 	/* Set the MAC Full Duplex bit appropriately */
   1356      1.30   martin 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1357      1.30   martin 	   but not otherwise. */
   1358       1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1359      1.30   martin 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1360       1.1       pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1361      1.30   martin 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1362      1.30   martin 	} else {
   1363       1.1       pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1364      1.30   martin 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1365      1.30   martin 	}
   1366      1.41     heas 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1367       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1368       1.5       pk }
   1369       1.5       pk 
   1370       1.5       pk int
   1371       1.5       pk hme_mediachange(ifp)
   1372       1.5       pk 	struct ifnet *ifp;
   1373       1.5       pk {
   1374       1.5       pk 	struct hme_softc *sc = ifp->if_softc;
   1375      1.33       pk 	bus_space_tag_t t = sc->sc_bustag;
   1376      1.33       pk 	bus_space_handle_t mif = sc->sc_mif;
   1377      1.33       pk 	bus_space_handle_t mac = sc->sc_mac;
   1378      1.33       pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1379      1.33       pk 	int phy = sc->sc_phys[instance];
   1380      1.33       pk 	u_int32_t v;
   1381       1.5       pk 
   1382      1.33       pk #ifdef HMEDEBUG
   1383      1.33       pk 	if (sc->sc_debug)
   1384      1.33       pk 		printf("hme_mediachange: phy = %d\n", phy);
   1385      1.33       pk #endif
   1386       1.5       pk 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1387       1.5       pk 		return (EINVAL);
   1388      1.33       pk 
   1389      1.33       pk 	/* Select the current PHY in the MIF configuration register */
   1390      1.33       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1391      1.33       pk 	v &= ~HME_MIF_CFG_PHY;
   1392      1.33       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1393      1.33       pk 		v |= HME_MIF_CFG_PHY;
   1394      1.33       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1395      1.33       pk 
   1396      1.33       pk 	/* If an external transceiver is selected, enable its MII drivers */
   1397      1.33       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1398      1.33       pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1399      1.33       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1400      1.33       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1401      1.33       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1402       1.5       pk 
   1403       1.5       pk 	return (mii_mediachg(&sc->sc_mii));
   1404       1.1       pk }
   1405       1.1       pk 
   1406       1.1       pk void
   1407       1.1       pk hme_mediastatus(ifp, ifmr)
   1408       1.1       pk 	struct ifnet *ifp;
   1409       1.1       pk 	struct ifmediareq *ifmr;
   1410       1.1       pk {
   1411       1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1412       1.1       pk 
   1413       1.1       pk 	if ((ifp->if_flags & IFF_UP) == 0)
   1414       1.1       pk 		return;
   1415       1.1       pk 
   1416       1.1       pk 	mii_pollstat(&sc->sc_mii);
   1417       1.1       pk 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1418       1.1       pk 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1419       1.1       pk }
   1420       1.1       pk 
   1421       1.1       pk /*
   1422       1.1       pk  * Process an ioctl request.
   1423       1.1       pk  */
   1424       1.1       pk int
   1425       1.1       pk hme_ioctl(ifp, cmd, data)
   1426       1.1       pk 	struct ifnet *ifp;
   1427       1.1       pk 	u_long cmd;
   1428       1.1       pk 	caddr_t data;
   1429       1.1       pk {
   1430       1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1431       1.1       pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1432       1.1       pk 	struct ifreq *ifr = (struct ifreq *)data;
   1433       1.1       pk 	int s, error = 0;
   1434       1.1       pk 
   1435       1.1       pk 	s = splnet();
   1436       1.1       pk 
   1437       1.1       pk 	switch (cmd) {
   1438       1.1       pk 
   1439       1.1       pk 	case SIOCSIFADDR:
   1440       1.1       pk 		switch (ifa->ifa_addr->sa_family) {
   1441       1.1       pk #ifdef INET
   1442       1.1       pk 		case AF_INET:
   1443      1.41     heas 			if (ifp->if_flags & IFF_UP)
   1444      1.41     heas 				hme_setladrf(sc);
   1445      1.41     heas 			else {
   1446      1.41     heas 				ifp->if_flags |= IFF_UP;
   1447      1.41     heas 				hme_init(sc);
   1448      1.41     heas 			}
   1449       1.1       pk 			arp_ifinit(ifp, ifa);
   1450       1.1       pk 			break;
   1451       1.1       pk #endif
   1452       1.1       pk #ifdef NS
   1453       1.1       pk 		case AF_NS:
   1454       1.1       pk 		    {
   1455       1.1       pk 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1456       1.1       pk 
   1457       1.1       pk 			if (ns_nullhost(*ina))
   1458       1.1       pk 				ina->x_host =
   1459       1.1       pk 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1460       1.1       pk 			else {
   1461      1.21  thorpej 				memcpy(LLADDR(ifp->if_sadl),
   1462      1.21  thorpej 				    ina->x_host.c_host, sizeof(sc->sc_enaddr));
   1463      1.42     heas 			}
   1464       1.1       pk 			/* Set new address. */
   1465      1.41     heas 			if (ifp->if_flags & IFF_UP)
   1466      1.41     heas 				hme_setladrf(sc);
   1467      1.41     heas 			else {
   1468      1.41     heas 				ifp->if_flags |= IFF_UP;
   1469      1.41     heas 				hme_init(sc);
   1470      1.41     heas 			}
   1471       1.1       pk 			break;
   1472       1.1       pk 		    }
   1473       1.1       pk #endif
   1474       1.1       pk 		default:
   1475      1.41     heas 			ifp->if_flags |= IFF_UP;
   1476       1.1       pk 			hme_init(sc);
   1477       1.1       pk 			break;
   1478       1.1       pk 		}
   1479       1.1       pk 		break;
   1480       1.1       pk 
   1481       1.1       pk 	case SIOCSIFFLAGS:
   1482  1.43.4.1     kent #ifdef HMEDEBUG
   1483  1.43.4.1     kent 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1484  1.43.4.1     kent #endif
   1485  1.43.4.1     kent 
   1486       1.1       pk 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1487       1.1       pk 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1488       1.1       pk 			/*
   1489       1.1       pk 			 * If interface is marked down and it is running, then
   1490       1.1       pk 			 * stop it.
   1491       1.1       pk 			 */
   1492       1.1       pk 			hme_stop(sc);
   1493       1.1       pk 			ifp->if_flags &= ~IFF_RUNNING;
   1494       1.1       pk 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1495       1.1       pk 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
   1496       1.1       pk 			/*
   1497       1.1       pk 			 * If interface is marked up and it is stopped, then
   1498       1.1       pk 			 * start it.
   1499       1.1       pk 			 */
   1500       1.1       pk 			hme_init(sc);
   1501       1.1       pk 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1502       1.1       pk 			/*
   1503      1.41     heas 			 * If setting debug or promiscuous mode, do not reset
   1504      1.41     heas 			 * the chip; for everything else, call hme_init()
   1505      1.41     heas 			 * which will trigger a reset.
   1506       1.1       pk 			 */
   1507      1.41     heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1508  1.43.4.1     kent 			if (ifp->if_flags != sc->sc_if_flags) {
   1509  1.43.4.1     kent 				if ((ifp->if_flags & (~RESETIGN))
   1510  1.43.4.1     kent 				    == (sc->sc_if_flags & (~RESETIGN)))
   1511  1.43.4.1     kent 					hme_setladrf(sc);
   1512  1.43.4.1     kent 				else
   1513  1.43.4.1     kent 					hme_init(sc);
   1514  1.43.4.1     kent 			}
   1515      1.41     heas #undef RESETIGN
   1516       1.1       pk 		}
   1517  1.43.4.1     kent 
   1518  1.43.4.1     kent 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1519  1.43.4.1     kent 			hme_init(sc);
   1520  1.43.4.1     kent 
   1521       1.1       pk 		break;
   1522       1.1       pk 
   1523       1.1       pk 	case SIOCADDMULTI:
   1524       1.1       pk 	case SIOCDELMULTI:
   1525       1.1       pk 		error = (cmd == SIOCADDMULTI) ?
   1526       1.1       pk 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1527       1.1       pk 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1528       1.1       pk 
   1529       1.1       pk 		if (error == ENETRESET) {
   1530       1.1       pk 			/*
   1531       1.1       pk 			 * Multicast list has changed; set the hardware filter
   1532       1.1       pk 			 * accordingly.
   1533       1.1       pk 			 */
   1534      1.43  thorpej 			if (ifp->if_flags & IFF_RUNNING)
   1535      1.43  thorpej 				hme_setladrf(sc);
   1536       1.1       pk 			error = 0;
   1537       1.1       pk 		}
   1538       1.1       pk 		break;
   1539       1.1       pk 
   1540       1.1       pk 	case SIOCGIFMEDIA:
   1541       1.1       pk 	case SIOCSIFMEDIA:
   1542       1.1       pk 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1543       1.1       pk 		break;
   1544       1.1       pk 
   1545       1.1       pk 	default:
   1546       1.1       pk 		error = EINVAL;
   1547       1.1       pk 		break;
   1548       1.1       pk 	}
   1549       1.1       pk 
   1550      1.41     heas 	sc->sc_if_flags = ifp->if_flags;
   1551       1.1       pk 	splx(s);
   1552       1.1       pk 	return (error);
   1553       1.1       pk }
   1554       1.1       pk 
   1555       1.1       pk void
   1556       1.1       pk hme_shutdown(arg)
   1557       1.1       pk 	void *arg;
   1558       1.1       pk {
   1559      1.28     tron 
   1560       1.1       pk 	hme_stop((struct hme_softc *)arg);
   1561       1.1       pk }
   1562       1.1       pk 
   1563       1.1       pk /*
   1564       1.1       pk  * Set up the logical address filter.
   1565       1.1       pk  */
   1566       1.1       pk void
   1567       1.1       pk hme_setladrf(sc)
   1568       1.1       pk 	struct hme_softc *sc;
   1569       1.1       pk {
   1570       1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1571       1.1       pk 	struct ether_multi *enm;
   1572       1.1       pk 	struct ether_multistep step;
   1573      1.28     tron 	struct ethercom *ec = &sc->sc_ethercom;
   1574       1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1575       1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
   1576       1.1       pk 	u_char *cp;
   1577       1.1       pk 	u_int32_t crc;
   1578       1.1       pk 	u_int32_t hash[4];
   1579      1.14       pk 	u_int32_t v;
   1580       1.1       pk 	int len;
   1581       1.1       pk 
   1582      1.14       pk 	/* Clear hash table */
   1583      1.14       pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1584      1.14       pk 
   1585      1.14       pk 	/* Get current RX configuration */
   1586      1.14       pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1587      1.14       pk 
   1588      1.14       pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1589      1.14       pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1590      1.14       pk 		v |= HME_MAC_RXCFG_PMISC;
   1591      1.14       pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1592      1.14       pk 		ifp->if_flags |= IFF_ALLMULTI;
   1593      1.14       pk 		goto chipit;
   1594      1.14       pk 	}
   1595      1.14       pk 
   1596      1.14       pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1597      1.14       pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1598      1.14       pk 	v |= HME_MAC_RXCFG_HENABLE;
   1599      1.14       pk 
   1600       1.1       pk 	/*
   1601       1.1       pk 	 * Set up multicast address filter by passing all multicast addresses
   1602       1.1       pk 	 * through a crc generator, and then using the high order 6 bits as an
   1603       1.1       pk 	 * index into the 64 bit logical address filter.  The high order bit
   1604       1.1       pk 	 * selects the word, while the rest of the bits select the bit within
   1605       1.1       pk 	 * the word.
   1606       1.1       pk 	 */
   1607       1.1       pk 
   1608      1.28     tron 	ETHER_FIRST_MULTI(step, ec, enm);
   1609       1.1       pk 	while (enm != NULL) {
   1610      1.28     tron 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1611       1.1       pk 			/*
   1612       1.1       pk 			 * We must listen to a range of multicast addresses.
   1613       1.1       pk 			 * For now, just accept all multicasts, rather than
   1614       1.1       pk 			 * trying to set only those filter bits needed to match
   1615       1.1       pk 			 * the range.  (At this time, the only use of address
   1616       1.1       pk 			 * ranges is for IP multicast routing, for which the
   1617       1.1       pk 			 * range is big enough to require all bits set.)
   1618       1.1       pk 			 */
   1619      1.14       pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1620      1.14       pk 			ifp->if_flags |= IFF_ALLMULTI;
   1621      1.14       pk 			goto chipit;
   1622       1.1       pk 		}
   1623       1.1       pk 
   1624       1.1       pk 		cp = enm->enm_addrlo;
   1625       1.1       pk 		crc = 0xffffffff;
   1626       1.1       pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1627       1.1       pk 			int octet = *cp++;
   1628       1.1       pk 			int i;
   1629       1.1       pk 
   1630       1.1       pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1631       1.1       pk 			for (i = 0; i < 8; i++) {
   1632       1.1       pk 				if ((crc & 1) ^ (octet & 1)) {
   1633       1.1       pk 					crc >>= 1;
   1634       1.1       pk 					crc ^= MC_POLY_LE;
   1635       1.1       pk 				} else {
   1636       1.1       pk 					crc >>= 1;
   1637       1.1       pk 				}
   1638       1.1       pk 				octet >>= 1;
   1639       1.1       pk 			}
   1640       1.1       pk 		}
   1641       1.1       pk 		/* Just want the 6 most significant bits. */
   1642       1.1       pk 		crc >>= 26;
   1643       1.1       pk 
   1644       1.1       pk 		/* Set the corresponding bit in the filter. */
   1645       1.1       pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1646       1.1       pk 
   1647       1.1       pk 		ETHER_NEXT_MULTI(step, enm);
   1648       1.1       pk 	}
   1649       1.1       pk 
   1650      1.14       pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1651      1.14       pk 
   1652      1.14       pk chipit:
   1653      1.14       pk 	/* Now load the hash table into the chip */
   1654       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1655       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1656       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1657       1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1658      1.14       pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1659       1.1       pk }
   1660       1.1       pk 
   1661      1.28     tron /*
   1662      1.28     tron  * Routines for accessing the transmit and receive buffers.
   1663      1.28     tron  * The various CPU and adapter configurations supported by this
   1664      1.28     tron  * driver require three different access methods for buffers
   1665      1.28     tron  * and descriptors:
   1666      1.28     tron  *	(1) contig (contiguous data; no padding),
   1667      1.28     tron  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1668      1.28     tron  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1669      1.28     tron  */
   1670      1.28     tron 
   1671      1.28     tron #if 0
   1672      1.28     tron /*
   1673      1.28     tron  * contig: contiguous data with no padding.
   1674      1.28     tron  *
   1675      1.28     tron  * Buffers may have any alignment.
   1676      1.28     tron  */
   1677      1.28     tron 
   1678      1.28     tron void
   1679      1.28     tron hme_copytobuf_contig(sc, from, ri, len)
   1680      1.26     tron 	struct hme_softc *sc;
   1681      1.28     tron 	void *from;
   1682      1.28     tron 	int ri, len;
   1683      1.26     tron {
   1684      1.28     tron 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1685      1.26     tron 
   1686       1.1       pk 	/*
   1687      1.28     tron 	 * Just call memcpy() to do the work.
   1688       1.1       pk 	 */
   1689      1.28     tron 	memcpy(buf, from, len);
   1690       1.1       pk }
   1691       1.1       pk 
   1692      1.28     tron void
   1693      1.28     tron hme_copyfrombuf_contig(sc, to, boff, len)
   1694       1.1       pk 	struct hme_softc *sc;
   1695      1.28     tron 	void *to;
   1696      1.28     tron 	int boff, len;
   1697       1.1       pk {
   1698      1.28     tron 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1699      1.26     tron 
   1700      1.28     tron 	/*
   1701      1.28     tron 	 * Just call memcpy() to do the work.
   1702      1.28     tron 	 */
   1703      1.28     tron 	memcpy(to, buf, len);
   1704       1.1       pk }
   1705      1.28     tron #endif
   1706