hme.c revision 1.56 1 1.56 christos /* $NetBSD: hme.c,v 1.56 2007/03/04 06:01:55 christos Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk * 3. All advertising materials mentioning features or use of this software
19 1.1 pk * must display the following acknowledgement:
20 1.1 pk * This product includes software developed by the NetBSD
21 1.1 pk * Foundation, Inc. and its contributors.
22 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 pk * contributors may be used to endorse or promote products derived
24 1.1 pk * from this software without specific prior written permission.
25 1.1 pk *
26 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
37 1.1 pk */
38 1.1 pk
39 1.1 pk /*
40 1.1 pk * HME Ethernet module driver.
41 1.1 pk */
42 1.25 lukem
43 1.25 lukem #include <sys/cdefs.h>
44 1.56 christos __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.56 2007/03/04 06:01:55 christos Exp $");
45 1.1 pk
46 1.39 petrov /* #define HMEDEBUG */
47 1.1 pk
48 1.1 pk #include "opt_inet.h"
49 1.1 pk #include "bpfilter.h"
50 1.1 pk #include "rnd.h"
51 1.1 pk
52 1.1 pk #include <sys/param.h>
53 1.1 pk #include <sys/systm.h>
54 1.5 pk #include <sys/kernel.h>
55 1.42 heas #include <sys/mbuf.h>
56 1.1 pk #include <sys/syslog.h>
57 1.1 pk #include <sys/socket.h>
58 1.1 pk #include <sys/device.h>
59 1.1 pk #include <sys/malloc.h>
60 1.1 pk #include <sys/ioctl.h>
61 1.1 pk #include <sys/errno.h>
62 1.1 pk #if NRND > 0
63 1.1 pk #include <sys/rnd.h>
64 1.1 pk #endif
65 1.1 pk
66 1.1 pk #include <net/if.h>
67 1.1 pk #include <net/if_dl.h>
68 1.1 pk #include <net/if_ether.h>
69 1.1 pk #include <net/if_media.h>
70 1.1 pk
71 1.1 pk #ifdef INET
72 1.1 pk #include <netinet/in.h>
73 1.1 pk #include <netinet/if_inarp.h>
74 1.1 pk #include <netinet/in_systm.h>
75 1.1 pk #include <netinet/in_var.h>
76 1.1 pk #include <netinet/ip.h>
77 1.46 heas #include <netinet/tcp.h>
78 1.46 heas #include <netinet/udp.h>
79 1.1 pk #endif
80 1.1 pk
81 1.1 pk
82 1.1 pk #if NBPFILTER > 0
83 1.1 pk #include <net/bpf.h>
84 1.1 pk #include <net/bpfdesc.h>
85 1.1 pk #endif
86 1.1 pk
87 1.1 pk #include <dev/mii/mii.h>
88 1.1 pk #include <dev/mii/miivar.h>
89 1.1 pk
90 1.1 pk #include <machine/bus.h>
91 1.1 pk
92 1.1 pk #include <dev/ic/hmereg.h>
93 1.1 pk #include <dev/ic/hmevar.h>
94 1.1 pk
95 1.44 perry void hme_start(struct ifnet *);
96 1.44 perry void hme_stop(struct hme_softc *);
97 1.56 christos int hme_ioctl(struct ifnet *, u_long, void *);
98 1.44 perry void hme_tick(void *);
99 1.44 perry void hme_watchdog(struct ifnet *);
100 1.44 perry void hme_shutdown(void *);
101 1.44 perry void hme_init(struct hme_softc *);
102 1.44 perry void hme_meminit(struct hme_softc *);
103 1.44 perry void hme_mifinit(struct hme_softc *);
104 1.44 perry void hme_reset(struct hme_softc *);
105 1.44 perry void hme_setladrf(struct hme_softc *);
106 1.1 pk
107 1.1 pk /* MII methods & callbacks */
108 1.44 perry static int hme_mii_readreg(struct device *, int, int);
109 1.44 perry static void hme_mii_writereg(struct device *, int, int, int);
110 1.44 perry static void hme_mii_statchg(struct device *);
111 1.44 perry
112 1.44 perry int hme_mediachange(struct ifnet *);
113 1.44 perry void hme_mediastatus(struct ifnet *, struct ifmediareq *);
114 1.44 perry
115 1.46 heas struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
116 1.44 perry int hme_put(struct hme_softc *, int, struct mbuf *);
117 1.46 heas void hme_read(struct hme_softc *, int, uint32_t);
118 1.44 perry int hme_eint(struct hme_softc *, u_int);
119 1.44 perry int hme_rint(struct hme_softc *);
120 1.44 perry int hme_tint(struct hme_softc *);
121 1.1 pk
122 1.44 perry static int ether_cmp(u_char *, u_char *);
123 1.28 tron
124 1.28 tron /* Default buffer copy routines */
125 1.44 perry void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
126 1.44 perry void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
127 1.44 perry void hme_zerobuf_contig(struct hme_softc *, int, int);
128 1.28 tron
129 1.28 tron
130 1.1 pk void
131 1.1 pk hme_config(sc)
132 1.1 pk struct hme_softc *sc;
133 1.1 pk {
134 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 1.1 pk struct mii_data *mii = &sc->sc_mii;
136 1.5 pk struct mii_softc *child;
137 1.11 pk bus_dma_tag_t dmatag = sc->sc_dmatag;
138 1.1 pk bus_dma_segment_t seg;
139 1.1 pk bus_size_t size;
140 1.28 tron int rseg, error;
141 1.1 pk
142 1.1 pk /*
143 1.1 pk * HME common initialization.
144 1.1 pk *
145 1.1 pk * hme_softc fields that must be initialized by the front-end:
146 1.1 pk *
147 1.1 pk * the bus tag:
148 1.1 pk * sc_bustag
149 1.1 pk *
150 1.37 wiz * the DMA bus tag:
151 1.1 pk * sc_dmatag
152 1.1 pk *
153 1.1 pk * the bus handles:
154 1.1 pk * sc_seb (Shared Ethernet Block registers)
155 1.1 pk * sc_erx (Receiver Unit registers)
156 1.1 pk * sc_etx (Transmitter Unit registers)
157 1.1 pk * sc_mac (MAC registers)
158 1.36 wiz * sc_mif (Management Interface registers)
159 1.1 pk *
160 1.1 pk * the maximum bus burst size:
161 1.1 pk * sc_burst
162 1.1 pk *
163 1.28 tron * (notyet:DMA capable memory for the ring descriptors & packet buffers:
164 1.28 tron * rb_membase, rb_dmabase)
165 1.28 tron *
166 1.1 pk * the local Ethernet address:
167 1.1 pk * sc_enaddr
168 1.1 pk *
169 1.1 pk */
170 1.1 pk
171 1.1 pk /* Make sure the chip is stopped. */
172 1.1 pk hme_stop(sc);
173 1.1 pk
174 1.1 pk
175 1.28 tron /*
176 1.28 tron * Allocate descriptors and buffers
177 1.28 tron * XXX - do all this differently.. and more configurably,
178 1.28 tron * eg. use things as `dma_load_mbuf()' on transmit,
179 1.28 tron * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
180 1.38 wiz * all the time) on the receiver side.
181 1.28 tron *
182 1.28 tron * Note: receive buffers must be 64-byte aligned.
183 1.28 tron * Also, apparently, the buffers must extend to a DMA burst
184 1.28 tron * boundary beyond the maximum packet size.
185 1.28 tron */
186 1.28 tron #define _HME_NDESC 128
187 1.28 tron #define _HME_BUFSZ 1600
188 1.28 tron
189 1.28 tron /* Note: the # of descriptors must be a multiple of 16 */
190 1.28 tron sc->sc_rb.rb_ntbuf = _HME_NDESC;
191 1.28 tron sc->sc_rb.rb_nrbuf = _HME_NDESC;
192 1.1 pk
193 1.1 pk /*
194 1.1 pk * Allocate DMA capable memory
195 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
196 1.1 pk * take this into account when calculating the size. Note that
197 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
198 1.28 tron * so we allocate that much regardless of _HME_NDESC.
199 1.1 pk */
200 1.28 tron size = 2048 + /* TX descriptors */
201 1.28 tron 2048 + /* RX descriptors */
202 1.28 tron sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
203 1.46 heas sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
204 1.11 pk
205 1.11 pk /* Allocate DMA buffer */
206 1.28 tron if ((error = bus_dmamem_alloc(dmatag, size,
207 1.28 tron 2048, 0,
208 1.28 tron &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
209 1.1 pk printf("%s: DMA buffer alloc error %d\n",
210 1.28 tron sc->sc_dev.dv_xname, error);
211 1.10 mrg return;
212 1.1 pk }
213 1.1 pk
214 1.11 pk /* Map DMA memory in CPU addressable space */
215 1.11 pk if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
216 1.28 tron &sc->sc_rb.rb_membase,
217 1.28 tron BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
218 1.1 pk printf("%s: DMA buffer map error %d\n",
219 1.28 tron sc->sc_dev.dv_xname, error);
220 1.11 pk bus_dmamap_unload(dmatag, sc->sc_dmamap);
221 1.11 pk bus_dmamem_free(dmatag, &seg, rseg);
222 1.1 pk return;
223 1.1 pk }
224 1.13 mrg
225 1.13 mrg if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
226 1.28 tron BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
227 1.13 mrg printf("%s: DMA map create error %d\n",
228 1.28 tron sc->sc_dev.dv_xname, error);
229 1.13 mrg return;
230 1.13 mrg }
231 1.13 mrg
232 1.13 mrg /* Load the buffer */
233 1.13 mrg if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
234 1.17 mrg sc->sc_rb.rb_membase, size, NULL,
235 1.17 mrg BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
236 1.13 mrg printf("%s: DMA buffer map load error %d\n",
237 1.28 tron sc->sc_dev.dv_xname, error);
238 1.13 mrg bus_dmamem_free(dmatag, &seg, rseg);
239 1.13 mrg return;
240 1.13 mrg }
241 1.13 mrg sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
242 1.1 pk
243 1.22 thorpej printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
244 1.22 thorpej ether_sprintf(sc->sc_enaddr));
245 1.2 pk
246 1.1 pk /* Initialize ifnet structure. */
247 1.21 thorpej strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
248 1.1 pk ifp->if_softc = sc;
249 1.1 pk ifp->if_start = hme_start;
250 1.1 pk ifp->if_ioctl = hme_ioctl;
251 1.1 pk ifp->if_watchdog = hme_watchdog;
252 1.1 pk ifp->if_flags =
253 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
254 1.41 heas sc->sc_if_flags = ifp->if_flags;
255 1.51 yamt ifp->if_capabilities |=
256 1.51 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
257 1.51 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
258 1.20 thorpej IFQ_SET_READY(&ifp->if_snd);
259 1.1 pk
260 1.1 pk /* Initialize ifmedia structures and MII info */
261 1.1 pk mii->mii_ifp = ifp;
262 1.34 petrov mii->mii_readreg = hme_mii_readreg;
263 1.1 pk mii->mii_writereg = hme_mii_writereg;
264 1.1 pk mii->mii_statchg = hme_mii_statchg;
265 1.1 pk
266 1.33 pk ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
267 1.1 pk
268 1.4 pk hme_mifinit(sc);
269 1.4 pk
270 1.6 thorpej mii_attach(&sc->sc_dev, mii, 0xffffffff,
271 1.34 petrov MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
272 1.2 pk
273 1.5 pk child = LIST_FIRST(&mii->mii_phys);
274 1.5 pk if (child == NULL) {
275 1.1 pk /* No PHY attached */
276 1.1 pk ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
277 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
278 1.1 pk } else {
279 1.1 pk /*
280 1.5 pk * Walk along the list of attached MII devices and
281 1.5 pk * establish an `MII instance' to `phy number'
282 1.5 pk * mapping. We'll use this mapping in media change
283 1.5 pk * requests to determine which phy to use to program
284 1.5 pk * the MIF configuration register.
285 1.5 pk */
286 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
287 1.5 pk /*
288 1.5 pk * Note: we support just two PHYs: the built-in
289 1.5 pk * internal device and an external on the MII
290 1.5 pk * connector.
291 1.5 pk */
292 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) {
293 1.55 christos printf("%s: cannot accommodate MII device %s"
294 1.28 tron " at phy %d, instance %d\n",
295 1.28 tron sc->sc_dev.dv_xname,
296 1.28 tron child->mii_dev.dv_xname,
297 1.28 tron child->mii_phy, child->mii_inst);
298 1.5 pk continue;
299 1.5 pk }
300 1.5 pk
301 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy;
302 1.5 pk }
303 1.5 pk
304 1.5 pk /*
305 1.1 pk * XXX - we can really do the following ONLY if the
306 1.1 pk * phy indeed has the auto negotiation capability!!
307 1.1 pk */
308 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
309 1.1 pk }
310 1.27 tron
311 1.28 tron /* claim 802.1q capability */
312 1.27 tron sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
313 1.1 pk
314 1.1 pk /* Attach the interface. */
315 1.1 pk if_attach(ifp);
316 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
317 1.1 pk
318 1.1 pk sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
319 1.1 pk if (sc->sc_sh == NULL)
320 1.1 pk panic("hme_config: can't establish shutdownhook");
321 1.1 pk
322 1.1 pk #if NRND > 0
323 1.1 pk rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
324 1.1 pk RND_TYPE_NET, 0);
325 1.1 pk #endif
326 1.5 pk
327 1.9 thorpej callout_init(&sc->sc_tick_ch);
328 1.5 pk }
329 1.5 pk
330 1.5 pk void
331 1.5 pk hme_tick(arg)
332 1.5 pk void *arg;
333 1.5 pk {
334 1.5 pk struct hme_softc *sc = arg;
335 1.5 pk int s;
336 1.5 pk
337 1.5 pk s = splnet();
338 1.5 pk mii_tick(&sc->sc_mii);
339 1.5 pk splx(s);
340 1.5 pk
341 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
342 1.1 pk }
343 1.1 pk
344 1.1 pk void
345 1.1 pk hme_reset(sc)
346 1.1 pk struct hme_softc *sc;
347 1.1 pk {
348 1.1 pk int s;
349 1.1 pk
350 1.1 pk s = splnet();
351 1.1 pk hme_init(sc);
352 1.1 pk splx(s);
353 1.1 pk }
354 1.1 pk
355 1.1 pk void
356 1.1 pk hme_stop(sc)
357 1.1 pk struct hme_softc *sc;
358 1.1 pk {
359 1.1 pk bus_space_tag_t t = sc->sc_bustag;
360 1.1 pk bus_space_handle_t seb = sc->sc_seb;
361 1.1 pk int n;
362 1.1 pk
363 1.9 thorpej callout_stop(&sc->sc_tick_ch);
364 1.5 pk mii_down(&sc->sc_mii);
365 1.5 pk
366 1.33 pk /* Mask all interrupts */
367 1.33 pk bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
368 1.33 pk
369 1.1 pk /* Reset transmitter and receiver */
370 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
371 1.28 tron (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
372 1.1 pk
373 1.1 pk for (n = 0; n < 20; n++) {
374 1.1 pk u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
375 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
376 1.1 pk return;
377 1.1 pk DELAY(20);
378 1.1 pk }
379 1.1 pk
380 1.1 pk printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
381 1.1 pk }
382 1.1 pk
383 1.1 pk void
384 1.1 pk hme_meminit(sc)
385 1.1 pk struct hme_softc *sc;
386 1.1 pk {
387 1.28 tron bus_addr_t txbufdma, rxbufdma;
388 1.1 pk bus_addr_t dma;
389 1.56 christos char *p;
390 1.28 tron unsigned int ntbuf, nrbuf, i;
391 1.1 pk struct hme_ring *hr = &sc->sc_rb;
392 1.1 pk
393 1.1 pk p = hr->rb_membase;
394 1.1 pk dma = hr->rb_dmabase;
395 1.1 pk
396 1.28 tron ntbuf = hr->rb_ntbuf;
397 1.28 tron nrbuf = hr->rb_nrbuf;
398 1.28 tron
399 1.1 pk /*
400 1.1 pk * Allocate transmit descriptors
401 1.1 pk */
402 1.1 pk hr->rb_txd = p;
403 1.1 pk hr->rb_txddma = dma;
404 1.28 tron p += ntbuf * HME_XD_SIZE;
405 1.28 tron dma += ntbuf * HME_XD_SIZE;
406 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/
407 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
408 1.56 christos p = (void *)roundup((u_long)p, 2048);
409 1.1 pk
410 1.1 pk /*
411 1.1 pk * Allocate receive descriptors
412 1.1 pk */
413 1.1 pk hr->rb_rxd = p;
414 1.1 pk hr->rb_rxddma = dma;
415 1.28 tron p += nrbuf * HME_XD_SIZE;
416 1.28 tron dma += nrbuf * HME_XD_SIZE;
417 1.4 pk /* Again move forward to the next 2048 byte boundary.*/
418 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
419 1.56 christos p = (void *)roundup((u_long)p, 2048);
420 1.1 pk
421 1.28 tron
422 1.1 pk /*
423 1.28 tron * Allocate transmit buffers
424 1.1 pk */
425 1.28 tron hr->rb_txbuf = p;
426 1.28 tron txbufdma = dma;
427 1.28 tron p += ntbuf * _HME_BUFSZ;
428 1.28 tron dma += ntbuf * _HME_BUFSZ;
429 1.28 tron
430 1.28 tron /*
431 1.28 tron * Allocate receive buffers
432 1.28 tron */
433 1.28 tron hr->rb_rxbuf = p;
434 1.28 tron rxbufdma = dma;
435 1.28 tron p += nrbuf * _HME_BUFSZ;
436 1.28 tron dma += nrbuf * _HME_BUFSZ;
437 1.28 tron
438 1.28 tron /*
439 1.28 tron * Initialize transmit buffer descriptors
440 1.28 tron */
441 1.28 tron for (i = 0; i < ntbuf; i++) {
442 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
443 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
444 1.1 pk }
445 1.1 pk
446 1.1 pk /*
447 1.28 tron * Initialize receive buffer descriptors
448 1.1 pk */
449 1.28 tron for (i = 0; i < nrbuf; i++) {
450 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
451 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
452 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
453 1.1 pk }
454 1.1 pk
455 1.28 tron hr->rb_tdhead = hr->rb_tdtail = 0;
456 1.28 tron hr->rb_td_nbusy = 0;
457 1.28 tron hr->rb_rdtail = 0;
458 1.1 pk }
459 1.1 pk
460 1.1 pk /*
461 1.1 pk * Initialization of interface; set up initialization block
462 1.1 pk * and transmit/receive descriptor rings.
463 1.1 pk */
464 1.1 pk void
465 1.1 pk hme_init(sc)
466 1.1 pk struct hme_softc *sc;
467 1.1 pk {
468 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
469 1.1 pk bus_space_tag_t t = sc->sc_bustag;
470 1.1 pk bus_space_handle_t seb = sc->sc_seb;
471 1.1 pk bus_space_handle_t etx = sc->sc_etx;
472 1.1 pk bus_space_handle_t erx = sc->sc_erx;
473 1.1 pk bus_space_handle_t mac = sc->sc_mac;
474 1.1 pk u_int8_t *ea;
475 1.1 pk u_int32_t v;
476 1.1 pk
477 1.1 pk /*
478 1.1 pk * Initialization sequence. The numbered steps below correspond
479 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
480 1.1 pk * Channel Engine manual (part of the PCIO manual).
481 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
482 1.1 pk */
483 1.1 pk
484 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
485 1.1 pk hme_stop(sc);
486 1.1 pk
487 1.4 pk /* Re-initialize the MIF */
488 1.4 pk hme_mifinit(sc);
489 1.4 pk
490 1.1 pk /* Call MI reset function if any */
491 1.1 pk if (sc->sc_hwreset)
492 1.1 pk (*sc->sc_hwreset)(sc);
493 1.1 pk
494 1.1 pk #if 0
495 1.1 pk /* Mask all MIF interrupts, just in case */
496 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
497 1.1 pk #endif
498 1.1 pk
499 1.1 pk /* step 3. Setup data structures in host memory */
500 1.1 pk hme_meminit(sc);
501 1.1 pk
502 1.1 pk /* step 4. TX MAC registers & counters */
503 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
504 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
505 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
506 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
507 1.28 tron bus_space_write_4(t, mac, HME_MACI_TXSIZE,
508 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
509 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
510 1.45 heas sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
511 1.1 pk
512 1.1 pk /* Load station MAC address */
513 1.1 pk ea = sc->sc_enaddr;
514 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
515 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
516 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
517 1.1 pk
518 1.1 pk /*
519 1.1 pk * Init seed for backoff
520 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
521 1.42 heas */
522 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
523 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
524 1.1 pk
525 1.1 pk
526 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
527 1.1 pk
528 1.1 pk
529 1.1 pk /* step 5. RX MAC registers & counters */
530 1.1 pk hme_setladrf(sc);
531 1.1 pk
532 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
533 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
534 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
535 1.1 pk
536 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
537 1.28 tron bus_space_write_4(t, mac, HME_MACI_RXSIZE,
538 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
539 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
540 1.1 pk
541 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
542 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
543 1.28 tron ~(
544 1.28 tron /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
545 1.28 tron HME_SEB_STAT_HOSTTOTX |
546 1.28 tron HME_SEB_STAT_RXTOHOST |
547 1.28 tron HME_SEB_STAT_TXALL |
548 1.28 tron HME_SEB_STAT_TXPERR |
549 1.28 tron HME_SEB_STAT_RCNTEXP |
550 1.33 pk /*HME_SEB_STAT_MIFIRQ |*/
551 1.28 tron HME_SEB_STAT_ALL_ERRORS ));
552 1.1 pk
553 1.1 pk switch (sc->sc_burst) {
554 1.1 pk default:
555 1.1 pk v = 0;
556 1.1 pk break;
557 1.1 pk case 16:
558 1.1 pk v = HME_SEB_CFG_BURST16;
559 1.1 pk break;
560 1.1 pk case 32:
561 1.1 pk v = HME_SEB_CFG_BURST32;
562 1.1 pk break;
563 1.1 pk case 64:
564 1.1 pk v = HME_SEB_CFG_BURST64;
565 1.1 pk break;
566 1.1 pk }
567 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
568 1.1 pk
569 1.1 pk /* step 9. ETX Configuration: use mostly default values */
570 1.1 pk
571 1.1 pk /* Enable DMA */
572 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
573 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
574 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
575 1.1 pk
576 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
577 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
578 1.28 tron
579 1.1 pk
580 1.3 pk /* step 10. ERX Configuration */
581 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
582 1.28 tron
583 1.28 tron /* Encode Receive Descriptor ring size: four possible values */
584 1.28 tron switch (_HME_NDESC /*XXX*/) {
585 1.28 tron case 32:
586 1.28 tron v |= HME_ERX_CFG_RINGSIZE32;
587 1.28 tron break;
588 1.28 tron case 64:
589 1.28 tron v |= HME_ERX_CFG_RINGSIZE64;
590 1.28 tron break;
591 1.28 tron case 128:
592 1.28 tron v |= HME_ERX_CFG_RINGSIZE128;
593 1.28 tron break;
594 1.28 tron case 256:
595 1.28 tron v |= HME_ERX_CFG_RINGSIZE256;
596 1.28 tron break;
597 1.28 tron default:
598 1.28 tron printf("hme: invalid Receive Descriptor ring size\n");
599 1.28 tron break;
600 1.28 tron }
601 1.28 tron
602 1.3 pk /* Enable DMA */
603 1.28 tron v |= HME_ERX_CFG_DMAENABLE;
604 1.46 heas
605 1.46 heas /* set h/w rx checksum start offset (# of half-words) */
606 1.49 heas #ifdef INET
607 1.48 perry v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
608 1.46 heas ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
609 1.46 heas ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
610 1.46 heas HME_ERX_CFG_CSUMSTART;
611 1.49 heas #endif
612 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
613 1.1 pk
614 1.1 pk /* step 11. XIF Configuration */
615 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
616 1.1 pk v |= HME_MAC_XIF_OE;
617 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
618 1.1 pk
619 1.1 pk /* step 12. RX_MAC Configuration Register */
620 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
621 1.46 heas v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
622 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
623 1.1 pk
624 1.1 pk /* step 13. TX_MAC Configuration Register */
625 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
626 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
627 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
628 1.1 pk
629 1.1 pk /* step 14. Issue Transmit Pending command */
630 1.1 pk
631 1.1 pk /* Call MI initialization function if any */
632 1.1 pk if (sc->sc_hwinit)
633 1.1 pk (*sc->sc_hwinit)(sc);
634 1.29 thorpej
635 1.29 thorpej /* Set the current media. */
636 1.29 thorpej mii_mediachg(&sc->sc_mii);
637 1.9 thorpej
638 1.9 thorpej /* Start the one second timer. */
639 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
640 1.1 pk
641 1.1 pk ifp->if_flags |= IFF_RUNNING;
642 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
643 1.41 heas sc->sc_if_flags = ifp->if_flags;
644 1.1 pk ifp->if_timer = 0;
645 1.1 pk hme_start(ifp);
646 1.1 pk }
647 1.1 pk
648 1.28 tron /*
649 1.28 tron * Compare two Ether/802 addresses for equality, inlined and unrolled for
650 1.28 tron * speed.
651 1.28 tron */
652 1.53 perry static inline int
653 1.28 tron ether_cmp(a, b)
654 1.28 tron u_char *a, *b;
655 1.42 heas {
656 1.42 heas
657 1.28 tron if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
658 1.28 tron a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
659 1.28 tron return (0);
660 1.28 tron return (1);
661 1.28 tron }
662 1.28 tron
663 1.28 tron
664 1.28 tron /*
665 1.28 tron * Routine to copy from mbuf chain to transmit buffer in
666 1.28 tron * network buffer memory.
667 1.28 tron * Returns the amount of data copied.
668 1.28 tron */
669 1.28 tron int
670 1.28 tron hme_put(sc, ri, m)
671 1.28 tron struct hme_softc *sc;
672 1.28 tron int ri; /* Ring index */
673 1.28 tron struct mbuf *m;
674 1.28 tron {
675 1.28 tron struct mbuf *n;
676 1.28 tron int len, tlen = 0;
677 1.56 christos char *bp;
678 1.28 tron
679 1.56 christos bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
680 1.28 tron for (; m; m = n) {
681 1.28 tron len = m->m_len;
682 1.28 tron if (len == 0) {
683 1.28 tron MFREE(m, n);
684 1.28 tron continue;
685 1.28 tron }
686 1.56 christos memcpy(bp, mtod(m, void *), len);
687 1.28 tron bp += len;
688 1.28 tron tlen += len;
689 1.28 tron MFREE(m, n);
690 1.28 tron }
691 1.28 tron return (tlen);
692 1.28 tron }
693 1.28 tron
694 1.28 tron /*
695 1.28 tron * Pull data off an interface.
696 1.28 tron * Len is length of data, with local net header stripped.
697 1.28 tron * We copy the data into mbufs. When full cluster sized units are present
698 1.28 tron * we copy into clusters.
699 1.28 tron */
700 1.28 tron struct mbuf *
701 1.46 heas hme_get(sc, ri, flags)
702 1.28 tron struct hme_softc *sc;
703 1.46 heas int ri;
704 1.46 heas u_int32_t flags;
705 1.28 tron {
706 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
707 1.28 tron struct mbuf *m, *m0, *newm;
708 1.56 christos char *bp;
709 1.46 heas int len, totlen;
710 1.28 tron
711 1.46 heas totlen = HME_XD_DECODE_RSIZE(flags);
712 1.28 tron MGETHDR(m0, M_DONTWAIT, MT_DATA);
713 1.28 tron if (m0 == 0)
714 1.28 tron return (0);
715 1.28 tron m0->m_pkthdr.rcvif = ifp;
716 1.28 tron m0->m_pkthdr.len = totlen;
717 1.28 tron len = MHLEN;
718 1.28 tron m = m0;
719 1.28 tron
720 1.56 christos bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
721 1.28 tron
722 1.28 tron while (totlen > 0) {
723 1.28 tron if (totlen >= MINCLSIZE) {
724 1.28 tron MCLGET(m, M_DONTWAIT);
725 1.28 tron if ((m->m_flags & M_EXT) == 0)
726 1.28 tron goto bad;
727 1.28 tron len = MCLBYTES;
728 1.28 tron }
729 1.28 tron
730 1.28 tron if (m == m0) {
731 1.56 christos char *newdata = (char *)
732 1.28 tron ALIGN(m->m_data + sizeof(struct ether_header)) -
733 1.28 tron sizeof(struct ether_header);
734 1.28 tron len -= newdata - m->m_data;
735 1.28 tron m->m_data = newdata;
736 1.28 tron }
737 1.28 tron
738 1.28 tron m->m_len = len = min(totlen, len);
739 1.56 christos memcpy(mtod(m, void *), bp, len);
740 1.28 tron bp += len;
741 1.28 tron
742 1.28 tron totlen -= len;
743 1.28 tron if (totlen > 0) {
744 1.28 tron MGET(newm, M_DONTWAIT, MT_DATA);
745 1.28 tron if (newm == 0)
746 1.28 tron goto bad;
747 1.28 tron len = MLEN;
748 1.28 tron m = m->m_next = newm;
749 1.28 tron }
750 1.28 tron }
751 1.28 tron
752 1.49 heas #ifdef INET
753 1.49 heas /* hardware checksum */
754 1.50 rafal if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
755 1.46 heas struct ether_header *eh;
756 1.46 heas struct ip *ip;
757 1.46 heas struct udphdr *uh;
758 1.46 heas uint16_t *opts;
759 1.46 heas int32_t hlen, pktlen;
760 1.46 heas uint32_t temp;
761 1.46 heas
762 1.46 heas if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
763 1.46 heas pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
764 1.46 heas ETHER_VLAN_ENCAP_LEN;
765 1.56 christos eh = (struct ether_header *) mtod(m0, void *) +
766 1.46 heas ETHER_VLAN_ENCAP_LEN;
767 1.46 heas } else {
768 1.46 heas pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
769 1.46 heas eh = mtod(m0, struct ether_header *);
770 1.46 heas }
771 1.46 heas if (ntohs(eh->ether_type) != ETHERTYPE_IP)
772 1.46 heas goto swcsum;
773 1.56 christos ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
774 1.46 heas
775 1.46 heas /* IPv4 only */
776 1.46 heas if (ip->ip_v != IPVERSION)
777 1.46 heas goto swcsum;
778 1.46 heas
779 1.46 heas hlen = ip->ip_hl << 2;
780 1.48 perry if (hlen < sizeof(struct ip))
781 1.46 heas goto swcsum;
782 1.46 heas
783 1.49 heas /*
784 1.49 heas * bail if too short, has random trailing garbage, truncated,
785 1.49 heas * fragment, or has ethernet pad.
786 1.49 heas */
787 1.49 heas if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
788 1.46 heas || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
789 1.49 heas goto swcsum;
790 1.46 heas
791 1.46 heas switch (ip->ip_p) {
792 1.46 heas case IPPROTO_TCP:
793 1.46 heas if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
794 1.46 heas goto swcsum;
795 1.46 heas if (pktlen < (hlen + sizeof(struct tcphdr)))
796 1.46 heas goto swcsum;
797 1.46 heas m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
798 1.46 heas break;
799 1.46 heas case IPPROTO_UDP:
800 1.46 heas if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
801 1.46 heas goto swcsum;
802 1.46 heas if (pktlen < (hlen + sizeof(struct udphdr)))
803 1.46 heas goto swcsum;
804 1.56 christos uh = (struct udphdr *)((char *)ip + hlen);
805 1.46 heas /* no checksum */
806 1.46 heas if (uh->uh_sum == 0)
807 1.46 heas goto swcsum;
808 1.46 heas m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
809 1.46 heas break;
810 1.46 heas default:
811 1.49 heas goto swcsum;
812 1.46 heas }
813 1.46 heas
814 1.46 heas /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
815 1.46 heas m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
816 1.46 heas
817 1.46 heas /* if the pkt had ip options, we have to deduct them */
818 1.46 heas if (hlen > sizeof(struct ip)) {
819 1.46 heas uint32_t optsum;
820 1.46 heas
821 1.46 heas optsum = 0;
822 1.46 heas temp = hlen - sizeof(struct ip);
823 1.56 christos opts = (uint16_t *)((char *)ip + sizeof(struct ip));
824 1.46 heas
825 1.49 heas while (temp > 1) {
826 1.46 heas optsum += ntohs(*opts++);
827 1.46 heas temp -= 2;
828 1.46 heas }
829 1.46 heas while (optsum >> 16)
830 1.46 heas optsum = (optsum >> 16) + (optsum & 0xffff);
831 1.46 heas
832 1.46 heas /* Deduct the ip opts sum from the hwsum (rfc 1624). */
833 1.46 heas m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
834 1.46 heas ~optsum);
835 1.46 heas
836 1.46 heas while (m0->m_pkthdr.csum_data >> 16)
837 1.46 heas m0->m_pkthdr.csum_data =
838 1.46 heas (m0->m_pkthdr.csum_data >> 16) +
839 1.46 heas (m0->m_pkthdr.csum_data & 0xffff);
840 1.46 heas }
841 1.46 heas
842 1.46 heas m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
843 1.46 heas }
844 1.49 heas swcsum:
845 1.49 heas m0->m_pkthdr.csum_flags = 0;
846 1.49 heas #endif
847 1.46 heas
848 1.28 tron return (m0);
849 1.28 tron
850 1.28 tron bad:
851 1.28 tron m_freem(m0);
852 1.28 tron return (0);
853 1.28 tron }
854 1.28 tron
855 1.28 tron /*
856 1.28 tron * Pass a packet to the higher levels.
857 1.28 tron */
858 1.28 tron void
859 1.46 heas hme_read(sc, ix, flags)
860 1.28 tron struct hme_softc *sc;
861 1.46 heas int ix;
862 1.46 heas u_int32_t flags;
863 1.28 tron {
864 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
865 1.28 tron struct mbuf *m;
866 1.46 heas int len;
867 1.28 tron
868 1.46 heas len = HME_XD_DECODE_RSIZE(flags);
869 1.28 tron if (len <= sizeof(struct ether_header) ||
870 1.28 tron len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
871 1.28 tron ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
872 1.28 tron ETHERMTU + sizeof(struct ether_header))) {
873 1.28 tron #ifdef HMEDEBUG
874 1.28 tron printf("%s: invalid packet size %d; dropping\n",
875 1.28 tron sc->sc_dev.dv_xname, len);
876 1.28 tron #endif
877 1.28 tron ifp->if_ierrors++;
878 1.28 tron return;
879 1.28 tron }
880 1.28 tron
881 1.28 tron /* Pull packet off interface. */
882 1.46 heas m = hme_get(sc, ix, flags);
883 1.28 tron if (m == 0) {
884 1.28 tron ifp->if_ierrors++;
885 1.28 tron return;
886 1.28 tron }
887 1.28 tron
888 1.28 tron ifp->if_ipackets++;
889 1.28 tron
890 1.28 tron #if NBPFILTER > 0
891 1.28 tron /*
892 1.28 tron * Check if there's a BPF listener on this interface.
893 1.28 tron * If so, hand off the raw packet to BPF.
894 1.28 tron */
895 1.28 tron if (ifp->if_bpf)
896 1.28 tron bpf_mtap(ifp->if_bpf, m);
897 1.28 tron #endif
898 1.28 tron
899 1.28 tron /* Pass the packet up. */
900 1.28 tron (*ifp->if_input)(ifp, m);
901 1.28 tron }
902 1.28 tron
903 1.1 pk void
904 1.1 pk hme_start(ifp)
905 1.1 pk struct ifnet *ifp;
906 1.1 pk {
907 1.1 pk struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
908 1.56 christos void *txd = sc->sc_rb.rb_txd;
909 1.1 pk struct mbuf *m;
910 1.46 heas unsigned int txflags;
911 1.28 tron unsigned int ri, len;
912 1.28 tron unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
913 1.1 pk
914 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
915 1.1 pk return;
916 1.1 pk
917 1.28 tron ri = sc->sc_rb.rb_tdhead;
918 1.28 tron
919 1.28 tron for (;;) {
920 1.28 tron IFQ_DEQUEUE(&ifp->if_snd, m);
921 1.28 tron if (m == 0)
922 1.1 pk break;
923 1.1 pk
924 1.1 pk #if NBPFILTER > 0
925 1.1 pk /*
926 1.1 pk * If BPF is listening on this interface, let it see the
927 1.1 pk * packet before we commit it to the wire.
928 1.1 pk */
929 1.1 pk if (ifp->if_bpf)
930 1.1 pk bpf_mtap(ifp->if_bpf, m);
931 1.1 pk #endif
932 1.1 pk
933 1.49 heas #ifdef INET
934 1.46 heas /* collect bits for h/w csum, before hme_put frees the mbuf */
935 1.46 heas if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
936 1.46 heas m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
937 1.46 heas struct ether_header *eh;
938 1.46 heas uint16_t offset, start;
939 1.46 heas
940 1.46 heas eh = mtod(m, struct ether_header *);
941 1.46 heas switch (ntohs(eh->ether_type)) {
942 1.46 heas case ETHERTYPE_IP:
943 1.46 heas start = ETHER_HDR_LEN;
944 1.46 heas break;
945 1.46 heas case ETHERTYPE_VLAN:
946 1.46 heas start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
947 1.46 heas break;
948 1.46 heas default:
949 1.46 heas /* unsupported, drop it */
950 1.46 heas m_free(m);
951 1.46 heas continue;
952 1.46 heas }
953 1.47 thorpej start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
954 1.47 thorpej offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
955 1.47 thorpej + start;
956 1.46 heas txflags = HME_XD_TXCKSUM |
957 1.46 heas (offset << HME_XD_TXCSSTUFFSHIFT) |
958 1.46 heas (start << HME_XD_TXCSSTARTSHIFT);
959 1.46 heas } else
960 1.49 heas #endif
961 1.46 heas txflags = 0;
962 1.46 heas
963 1.28 tron /*
964 1.28 tron * Copy the mbuf chain into the transmit buffer.
965 1.28 tron */
966 1.28 tron len = hme_put(sc, ri, m);
967 1.28 tron
968 1.28 tron /*
969 1.28 tron * Initialize transmit registers and start transmission
970 1.28 tron */
971 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
972 1.28 tron HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
973 1.46 heas HME_XD_ENCODE_TSIZE(len) | txflags);
974 1.28 tron
975 1.28 tron /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
976 1.28 tron bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
977 1.28 tron HME_ETX_TP_DMAWAKEUP);
978 1.28 tron
979 1.28 tron if (++ri == ntbuf)
980 1.28 tron ri = 0;
981 1.28 tron
982 1.28 tron if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
983 1.26 tron ifp->if_flags |= IFF_OACTIVE;
984 1.26 tron break;
985 1.26 tron }
986 1.1 pk }
987 1.1 pk
988 1.28 tron sc->sc_rb.rb_tdhead = ri;
989 1.1 pk }
990 1.1 pk
991 1.1 pk /*
992 1.1 pk * Transmit interrupt.
993 1.1 pk */
994 1.1 pk int
995 1.1 pk hme_tint(sc)
996 1.1 pk struct hme_softc *sc;
997 1.1 pk {
998 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
999 1.28 tron bus_space_tag_t t = sc->sc_bustag;
1000 1.28 tron bus_space_handle_t mac = sc->sc_mac;
1001 1.1 pk unsigned int ri, txflags;
1002 1.28 tron
1003 1.28 tron /*
1004 1.28 tron * Unload collision counters
1005 1.28 tron */
1006 1.28 tron ifp->if_collisions +=
1007 1.28 tron bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1008 1.28 tron bus_space_read_4(t, mac, HME_MACI_FCCNT) +
1009 1.28 tron bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1010 1.28 tron bus_space_read_4(t, mac, HME_MACI_LTCNT);
1011 1.28 tron
1012 1.28 tron /*
1013 1.28 tron * then clear the hardware counters.
1014 1.28 tron */
1015 1.28 tron bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1016 1.28 tron bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1017 1.28 tron bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1018 1.28 tron bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1019 1.1 pk
1020 1.1 pk /* Fetch current position in the transmit ring */
1021 1.28 tron ri = sc->sc_rb.rb_tdtail;
1022 1.1 pk
1023 1.1 pk for (;;) {
1024 1.28 tron if (sc->sc_rb.rb_td_nbusy <= 0)
1025 1.1 pk break;
1026 1.1 pk
1027 1.15 eeh txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1028 1.1 pk
1029 1.1 pk if (txflags & HME_XD_OWN)
1030 1.1 pk break;
1031 1.1 pk
1032 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
1033 1.28 tron ifp->if_opackets++;
1034 1.26 tron
1035 1.28 tron if (++ri == sc->sc_rb.rb_ntbuf)
1036 1.1 pk ri = 0;
1037 1.1 pk
1038 1.28 tron --sc->sc_rb.rb_td_nbusy;
1039 1.1 pk }
1040 1.1 pk
1041 1.3 pk /* Update ring */
1042 1.28 tron sc->sc_rb.rb_tdtail = ri;
1043 1.1 pk
1044 1.1 pk hme_start(ifp);
1045 1.1 pk
1046 1.28 tron if (sc->sc_rb.rb_td_nbusy == 0)
1047 1.1 pk ifp->if_timer = 0;
1048 1.1 pk
1049 1.1 pk return (1);
1050 1.1 pk }
1051 1.1 pk
1052 1.1 pk /*
1053 1.1 pk * Receive interrupt.
1054 1.1 pk */
1055 1.1 pk int
1056 1.1 pk hme_rint(sc)
1057 1.1 pk struct hme_softc *sc;
1058 1.1 pk {
1059 1.56 christos void *xdr = sc->sc_rb.rb_rxd;
1060 1.28 tron unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1061 1.46 heas unsigned int ri;
1062 1.1 pk u_int32_t flags;
1063 1.1 pk
1064 1.28 tron ri = sc->sc_rb.rb_rdtail;
1065 1.1 pk
1066 1.1 pk /*
1067 1.1 pk * Process all buffers with valid data.
1068 1.1 pk */
1069 1.1 pk for (;;) {
1070 1.28 tron flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1071 1.1 pk if (flags & HME_XD_OWN)
1072 1.1 pk break;
1073 1.1 pk
1074 1.4 pk if (flags & HME_XD_OFL) {
1075 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1076 1.28 tron sc->sc_dev.dv_xname, ri, flags);
1077 1.46 heas } else
1078 1.46 heas hme_read(sc, ri, flags);
1079 1.1 pk
1080 1.28 tron /* This buffer can be used by the hardware again */
1081 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1082 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1083 1.26 tron
1084 1.28 tron if (++ri == nrbuf)
1085 1.1 pk ri = 0;
1086 1.1 pk }
1087 1.1 pk
1088 1.28 tron sc->sc_rb.rb_rdtail = ri;
1089 1.28 tron
1090 1.1 pk return (1);
1091 1.1 pk }
1092 1.1 pk
1093 1.1 pk int
1094 1.1 pk hme_eint(sc, status)
1095 1.1 pk struct hme_softc *sc;
1096 1.1 pk u_int status;
1097 1.1 pk {
1098 1.1 pk char bits[128];
1099 1.1 pk
1100 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1101 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1102 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1103 1.33 pk u_int32_t cf, st, sm;
1104 1.33 pk cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1105 1.33 pk st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1106 1.33 pk sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1107 1.33 pk printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1108 1.33 pk sc->sc_dev.dv_xname, cf, st, sm);
1109 1.1 pk return (1);
1110 1.1 pk }
1111 1.1 pk
1112 1.1 pk printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1113 1.28 tron bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
1114 1.1 pk return (1);
1115 1.1 pk }
1116 1.1 pk
1117 1.1 pk int
1118 1.1 pk hme_intr(v)
1119 1.1 pk void *v;
1120 1.1 pk {
1121 1.1 pk struct hme_softc *sc = (struct hme_softc *)v;
1122 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1123 1.1 pk bus_space_handle_t seb = sc->sc_seb;
1124 1.1 pk u_int32_t status;
1125 1.1 pk int r = 0;
1126 1.1 pk
1127 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1128 1.1 pk
1129 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1130 1.1 pk r |= hme_eint(sc, status);
1131 1.1 pk
1132 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1133 1.1 pk r |= hme_tint(sc);
1134 1.1 pk
1135 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1136 1.1 pk r |= hme_rint(sc);
1137 1.1 pk
1138 1.40 abs #if NRND > 0
1139 1.40 abs rnd_add_uint32(&sc->rnd_source, status);
1140 1.40 abs #endif
1141 1.40 abs
1142 1.1 pk return (r);
1143 1.1 pk }
1144 1.1 pk
1145 1.1 pk
1146 1.1 pk void
1147 1.1 pk hme_watchdog(ifp)
1148 1.1 pk struct ifnet *ifp;
1149 1.1 pk {
1150 1.1 pk struct hme_softc *sc = ifp->if_softc;
1151 1.1 pk
1152 1.1 pk log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1153 1.1 pk ++ifp->if_oerrors;
1154 1.1 pk
1155 1.1 pk hme_reset(sc);
1156 1.4 pk }
1157 1.4 pk
1158 1.4 pk /*
1159 1.4 pk * Initialize the MII Management Interface
1160 1.4 pk */
1161 1.4 pk void
1162 1.4 pk hme_mifinit(sc)
1163 1.4 pk struct hme_softc *sc;
1164 1.4 pk {
1165 1.4 pk bus_space_tag_t t = sc->sc_bustag;
1166 1.4 pk bus_space_handle_t mif = sc->sc_mif;
1167 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1168 1.33 pk int instance, phy;
1169 1.4 pk u_int32_t v;
1170 1.4 pk
1171 1.33 pk if (sc->sc_media.ifm_cur != NULL) {
1172 1.33 pk instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1173 1.33 pk phy = sc->sc_phys[instance];
1174 1.33 pk } else
1175 1.33 pk /* No media set yet, pick phy arbitrarily.. */
1176 1.33 pk phy = HME_PHYAD_EXTERNAL;
1177 1.33 pk
1178 1.33 pk /* Configure the MIF in frame mode, no poll, current phy select */
1179 1.33 pk v = 0;
1180 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1181 1.33 pk v |= HME_MIF_CFG_PHY;
1182 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1183 1.35 pk
1184 1.35 pk /* If an external transceiver is selected, enable its MII drivers */
1185 1.35 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1186 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1187 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1188 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1189 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1190 1.1 pk }
1191 1.1 pk
1192 1.1 pk /*
1193 1.1 pk * MII interface
1194 1.1 pk */
1195 1.1 pk static int
1196 1.1 pk hme_mii_readreg(self, phy, reg)
1197 1.1 pk struct device *self;
1198 1.1 pk int phy, reg;
1199 1.1 pk {
1200 1.1 pk struct hme_softc *sc = (void *)self;
1201 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1202 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1203 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1204 1.35 pk u_int32_t v, xif_cfg, mifi_cfg;
1205 1.1 pk int n;
1206 1.1 pk
1207 1.33 pk /* We can at most have two PHYs */
1208 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1209 1.32 martin return (0);
1210 1.32 martin
1211 1.5 pk /* Select the desired PHY in the MIF configuration register */
1212 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1213 1.5 pk v &= ~HME_MIF_CFG_PHY;
1214 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1215 1.5 pk v |= HME_MIF_CFG_PHY;
1216 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1217 1.5 pk
1218 1.42 heas /* Enable MII drivers on external transceiver */
1219 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1220 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1221 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1222 1.35 pk else
1223 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1224 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1225 1.35 pk
1226 1.33 pk #if 0
1227 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1228 1.33 pk /*
1229 1.33 pk * Check whether a transceiver is connected by testing
1230 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1231 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1232 1.33 pk */
1233 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1234 1.33 pk delay(100);
1235 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1236 1.33 pk if ((v & mif_mdi_bit) == 0)
1237 1.33 pk return (0);
1238 1.33 pk #endif
1239 1.33 pk
1240 1.1 pk /* Construct the frame command */
1241 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1242 1.1 pk HME_MIF_FO_TAMSB |
1243 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1244 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1245 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
1246 1.1 pk
1247 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1248 1.1 pk for (n = 0; n < 100; n++) {
1249 1.2 pk DELAY(1);
1250 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1251 1.33 pk if (v & HME_MIF_FO_TALSB) {
1252 1.33 pk v &= HME_MIF_FO_DATA;
1253 1.33 pk goto out;
1254 1.33 pk }
1255 1.1 pk }
1256 1.1 pk
1257 1.33 pk v = 0;
1258 1.1 pk printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1259 1.33 pk
1260 1.33 pk out:
1261 1.33 pk /* Restore MIFI_CFG register */
1262 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1263 1.35 pk /* Restore XIF register */
1264 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1265 1.33 pk return (v);
1266 1.1 pk }
1267 1.1 pk
1268 1.1 pk static void
1269 1.1 pk hme_mii_writereg(self, phy, reg, val)
1270 1.1 pk struct device *self;
1271 1.1 pk int phy, reg, val;
1272 1.1 pk {
1273 1.1 pk struct hme_softc *sc = (void *)self;
1274 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1275 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1276 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1277 1.35 pk u_int32_t v, xif_cfg, mifi_cfg;
1278 1.1 pk int n;
1279 1.32 martin
1280 1.33 pk /* We can at most have two PHYs */
1281 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1282 1.32 martin return;
1283 1.1 pk
1284 1.5 pk /* Select the desired PHY in the MIF configuration register */
1285 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1286 1.5 pk v &= ~HME_MIF_CFG_PHY;
1287 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1288 1.5 pk v |= HME_MIF_CFG_PHY;
1289 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1290 1.5 pk
1291 1.42 heas /* Enable MII drivers on external transceiver */
1292 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1293 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1294 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1295 1.35 pk else
1296 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1297 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1298 1.35 pk
1299 1.33 pk #if 0
1300 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1301 1.33 pk /*
1302 1.33 pk * Check whether a transceiver is connected by testing
1303 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1304 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1305 1.33 pk */
1306 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1307 1.33 pk delay(100);
1308 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1309 1.33 pk if ((v & mif_mdi_bit) == 0)
1310 1.33 pk return;
1311 1.33 pk #endif
1312 1.33 pk
1313 1.1 pk /* Construct the frame command */
1314 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1315 1.1 pk HME_MIF_FO_TAMSB |
1316 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1317 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1318 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
1319 1.1 pk (val & HME_MIF_FO_DATA);
1320 1.1 pk
1321 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1322 1.1 pk for (n = 0; n < 100; n++) {
1323 1.2 pk DELAY(1);
1324 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1325 1.1 pk if (v & HME_MIF_FO_TALSB)
1326 1.33 pk goto out;
1327 1.1 pk }
1328 1.1 pk
1329 1.2 pk printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1330 1.33 pk out:
1331 1.33 pk /* Restore MIFI_CFG register */
1332 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1333 1.35 pk /* Restore XIF register */
1334 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1335 1.1 pk }
1336 1.1 pk
1337 1.1 pk static void
1338 1.1 pk hme_mii_statchg(dev)
1339 1.1 pk struct device *dev;
1340 1.1 pk {
1341 1.3 pk struct hme_softc *sc = (void *)dev;
1342 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1343 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1344 1.1 pk u_int32_t v;
1345 1.1 pk
1346 1.5 pk #ifdef HMEDEBUG
1347 1.5 pk if (sc->sc_debug)
1348 1.33 pk printf("hme_mii_statchg: status change\n");
1349 1.5 pk #endif
1350 1.1 pk
1351 1.5 pk /* Set the MAC Full Duplex bit appropriately */
1352 1.30 martin /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1353 1.30 martin but not otherwise. */
1354 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1355 1.30 martin if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1356 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
1357 1.30 martin sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1358 1.30 martin } else {
1359 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
1360 1.30 martin sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1361 1.30 martin }
1362 1.41 heas sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1363 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1364 1.5 pk }
1365 1.5 pk
1366 1.5 pk int
1367 1.5 pk hme_mediachange(ifp)
1368 1.5 pk struct ifnet *ifp;
1369 1.5 pk {
1370 1.5 pk struct hme_softc *sc = ifp->if_softc;
1371 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1372 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1373 1.33 pk bus_space_handle_t mac = sc->sc_mac;
1374 1.33 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1375 1.33 pk int phy = sc->sc_phys[instance];
1376 1.33 pk u_int32_t v;
1377 1.5 pk
1378 1.33 pk #ifdef HMEDEBUG
1379 1.33 pk if (sc->sc_debug)
1380 1.33 pk printf("hme_mediachange: phy = %d\n", phy);
1381 1.33 pk #endif
1382 1.5 pk if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1383 1.5 pk return (EINVAL);
1384 1.33 pk
1385 1.33 pk /* Select the current PHY in the MIF configuration register */
1386 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1387 1.33 pk v &= ~HME_MIF_CFG_PHY;
1388 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1389 1.33 pk v |= HME_MIF_CFG_PHY;
1390 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1391 1.33 pk
1392 1.33 pk /* If an external transceiver is selected, enable its MII drivers */
1393 1.33 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1394 1.33 pk v &= ~HME_MAC_XIF_MIIENABLE;
1395 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1396 1.33 pk v |= HME_MAC_XIF_MIIENABLE;
1397 1.33 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1398 1.5 pk
1399 1.5 pk return (mii_mediachg(&sc->sc_mii));
1400 1.1 pk }
1401 1.1 pk
1402 1.1 pk void
1403 1.1 pk hme_mediastatus(ifp, ifmr)
1404 1.1 pk struct ifnet *ifp;
1405 1.1 pk struct ifmediareq *ifmr;
1406 1.1 pk {
1407 1.1 pk struct hme_softc *sc = ifp->if_softc;
1408 1.1 pk
1409 1.1 pk if ((ifp->if_flags & IFF_UP) == 0)
1410 1.1 pk return;
1411 1.1 pk
1412 1.1 pk mii_pollstat(&sc->sc_mii);
1413 1.1 pk ifmr->ifm_active = sc->sc_mii.mii_media_active;
1414 1.1 pk ifmr->ifm_status = sc->sc_mii.mii_media_status;
1415 1.1 pk }
1416 1.1 pk
1417 1.1 pk /*
1418 1.1 pk * Process an ioctl request.
1419 1.1 pk */
1420 1.1 pk int
1421 1.1 pk hme_ioctl(ifp, cmd, data)
1422 1.1 pk struct ifnet *ifp;
1423 1.1 pk u_long cmd;
1424 1.56 christos void *data;
1425 1.1 pk {
1426 1.1 pk struct hme_softc *sc = ifp->if_softc;
1427 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1428 1.1 pk struct ifreq *ifr = (struct ifreq *)data;
1429 1.1 pk int s, error = 0;
1430 1.1 pk
1431 1.1 pk s = splnet();
1432 1.1 pk
1433 1.1 pk switch (cmd) {
1434 1.1 pk
1435 1.1 pk case SIOCSIFADDR:
1436 1.1 pk switch (ifa->ifa_addr->sa_family) {
1437 1.1 pk #ifdef INET
1438 1.1 pk case AF_INET:
1439 1.41 heas if (ifp->if_flags & IFF_UP)
1440 1.41 heas hme_setladrf(sc);
1441 1.41 heas else {
1442 1.41 heas ifp->if_flags |= IFF_UP;
1443 1.41 heas hme_init(sc);
1444 1.41 heas }
1445 1.1 pk arp_ifinit(ifp, ifa);
1446 1.1 pk break;
1447 1.1 pk #endif
1448 1.1 pk default:
1449 1.41 heas ifp->if_flags |= IFF_UP;
1450 1.1 pk hme_init(sc);
1451 1.1 pk break;
1452 1.1 pk }
1453 1.1 pk break;
1454 1.1 pk
1455 1.1 pk case SIOCSIFFLAGS:
1456 1.45 heas #ifdef HMEDEBUG
1457 1.45 heas sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1458 1.45 heas #endif
1459 1.45 heas
1460 1.1 pk if ((ifp->if_flags & IFF_UP) == 0 &&
1461 1.1 pk (ifp->if_flags & IFF_RUNNING) != 0) {
1462 1.1 pk /*
1463 1.1 pk * If interface is marked down and it is running, then
1464 1.1 pk * stop it.
1465 1.1 pk */
1466 1.1 pk hme_stop(sc);
1467 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1468 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0 &&
1469 1.1 pk (ifp->if_flags & IFF_RUNNING) == 0) {
1470 1.1 pk /*
1471 1.1 pk * If interface is marked up and it is stopped, then
1472 1.1 pk * start it.
1473 1.1 pk */
1474 1.1 pk hme_init(sc);
1475 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0) {
1476 1.1 pk /*
1477 1.41 heas * If setting debug or promiscuous mode, do not reset
1478 1.41 heas * the chip; for everything else, call hme_init()
1479 1.41 heas * which will trigger a reset.
1480 1.1 pk */
1481 1.41 heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1482 1.46 heas if (ifp->if_flags != sc->sc_if_flags) {
1483 1.45 heas if ((ifp->if_flags & (~RESETIGN))
1484 1.45 heas == (sc->sc_if_flags & (~RESETIGN)))
1485 1.45 heas hme_setladrf(sc);
1486 1.45 heas else
1487 1.45 heas hme_init(sc);
1488 1.45 heas }
1489 1.41 heas #undef RESETIGN
1490 1.1 pk }
1491 1.45 heas
1492 1.45 heas if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1493 1.45 heas hme_init(sc);
1494 1.45 heas
1495 1.1 pk break;
1496 1.1 pk
1497 1.1 pk case SIOCADDMULTI:
1498 1.1 pk case SIOCDELMULTI:
1499 1.1 pk error = (cmd == SIOCADDMULTI) ?
1500 1.1 pk ether_addmulti(ifr, &sc->sc_ethercom) :
1501 1.1 pk ether_delmulti(ifr, &sc->sc_ethercom);
1502 1.1 pk
1503 1.1 pk if (error == ENETRESET) {
1504 1.1 pk /*
1505 1.1 pk * Multicast list has changed; set the hardware filter
1506 1.1 pk * accordingly.
1507 1.1 pk */
1508 1.43 thorpej if (ifp->if_flags & IFF_RUNNING)
1509 1.43 thorpej hme_setladrf(sc);
1510 1.1 pk error = 0;
1511 1.1 pk }
1512 1.1 pk break;
1513 1.1 pk
1514 1.1 pk case SIOCGIFMEDIA:
1515 1.1 pk case SIOCSIFMEDIA:
1516 1.1 pk error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1517 1.1 pk break;
1518 1.1 pk
1519 1.1 pk default:
1520 1.1 pk error = EINVAL;
1521 1.1 pk break;
1522 1.1 pk }
1523 1.1 pk
1524 1.41 heas sc->sc_if_flags = ifp->if_flags;
1525 1.1 pk splx(s);
1526 1.1 pk return (error);
1527 1.1 pk }
1528 1.1 pk
1529 1.1 pk void
1530 1.1 pk hme_shutdown(arg)
1531 1.1 pk void *arg;
1532 1.1 pk {
1533 1.28 tron
1534 1.1 pk hme_stop((struct hme_softc *)arg);
1535 1.1 pk }
1536 1.1 pk
1537 1.1 pk /*
1538 1.1 pk * Set up the logical address filter.
1539 1.1 pk */
1540 1.1 pk void
1541 1.1 pk hme_setladrf(sc)
1542 1.1 pk struct hme_softc *sc;
1543 1.1 pk {
1544 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1545 1.1 pk struct ether_multi *enm;
1546 1.1 pk struct ether_multistep step;
1547 1.28 tron struct ethercom *ec = &sc->sc_ethercom;
1548 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1549 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1550 1.1 pk u_char *cp;
1551 1.1 pk u_int32_t crc;
1552 1.1 pk u_int32_t hash[4];
1553 1.14 pk u_int32_t v;
1554 1.1 pk int len;
1555 1.1 pk
1556 1.14 pk /* Clear hash table */
1557 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1558 1.14 pk
1559 1.14 pk /* Get current RX configuration */
1560 1.14 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1561 1.14 pk
1562 1.14 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1563 1.14 pk /* Turn on promiscuous mode; turn off the hash filter */
1564 1.14 pk v |= HME_MAC_RXCFG_PMISC;
1565 1.14 pk v &= ~HME_MAC_RXCFG_HENABLE;
1566 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1567 1.14 pk goto chipit;
1568 1.14 pk }
1569 1.14 pk
1570 1.14 pk /* Turn off promiscuous mode; turn on the hash filter */
1571 1.14 pk v &= ~HME_MAC_RXCFG_PMISC;
1572 1.14 pk v |= HME_MAC_RXCFG_HENABLE;
1573 1.14 pk
1574 1.1 pk /*
1575 1.1 pk * Set up multicast address filter by passing all multicast addresses
1576 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1577 1.1 pk * index into the 64 bit logical address filter. The high order bit
1578 1.1 pk * selects the word, while the rest of the bits select the bit within
1579 1.1 pk * the word.
1580 1.1 pk */
1581 1.1 pk
1582 1.28 tron ETHER_FIRST_MULTI(step, ec, enm);
1583 1.1 pk while (enm != NULL) {
1584 1.28 tron if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1585 1.1 pk /*
1586 1.1 pk * We must listen to a range of multicast addresses.
1587 1.1 pk * For now, just accept all multicasts, rather than
1588 1.1 pk * trying to set only those filter bits needed to match
1589 1.1 pk * the range. (At this time, the only use of address
1590 1.1 pk * ranges is for IP multicast routing, for which the
1591 1.1 pk * range is big enough to require all bits set.)
1592 1.1 pk */
1593 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1594 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1595 1.14 pk goto chipit;
1596 1.1 pk }
1597 1.1 pk
1598 1.1 pk cp = enm->enm_addrlo;
1599 1.1 pk crc = 0xffffffff;
1600 1.1 pk for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1601 1.1 pk int octet = *cp++;
1602 1.1 pk int i;
1603 1.1 pk
1604 1.1 pk #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1605 1.1 pk for (i = 0; i < 8; i++) {
1606 1.1 pk if ((crc & 1) ^ (octet & 1)) {
1607 1.1 pk crc >>= 1;
1608 1.1 pk crc ^= MC_POLY_LE;
1609 1.1 pk } else {
1610 1.1 pk crc >>= 1;
1611 1.1 pk }
1612 1.1 pk octet >>= 1;
1613 1.1 pk }
1614 1.1 pk }
1615 1.1 pk /* Just want the 6 most significant bits. */
1616 1.1 pk crc >>= 26;
1617 1.1 pk
1618 1.1 pk /* Set the corresponding bit in the filter. */
1619 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1620 1.1 pk
1621 1.1 pk ETHER_NEXT_MULTI(step, enm);
1622 1.1 pk }
1623 1.1 pk
1624 1.14 pk ifp->if_flags &= ~IFF_ALLMULTI;
1625 1.14 pk
1626 1.14 pk chipit:
1627 1.14 pk /* Now load the hash table into the chip */
1628 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1629 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1630 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1631 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1632 1.14 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1633 1.1 pk }
1634 1.1 pk
1635 1.28 tron /*
1636 1.28 tron * Routines for accessing the transmit and receive buffers.
1637 1.28 tron * The various CPU and adapter configurations supported by this
1638 1.28 tron * driver require three different access methods for buffers
1639 1.28 tron * and descriptors:
1640 1.28 tron * (1) contig (contiguous data; no padding),
1641 1.28 tron * (2) gap2 (two bytes of data followed by two bytes of padding),
1642 1.28 tron * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1643 1.28 tron */
1644 1.28 tron
1645 1.28 tron #if 0
1646 1.28 tron /*
1647 1.28 tron * contig: contiguous data with no padding.
1648 1.28 tron *
1649 1.28 tron * Buffers may have any alignment.
1650 1.28 tron */
1651 1.28 tron
1652 1.28 tron void
1653 1.28 tron hme_copytobuf_contig(sc, from, ri, len)
1654 1.26 tron struct hme_softc *sc;
1655 1.28 tron void *from;
1656 1.28 tron int ri, len;
1657 1.26 tron {
1658 1.56 christos volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1659 1.26 tron
1660 1.1 pk /*
1661 1.28 tron * Just call memcpy() to do the work.
1662 1.1 pk */
1663 1.28 tron memcpy(buf, from, len);
1664 1.1 pk }
1665 1.1 pk
1666 1.28 tron void
1667 1.28 tron hme_copyfrombuf_contig(sc, to, boff, len)
1668 1.1 pk struct hme_softc *sc;
1669 1.28 tron void *to;
1670 1.28 tron int boff, len;
1671 1.1 pk {
1672 1.56 christos volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1673 1.26 tron
1674 1.28 tron /*
1675 1.28 tron * Just call memcpy() to do the work.
1676 1.28 tron */
1677 1.28 tron memcpy(to, buf, len);
1678 1.1 pk }
1679 1.28 tron #endif
1680