Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.61
      1  1.61    dyoung /*	$NetBSD: hme.c,v 1.61 2008/01/19 22:10:16 dyoung Exp $	*/
      2   1.1        pk 
      3   1.1        pk /*-
      4   1.1        pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5   1.1        pk  * All rights reserved.
      6   1.1        pk  *
      7   1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1        pk  * by Paul Kranenburg.
      9   1.1        pk  *
     10   1.1        pk  * Redistribution and use in source and binary forms, with or without
     11   1.1        pk  * modification, are permitted provided that the following conditions
     12   1.1        pk  * are met:
     13   1.1        pk  * 1. Redistributions of source code must retain the above copyright
     14   1.1        pk  *    notice, this list of conditions and the following disclaimer.
     15   1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        pk  *    documentation and/or other materials provided with the distribution.
     18   1.1        pk  * 3. All advertising materials mentioning features or use of this software
     19   1.1        pk  *    must display the following acknowledgement:
     20   1.1        pk  *        This product includes software developed by the NetBSD
     21   1.1        pk  *        Foundation, Inc. and its contributors.
     22   1.1        pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1        pk  *    contributors may be used to endorse or promote products derived
     24   1.1        pk  *    from this software without specific prior written permission.
     25   1.1        pk  *
     26   1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1        pk  */
     38   1.1        pk 
     39   1.1        pk /*
     40   1.1        pk  * HME Ethernet module driver.
     41   1.1        pk  */
     42  1.25     lukem 
     43  1.25     lukem #include <sys/cdefs.h>
     44  1.61    dyoung __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.61 2008/01/19 22:10:16 dyoung Exp $");
     45   1.1        pk 
     46  1.39    petrov /* #define HMEDEBUG */
     47   1.1        pk 
     48   1.1        pk #include "opt_inet.h"
     49   1.1        pk #include "bpfilter.h"
     50   1.1        pk #include "rnd.h"
     51   1.1        pk 
     52   1.1        pk #include <sys/param.h>
     53   1.1        pk #include <sys/systm.h>
     54   1.5        pk #include <sys/kernel.h>
     55  1.42      heas #include <sys/mbuf.h>
     56   1.1        pk #include <sys/syslog.h>
     57   1.1        pk #include <sys/socket.h>
     58   1.1        pk #include <sys/device.h>
     59   1.1        pk #include <sys/malloc.h>
     60   1.1        pk #include <sys/ioctl.h>
     61   1.1        pk #include <sys/errno.h>
     62   1.1        pk #if NRND > 0
     63   1.1        pk #include <sys/rnd.h>
     64   1.1        pk #endif
     65   1.1        pk 
     66   1.1        pk #include <net/if.h>
     67   1.1        pk #include <net/if_dl.h>
     68   1.1        pk #include <net/if_ether.h>
     69   1.1        pk #include <net/if_media.h>
     70   1.1        pk 
     71   1.1        pk #ifdef INET
     72   1.1        pk #include <netinet/in.h>
     73   1.1        pk #include <netinet/if_inarp.h>
     74   1.1        pk #include <netinet/in_systm.h>
     75   1.1        pk #include <netinet/in_var.h>
     76   1.1        pk #include <netinet/ip.h>
     77  1.46      heas #include <netinet/tcp.h>
     78  1.46      heas #include <netinet/udp.h>
     79   1.1        pk #endif
     80   1.1        pk 
     81   1.1        pk 
     82   1.1        pk #if NBPFILTER > 0
     83   1.1        pk #include <net/bpf.h>
     84   1.1        pk #include <net/bpfdesc.h>
     85   1.1        pk #endif
     86   1.1        pk 
     87   1.1        pk #include <dev/mii/mii.h>
     88   1.1        pk #include <dev/mii/miivar.h>
     89   1.1        pk 
     90  1.60        ad #include <sys/bus.h>
     91   1.1        pk 
     92   1.1        pk #include <dev/ic/hmereg.h>
     93   1.1        pk #include <dev/ic/hmevar.h>
     94   1.1        pk 
     95  1.44     perry void		hme_start(struct ifnet *);
     96  1.58    martin void		hme_stop(struct hme_softc *,bool);
     97  1.56  christos int		hme_ioctl(struct ifnet *, u_long, void *);
     98  1.44     perry void		hme_tick(void *);
     99  1.44     perry void		hme_watchdog(struct ifnet *);
    100  1.44     perry void		hme_shutdown(void *);
    101  1.61    dyoung int		hme_init(struct hme_softc *);
    102  1.44     perry void		hme_meminit(struct hme_softc *);
    103  1.44     perry void		hme_mifinit(struct hme_softc *);
    104  1.44     perry void		hme_reset(struct hme_softc *);
    105  1.44     perry void		hme_setladrf(struct hme_softc *);
    106   1.1        pk 
    107   1.1        pk /* MII methods & callbacks */
    108  1.44     perry static int	hme_mii_readreg(struct device *, int, int);
    109  1.44     perry static void	hme_mii_writereg(struct device *, int, int, int);
    110  1.44     perry static void	hme_mii_statchg(struct device *);
    111  1.44     perry 
    112  1.44     perry int		hme_mediachange(struct ifnet *);
    113  1.44     perry 
    114  1.46      heas struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    115  1.44     perry int		hme_put(struct hme_softc *, int, struct mbuf *);
    116  1.46      heas void		hme_read(struct hme_softc *, int, uint32_t);
    117  1.44     perry int		hme_eint(struct hme_softc *, u_int);
    118  1.44     perry int		hme_rint(struct hme_softc *);
    119  1.44     perry int		hme_tint(struct hme_softc *);
    120   1.1        pk 
    121  1.44     perry static int	ether_cmp(u_char *, u_char *);
    122  1.28      tron 
    123  1.28      tron /* Default buffer copy routines */
    124  1.44     perry void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    125  1.44     perry void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    126  1.44     perry void	hme_zerobuf_contig(struct hme_softc *, int, int);
    127  1.28      tron 
    128  1.28      tron 
    129   1.1        pk void
    130   1.1        pk hme_config(sc)
    131   1.1        pk 	struct hme_softc *sc;
    132   1.1        pk {
    133   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    134   1.1        pk 	struct mii_data *mii = &sc->sc_mii;
    135   1.5        pk 	struct mii_softc *child;
    136  1.11        pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    137   1.1        pk 	bus_dma_segment_t seg;
    138   1.1        pk 	bus_size_t size;
    139  1.28      tron 	int rseg, error;
    140   1.1        pk 
    141   1.1        pk 	/*
    142   1.1        pk 	 * HME common initialization.
    143   1.1        pk 	 *
    144   1.1        pk 	 * hme_softc fields that must be initialized by the front-end:
    145   1.1        pk 	 *
    146   1.1        pk 	 * the bus tag:
    147   1.1        pk 	 *	sc_bustag
    148   1.1        pk 	 *
    149  1.37       wiz 	 * the DMA bus tag:
    150   1.1        pk 	 *	sc_dmatag
    151   1.1        pk 	 *
    152   1.1        pk 	 * the bus handles:
    153   1.1        pk 	 *	sc_seb		(Shared Ethernet Block registers)
    154   1.1        pk 	 *	sc_erx		(Receiver Unit registers)
    155   1.1        pk 	 *	sc_etx		(Transmitter Unit registers)
    156   1.1        pk 	 *	sc_mac		(MAC registers)
    157  1.36       wiz 	 *	sc_mif		(Management Interface registers)
    158   1.1        pk 	 *
    159   1.1        pk 	 * the maximum bus burst size:
    160   1.1        pk 	 *	sc_burst
    161   1.1        pk 	 *
    162  1.28      tron 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    163  1.28      tron 	 *	rb_membase, rb_dmabase)
    164  1.28      tron 	 *
    165   1.1        pk 	 * the local Ethernet address:
    166   1.1        pk 	 *	sc_enaddr
    167   1.1        pk 	 *
    168   1.1        pk 	 */
    169   1.1        pk 
    170   1.1        pk 	/* Make sure the chip is stopped. */
    171  1.58    martin 	hme_stop(sc, true);
    172   1.1        pk 
    173   1.1        pk 
    174  1.28      tron 	/*
    175  1.28      tron 	 * Allocate descriptors and buffers
    176  1.28      tron 	 * XXX - do all this differently.. and more configurably,
    177  1.28      tron 	 * eg. use things as `dma_load_mbuf()' on transmit,
    178  1.28      tron 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    179  1.38       wiz 	 *     all the time) on the receiver side.
    180  1.28      tron 	 *
    181  1.28      tron 	 * Note: receive buffers must be 64-byte aligned.
    182  1.28      tron 	 * Also, apparently, the buffers must extend to a DMA burst
    183  1.28      tron 	 * boundary beyond the maximum packet size.
    184  1.28      tron 	 */
    185  1.28      tron #define _HME_NDESC	128
    186  1.28      tron #define _HME_BUFSZ	1600
    187  1.28      tron 
    188  1.28      tron 	/* Note: the # of descriptors must be a multiple of 16 */
    189  1.28      tron 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    190  1.28      tron 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    191   1.1        pk 
    192   1.1        pk 	/*
    193   1.1        pk 	 * Allocate DMA capable memory
    194   1.1        pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    195   1.1        pk 	 * take this into account when calculating the size. Note that
    196   1.1        pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    197  1.28      tron 	 * so we allocate that much regardless of _HME_NDESC.
    198   1.1        pk 	 */
    199  1.28      tron 	size =	2048 +					/* TX descriptors */
    200  1.28      tron 		2048 +					/* RX descriptors */
    201  1.28      tron 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    202  1.46      heas 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    203  1.11        pk 
    204  1.11        pk 	/* Allocate DMA buffer */
    205  1.28      tron 	if ((error = bus_dmamem_alloc(dmatag, size,
    206  1.28      tron 				      2048, 0,
    207  1.28      tron 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    208   1.1        pk 		printf("%s: DMA buffer alloc error %d\n",
    209  1.28      tron 			sc->sc_dev.dv_xname, error);
    210  1.10       mrg 		return;
    211   1.1        pk 	}
    212   1.1        pk 
    213  1.11        pk 	/* Map DMA memory in CPU addressable space */
    214  1.11        pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    215  1.28      tron 				    &sc->sc_rb.rb_membase,
    216  1.28      tron 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    217   1.1        pk 		printf("%s: DMA buffer map error %d\n",
    218  1.28      tron 			sc->sc_dev.dv_xname, error);
    219  1.11        pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    220  1.11        pk 		bus_dmamem_free(dmatag, &seg, rseg);
    221   1.1        pk 		return;
    222   1.1        pk 	}
    223  1.13       mrg 
    224  1.13       mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    225  1.28      tron 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    226  1.13       mrg 		printf("%s: DMA map create error %d\n",
    227  1.28      tron 			sc->sc_dev.dv_xname, error);
    228  1.13       mrg 		return;
    229  1.13       mrg 	}
    230  1.13       mrg 
    231  1.13       mrg 	/* Load the buffer */
    232  1.13       mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    233  1.17       mrg 	    sc->sc_rb.rb_membase, size, NULL,
    234  1.17       mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    235  1.13       mrg 		printf("%s: DMA buffer map load error %d\n",
    236  1.28      tron 			sc->sc_dev.dv_xname, error);
    237  1.13       mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    238  1.13       mrg 		return;
    239  1.13       mrg 	}
    240  1.13       mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    241   1.1        pk 
    242  1.22   thorpej 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    243  1.22   thorpej 	    ether_sprintf(sc->sc_enaddr));
    244   1.2        pk 
    245   1.1        pk 	/* Initialize ifnet structure. */
    246  1.21   thorpej 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    247   1.1        pk 	ifp->if_softc = sc;
    248   1.1        pk 	ifp->if_start = hme_start;
    249   1.1        pk 	ifp->if_ioctl = hme_ioctl;
    250   1.1        pk 	ifp->if_watchdog = hme_watchdog;
    251   1.1        pk 	ifp->if_flags =
    252   1.1        pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    253  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    254  1.51      yamt 	ifp->if_capabilities |=
    255  1.51      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    256  1.51      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    257  1.20   thorpej 	IFQ_SET_READY(&ifp->if_snd);
    258   1.1        pk 
    259   1.1        pk 	/* Initialize ifmedia structures and MII info */
    260   1.1        pk 	mii->mii_ifp = ifp;
    261  1.34    petrov 	mii->mii_readreg = hme_mii_readreg;
    262   1.1        pk 	mii->mii_writereg = hme_mii_writereg;
    263   1.1        pk 	mii->mii_statchg = hme_mii_statchg;
    264   1.1        pk 
    265  1.61    dyoung 	sc->sc_ethercom.ec_mii = mii;
    266  1.61    dyoung 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    267   1.1        pk 
    268   1.4        pk 	hme_mifinit(sc);
    269   1.4        pk 
    270   1.6   thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    271  1.34    petrov 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    272   1.2        pk 
    273   1.5        pk 	child = LIST_FIRST(&mii->mii_phys);
    274   1.5        pk 	if (child == NULL) {
    275   1.1        pk 		/* No PHY attached */
    276  1.61    dyoung 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    277  1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    278   1.1        pk 	} else {
    279   1.1        pk 		/*
    280   1.5        pk 		 * Walk along the list of attached MII devices and
    281   1.5        pk 		 * establish an `MII instance' to `phy number'
    282   1.5        pk 		 * mapping. We'll use this mapping in media change
    283   1.5        pk 		 * requests to determine which phy to use to program
    284   1.5        pk 		 * the MIF configuration register.
    285   1.5        pk 		 */
    286   1.5        pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    287   1.5        pk 			/*
    288   1.5        pk 			 * Note: we support just two PHYs: the built-in
    289   1.5        pk 			 * internal device and an external on the MII
    290   1.5        pk 			 * connector.
    291   1.5        pk 			 */
    292   1.5        pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    293  1.55  christos 				printf("%s: cannot accommodate MII device %s"
    294  1.28      tron 				       " at phy %d, instance %d\n",
    295  1.28      tron 				       sc->sc_dev.dv_xname,
    296  1.28      tron 				       child->mii_dev.dv_xname,
    297  1.28      tron 				       child->mii_phy, child->mii_inst);
    298   1.5        pk 				continue;
    299   1.5        pk 			}
    300   1.5        pk 
    301   1.5        pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    302   1.5        pk 		}
    303   1.5        pk 
    304   1.5        pk 		/*
    305   1.1        pk 		 * XXX - we can really do the following ONLY if the
    306   1.1        pk 		 * phy indeed has the auto negotiation capability!!
    307   1.1        pk 		 */
    308  1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    309   1.1        pk 	}
    310  1.27      tron 
    311  1.28      tron 	/* claim 802.1q capability */
    312  1.27      tron 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    313   1.1        pk 
    314   1.1        pk 	/* Attach the interface. */
    315   1.1        pk 	if_attach(ifp);
    316   1.1        pk 	ether_ifattach(ifp, sc->sc_enaddr);
    317   1.1        pk 
    318   1.1        pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    319   1.1        pk 	if (sc->sc_sh == NULL)
    320   1.1        pk 		panic("hme_config: can't establish shutdownhook");
    321   1.1        pk 
    322   1.1        pk #if NRND > 0
    323   1.1        pk 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    324   1.1        pk 			  RND_TYPE_NET, 0);
    325   1.1        pk #endif
    326   1.5        pk 
    327  1.57        ad 	callout_init(&sc->sc_tick_ch, 0);
    328   1.5        pk }
    329   1.5        pk 
    330   1.5        pk void
    331   1.5        pk hme_tick(arg)
    332   1.5        pk 	void *arg;
    333   1.5        pk {
    334   1.5        pk 	struct hme_softc *sc = arg;
    335   1.5        pk 	int s;
    336   1.5        pk 
    337   1.5        pk 	s = splnet();
    338   1.5        pk 	mii_tick(&sc->sc_mii);
    339   1.5        pk 	splx(s);
    340   1.5        pk 
    341   1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    342   1.1        pk }
    343   1.1        pk 
    344   1.1        pk void
    345   1.1        pk hme_reset(sc)
    346   1.1        pk 	struct hme_softc *sc;
    347   1.1        pk {
    348   1.1        pk 	int s;
    349   1.1        pk 
    350   1.1        pk 	s = splnet();
    351  1.61    dyoung 	(void)hme_init(sc);
    352   1.1        pk 	splx(s);
    353   1.1        pk }
    354   1.1        pk 
    355   1.1        pk void
    356  1.58    martin hme_stop(struct hme_softc *sc, bool chip_only)
    357   1.1        pk {
    358   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    359   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    360   1.1        pk 	int n;
    361   1.1        pk 
    362  1.58    martin 	if (!chip_only) {
    363  1.58    martin 		callout_stop(&sc->sc_tick_ch);
    364  1.58    martin 		mii_down(&sc->sc_mii);
    365  1.58    martin 	}
    366   1.5        pk 
    367  1.33        pk 	/* Mask all interrupts */
    368  1.33        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    369  1.33        pk 
    370   1.1        pk 	/* Reset transmitter and receiver */
    371   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    372  1.28      tron 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    373   1.1        pk 
    374   1.1        pk 	for (n = 0; n < 20; n++) {
    375   1.1        pk 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    376   1.1        pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    377   1.1        pk 			return;
    378   1.1        pk 		DELAY(20);
    379   1.1        pk 	}
    380   1.1        pk 
    381   1.1        pk 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
    382   1.1        pk }
    383   1.1        pk 
    384   1.1        pk void
    385   1.1        pk hme_meminit(sc)
    386   1.1        pk 	struct hme_softc *sc;
    387   1.1        pk {
    388  1.28      tron 	bus_addr_t txbufdma, rxbufdma;
    389   1.1        pk 	bus_addr_t dma;
    390  1.56  christos 	char *p;
    391  1.28      tron 	unsigned int ntbuf, nrbuf, i;
    392   1.1        pk 	struct hme_ring *hr = &sc->sc_rb;
    393   1.1        pk 
    394   1.1        pk 	p = hr->rb_membase;
    395   1.1        pk 	dma = hr->rb_dmabase;
    396   1.1        pk 
    397  1.28      tron 	ntbuf = hr->rb_ntbuf;
    398  1.28      tron 	nrbuf = hr->rb_nrbuf;
    399  1.28      tron 
    400   1.1        pk 	/*
    401   1.1        pk 	 * Allocate transmit descriptors
    402   1.1        pk 	 */
    403   1.1        pk 	hr->rb_txd = p;
    404   1.1        pk 	hr->rb_txddma = dma;
    405  1.28      tron 	p += ntbuf * HME_XD_SIZE;
    406  1.28      tron 	dma += ntbuf * HME_XD_SIZE;
    407   1.4        pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    408   1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    409  1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    410   1.1        pk 
    411   1.1        pk 	/*
    412   1.1        pk 	 * Allocate receive descriptors
    413   1.1        pk 	 */
    414   1.1        pk 	hr->rb_rxd = p;
    415   1.1        pk 	hr->rb_rxddma = dma;
    416  1.28      tron 	p += nrbuf * HME_XD_SIZE;
    417  1.28      tron 	dma += nrbuf * HME_XD_SIZE;
    418   1.4        pk 	/* Again move forward to the next 2048 byte boundary.*/
    419   1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    420  1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    421   1.1        pk 
    422  1.28      tron 
    423   1.1        pk 	/*
    424  1.28      tron 	 * Allocate transmit buffers
    425   1.1        pk 	 */
    426  1.28      tron 	hr->rb_txbuf = p;
    427  1.28      tron 	txbufdma = dma;
    428  1.28      tron 	p += ntbuf * _HME_BUFSZ;
    429  1.28      tron 	dma += ntbuf * _HME_BUFSZ;
    430  1.28      tron 
    431  1.28      tron 	/*
    432  1.28      tron 	 * Allocate receive buffers
    433  1.28      tron 	 */
    434  1.28      tron 	hr->rb_rxbuf = p;
    435  1.28      tron 	rxbufdma = dma;
    436  1.28      tron 	p += nrbuf * _HME_BUFSZ;
    437  1.28      tron 	dma += nrbuf * _HME_BUFSZ;
    438  1.28      tron 
    439  1.28      tron 	/*
    440  1.28      tron 	 * Initialize transmit buffer descriptors
    441  1.28      tron 	 */
    442  1.28      tron 	for (i = 0; i < ntbuf; i++) {
    443  1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    444  1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    445   1.1        pk 	}
    446   1.1        pk 
    447   1.1        pk 	/*
    448  1.28      tron 	 * Initialize receive buffer descriptors
    449   1.1        pk 	 */
    450  1.28      tron 	for (i = 0; i < nrbuf; i++) {
    451  1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    452  1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    453  1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    454   1.1        pk 	}
    455   1.1        pk 
    456  1.28      tron 	hr->rb_tdhead = hr->rb_tdtail = 0;
    457  1.28      tron 	hr->rb_td_nbusy = 0;
    458  1.28      tron 	hr->rb_rdtail = 0;
    459   1.1        pk }
    460   1.1        pk 
    461   1.1        pk /*
    462   1.1        pk  * Initialization of interface; set up initialization block
    463   1.1        pk  * and transmit/receive descriptor rings.
    464   1.1        pk  */
    465  1.61    dyoung int
    466   1.1        pk hme_init(sc)
    467   1.1        pk 	struct hme_softc *sc;
    468   1.1        pk {
    469   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    470   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    471   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    472   1.1        pk 	bus_space_handle_t etx = sc->sc_etx;
    473   1.1        pk 	bus_space_handle_t erx = sc->sc_erx;
    474   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
    475   1.1        pk 	u_int8_t *ea;
    476   1.1        pk 	u_int32_t v;
    477  1.61    dyoung 	int rc;
    478   1.1        pk 
    479   1.1        pk 	/*
    480   1.1        pk 	 * Initialization sequence. The numbered steps below correspond
    481   1.1        pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    482   1.1        pk 	 * Channel Engine manual (part of the PCIO manual).
    483   1.1        pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    484   1.1        pk 	 */
    485   1.1        pk 
    486   1.1        pk 	/* step 1 & 2. Reset the Ethernet Channel */
    487  1.58    martin 	hme_stop(sc, false);
    488   1.1        pk 
    489   1.4        pk 	/* Re-initialize the MIF */
    490   1.4        pk 	hme_mifinit(sc);
    491   1.4        pk 
    492   1.1        pk 	/* Call MI reset function if any */
    493   1.1        pk 	if (sc->sc_hwreset)
    494   1.1        pk 		(*sc->sc_hwreset)(sc);
    495   1.1        pk 
    496   1.1        pk #if 0
    497   1.1        pk 	/* Mask all MIF interrupts, just in case */
    498   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    499   1.1        pk #endif
    500   1.1        pk 
    501   1.1        pk 	/* step 3. Setup data structures in host memory */
    502   1.1        pk 	hme_meminit(sc);
    503   1.1        pk 
    504   1.1        pk 	/* step 4. TX MAC registers & counters */
    505   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    506   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    507   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    508   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    509  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    510  1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    511  1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    512  1.45      heas 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    513   1.1        pk 
    514   1.1        pk 	/* Load station MAC address */
    515   1.1        pk 	ea = sc->sc_enaddr;
    516   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    517   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    518   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    519   1.1        pk 
    520   1.1        pk 	/*
    521   1.1        pk 	 * Init seed for backoff
    522   1.1        pk 	 * (source suggested by manual: low 10 bits of MAC address)
    523  1.42      heas 	 */
    524   1.1        pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    525   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    526   1.1        pk 
    527   1.1        pk 
    528   1.1        pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    529   1.1        pk 
    530   1.1        pk 
    531   1.1        pk 	/* step 5. RX MAC registers & counters */
    532   1.1        pk 	hme_setladrf(sc);
    533   1.1        pk 
    534   1.1        pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    535   1.1        pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    536  1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    537   1.1        pk 
    538   1.1        pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    539  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    540  1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    541  1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    542   1.1        pk 
    543   1.1        pk 	/* step 8. Global Configuration & Interrupt Mask */
    544   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    545  1.28      tron 			~(
    546  1.28      tron 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    547  1.28      tron 			  HME_SEB_STAT_HOSTTOTX |
    548  1.28      tron 			  HME_SEB_STAT_RXTOHOST |
    549  1.28      tron 			  HME_SEB_STAT_TXALL |
    550  1.28      tron 			  HME_SEB_STAT_TXPERR |
    551  1.28      tron 			  HME_SEB_STAT_RCNTEXP |
    552  1.33        pk 			  /*HME_SEB_STAT_MIFIRQ |*/
    553  1.28      tron 			  HME_SEB_STAT_ALL_ERRORS ));
    554   1.1        pk 
    555   1.1        pk 	switch (sc->sc_burst) {
    556   1.1        pk 	default:
    557   1.1        pk 		v = 0;
    558   1.1        pk 		break;
    559   1.1        pk 	case 16:
    560   1.1        pk 		v = HME_SEB_CFG_BURST16;
    561   1.1        pk 		break;
    562   1.1        pk 	case 32:
    563   1.1        pk 		v = HME_SEB_CFG_BURST32;
    564   1.1        pk 		break;
    565   1.1        pk 	case 64:
    566   1.1        pk 		v = HME_SEB_CFG_BURST64;
    567   1.1        pk 		break;
    568   1.1        pk 	}
    569   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    570   1.1        pk 
    571   1.1        pk 	/* step 9. ETX Configuration: use mostly default values */
    572   1.1        pk 
    573   1.1        pk 	/* Enable DMA */
    574   1.2        pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    575   1.1        pk 	v |= HME_ETX_CFG_DMAENABLE;
    576   1.2        pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    577   1.1        pk 
    578   1.3        pk 	/* Transmit Descriptor ring size: in increments of 16 */
    579  1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    580  1.28      tron 
    581   1.1        pk 
    582   1.3        pk 	/* step 10. ERX Configuration */
    583   1.2        pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    584  1.28      tron 
    585  1.28      tron 	/* Encode Receive Descriptor ring size: four possible values */
    586  1.28      tron 	switch (_HME_NDESC /*XXX*/) {
    587  1.28      tron 	case 32:
    588  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE32;
    589  1.28      tron 		break;
    590  1.28      tron 	case 64:
    591  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE64;
    592  1.28      tron 		break;
    593  1.28      tron 	case 128:
    594  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE128;
    595  1.28      tron 		break;
    596  1.28      tron 	case 256:
    597  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE256;
    598  1.28      tron 		break;
    599  1.28      tron 	default:
    600  1.28      tron 		printf("hme: invalid Receive Descriptor ring size\n");
    601  1.28      tron 		break;
    602  1.28      tron 	}
    603  1.28      tron 
    604   1.3        pk 	/* Enable DMA */
    605  1.28      tron 	v |= HME_ERX_CFG_DMAENABLE;
    606  1.46      heas 
    607  1.46      heas 	/* set h/w rx checksum start offset (# of half-words) */
    608  1.49      heas #ifdef INET
    609  1.48     perry 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
    610  1.46      heas 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    611  1.46      heas 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
    612  1.46      heas 		HME_ERX_CFG_CSUMSTART;
    613  1.49      heas #endif
    614   1.2        pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    615   1.1        pk 
    616   1.1        pk 	/* step 11. XIF Configuration */
    617   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    618   1.1        pk 	v |= HME_MAC_XIF_OE;
    619   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    620   1.1        pk 
    621   1.1        pk 	/* step 12. RX_MAC Configuration Register */
    622   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    623  1.46      heas 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    624   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    625   1.1        pk 
    626   1.1        pk 	/* step 13. TX_MAC Configuration Register */
    627   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    628   1.2        pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    629   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    630   1.1        pk 
    631   1.1        pk 	/* step 14. Issue Transmit Pending command */
    632   1.1        pk 
    633   1.1        pk 	/* Call MI initialization function if any */
    634   1.1        pk 	if (sc->sc_hwinit)
    635   1.1        pk 		(*sc->sc_hwinit)(sc);
    636  1.29   thorpej 
    637  1.29   thorpej 	/* Set the current media. */
    638  1.61    dyoung 	if ((rc = hme_mediachange(ifp)) != 0)
    639  1.61    dyoung 		return rc;
    640   1.9   thorpej 
    641   1.9   thorpej 	/* Start the one second timer. */
    642   1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    643   1.1        pk 
    644   1.1        pk 	ifp->if_flags |= IFF_RUNNING;
    645   1.1        pk 	ifp->if_flags &= ~IFF_OACTIVE;
    646  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    647   1.1        pk 	ifp->if_timer = 0;
    648   1.1        pk 	hme_start(ifp);
    649  1.61    dyoung 	return 0;
    650   1.1        pk }
    651   1.1        pk 
    652  1.28      tron /*
    653  1.28      tron  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    654  1.28      tron  * speed.
    655  1.28      tron  */
    656  1.53     perry static inline int
    657  1.28      tron ether_cmp(a, b)
    658  1.28      tron 	u_char *a, *b;
    659  1.42      heas {
    660  1.42      heas 
    661  1.28      tron 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    662  1.28      tron 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    663  1.28      tron 		return (0);
    664  1.28      tron 	return (1);
    665  1.28      tron }
    666  1.28      tron 
    667  1.28      tron 
    668  1.28      tron /*
    669  1.28      tron  * Routine to copy from mbuf chain to transmit buffer in
    670  1.28      tron  * network buffer memory.
    671  1.28      tron  * Returns the amount of data copied.
    672  1.28      tron  */
    673  1.28      tron int
    674  1.28      tron hme_put(sc, ri, m)
    675  1.28      tron 	struct hme_softc *sc;
    676  1.28      tron 	int ri;			/* Ring index */
    677  1.28      tron 	struct mbuf *m;
    678  1.28      tron {
    679  1.28      tron 	struct mbuf *n;
    680  1.28      tron 	int len, tlen = 0;
    681  1.56  christos 	char *bp;
    682  1.28      tron 
    683  1.56  christos 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    684  1.28      tron 	for (; m; m = n) {
    685  1.28      tron 		len = m->m_len;
    686  1.28      tron 		if (len == 0) {
    687  1.28      tron 			MFREE(m, n);
    688  1.28      tron 			continue;
    689  1.28      tron 		}
    690  1.56  christos 		memcpy(bp, mtod(m, void *), len);
    691  1.28      tron 		bp += len;
    692  1.28      tron 		tlen += len;
    693  1.28      tron 		MFREE(m, n);
    694  1.28      tron 	}
    695  1.28      tron 	return (tlen);
    696  1.28      tron }
    697  1.28      tron 
    698  1.28      tron /*
    699  1.28      tron  * Pull data off an interface.
    700  1.28      tron  * Len is length of data, with local net header stripped.
    701  1.28      tron  * We copy the data into mbufs.  When full cluster sized units are present
    702  1.28      tron  * we copy into clusters.
    703  1.28      tron  */
    704  1.28      tron struct mbuf *
    705  1.46      heas hme_get(sc, ri, flags)
    706  1.28      tron 	struct hme_softc *sc;
    707  1.46      heas 	int ri;
    708  1.46      heas 	u_int32_t flags;
    709  1.28      tron {
    710  1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    711  1.28      tron 	struct mbuf *m, *m0, *newm;
    712  1.56  christos 	char *bp;
    713  1.46      heas 	int len, totlen;
    714  1.28      tron 
    715  1.46      heas 	totlen = HME_XD_DECODE_RSIZE(flags);
    716  1.28      tron 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    717  1.28      tron 	if (m0 == 0)
    718  1.28      tron 		return (0);
    719  1.28      tron 	m0->m_pkthdr.rcvif = ifp;
    720  1.28      tron 	m0->m_pkthdr.len = totlen;
    721  1.28      tron 	len = MHLEN;
    722  1.28      tron 	m = m0;
    723  1.28      tron 
    724  1.56  christos 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    725  1.28      tron 
    726  1.28      tron 	while (totlen > 0) {
    727  1.28      tron 		if (totlen >= MINCLSIZE) {
    728  1.28      tron 			MCLGET(m, M_DONTWAIT);
    729  1.28      tron 			if ((m->m_flags & M_EXT) == 0)
    730  1.28      tron 				goto bad;
    731  1.28      tron 			len = MCLBYTES;
    732  1.28      tron 		}
    733  1.28      tron 
    734  1.28      tron 		if (m == m0) {
    735  1.56  christos 			char *newdata = (char *)
    736  1.28      tron 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    737  1.28      tron 			    sizeof(struct ether_header);
    738  1.28      tron 			len -= newdata - m->m_data;
    739  1.28      tron 			m->m_data = newdata;
    740  1.28      tron 		}
    741  1.28      tron 
    742  1.28      tron 		m->m_len = len = min(totlen, len);
    743  1.56  christos 		memcpy(mtod(m, void *), bp, len);
    744  1.28      tron 		bp += len;
    745  1.28      tron 
    746  1.28      tron 		totlen -= len;
    747  1.28      tron 		if (totlen > 0) {
    748  1.28      tron 			MGET(newm, M_DONTWAIT, MT_DATA);
    749  1.28      tron 			if (newm == 0)
    750  1.28      tron 				goto bad;
    751  1.28      tron 			len = MLEN;
    752  1.28      tron 			m = m->m_next = newm;
    753  1.28      tron 		}
    754  1.28      tron 	}
    755  1.28      tron 
    756  1.49      heas #ifdef INET
    757  1.49      heas 	/* hardware checksum */
    758  1.50     rafal 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    759  1.46      heas 		struct ether_header *eh;
    760  1.46      heas 		struct ip *ip;
    761  1.46      heas 		struct udphdr *uh;
    762  1.46      heas 		uint16_t *opts;
    763  1.46      heas 		int32_t hlen, pktlen;
    764  1.46      heas 		uint32_t temp;
    765  1.46      heas 
    766  1.46      heas 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
    767  1.46      heas 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
    768  1.46      heas 				ETHER_VLAN_ENCAP_LEN;
    769  1.56  christos 			eh = (struct ether_header *) mtod(m0, void *) +
    770  1.46      heas 				ETHER_VLAN_ENCAP_LEN;
    771  1.46      heas 		} else {
    772  1.46      heas 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    773  1.46      heas 			eh = mtod(m0, struct ether_header *);
    774  1.46      heas 		}
    775  1.46      heas 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
    776  1.46      heas 			goto swcsum;
    777  1.56  christos 		ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
    778  1.46      heas 
    779  1.46      heas 		/* IPv4 only */
    780  1.46      heas 		if (ip->ip_v != IPVERSION)
    781  1.46      heas 			goto swcsum;
    782  1.46      heas 
    783  1.46      heas 		hlen = ip->ip_hl << 2;
    784  1.48     perry 		if (hlen < sizeof(struct ip))
    785  1.46      heas 			goto swcsum;
    786  1.46      heas 
    787  1.49      heas 		/*
    788  1.49      heas 		 * bail if too short, has random trailing garbage, truncated,
    789  1.49      heas 		 * fragment, or has ethernet pad.
    790  1.49      heas 		 */
    791  1.49      heas 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
    792  1.46      heas 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
    793  1.49      heas 			goto swcsum;
    794  1.46      heas 
    795  1.46      heas 		switch (ip->ip_p) {
    796  1.46      heas 		case IPPROTO_TCP:
    797  1.46      heas 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
    798  1.46      heas 				goto swcsum;
    799  1.46      heas 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    800  1.46      heas 				goto swcsum;
    801  1.46      heas 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
    802  1.46      heas 			break;
    803  1.46      heas 		case IPPROTO_UDP:
    804  1.46      heas 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
    805  1.46      heas 				goto swcsum;
    806  1.46      heas 			if (pktlen < (hlen + sizeof(struct udphdr)))
    807  1.46      heas 				goto swcsum;
    808  1.56  christos 			uh = (struct udphdr *)((char *)ip + hlen);
    809  1.46      heas 			/* no checksum */
    810  1.46      heas 			if (uh->uh_sum == 0)
    811  1.46      heas 				goto swcsum;
    812  1.46      heas 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
    813  1.46      heas 			break;
    814  1.46      heas 		default:
    815  1.49      heas 			goto swcsum;
    816  1.46      heas 		}
    817  1.46      heas 
    818  1.46      heas 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    819  1.46      heas 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
    820  1.46      heas 
    821  1.46      heas 		/* if the pkt had ip options, we have to deduct them */
    822  1.46      heas 		if (hlen > sizeof(struct ip)) {
    823  1.46      heas 			uint32_t optsum;
    824  1.46      heas 
    825  1.46      heas 			optsum = 0;
    826  1.46      heas 			temp = hlen - sizeof(struct ip);
    827  1.56  christos 			opts = (uint16_t *)((char *)ip + sizeof(struct ip));
    828  1.46      heas 
    829  1.49      heas 			while (temp > 1) {
    830  1.46      heas 				optsum += ntohs(*opts++);
    831  1.46      heas 				temp -= 2;
    832  1.46      heas 			}
    833  1.46      heas 			while (optsum >> 16)
    834  1.46      heas 				optsum = (optsum >> 16) + (optsum & 0xffff);
    835  1.46      heas 
    836  1.46      heas 			/* Deduct the ip opts sum from the hwsum (rfc 1624). */
    837  1.46      heas 			m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
    838  1.46      heas 						   ~optsum);
    839  1.46      heas 
    840  1.46      heas 			while (m0->m_pkthdr.csum_data >> 16)
    841  1.46      heas 				m0->m_pkthdr.csum_data =
    842  1.46      heas 					(m0->m_pkthdr.csum_data >> 16) +
    843  1.46      heas 					(m0->m_pkthdr.csum_data & 0xffff);
    844  1.46      heas 		}
    845  1.46      heas 
    846  1.46      heas 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    847  1.46      heas 	}
    848  1.49      heas swcsum:
    849  1.49      heas 		m0->m_pkthdr.csum_flags = 0;
    850  1.49      heas #endif
    851  1.46      heas 
    852  1.28      tron 	return (m0);
    853  1.28      tron 
    854  1.28      tron bad:
    855  1.28      tron 	m_freem(m0);
    856  1.28      tron 	return (0);
    857  1.28      tron }
    858  1.28      tron 
    859  1.28      tron /*
    860  1.28      tron  * Pass a packet to the higher levels.
    861  1.28      tron  */
    862  1.28      tron void
    863  1.46      heas hme_read(sc, ix, flags)
    864  1.28      tron 	struct hme_softc *sc;
    865  1.46      heas 	int ix;
    866  1.46      heas 	u_int32_t flags;
    867  1.28      tron {
    868  1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    869  1.28      tron 	struct mbuf *m;
    870  1.46      heas 	int len;
    871  1.28      tron 
    872  1.46      heas 	len = HME_XD_DECODE_RSIZE(flags);
    873  1.28      tron 	if (len <= sizeof(struct ether_header) ||
    874  1.28      tron 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    875  1.28      tron 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    876  1.28      tron 	    ETHERMTU + sizeof(struct ether_header))) {
    877  1.28      tron #ifdef HMEDEBUG
    878  1.28      tron 		printf("%s: invalid packet size %d; dropping\n",
    879  1.28      tron 		    sc->sc_dev.dv_xname, len);
    880  1.28      tron #endif
    881  1.28      tron 		ifp->if_ierrors++;
    882  1.28      tron 		return;
    883  1.28      tron 	}
    884  1.28      tron 
    885  1.28      tron 	/* Pull packet off interface. */
    886  1.46      heas 	m = hme_get(sc, ix, flags);
    887  1.28      tron 	if (m == 0) {
    888  1.28      tron 		ifp->if_ierrors++;
    889  1.28      tron 		return;
    890  1.28      tron 	}
    891  1.28      tron 
    892  1.28      tron 	ifp->if_ipackets++;
    893  1.28      tron 
    894  1.28      tron #if NBPFILTER > 0
    895  1.28      tron 	/*
    896  1.28      tron 	 * Check if there's a BPF listener on this interface.
    897  1.28      tron 	 * If so, hand off the raw packet to BPF.
    898  1.28      tron 	 */
    899  1.28      tron 	if (ifp->if_bpf)
    900  1.28      tron 		bpf_mtap(ifp->if_bpf, m);
    901  1.28      tron #endif
    902  1.28      tron 
    903  1.28      tron 	/* Pass the packet up. */
    904  1.28      tron 	(*ifp->if_input)(ifp, m);
    905  1.28      tron }
    906  1.28      tron 
    907   1.1        pk void
    908   1.1        pk hme_start(ifp)
    909   1.1        pk 	struct ifnet *ifp;
    910   1.1        pk {
    911   1.1        pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    912  1.56  christos 	void *txd = sc->sc_rb.rb_txd;
    913   1.1        pk 	struct mbuf *m;
    914  1.46      heas 	unsigned int txflags;
    915  1.28      tron 	unsigned int ri, len;
    916  1.28      tron 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    917   1.1        pk 
    918   1.1        pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    919   1.1        pk 		return;
    920   1.1        pk 
    921  1.28      tron 	ri = sc->sc_rb.rb_tdhead;
    922  1.28      tron 
    923  1.28      tron 	for (;;) {
    924  1.28      tron 		IFQ_DEQUEUE(&ifp->if_snd, m);
    925  1.28      tron 		if (m == 0)
    926   1.1        pk 			break;
    927   1.1        pk 
    928   1.1        pk #if NBPFILTER > 0
    929   1.1        pk 		/*
    930   1.1        pk 		 * If BPF is listening on this interface, let it see the
    931   1.1        pk 		 * packet before we commit it to the wire.
    932   1.1        pk 		 */
    933   1.1        pk 		if (ifp->if_bpf)
    934   1.1        pk 			bpf_mtap(ifp->if_bpf, m);
    935   1.1        pk #endif
    936   1.1        pk 
    937  1.49      heas #ifdef INET
    938  1.46      heas 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    939  1.46      heas 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    940  1.46      heas 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    941  1.46      heas 			struct ether_header *eh;
    942  1.46      heas 			uint16_t offset, start;
    943  1.46      heas 
    944  1.46      heas 			eh = mtod(m, struct ether_header *);
    945  1.46      heas 			switch (ntohs(eh->ether_type)) {
    946  1.46      heas 			case ETHERTYPE_IP:
    947  1.46      heas 				start = ETHER_HDR_LEN;
    948  1.46      heas 				break;
    949  1.46      heas 			case ETHERTYPE_VLAN:
    950  1.46      heas 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    951  1.46      heas 				break;
    952  1.46      heas 			default:
    953  1.46      heas 				/* unsupported, drop it */
    954  1.46      heas 				m_free(m);
    955  1.46      heas 				continue;
    956  1.46      heas 			}
    957  1.47   thorpej 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    958  1.47   thorpej 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    959  1.47   thorpej 			    + start;
    960  1.46      heas 			txflags = HME_XD_TXCKSUM |
    961  1.46      heas 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    962  1.46      heas 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    963  1.46      heas 		} else
    964  1.49      heas #endif
    965  1.46      heas 			txflags = 0;
    966  1.46      heas 
    967  1.28      tron 		/*
    968  1.28      tron 		 * Copy the mbuf chain into the transmit buffer.
    969  1.28      tron 		 */
    970  1.28      tron 		len = hme_put(sc, ri, m);
    971  1.28      tron 
    972  1.28      tron 		/*
    973  1.28      tron 		 * Initialize transmit registers and start transmission
    974  1.28      tron 		 */
    975  1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    976  1.28      tron 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    977  1.46      heas 			HME_XD_ENCODE_TSIZE(len) | txflags);
    978  1.28      tron 
    979  1.28      tron 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    980  1.28      tron 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    981  1.28      tron 				  HME_ETX_TP_DMAWAKEUP);
    982  1.28      tron 
    983  1.28      tron 		if (++ri == ntbuf)
    984  1.28      tron 			ri = 0;
    985  1.28      tron 
    986  1.28      tron 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    987  1.26      tron 			ifp->if_flags |= IFF_OACTIVE;
    988  1.26      tron 			break;
    989  1.26      tron 		}
    990   1.1        pk 	}
    991   1.1        pk 
    992  1.28      tron 	sc->sc_rb.rb_tdhead = ri;
    993   1.1        pk }
    994   1.1        pk 
    995   1.1        pk /*
    996   1.1        pk  * Transmit interrupt.
    997   1.1        pk  */
    998   1.1        pk int
    999   1.1        pk hme_tint(sc)
   1000   1.1        pk 	struct hme_softc *sc;
   1001   1.1        pk {
   1002   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1003  1.28      tron 	bus_space_tag_t t = sc->sc_bustag;
   1004  1.28      tron 	bus_space_handle_t mac = sc->sc_mac;
   1005   1.1        pk 	unsigned int ri, txflags;
   1006  1.28      tron 
   1007  1.28      tron 	/*
   1008  1.28      tron 	 * Unload collision counters
   1009  1.28      tron 	 */
   1010  1.28      tron 	ifp->if_collisions +=
   1011  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
   1012  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
   1013  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
   1014  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
   1015  1.28      tron 
   1016  1.28      tron 	/*
   1017  1.28      tron 	 * then clear the hardware counters.
   1018  1.28      tron 	 */
   1019  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1020  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1021  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1022  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1023   1.1        pk 
   1024   1.1        pk 	/* Fetch current position in the transmit ring */
   1025  1.28      tron 	ri = sc->sc_rb.rb_tdtail;
   1026   1.1        pk 
   1027   1.1        pk 	for (;;) {
   1028  1.28      tron 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1029   1.1        pk 			break;
   1030   1.1        pk 
   1031  1.15       eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1032   1.1        pk 
   1033   1.1        pk 		if (txflags & HME_XD_OWN)
   1034   1.1        pk 			break;
   1035   1.1        pk 
   1036   1.1        pk 		ifp->if_flags &= ~IFF_OACTIVE;
   1037  1.28      tron 		ifp->if_opackets++;
   1038  1.26      tron 
   1039  1.28      tron 		if (++ri == sc->sc_rb.rb_ntbuf)
   1040   1.1        pk 			ri = 0;
   1041   1.1        pk 
   1042  1.28      tron 		--sc->sc_rb.rb_td_nbusy;
   1043   1.1        pk 	}
   1044   1.1        pk 
   1045   1.3        pk 	/* Update ring */
   1046  1.28      tron 	sc->sc_rb.rb_tdtail = ri;
   1047   1.1        pk 
   1048   1.1        pk 	hme_start(ifp);
   1049   1.1        pk 
   1050  1.28      tron 	if (sc->sc_rb.rb_td_nbusy == 0)
   1051   1.1        pk 		ifp->if_timer = 0;
   1052   1.1        pk 
   1053   1.1        pk 	return (1);
   1054   1.1        pk }
   1055   1.1        pk 
   1056   1.1        pk /*
   1057   1.1        pk  * Receive interrupt.
   1058   1.1        pk  */
   1059   1.1        pk int
   1060   1.1        pk hme_rint(sc)
   1061   1.1        pk 	struct hme_softc *sc;
   1062   1.1        pk {
   1063  1.56  christos 	void *xdr = sc->sc_rb.rb_rxd;
   1064  1.28      tron 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1065  1.46      heas 	unsigned int ri;
   1066   1.1        pk 	u_int32_t flags;
   1067   1.1        pk 
   1068  1.28      tron 	ri = sc->sc_rb.rb_rdtail;
   1069   1.1        pk 
   1070   1.1        pk 	/*
   1071   1.1        pk 	 * Process all buffers with valid data.
   1072   1.1        pk 	 */
   1073   1.1        pk 	for (;;) {
   1074  1.28      tron 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1075   1.1        pk 		if (flags & HME_XD_OWN)
   1076   1.1        pk 			break;
   1077   1.1        pk 
   1078   1.4        pk 		if (flags & HME_XD_OFL) {
   1079   1.4        pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1080  1.28      tron 					sc->sc_dev.dv_xname, ri, flags);
   1081  1.46      heas 		} else
   1082  1.46      heas 			hme_read(sc, ri, flags);
   1083   1.1        pk 
   1084  1.28      tron 		/* This buffer can be used by the hardware again */
   1085  1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1086  1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1087  1.26      tron 
   1088  1.28      tron 		if (++ri == nrbuf)
   1089   1.1        pk 			ri = 0;
   1090   1.1        pk 	}
   1091   1.1        pk 
   1092  1.28      tron 	sc->sc_rb.rb_rdtail = ri;
   1093  1.28      tron 
   1094   1.1        pk 	return (1);
   1095   1.1        pk }
   1096   1.1        pk 
   1097   1.1        pk int
   1098   1.1        pk hme_eint(sc, status)
   1099   1.1        pk 	struct hme_softc *sc;
   1100   1.1        pk 	u_int status;
   1101   1.1        pk {
   1102   1.1        pk 	char bits[128];
   1103   1.1        pk 
   1104   1.1        pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1105  1.33        pk 		bus_space_tag_t t = sc->sc_bustag;
   1106  1.33        pk 		bus_space_handle_t mif = sc->sc_mif;
   1107  1.33        pk 		u_int32_t cf, st, sm;
   1108  1.33        pk 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1109  1.33        pk 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1110  1.33        pk 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1111  1.33        pk 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1112  1.33        pk 			sc->sc_dev.dv_xname, cf, st, sm);
   1113   1.1        pk 		return (1);
   1114   1.1        pk 	}
   1115   1.1        pk 
   1116   1.1        pk 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1117  1.28      tron 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
   1118   1.1        pk 	return (1);
   1119   1.1        pk }
   1120   1.1        pk 
   1121   1.1        pk int
   1122   1.1        pk hme_intr(v)
   1123   1.1        pk 	void *v;
   1124   1.1        pk {
   1125   1.1        pk 	struct hme_softc *sc = (struct hme_softc *)v;
   1126   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1127   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
   1128   1.1        pk 	u_int32_t status;
   1129   1.1        pk 	int r = 0;
   1130   1.1        pk 
   1131   1.1        pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1132   1.1        pk 
   1133   1.1        pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1134   1.1        pk 		r |= hme_eint(sc, status);
   1135   1.1        pk 
   1136   1.1        pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1137   1.1        pk 		r |= hme_tint(sc);
   1138   1.1        pk 
   1139   1.1        pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1140   1.1        pk 		r |= hme_rint(sc);
   1141   1.1        pk 
   1142  1.40       abs #if NRND > 0
   1143  1.40       abs 	rnd_add_uint32(&sc->rnd_source, status);
   1144  1.40       abs #endif
   1145  1.40       abs 
   1146   1.1        pk 	return (r);
   1147   1.1        pk }
   1148   1.1        pk 
   1149   1.1        pk 
   1150   1.1        pk void
   1151   1.1        pk hme_watchdog(ifp)
   1152   1.1        pk 	struct ifnet *ifp;
   1153   1.1        pk {
   1154   1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1155   1.1        pk 
   1156   1.1        pk 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1157   1.1        pk 	++ifp->if_oerrors;
   1158   1.1        pk 
   1159   1.1        pk 	hme_reset(sc);
   1160   1.4        pk }
   1161   1.4        pk 
   1162   1.4        pk /*
   1163   1.4        pk  * Initialize the MII Management Interface
   1164   1.4        pk  */
   1165   1.4        pk void
   1166   1.4        pk hme_mifinit(sc)
   1167   1.4        pk 	struct hme_softc *sc;
   1168   1.4        pk {
   1169   1.4        pk 	bus_space_tag_t t = sc->sc_bustag;
   1170   1.4        pk 	bus_space_handle_t mif = sc->sc_mif;
   1171  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1172  1.33        pk 	int instance, phy;
   1173   1.4        pk 	u_int32_t v;
   1174   1.4        pk 
   1175  1.61    dyoung 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1176  1.61    dyoung 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1177  1.33        pk 		phy = sc->sc_phys[instance];
   1178  1.33        pk 	} else
   1179  1.33        pk 		/* No media set yet, pick phy arbitrarily.. */
   1180  1.33        pk 		phy = HME_PHYAD_EXTERNAL;
   1181  1.33        pk 
   1182  1.33        pk 	/* Configure the MIF in frame mode, no poll, current phy select */
   1183  1.33        pk 	v = 0;
   1184  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1185  1.33        pk 		v |= HME_MIF_CFG_PHY;
   1186   1.4        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1187  1.35        pk 
   1188  1.35        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1189  1.35        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1190  1.35        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1191  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1192  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1193  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1194   1.1        pk }
   1195   1.1        pk 
   1196   1.1        pk /*
   1197   1.1        pk  * MII interface
   1198   1.1        pk  */
   1199   1.1        pk static int
   1200   1.1        pk hme_mii_readreg(self, phy, reg)
   1201   1.1        pk 	struct device *self;
   1202   1.1        pk 	int phy, reg;
   1203   1.1        pk {
   1204   1.1        pk 	struct hme_softc *sc = (void *)self;
   1205   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1206   1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1207  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1208  1.35        pk 	u_int32_t v, xif_cfg, mifi_cfg;
   1209   1.1        pk 	int n;
   1210   1.1        pk 
   1211  1.33        pk 	/* We can at most have two PHYs */
   1212  1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1213  1.32    martin 		return (0);
   1214  1.32    martin 
   1215   1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1216  1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1217   1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1218   1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1219   1.5        pk 		v |= HME_MIF_CFG_PHY;
   1220   1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1221   1.5        pk 
   1222  1.42      heas 	/* Enable MII drivers on external transceiver */
   1223  1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1224  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1225  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1226  1.35        pk 	else
   1227  1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1228  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1229  1.35        pk 
   1230  1.33        pk #if 0
   1231  1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1232  1.33        pk 	/*
   1233  1.33        pk 	 * Check whether a transceiver is connected by testing
   1234  1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1235  1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1236  1.33        pk 	 */
   1237  1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1238  1.33        pk 	delay(100);
   1239  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1240  1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1241  1.33        pk 		return (0);
   1242  1.33        pk #endif
   1243  1.33        pk 
   1244   1.1        pk 	/* Construct the frame command */
   1245   1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1246   1.1        pk 	    HME_MIF_FO_TAMSB |
   1247   1.1        pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1248   1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1249   1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1250   1.1        pk 
   1251   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1252   1.1        pk 	for (n = 0; n < 100; n++) {
   1253   1.2        pk 		DELAY(1);
   1254   1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1255  1.33        pk 		if (v & HME_MIF_FO_TALSB) {
   1256  1.33        pk 			v &= HME_MIF_FO_DATA;
   1257  1.33        pk 			goto out;
   1258  1.33        pk 		}
   1259   1.1        pk 	}
   1260   1.1        pk 
   1261  1.33        pk 	v = 0;
   1262   1.1        pk 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1263  1.33        pk 
   1264  1.33        pk out:
   1265  1.33        pk 	/* Restore MIFI_CFG register */
   1266  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1267  1.35        pk 	/* Restore XIF register */
   1268  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1269  1.33        pk 	return (v);
   1270   1.1        pk }
   1271   1.1        pk 
   1272   1.1        pk static void
   1273   1.1        pk hme_mii_writereg(self, phy, reg, val)
   1274   1.1        pk 	struct device *self;
   1275   1.1        pk 	int phy, reg, val;
   1276   1.1        pk {
   1277   1.1        pk 	struct hme_softc *sc = (void *)self;
   1278   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1279   1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1280  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1281  1.35        pk 	u_int32_t v, xif_cfg, mifi_cfg;
   1282   1.1        pk 	int n;
   1283  1.32    martin 
   1284  1.33        pk 	/* We can at most have two PHYs */
   1285  1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1286  1.32    martin 		return;
   1287   1.1        pk 
   1288   1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1289  1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1290   1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1291   1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1292   1.5        pk 		v |= HME_MIF_CFG_PHY;
   1293   1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1294   1.5        pk 
   1295  1.42      heas 	/* Enable MII drivers on external transceiver */
   1296  1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1297  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1298  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1299  1.35        pk 	else
   1300  1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1301  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1302  1.35        pk 
   1303  1.33        pk #if 0
   1304  1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1305  1.33        pk 	/*
   1306  1.33        pk 	 * Check whether a transceiver is connected by testing
   1307  1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1308  1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1309  1.33        pk 	 */
   1310  1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1311  1.33        pk 	delay(100);
   1312  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1313  1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1314  1.33        pk 		return;
   1315  1.33        pk #endif
   1316  1.33        pk 
   1317   1.1        pk 	/* Construct the frame command */
   1318   1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1319   1.1        pk 	    HME_MIF_FO_TAMSB				|
   1320   1.1        pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1321   1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1322   1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1323   1.1        pk 	    (val & HME_MIF_FO_DATA);
   1324   1.1        pk 
   1325   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1326   1.1        pk 	for (n = 0; n < 100; n++) {
   1327   1.2        pk 		DELAY(1);
   1328   1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1329   1.1        pk 		if (v & HME_MIF_FO_TALSB)
   1330  1.33        pk 			goto out;
   1331   1.1        pk 	}
   1332   1.1        pk 
   1333   1.2        pk 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1334  1.33        pk out:
   1335  1.33        pk 	/* Restore MIFI_CFG register */
   1336  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1337  1.35        pk 	/* Restore XIF register */
   1338  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1339   1.1        pk }
   1340   1.1        pk 
   1341   1.1        pk static void
   1342   1.1        pk hme_mii_statchg(dev)
   1343   1.1        pk 	struct device *dev;
   1344   1.1        pk {
   1345   1.3        pk 	struct hme_softc *sc = (void *)dev;
   1346   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1347   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1348   1.1        pk 	u_int32_t v;
   1349   1.1        pk 
   1350   1.5        pk #ifdef HMEDEBUG
   1351   1.5        pk 	if (sc->sc_debug)
   1352  1.33        pk 		printf("hme_mii_statchg: status change\n");
   1353   1.5        pk #endif
   1354   1.1        pk 
   1355   1.5        pk 	/* Set the MAC Full Duplex bit appropriately */
   1356  1.30    martin 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1357  1.30    martin 	   but not otherwise. */
   1358   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1359  1.30    martin 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1360   1.1        pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1361  1.30    martin 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1362  1.30    martin 	} else {
   1363   1.1        pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1364  1.30    martin 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1365  1.30    martin 	}
   1366  1.41      heas 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1367   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1368   1.5        pk }
   1369   1.5        pk 
   1370   1.5        pk int
   1371   1.5        pk hme_mediachange(ifp)
   1372   1.5        pk 	struct ifnet *ifp;
   1373   1.5        pk {
   1374   1.5        pk 	struct hme_softc *sc = ifp->if_softc;
   1375  1.33        pk 	bus_space_tag_t t = sc->sc_bustag;
   1376  1.33        pk 	bus_space_handle_t mif = sc->sc_mif;
   1377  1.33        pk 	bus_space_handle_t mac = sc->sc_mac;
   1378  1.33        pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1379  1.33        pk 	int phy = sc->sc_phys[instance];
   1380  1.61    dyoung 	int rc;
   1381  1.33        pk 	u_int32_t v;
   1382   1.5        pk 
   1383  1.33        pk #ifdef HMEDEBUG
   1384  1.33        pk 	if (sc->sc_debug)
   1385  1.33        pk 		printf("hme_mediachange: phy = %d\n", phy);
   1386  1.33        pk #endif
   1387  1.61    dyoung 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
   1388   1.5        pk 		return (EINVAL);
   1389  1.33        pk 
   1390  1.33        pk 	/* Select the current PHY in the MIF configuration register */
   1391  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1392  1.33        pk 	v &= ~HME_MIF_CFG_PHY;
   1393  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1394  1.33        pk 		v |= HME_MIF_CFG_PHY;
   1395  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1396  1.33        pk 
   1397  1.33        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1398  1.33        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1399  1.33        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1400  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1401  1.33        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1402  1.33        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1403   1.5        pk 
   1404  1.61    dyoung 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1405  1.61    dyoung 		return 0;
   1406  1.61    dyoung 	return rc;
   1407   1.1        pk }
   1408   1.1        pk 
   1409   1.1        pk /*
   1410   1.1        pk  * Process an ioctl request.
   1411   1.1        pk  */
   1412   1.1        pk int
   1413   1.1        pk hme_ioctl(ifp, cmd, data)
   1414   1.1        pk 	struct ifnet *ifp;
   1415   1.1        pk 	u_long cmd;
   1416  1.56  christos 	void *data;
   1417   1.1        pk {
   1418   1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1419   1.1        pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1420   1.1        pk 	int s, error = 0;
   1421   1.1        pk 
   1422   1.1        pk 	s = splnet();
   1423   1.1        pk 
   1424   1.1        pk 	switch (cmd) {
   1425   1.1        pk 
   1426   1.1        pk 	case SIOCSIFADDR:
   1427   1.1        pk 		switch (ifa->ifa_addr->sa_family) {
   1428   1.1        pk #ifdef INET
   1429   1.1        pk 		case AF_INET:
   1430  1.41      heas 			if (ifp->if_flags & IFF_UP)
   1431  1.41      heas 				hme_setladrf(sc);
   1432  1.41      heas 			else {
   1433  1.41      heas 				ifp->if_flags |= IFF_UP;
   1434  1.61    dyoung 				error = hme_init(sc);
   1435  1.41      heas 			}
   1436   1.1        pk 			arp_ifinit(ifp, ifa);
   1437   1.1        pk 			break;
   1438   1.1        pk #endif
   1439   1.1        pk 		default:
   1440  1.41      heas 			ifp->if_flags |= IFF_UP;
   1441  1.61    dyoung 			error = hme_init(sc);
   1442   1.1        pk 			break;
   1443   1.1        pk 		}
   1444   1.1        pk 		break;
   1445   1.1        pk 
   1446   1.1        pk 	case SIOCSIFFLAGS:
   1447  1.45      heas #ifdef HMEDEBUG
   1448  1.45      heas 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1449  1.45      heas #endif
   1450  1.45      heas 
   1451   1.1        pk 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1452   1.1        pk 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1453   1.1        pk 			/*
   1454   1.1        pk 			 * If interface is marked down and it is running, then
   1455   1.1        pk 			 * stop it.
   1456   1.1        pk 			 */
   1457  1.58    martin 			hme_stop(sc, false);
   1458   1.1        pk 			ifp->if_flags &= ~IFF_RUNNING;
   1459   1.1        pk 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1460   1.1        pk 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
   1461   1.1        pk 			/*
   1462   1.1        pk 			 * If interface is marked up and it is stopped, then
   1463   1.1        pk 			 * start it.
   1464   1.1        pk 			 */
   1465  1.61    dyoung 			error = hme_init(sc);
   1466   1.1        pk 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1467   1.1        pk 			/*
   1468  1.41      heas 			 * If setting debug or promiscuous mode, do not reset
   1469  1.41      heas 			 * the chip; for everything else, call hme_init()
   1470  1.41      heas 			 * which will trigger a reset.
   1471   1.1        pk 			 */
   1472  1.41      heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1473  1.46      heas 			if (ifp->if_flags != sc->sc_if_flags) {
   1474  1.45      heas 				if ((ifp->if_flags & (~RESETIGN))
   1475  1.45      heas 				    == (sc->sc_if_flags & (~RESETIGN)))
   1476  1.45      heas 					hme_setladrf(sc);
   1477  1.45      heas 				else
   1478  1.61    dyoung 					error = hme_init(sc);
   1479  1.45      heas 			}
   1480  1.41      heas #undef RESETIGN
   1481   1.1        pk 		}
   1482  1.45      heas 
   1483  1.45      heas 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1484  1.61    dyoung 			error = hme_init(sc);
   1485  1.45      heas 
   1486   1.1        pk 		break;
   1487   1.1        pk 
   1488   1.1        pk 	case SIOCADDMULTI:
   1489   1.1        pk 	case SIOCDELMULTI:
   1490  1.61    dyoung 	case SIOCGIFMEDIA:
   1491  1.61    dyoung 	case SIOCSIFMEDIA:
   1492  1.59    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1493   1.1        pk 			/*
   1494   1.1        pk 			 * Multicast list has changed; set the hardware filter
   1495   1.1        pk 			 * accordingly.
   1496   1.1        pk 			 */
   1497  1.43   thorpej 			if (ifp->if_flags & IFF_RUNNING)
   1498  1.43   thorpej 				hme_setladrf(sc);
   1499   1.1        pk 			error = 0;
   1500   1.1        pk 		}
   1501   1.1        pk 		break;
   1502   1.1        pk 	default:
   1503   1.1        pk 		error = EINVAL;
   1504   1.1        pk 		break;
   1505   1.1        pk 	}
   1506   1.1        pk 
   1507  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
   1508   1.1        pk 	splx(s);
   1509   1.1        pk 	return (error);
   1510   1.1        pk }
   1511   1.1        pk 
   1512   1.1        pk void
   1513   1.1        pk hme_shutdown(arg)
   1514   1.1        pk 	void *arg;
   1515   1.1        pk {
   1516  1.28      tron 
   1517  1.58    martin 	hme_stop((struct hme_softc *)arg, false);
   1518   1.1        pk }
   1519   1.1        pk 
   1520   1.1        pk /*
   1521   1.1        pk  * Set up the logical address filter.
   1522   1.1        pk  */
   1523   1.1        pk void
   1524   1.1        pk hme_setladrf(sc)
   1525   1.1        pk 	struct hme_softc *sc;
   1526   1.1        pk {
   1527   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1528   1.1        pk 	struct ether_multi *enm;
   1529   1.1        pk 	struct ether_multistep step;
   1530  1.28      tron 	struct ethercom *ec = &sc->sc_ethercom;
   1531   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1532   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1533   1.1        pk 	u_char *cp;
   1534   1.1        pk 	u_int32_t crc;
   1535   1.1        pk 	u_int32_t hash[4];
   1536  1.14        pk 	u_int32_t v;
   1537   1.1        pk 	int len;
   1538   1.1        pk 
   1539  1.14        pk 	/* Clear hash table */
   1540  1.14        pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1541  1.14        pk 
   1542  1.14        pk 	/* Get current RX configuration */
   1543  1.14        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1544  1.14        pk 
   1545  1.14        pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1546  1.14        pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1547  1.14        pk 		v |= HME_MAC_RXCFG_PMISC;
   1548  1.14        pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1549  1.14        pk 		ifp->if_flags |= IFF_ALLMULTI;
   1550  1.14        pk 		goto chipit;
   1551  1.14        pk 	}
   1552  1.14        pk 
   1553  1.14        pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1554  1.14        pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1555  1.14        pk 	v |= HME_MAC_RXCFG_HENABLE;
   1556  1.14        pk 
   1557   1.1        pk 	/*
   1558   1.1        pk 	 * Set up multicast address filter by passing all multicast addresses
   1559   1.1        pk 	 * through a crc generator, and then using the high order 6 bits as an
   1560   1.1        pk 	 * index into the 64 bit logical address filter.  The high order bit
   1561   1.1        pk 	 * selects the word, while the rest of the bits select the bit within
   1562   1.1        pk 	 * the word.
   1563   1.1        pk 	 */
   1564   1.1        pk 
   1565  1.28      tron 	ETHER_FIRST_MULTI(step, ec, enm);
   1566   1.1        pk 	while (enm != NULL) {
   1567  1.28      tron 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1568   1.1        pk 			/*
   1569   1.1        pk 			 * We must listen to a range of multicast addresses.
   1570   1.1        pk 			 * For now, just accept all multicasts, rather than
   1571   1.1        pk 			 * trying to set only those filter bits needed to match
   1572   1.1        pk 			 * the range.  (At this time, the only use of address
   1573   1.1        pk 			 * ranges is for IP multicast routing, for which the
   1574   1.1        pk 			 * range is big enough to require all bits set.)
   1575   1.1        pk 			 */
   1576  1.14        pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1577  1.14        pk 			ifp->if_flags |= IFF_ALLMULTI;
   1578  1.14        pk 			goto chipit;
   1579   1.1        pk 		}
   1580   1.1        pk 
   1581   1.1        pk 		cp = enm->enm_addrlo;
   1582   1.1        pk 		crc = 0xffffffff;
   1583   1.1        pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1584   1.1        pk 			int octet = *cp++;
   1585   1.1        pk 			int i;
   1586   1.1        pk 
   1587   1.1        pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1588   1.1        pk 			for (i = 0; i < 8; i++) {
   1589   1.1        pk 				if ((crc & 1) ^ (octet & 1)) {
   1590   1.1        pk 					crc >>= 1;
   1591   1.1        pk 					crc ^= MC_POLY_LE;
   1592   1.1        pk 				} else {
   1593   1.1        pk 					crc >>= 1;
   1594   1.1        pk 				}
   1595   1.1        pk 				octet >>= 1;
   1596   1.1        pk 			}
   1597   1.1        pk 		}
   1598   1.1        pk 		/* Just want the 6 most significant bits. */
   1599   1.1        pk 		crc >>= 26;
   1600   1.1        pk 
   1601   1.1        pk 		/* Set the corresponding bit in the filter. */
   1602   1.1        pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1603   1.1        pk 
   1604   1.1        pk 		ETHER_NEXT_MULTI(step, enm);
   1605   1.1        pk 	}
   1606   1.1        pk 
   1607  1.14        pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1608  1.14        pk 
   1609  1.14        pk chipit:
   1610  1.14        pk 	/* Now load the hash table into the chip */
   1611   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1612   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1613   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1614   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1615  1.14        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1616   1.1        pk }
   1617   1.1        pk 
   1618  1.28      tron /*
   1619  1.28      tron  * Routines for accessing the transmit and receive buffers.
   1620  1.28      tron  * The various CPU and adapter configurations supported by this
   1621  1.28      tron  * driver require three different access methods for buffers
   1622  1.28      tron  * and descriptors:
   1623  1.28      tron  *	(1) contig (contiguous data; no padding),
   1624  1.28      tron  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1625  1.28      tron  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1626  1.28      tron  */
   1627  1.28      tron 
   1628  1.28      tron #if 0
   1629  1.28      tron /*
   1630  1.28      tron  * contig: contiguous data with no padding.
   1631  1.28      tron  *
   1632  1.28      tron  * Buffers may have any alignment.
   1633  1.28      tron  */
   1634  1.28      tron 
   1635  1.28      tron void
   1636  1.28      tron hme_copytobuf_contig(sc, from, ri, len)
   1637  1.26      tron 	struct hme_softc *sc;
   1638  1.28      tron 	void *from;
   1639  1.28      tron 	int ri, len;
   1640  1.26      tron {
   1641  1.56  christos 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1642  1.26      tron 
   1643   1.1        pk 	/*
   1644  1.28      tron 	 * Just call memcpy() to do the work.
   1645   1.1        pk 	 */
   1646  1.28      tron 	memcpy(buf, from, len);
   1647   1.1        pk }
   1648   1.1        pk 
   1649  1.28      tron void
   1650  1.28      tron hme_copyfrombuf_contig(sc, to, boff, len)
   1651   1.1        pk 	struct hme_softc *sc;
   1652  1.28      tron 	void *to;
   1653  1.28      tron 	int boff, len;
   1654   1.1        pk {
   1655  1.56  christos 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1656  1.26      tron 
   1657  1.28      tron 	/*
   1658  1.28      tron 	 * Just call memcpy() to do the work.
   1659  1.28      tron 	 */
   1660  1.28      tron 	memcpy(to, buf, len);
   1661   1.1        pk }
   1662  1.28      tron #endif
   1663