hme.c revision 1.61 1 1.61 dyoung /* $NetBSD: hme.c,v 1.61 2008/01/19 22:10:16 dyoung Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk * 3. All advertising materials mentioning features or use of this software
19 1.1 pk * must display the following acknowledgement:
20 1.1 pk * This product includes software developed by the NetBSD
21 1.1 pk * Foundation, Inc. and its contributors.
22 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 pk * contributors may be used to endorse or promote products derived
24 1.1 pk * from this software without specific prior written permission.
25 1.1 pk *
26 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
37 1.1 pk */
38 1.1 pk
39 1.1 pk /*
40 1.1 pk * HME Ethernet module driver.
41 1.1 pk */
42 1.25 lukem
43 1.25 lukem #include <sys/cdefs.h>
44 1.61 dyoung __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.61 2008/01/19 22:10:16 dyoung Exp $");
45 1.1 pk
46 1.39 petrov /* #define HMEDEBUG */
47 1.1 pk
48 1.1 pk #include "opt_inet.h"
49 1.1 pk #include "bpfilter.h"
50 1.1 pk #include "rnd.h"
51 1.1 pk
52 1.1 pk #include <sys/param.h>
53 1.1 pk #include <sys/systm.h>
54 1.5 pk #include <sys/kernel.h>
55 1.42 heas #include <sys/mbuf.h>
56 1.1 pk #include <sys/syslog.h>
57 1.1 pk #include <sys/socket.h>
58 1.1 pk #include <sys/device.h>
59 1.1 pk #include <sys/malloc.h>
60 1.1 pk #include <sys/ioctl.h>
61 1.1 pk #include <sys/errno.h>
62 1.1 pk #if NRND > 0
63 1.1 pk #include <sys/rnd.h>
64 1.1 pk #endif
65 1.1 pk
66 1.1 pk #include <net/if.h>
67 1.1 pk #include <net/if_dl.h>
68 1.1 pk #include <net/if_ether.h>
69 1.1 pk #include <net/if_media.h>
70 1.1 pk
71 1.1 pk #ifdef INET
72 1.1 pk #include <netinet/in.h>
73 1.1 pk #include <netinet/if_inarp.h>
74 1.1 pk #include <netinet/in_systm.h>
75 1.1 pk #include <netinet/in_var.h>
76 1.1 pk #include <netinet/ip.h>
77 1.46 heas #include <netinet/tcp.h>
78 1.46 heas #include <netinet/udp.h>
79 1.1 pk #endif
80 1.1 pk
81 1.1 pk
82 1.1 pk #if NBPFILTER > 0
83 1.1 pk #include <net/bpf.h>
84 1.1 pk #include <net/bpfdesc.h>
85 1.1 pk #endif
86 1.1 pk
87 1.1 pk #include <dev/mii/mii.h>
88 1.1 pk #include <dev/mii/miivar.h>
89 1.1 pk
90 1.60 ad #include <sys/bus.h>
91 1.1 pk
92 1.1 pk #include <dev/ic/hmereg.h>
93 1.1 pk #include <dev/ic/hmevar.h>
94 1.1 pk
95 1.44 perry void hme_start(struct ifnet *);
96 1.58 martin void hme_stop(struct hme_softc *,bool);
97 1.56 christos int hme_ioctl(struct ifnet *, u_long, void *);
98 1.44 perry void hme_tick(void *);
99 1.44 perry void hme_watchdog(struct ifnet *);
100 1.44 perry void hme_shutdown(void *);
101 1.61 dyoung int hme_init(struct hme_softc *);
102 1.44 perry void hme_meminit(struct hme_softc *);
103 1.44 perry void hme_mifinit(struct hme_softc *);
104 1.44 perry void hme_reset(struct hme_softc *);
105 1.44 perry void hme_setladrf(struct hme_softc *);
106 1.1 pk
107 1.1 pk /* MII methods & callbacks */
108 1.44 perry static int hme_mii_readreg(struct device *, int, int);
109 1.44 perry static void hme_mii_writereg(struct device *, int, int, int);
110 1.44 perry static void hme_mii_statchg(struct device *);
111 1.44 perry
112 1.44 perry int hme_mediachange(struct ifnet *);
113 1.44 perry
114 1.46 heas struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
115 1.44 perry int hme_put(struct hme_softc *, int, struct mbuf *);
116 1.46 heas void hme_read(struct hme_softc *, int, uint32_t);
117 1.44 perry int hme_eint(struct hme_softc *, u_int);
118 1.44 perry int hme_rint(struct hme_softc *);
119 1.44 perry int hme_tint(struct hme_softc *);
120 1.1 pk
121 1.44 perry static int ether_cmp(u_char *, u_char *);
122 1.28 tron
123 1.28 tron /* Default buffer copy routines */
124 1.44 perry void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
125 1.44 perry void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
126 1.44 perry void hme_zerobuf_contig(struct hme_softc *, int, int);
127 1.28 tron
128 1.28 tron
129 1.1 pk void
130 1.1 pk hme_config(sc)
131 1.1 pk struct hme_softc *sc;
132 1.1 pk {
133 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
134 1.1 pk struct mii_data *mii = &sc->sc_mii;
135 1.5 pk struct mii_softc *child;
136 1.11 pk bus_dma_tag_t dmatag = sc->sc_dmatag;
137 1.1 pk bus_dma_segment_t seg;
138 1.1 pk bus_size_t size;
139 1.28 tron int rseg, error;
140 1.1 pk
141 1.1 pk /*
142 1.1 pk * HME common initialization.
143 1.1 pk *
144 1.1 pk * hme_softc fields that must be initialized by the front-end:
145 1.1 pk *
146 1.1 pk * the bus tag:
147 1.1 pk * sc_bustag
148 1.1 pk *
149 1.37 wiz * the DMA bus tag:
150 1.1 pk * sc_dmatag
151 1.1 pk *
152 1.1 pk * the bus handles:
153 1.1 pk * sc_seb (Shared Ethernet Block registers)
154 1.1 pk * sc_erx (Receiver Unit registers)
155 1.1 pk * sc_etx (Transmitter Unit registers)
156 1.1 pk * sc_mac (MAC registers)
157 1.36 wiz * sc_mif (Management Interface registers)
158 1.1 pk *
159 1.1 pk * the maximum bus burst size:
160 1.1 pk * sc_burst
161 1.1 pk *
162 1.28 tron * (notyet:DMA capable memory for the ring descriptors & packet buffers:
163 1.28 tron * rb_membase, rb_dmabase)
164 1.28 tron *
165 1.1 pk * the local Ethernet address:
166 1.1 pk * sc_enaddr
167 1.1 pk *
168 1.1 pk */
169 1.1 pk
170 1.1 pk /* Make sure the chip is stopped. */
171 1.58 martin hme_stop(sc, true);
172 1.1 pk
173 1.1 pk
174 1.28 tron /*
175 1.28 tron * Allocate descriptors and buffers
176 1.28 tron * XXX - do all this differently.. and more configurably,
177 1.28 tron * eg. use things as `dma_load_mbuf()' on transmit,
178 1.28 tron * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
179 1.38 wiz * all the time) on the receiver side.
180 1.28 tron *
181 1.28 tron * Note: receive buffers must be 64-byte aligned.
182 1.28 tron * Also, apparently, the buffers must extend to a DMA burst
183 1.28 tron * boundary beyond the maximum packet size.
184 1.28 tron */
185 1.28 tron #define _HME_NDESC 128
186 1.28 tron #define _HME_BUFSZ 1600
187 1.28 tron
188 1.28 tron /* Note: the # of descriptors must be a multiple of 16 */
189 1.28 tron sc->sc_rb.rb_ntbuf = _HME_NDESC;
190 1.28 tron sc->sc_rb.rb_nrbuf = _HME_NDESC;
191 1.1 pk
192 1.1 pk /*
193 1.1 pk * Allocate DMA capable memory
194 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
195 1.1 pk * take this into account when calculating the size. Note that
196 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
197 1.28 tron * so we allocate that much regardless of _HME_NDESC.
198 1.1 pk */
199 1.28 tron size = 2048 + /* TX descriptors */
200 1.28 tron 2048 + /* RX descriptors */
201 1.28 tron sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
202 1.46 heas sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
203 1.11 pk
204 1.11 pk /* Allocate DMA buffer */
205 1.28 tron if ((error = bus_dmamem_alloc(dmatag, size,
206 1.28 tron 2048, 0,
207 1.28 tron &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
208 1.1 pk printf("%s: DMA buffer alloc error %d\n",
209 1.28 tron sc->sc_dev.dv_xname, error);
210 1.10 mrg return;
211 1.1 pk }
212 1.1 pk
213 1.11 pk /* Map DMA memory in CPU addressable space */
214 1.11 pk if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
215 1.28 tron &sc->sc_rb.rb_membase,
216 1.28 tron BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
217 1.1 pk printf("%s: DMA buffer map error %d\n",
218 1.28 tron sc->sc_dev.dv_xname, error);
219 1.11 pk bus_dmamap_unload(dmatag, sc->sc_dmamap);
220 1.11 pk bus_dmamem_free(dmatag, &seg, rseg);
221 1.1 pk return;
222 1.1 pk }
223 1.13 mrg
224 1.13 mrg if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
225 1.28 tron BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
226 1.13 mrg printf("%s: DMA map create error %d\n",
227 1.28 tron sc->sc_dev.dv_xname, error);
228 1.13 mrg return;
229 1.13 mrg }
230 1.13 mrg
231 1.13 mrg /* Load the buffer */
232 1.13 mrg if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
233 1.17 mrg sc->sc_rb.rb_membase, size, NULL,
234 1.17 mrg BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
235 1.13 mrg printf("%s: DMA buffer map load error %d\n",
236 1.28 tron sc->sc_dev.dv_xname, error);
237 1.13 mrg bus_dmamem_free(dmatag, &seg, rseg);
238 1.13 mrg return;
239 1.13 mrg }
240 1.13 mrg sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
241 1.1 pk
242 1.22 thorpej printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
243 1.22 thorpej ether_sprintf(sc->sc_enaddr));
244 1.2 pk
245 1.1 pk /* Initialize ifnet structure. */
246 1.21 thorpej strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
247 1.1 pk ifp->if_softc = sc;
248 1.1 pk ifp->if_start = hme_start;
249 1.1 pk ifp->if_ioctl = hme_ioctl;
250 1.1 pk ifp->if_watchdog = hme_watchdog;
251 1.1 pk ifp->if_flags =
252 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
253 1.41 heas sc->sc_if_flags = ifp->if_flags;
254 1.51 yamt ifp->if_capabilities |=
255 1.51 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
256 1.51 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
257 1.20 thorpej IFQ_SET_READY(&ifp->if_snd);
258 1.1 pk
259 1.1 pk /* Initialize ifmedia structures and MII info */
260 1.1 pk mii->mii_ifp = ifp;
261 1.34 petrov mii->mii_readreg = hme_mii_readreg;
262 1.1 pk mii->mii_writereg = hme_mii_writereg;
263 1.1 pk mii->mii_statchg = hme_mii_statchg;
264 1.1 pk
265 1.61 dyoung sc->sc_ethercom.ec_mii = mii;
266 1.61 dyoung ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
267 1.1 pk
268 1.4 pk hme_mifinit(sc);
269 1.4 pk
270 1.6 thorpej mii_attach(&sc->sc_dev, mii, 0xffffffff,
271 1.34 petrov MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
272 1.2 pk
273 1.5 pk child = LIST_FIRST(&mii->mii_phys);
274 1.5 pk if (child == NULL) {
275 1.1 pk /* No PHY attached */
276 1.61 dyoung ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
277 1.61 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
278 1.1 pk } else {
279 1.1 pk /*
280 1.5 pk * Walk along the list of attached MII devices and
281 1.5 pk * establish an `MII instance' to `phy number'
282 1.5 pk * mapping. We'll use this mapping in media change
283 1.5 pk * requests to determine which phy to use to program
284 1.5 pk * the MIF configuration register.
285 1.5 pk */
286 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
287 1.5 pk /*
288 1.5 pk * Note: we support just two PHYs: the built-in
289 1.5 pk * internal device and an external on the MII
290 1.5 pk * connector.
291 1.5 pk */
292 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) {
293 1.55 christos printf("%s: cannot accommodate MII device %s"
294 1.28 tron " at phy %d, instance %d\n",
295 1.28 tron sc->sc_dev.dv_xname,
296 1.28 tron child->mii_dev.dv_xname,
297 1.28 tron child->mii_phy, child->mii_inst);
298 1.5 pk continue;
299 1.5 pk }
300 1.5 pk
301 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy;
302 1.5 pk }
303 1.5 pk
304 1.5 pk /*
305 1.1 pk * XXX - we can really do the following ONLY if the
306 1.1 pk * phy indeed has the auto negotiation capability!!
307 1.1 pk */
308 1.61 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
309 1.1 pk }
310 1.27 tron
311 1.28 tron /* claim 802.1q capability */
312 1.27 tron sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
313 1.1 pk
314 1.1 pk /* Attach the interface. */
315 1.1 pk if_attach(ifp);
316 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
317 1.1 pk
318 1.1 pk sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
319 1.1 pk if (sc->sc_sh == NULL)
320 1.1 pk panic("hme_config: can't establish shutdownhook");
321 1.1 pk
322 1.1 pk #if NRND > 0
323 1.1 pk rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
324 1.1 pk RND_TYPE_NET, 0);
325 1.1 pk #endif
326 1.5 pk
327 1.57 ad callout_init(&sc->sc_tick_ch, 0);
328 1.5 pk }
329 1.5 pk
330 1.5 pk void
331 1.5 pk hme_tick(arg)
332 1.5 pk void *arg;
333 1.5 pk {
334 1.5 pk struct hme_softc *sc = arg;
335 1.5 pk int s;
336 1.5 pk
337 1.5 pk s = splnet();
338 1.5 pk mii_tick(&sc->sc_mii);
339 1.5 pk splx(s);
340 1.5 pk
341 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
342 1.1 pk }
343 1.1 pk
344 1.1 pk void
345 1.1 pk hme_reset(sc)
346 1.1 pk struct hme_softc *sc;
347 1.1 pk {
348 1.1 pk int s;
349 1.1 pk
350 1.1 pk s = splnet();
351 1.61 dyoung (void)hme_init(sc);
352 1.1 pk splx(s);
353 1.1 pk }
354 1.1 pk
355 1.1 pk void
356 1.58 martin hme_stop(struct hme_softc *sc, bool chip_only)
357 1.1 pk {
358 1.1 pk bus_space_tag_t t = sc->sc_bustag;
359 1.1 pk bus_space_handle_t seb = sc->sc_seb;
360 1.1 pk int n;
361 1.1 pk
362 1.58 martin if (!chip_only) {
363 1.58 martin callout_stop(&sc->sc_tick_ch);
364 1.58 martin mii_down(&sc->sc_mii);
365 1.58 martin }
366 1.5 pk
367 1.33 pk /* Mask all interrupts */
368 1.33 pk bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
369 1.33 pk
370 1.1 pk /* Reset transmitter and receiver */
371 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
372 1.28 tron (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
373 1.1 pk
374 1.1 pk for (n = 0; n < 20; n++) {
375 1.1 pk u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
376 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
377 1.1 pk return;
378 1.1 pk DELAY(20);
379 1.1 pk }
380 1.1 pk
381 1.1 pk printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
382 1.1 pk }
383 1.1 pk
384 1.1 pk void
385 1.1 pk hme_meminit(sc)
386 1.1 pk struct hme_softc *sc;
387 1.1 pk {
388 1.28 tron bus_addr_t txbufdma, rxbufdma;
389 1.1 pk bus_addr_t dma;
390 1.56 christos char *p;
391 1.28 tron unsigned int ntbuf, nrbuf, i;
392 1.1 pk struct hme_ring *hr = &sc->sc_rb;
393 1.1 pk
394 1.1 pk p = hr->rb_membase;
395 1.1 pk dma = hr->rb_dmabase;
396 1.1 pk
397 1.28 tron ntbuf = hr->rb_ntbuf;
398 1.28 tron nrbuf = hr->rb_nrbuf;
399 1.28 tron
400 1.1 pk /*
401 1.1 pk * Allocate transmit descriptors
402 1.1 pk */
403 1.1 pk hr->rb_txd = p;
404 1.1 pk hr->rb_txddma = dma;
405 1.28 tron p += ntbuf * HME_XD_SIZE;
406 1.28 tron dma += ntbuf * HME_XD_SIZE;
407 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/
408 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
409 1.56 christos p = (void *)roundup((u_long)p, 2048);
410 1.1 pk
411 1.1 pk /*
412 1.1 pk * Allocate receive descriptors
413 1.1 pk */
414 1.1 pk hr->rb_rxd = p;
415 1.1 pk hr->rb_rxddma = dma;
416 1.28 tron p += nrbuf * HME_XD_SIZE;
417 1.28 tron dma += nrbuf * HME_XD_SIZE;
418 1.4 pk /* Again move forward to the next 2048 byte boundary.*/
419 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
420 1.56 christos p = (void *)roundup((u_long)p, 2048);
421 1.1 pk
422 1.28 tron
423 1.1 pk /*
424 1.28 tron * Allocate transmit buffers
425 1.1 pk */
426 1.28 tron hr->rb_txbuf = p;
427 1.28 tron txbufdma = dma;
428 1.28 tron p += ntbuf * _HME_BUFSZ;
429 1.28 tron dma += ntbuf * _HME_BUFSZ;
430 1.28 tron
431 1.28 tron /*
432 1.28 tron * Allocate receive buffers
433 1.28 tron */
434 1.28 tron hr->rb_rxbuf = p;
435 1.28 tron rxbufdma = dma;
436 1.28 tron p += nrbuf * _HME_BUFSZ;
437 1.28 tron dma += nrbuf * _HME_BUFSZ;
438 1.28 tron
439 1.28 tron /*
440 1.28 tron * Initialize transmit buffer descriptors
441 1.28 tron */
442 1.28 tron for (i = 0; i < ntbuf; i++) {
443 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
444 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
445 1.1 pk }
446 1.1 pk
447 1.1 pk /*
448 1.28 tron * Initialize receive buffer descriptors
449 1.1 pk */
450 1.28 tron for (i = 0; i < nrbuf; i++) {
451 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
452 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
453 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
454 1.1 pk }
455 1.1 pk
456 1.28 tron hr->rb_tdhead = hr->rb_tdtail = 0;
457 1.28 tron hr->rb_td_nbusy = 0;
458 1.28 tron hr->rb_rdtail = 0;
459 1.1 pk }
460 1.1 pk
461 1.1 pk /*
462 1.1 pk * Initialization of interface; set up initialization block
463 1.1 pk * and transmit/receive descriptor rings.
464 1.1 pk */
465 1.61 dyoung int
466 1.1 pk hme_init(sc)
467 1.1 pk struct hme_softc *sc;
468 1.1 pk {
469 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 1.1 pk bus_space_tag_t t = sc->sc_bustag;
471 1.1 pk bus_space_handle_t seb = sc->sc_seb;
472 1.1 pk bus_space_handle_t etx = sc->sc_etx;
473 1.1 pk bus_space_handle_t erx = sc->sc_erx;
474 1.1 pk bus_space_handle_t mac = sc->sc_mac;
475 1.1 pk u_int8_t *ea;
476 1.1 pk u_int32_t v;
477 1.61 dyoung int rc;
478 1.1 pk
479 1.1 pk /*
480 1.1 pk * Initialization sequence. The numbered steps below correspond
481 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
482 1.1 pk * Channel Engine manual (part of the PCIO manual).
483 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
484 1.1 pk */
485 1.1 pk
486 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
487 1.58 martin hme_stop(sc, false);
488 1.1 pk
489 1.4 pk /* Re-initialize the MIF */
490 1.4 pk hme_mifinit(sc);
491 1.4 pk
492 1.1 pk /* Call MI reset function if any */
493 1.1 pk if (sc->sc_hwreset)
494 1.1 pk (*sc->sc_hwreset)(sc);
495 1.1 pk
496 1.1 pk #if 0
497 1.1 pk /* Mask all MIF interrupts, just in case */
498 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
499 1.1 pk #endif
500 1.1 pk
501 1.1 pk /* step 3. Setup data structures in host memory */
502 1.1 pk hme_meminit(sc);
503 1.1 pk
504 1.1 pk /* step 4. TX MAC registers & counters */
505 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
506 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
507 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
508 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
509 1.28 tron bus_space_write_4(t, mac, HME_MACI_TXSIZE,
510 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
511 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
512 1.45 heas sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
513 1.1 pk
514 1.1 pk /* Load station MAC address */
515 1.1 pk ea = sc->sc_enaddr;
516 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
517 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
518 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
519 1.1 pk
520 1.1 pk /*
521 1.1 pk * Init seed for backoff
522 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
523 1.42 heas */
524 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
525 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
526 1.1 pk
527 1.1 pk
528 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
529 1.1 pk
530 1.1 pk
531 1.1 pk /* step 5. RX MAC registers & counters */
532 1.1 pk hme_setladrf(sc);
533 1.1 pk
534 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
535 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
536 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
537 1.1 pk
538 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
539 1.28 tron bus_space_write_4(t, mac, HME_MACI_RXSIZE,
540 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
541 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
542 1.1 pk
543 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
544 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
545 1.28 tron ~(
546 1.28 tron /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
547 1.28 tron HME_SEB_STAT_HOSTTOTX |
548 1.28 tron HME_SEB_STAT_RXTOHOST |
549 1.28 tron HME_SEB_STAT_TXALL |
550 1.28 tron HME_SEB_STAT_TXPERR |
551 1.28 tron HME_SEB_STAT_RCNTEXP |
552 1.33 pk /*HME_SEB_STAT_MIFIRQ |*/
553 1.28 tron HME_SEB_STAT_ALL_ERRORS ));
554 1.1 pk
555 1.1 pk switch (sc->sc_burst) {
556 1.1 pk default:
557 1.1 pk v = 0;
558 1.1 pk break;
559 1.1 pk case 16:
560 1.1 pk v = HME_SEB_CFG_BURST16;
561 1.1 pk break;
562 1.1 pk case 32:
563 1.1 pk v = HME_SEB_CFG_BURST32;
564 1.1 pk break;
565 1.1 pk case 64:
566 1.1 pk v = HME_SEB_CFG_BURST64;
567 1.1 pk break;
568 1.1 pk }
569 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
570 1.1 pk
571 1.1 pk /* step 9. ETX Configuration: use mostly default values */
572 1.1 pk
573 1.1 pk /* Enable DMA */
574 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
575 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
576 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
577 1.1 pk
578 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
579 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
580 1.28 tron
581 1.1 pk
582 1.3 pk /* step 10. ERX Configuration */
583 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
584 1.28 tron
585 1.28 tron /* Encode Receive Descriptor ring size: four possible values */
586 1.28 tron switch (_HME_NDESC /*XXX*/) {
587 1.28 tron case 32:
588 1.28 tron v |= HME_ERX_CFG_RINGSIZE32;
589 1.28 tron break;
590 1.28 tron case 64:
591 1.28 tron v |= HME_ERX_CFG_RINGSIZE64;
592 1.28 tron break;
593 1.28 tron case 128:
594 1.28 tron v |= HME_ERX_CFG_RINGSIZE128;
595 1.28 tron break;
596 1.28 tron case 256:
597 1.28 tron v |= HME_ERX_CFG_RINGSIZE256;
598 1.28 tron break;
599 1.28 tron default:
600 1.28 tron printf("hme: invalid Receive Descriptor ring size\n");
601 1.28 tron break;
602 1.28 tron }
603 1.28 tron
604 1.3 pk /* Enable DMA */
605 1.28 tron v |= HME_ERX_CFG_DMAENABLE;
606 1.46 heas
607 1.46 heas /* set h/w rx checksum start offset (# of half-words) */
608 1.49 heas #ifdef INET
609 1.48 perry v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
610 1.46 heas ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
611 1.46 heas ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
612 1.46 heas HME_ERX_CFG_CSUMSTART;
613 1.49 heas #endif
614 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
615 1.1 pk
616 1.1 pk /* step 11. XIF Configuration */
617 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
618 1.1 pk v |= HME_MAC_XIF_OE;
619 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
620 1.1 pk
621 1.1 pk /* step 12. RX_MAC Configuration Register */
622 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
623 1.46 heas v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
624 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
625 1.1 pk
626 1.1 pk /* step 13. TX_MAC Configuration Register */
627 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
628 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
629 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
630 1.1 pk
631 1.1 pk /* step 14. Issue Transmit Pending command */
632 1.1 pk
633 1.1 pk /* Call MI initialization function if any */
634 1.1 pk if (sc->sc_hwinit)
635 1.1 pk (*sc->sc_hwinit)(sc);
636 1.29 thorpej
637 1.29 thorpej /* Set the current media. */
638 1.61 dyoung if ((rc = hme_mediachange(ifp)) != 0)
639 1.61 dyoung return rc;
640 1.9 thorpej
641 1.9 thorpej /* Start the one second timer. */
642 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
643 1.1 pk
644 1.1 pk ifp->if_flags |= IFF_RUNNING;
645 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
646 1.41 heas sc->sc_if_flags = ifp->if_flags;
647 1.1 pk ifp->if_timer = 0;
648 1.1 pk hme_start(ifp);
649 1.61 dyoung return 0;
650 1.1 pk }
651 1.1 pk
652 1.28 tron /*
653 1.28 tron * Compare two Ether/802 addresses for equality, inlined and unrolled for
654 1.28 tron * speed.
655 1.28 tron */
656 1.53 perry static inline int
657 1.28 tron ether_cmp(a, b)
658 1.28 tron u_char *a, *b;
659 1.42 heas {
660 1.42 heas
661 1.28 tron if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
662 1.28 tron a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
663 1.28 tron return (0);
664 1.28 tron return (1);
665 1.28 tron }
666 1.28 tron
667 1.28 tron
668 1.28 tron /*
669 1.28 tron * Routine to copy from mbuf chain to transmit buffer in
670 1.28 tron * network buffer memory.
671 1.28 tron * Returns the amount of data copied.
672 1.28 tron */
673 1.28 tron int
674 1.28 tron hme_put(sc, ri, m)
675 1.28 tron struct hme_softc *sc;
676 1.28 tron int ri; /* Ring index */
677 1.28 tron struct mbuf *m;
678 1.28 tron {
679 1.28 tron struct mbuf *n;
680 1.28 tron int len, tlen = 0;
681 1.56 christos char *bp;
682 1.28 tron
683 1.56 christos bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
684 1.28 tron for (; m; m = n) {
685 1.28 tron len = m->m_len;
686 1.28 tron if (len == 0) {
687 1.28 tron MFREE(m, n);
688 1.28 tron continue;
689 1.28 tron }
690 1.56 christos memcpy(bp, mtod(m, void *), len);
691 1.28 tron bp += len;
692 1.28 tron tlen += len;
693 1.28 tron MFREE(m, n);
694 1.28 tron }
695 1.28 tron return (tlen);
696 1.28 tron }
697 1.28 tron
698 1.28 tron /*
699 1.28 tron * Pull data off an interface.
700 1.28 tron * Len is length of data, with local net header stripped.
701 1.28 tron * We copy the data into mbufs. When full cluster sized units are present
702 1.28 tron * we copy into clusters.
703 1.28 tron */
704 1.28 tron struct mbuf *
705 1.46 heas hme_get(sc, ri, flags)
706 1.28 tron struct hme_softc *sc;
707 1.46 heas int ri;
708 1.46 heas u_int32_t flags;
709 1.28 tron {
710 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
711 1.28 tron struct mbuf *m, *m0, *newm;
712 1.56 christos char *bp;
713 1.46 heas int len, totlen;
714 1.28 tron
715 1.46 heas totlen = HME_XD_DECODE_RSIZE(flags);
716 1.28 tron MGETHDR(m0, M_DONTWAIT, MT_DATA);
717 1.28 tron if (m0 == 0)
718 1.28 tron return (0);
719 1.28 tron m0->m_pkthdr.rcvif = ifp;
720 1.28 tron m0->m_pkthdr.len = totlen;
721 1.28 tron len = MHLEN;
722 1.28 tron m = m0;
723 1.28 tron
724 1.56 christos bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
725 1.28 tron
726 1.28 tron while (totlen > 0) {
727 1.28 tron if (totlen >= MINCLSIZE) {
728 1.28 tron MCLGET(m, M_DONTWAIT);
729 1.28 tron if ((m->m_flags & M_EXT) == 0)
730 1.28 tron goto bad;
731 1.28 tron len = MCLBYTES;
732 1.28 tron }
733 1.28 tron
734 1.28 tron if (m == m0) {
735 1.56 christos char *newdata = (char *)
736 1.28 tron ALIGN(m->m_data + sizeof(struct ether_header)) -
737 1.28 tron sizeof(struct ether_header);
738 1.28 tron len -= newdata - m->m_data;
739 1.28 tron m->m_data = newdata;
740 1.28 tron }
741 1.28 tron
742 1.28 tron m->m_len = len = min(totlen, len);
743 1.56 christos memcpy(mtod(m, void *), bp, len);
744 1.28 tron bp += len;
745 1.28 tron
746 1.28 tron totlen -= len;
747 1.28 tron if (totlen > 0) {
748 1.28 tron MGET(newm, M_DONTWAIT, MT_DATA);
749 1.28 tron if (newm == 0)
750 1.28 tron goto bad;
751 1.28 tron len = MLEN;
752 1.28 tron m = m->m_next = newm;
753 1.28 tron }
754 1.28 tron }
755 1.28 tron
756 1.49 heas #ifdef INET
757 1.49 heas /* hardware checksum */
758 1.50 rafal if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
759 1.46 heas struct ether_header *eh;
760 1.46 heas struct ip *ip;
761 1.46 heas struct udphdr *uh;
762 1.46 heas uint16_t *opts;
763 1.46 heas int32_t hlen, pktlen;
764 1.46 heas uint32_t temp;
765 1.46 heas
766 1.46 heas if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
767 1.46 heas pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
768 1.46 heas ETHER_VLAN_ENCAP_LEN;
769 1.56 christos eh = (struct ether_header *) mtod(m0, void *) +
770 1.46 heas ETHER_VLAN_ENCAP_LEN;
771 1.46 heas } else {
772 1.46 heas pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
773 1.46 heas eh = mtod(m0, struct ether_header *);
774 1.46 heas }
775 1.46 heas if (ntohs(eh->ether_type) != ETHERTYPE_IP)
776 1.46 heas goto swcsum;
777 1.56 christos ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
778 1.46 heas
779 1.46 heas /* IPv4 only */
780 1.46 heas if (ip->ip_v != IPVERSION)
781 1.46 heas goto swcsum;
782 1.46 heas
783 1.46 heas hlen = ip->ip_hl << 2;
784 1.48 perry if (hlen < sizeof(struct ip))
785 1.46 heas goto swcsum;
786 1.46 heas
787 1.49 heas /*
788 1.49 heas * bail if too short, has random trailing garbage, truncated,
789 1.49 heas * fragment, or has ethernet pad.
790 1.49 heas */
791 1.49 heas if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
792 1.46 heas || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
793 1.49 heas goto swcsum;
794 1.46 heas
795 1.46 heas switch (ip->ip_p) {
796 1.46 heas case IPPROTO_TCP:
797 1.46 heas if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
798 1.46 heas goto swcsum;
799 1.46 heas if (pktlen < (hlen + sizeof(struct tcphdr)))
800 1.46 heas goto swcsum;
801 1.46 heas m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
802 1.46 heas break;
803 1.46 heas case IPPROTO_UDP:
804 1.46 heas if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
805 1.46 heas goto swcsum;
806 1.46 heas if (pktlen < (hlen + sizeof(struct udphdr)))
807 1.46 heas goto swcsum;
808 1.56 christos uh = (struct udphdr *)((char *)ip + hlen);
809 1.46 heas /* no checksum */
810 1.46 heas if (uh->uh_sum == 0)
811 1.46 heas goto swcsum;
812 1.46 heas m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
813 1.46 heas break;
814 1.46 heas default:
815 1.49 heas goto swcsum;
816 1.46 heas }
817 1.46 heas
818 1.46 heas /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
819 1.46 heas m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
820 1.46 heas
821 1.46 heas /* if the pkt had ip options, we have to deduct them */
822 1.46 heas if (hlen > sizeof(struct ip)) {
823 1.46 heas uint32_t optsum;
824 1.46 heas
825 1.46 heas optsum = 0;
826 1.46 heas temp = hlen - sizeof(struct ip);
827 1.56 christos opts = (uint16_t *)((char *)ip + sizeof(struct ip));
828 1.46 heas
829 1.49 heas while (temp > 1) {
830 1.46 heas optsum += ntohs(*opts++);
831 1.46 heas temp -= 2;
832 1.46 heas }
833 1.46 heas while (optsum >> 16)
834 1.46 heas optsum = (optsum >> 16) + (optsum & 0xffff);
835 1.46 heas
836 1.46 heas /* Deduct the ip opts sum from the hwsum (rfc 1624). */
837 1.46 heas m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
838 1.46 heas ~optsum);
839 1.46 heas
840 1.46 heas while (m0->m_pkthdr.csum_data >> 16)
841 1.46 heas m0->m_pkthdr.csum_data =
842 1.46 heas (m0->m_pkthdr.csum_data >> 16) +
843 1.46 heas (m0->m_pkthdr.csum_data & 0xffff);
844 1.46 heas }
845 1.46 heas
846 1.46 heas m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
847 1.46 heas }
848 1.49 heas swcsum:
849 1.49 heas m0->m_pkthdr.csum_flags = 0;
850 1.49 heas #endif
851 1.46 heas
852 1.28 tron return (m0);
853 1.28 tron
854 1.28 tron bad:
855 1.28 tron m_freem(m0);
856 1.28 tron return (0);
857 1.28 tron }
858 1.28 tron
859 1.28 tron /*
860 1.28 tron * Pass a packet to the higher levels.
861 1.28 tron */
862 1.28 tron void
863 1.46 heas hme_read(sc, ix, flags)
864 1.28 tron struct hme_softc *sc;
865 1.46 heas int ix;
866 1.46 heas u_int32_t flags;
867 1.28 tron {
868 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
869 1.28 tron struct mbuf *m;
870 1.46 heas int len;
871 1.28 tron
872 1.46 heas len = HME_XD_DECODE_RSIZE(flags);
873 1.28 tron if (len <= sizeof(struct ether_header) ||
874 1.28 tron len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
875 1.28 tron ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
876 1.28 tron ETHERMTU + sizeof(struct ether_header))) {
877 1.28 tron #ifdef HMEDEBUG
878 1.28 tron printf("%s: invalid packet size %d; dropping\n",
879 1.28 tron sc->sc_dev.dv_xname, len);
880 1.28 tron #endif
881 1.28 tron ifp->if_ierrors++;
882 1.28 tron return;
883 1.28 tron }
884 1.28 tron
885 1.28 tron /* Pull packet off interface. */
886 1.46 heas m = hme_get(sc, ix, flags);
887 1.28 tron if (m == 0) {
888 1.28 tron ifp->if_ierrors++;
889 1.28 tron return;
890 1.28 tron }
891 1.28 tron
892 1.28 tron ifp->if_ipackets++;
893 1.28 tron
894 1.28 tron #if NBPFILTER > 0
895 1.28 tron /*
896 1.28 tron * Check if there's a BPF listener on this interface.
897 1.28 tron * If so, hand off the raw packet to BPF.
898 1.28 tron */
899 1.28 tron if (ifp->if_bpf)
900 1.28 tron bpf_mtap(ifp->if_bpf, m);
901 1.28 tron #endif
902 1.28 tron
903 1.28 tron /* Pass the packet up. */
904 1.28 tron (*ifp->if_input)(ifp, m);
905 1.28 tron }
906 1.28 tron
907 1.1 pk void
908 1.1 pk hme_start(ifp)
909 1.1 pk struct ifnet *ifp;
910 1.1 pk {
911 1.1 pk struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
912 1.56 christos void *txd = sc->sc_rb.rb_txd;
913 1.1 pk struct mbuf *m;
914 1.46 heas unsigned int txflags;
915 1.28 tron unsigned int ri, len;
916 1.28 tron unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
917 1.1 pk
918 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
919 1.1 pk return;
920 1.1 pk
921 1.28 tron ri = sc->sc_rb.rb_tdhead;
922 1.28 tron
923 1.28 tron for (;;) {
924 1.28 tron IFQ_DEQUEUE(&ifp->if_snd, m);
925 1.28 tron if (m == 0)
926 1.1 pk break;
927 1.1 pk
928 1.1 pk #if NBPFILTER > 0
929 1.1 pk /*
930 1.1 pk * If BPF is listening on this interface, let it see the
931 1.1 pk * packet before we commit it to the wire.
932 1.1 pk */
933 1.1 pk if (ifp->if_bpf)
934 1.1 pk bpf_mtap(ifp->if_bpf, m);
935 1.1 pk #endif
936 1.1 pk
937 1.49 heas #ifdef INET
938 1.46 heas /* collect bits for h/w csum, before hme_put frees the mbuf */
939 1.46 heas if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
940 1.46 heas m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
941 1.46 heas struct ether_header *eh;
942 1.46 heas uint16_t offset, start;
943 1.46 heas
944 1.46 heas eh = mtod(m, struct ether_header *);
945 1.46 heas switch (ntohs(eh->ether_type)) {
946 1.46 heas case ETHERTYPE_IP:
947 1.46 heas start = ETHER_HDR_LEN;
948 1.46 heas break;
949 1.46 heas case ETHERTYPE_VLAN:
950 1.46 heas start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
951 1.46 heas break;
952 1.46 heas default:
953 1.46 heas /* unsupported, drop it */
954 1.46 heas m_free(m);
955 1.46 heas continue;
956 1.46 heas }
957 1.47 thorpej start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
958 1.47 thorpej offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
959 1.47 thorpej + start;
960 1.46 heas txflags = HME_XD_TXCKSUM |
961 1.46 heas (offset << HME_XD_TXCSSTUFFSHIFT) |
962 1.46 heas (start << HME_XD_TXCSSTARTSHIFT);
963 1.46 heas } else
964 1.49 heas #endif
965 1.46 heas txflags = 0;
966 1.46 heas
967 1.28 tron /*
968 1.28 tron * Copy the mbuf chain into the transmit buffer.
969 1.28 tron */
970 1.28 tron len = hme_put(sc, ri, m);
971 1.28 tron
972 1.28 tron /*
973 1.28 tron * Initialize transmit registers and start transmission
974 1.28 tron */
975 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
976 1.28 tron HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
977 1.46 heas HME_XD_ENCODE_TSIZE(len) | txflags);
978 1.28 tron
979 1.28 tron /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
980 1.28 tron bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
981 1.28 tron HME_ETX_TP_DMAWAKEUP);
982 1.28 tron
983 1.28 tron if (++ri == ntbuf)
984 1.28 tron ri = 0;
985 1.28 tron
986 1.28 tron if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
987 1.26 tron ifp->if_flags |= IFF_OACTIVE;
988 1.26 tron break;
989 1.26 tron }
990 1.1 pk }
991 1.1 pk
992 1.28 tron sc->sc_rb.rb_tdhead = ri;
993 1.1 pk }
994 1.1 pk
995 1.1 pk /*
996 1.1 pk * Transmit interrupt.
997 1.1 pk */
998 1.1 pk int
999 1.1 pk hme_tint(sc)
1000 1.1 pk struct hme_softc *sc;
1001 1.1 pk {
1002 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1003 1.28 tron bus_space_tag_t t = sc->sc_bustag;
1004 1.28 tron bus_space_handle_t mac = sc->sc_mac;
1005 1.1 pk unsigned int ri, txflags;
1006 1.28 tron
1007 1.28 tron /*
1008 1.28 tron * Unload collision counters
1009 1.28 tron */
1010 1.28 tron ifp->if_collisions +=
1011 1.28 tron bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1012 1.28 tron bus_space_read_4(t, mac, HME_MACI_FCCNT) +
1013 1.28 tron bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1014 1.28 tron bus_space_read_4(t, mac, HME_MACI_LTCNT);
1015 1.28 tron
1016 1.28 tron /*
1017 1.28 tron * then clear the hardware counters.
1018 1.28 tron */
1019 1.28 tron bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1020 1.28 tron bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1021 1.28 tron bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1022 1.28 tron bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1023 1.1 pk
1024 1.1 pk /* Fetch current position in the transmit ring */
1025 1.28 tron ri = sc->sc_rb.rb_tdtail;
1026 1.1 pk
1027 1.1 pk for (;;) {
1028 1.28 tron if (sc->sc_rb.rb_td_nbusy <= 0)
1029 1.1 pk break;
1030 1.1 pk
1031 1.15 eeh txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1032 1.1 pk
1033 1.1 pk if (txflags & HME_XD_OWN)
1034 1.1 pk break;
1035 1.1 pk
1036 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
1037 1.28 tron ifp->if_opackets++;
1038 1.26 tron
1039 1.28 tron if (++ri == sc->sc_rb.rb_ntbuf)
1040 1.1 pk ri = 0;
1041 1.1 pk
1042 1.28 tron --sc->sc_rb.rb_td_nbusy;
1043 1.1 pk }
1044 1.1 pk
1045 1.3 pk /* Update ring */
1046 1.28 tron sc->sc_rb.rb_tdtail = ri;
1047 1.1 pk
1048 1.1 pk hme_start(ifp);
1049 1.1 pk
1050 1.28 tron if (sc->sc_rb.rb_td_nbusy == 0)
1051 1.1 pk ifp->if_timer = 0;
1052 1.1 pk
1053 1.1 pk return (1);
1054 1.1 pk }
1055 1.1 pk
1056 1.1 pk /*
1057 1.1 pk * Receive interrupt.
1058 1.1 pk */
1059 1.1 pk int
1060 1.1 pk hme_rint(sc)
1061 1.1 pk struct hme_softc *sc;
1062 1.1 pk {
1063 1.56 christos void *xdr = sc->sc_rb.rb_rxd;
1064 1.28 tron unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1065 1.46 heas unsigned int ri;
1066 1.1 pk u_int32_t flags;
1067 1.1 pk
1068 1.28 tron ri = sc->sc_rb.rb_rdtail;
1069 1.1 pk
1070 1.1 pk /*
1071 1.1 pk * Process all buffers with valid data.
1072 1.1 pk */
1073 1.1 pk for (;;) {
1074 1.28 tron flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1075 1.1 pk if (flags & HME_XD_OWN)
1076 1.1 pk break;
1077 1.1 pk
1078 1.4 pk if (flags & HME_XD_OFL) {
1079 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1080 1.28 tron sc->sc_dev.dv_xname, ri, flags);
1081 1.46 heas } else
1082 1.46 heas hme_read(sc, ri, flags);
1083 1.1 pk
1084 1.28 tron /* This buffer can be used by the hardware again */
1085 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1086 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1087 1.26 tron
1088 1.28 tron if (++ri == nrbuf)
1089 1.1 pk ri = 0;
1090 1.1 pk }
1091 1.1 pk
1092 1.28 tron sc->sc_rb.rb_rdtail = ri;
1093 1.28 tron
1094 1.1 pk return (1);
1095 1.1 pk }
1096 1.1 pk
1097 1.1 pk int
1098 1.1 pk hme_eint(sc, status)
1099 1.1 pk struct hme_softc *sc;
1100 1.1 pk u_int status;
1101 1.1 pk {
1102 1.1 pk char bits[128];
1103 1.1 pk
1104 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1105 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1106 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1107 1.33 pk u_int32_t cf, st, sm;
1108 1.33 pk cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1109 1.33 pk st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1110 1.33 pk sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1111 1.33 pk printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1112 1.33 pk sc->sc_dev.dv_xname, cf, st, sm);
1113 1.1 pk return (1);
1114 1.1 pk }
1115 1.1 pk
1116 1.1 pk printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1117 1.28 tron bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
1118 1.1 pk return (1);
1119 1.1 pk }
1120 1.1 pk
1121 1.1 pk int
1122 1.1 pk hme_intr(v)
1123 1.1 pk void *v;
1124 1.1 pk {
1125 1.1 pk struct hme_softc *sc = (struct hme_softc *)v;
1126 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1127 1.1 pk bus_space_handle_t seb = sc->sc_seb;
1128 1.1 pk u_int32_t status;
1129 1.1 pk int r = 0;
1130 1.1 pk
1131 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1132 1.1 pk
1133 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1134 1.1 pk r |= hme_eint(sc, status);
1135 1.1 pk
1136 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1137 1.1 pk r |= hme_tint(sc);
1138 1.1 pk
1139 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1140 1.1 pk r |= hme_rint(sc);
1141 1.1 pk
1142 1.40 abs #if NRND > 0
1143 1.40 abs rnd_add_uint32(&sc->rnd_source, status);
1144 1.40 abs #endif
1145 1.40 abs
1146 1.1 pk return (r);
1147 1.1 pk }
1148 1.1 pk
1149 1.1 pk
1150 1.1 pk void
1151 1.1 pk hme_watchdog(ifp)
1152 1.1 pk struct ifnet *ifp;
1153 1.1 pk {
1154 1.1 pk struct hme_softc *sc = ifp->if_softc;
1155 1.1 pk
1156 1.1 pk log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1157 1.1 pk ++ifp->if_oerrors;
1158 1.1 pk
1159 1.1 pk hme_reset(sc);
1160 1.4 pk }
1161 1.4 pk
1162 1.4 pk /*
1163 1.4 pk * Initialize the MII Management Interface
1164 1.4 pk */
1165 1.4 pk void
1166 1.4 pk hme_mifinit(sc)
1167 1.4 pk struct hme_softc *sc;
1168 1.4 pk {
1169 1.4 pk bus_space_tag_t t = sc->sc_bustag;
1170 1.4 pk bus_space_handle_t mif = sc->sc_mif;
1171 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1172 1.33 pk int instance, phy;
1173 1.4 pk u_int32_t v;
1174 1.4 pk
1175 1.61 dyoung if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1176 1.61 dyoung instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1177 1.33 pk phy = sc->sc_phys[instance];
1178 1.33 pk } else
1179 1.33 pk /* No media set yet, pick phy arbitrarily.. */
1180 1.33 pk phy = HME_PHYAD_EXTERNAL;
1181 1.33 pk
1182 1.33 pk /* Configure the MIF in frame mode, no poll, current phy select */
1183 1.33 pk v = 0;
1184 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1185 1.33 pk v |= HME_MIF_CFG_PHY;
1186 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1187 1.35 pk
1188 1.35 pk /* If an external transceiver is selected, enable its MII drivers */
1189 1.35 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1190 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1191 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1192 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1193 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1194 1.1 pk }
1195 1.1 pk
1196 1.1 pk /*
1197 1.1 pk * MII interface
1198 1.1 pk */
1199 1.1 pk static int
1200 1.1 pk hme_mii_readreg(self, phy, reg)
1201 1.1 pk struct device *self;
1202 1.1 pk int phy, reg;
1203 1.1 pk {
1204 1.1 pk struct hme_softc *sc = (void *)self;
1205 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1206 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1207 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1208 1.35 pk u_int32_t v, xif_cfg, mifi_cfg;
1209 1.1 pk int n;
1210 1.1 pk
1211 1.33 pk /* We can at most have two PHYs */
1212 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1213 1.32 martin return (0);
1214 1.32 martin
1215 1.5 pk /* Select the desired PHY in the MIF configuration register */
1216 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1217 1.5 pk v &= ~HME_MIF_CFG_PHY;
1218 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1219 1.5 pk v |= HME_MIF_CFG_PHY;
1220 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1221 1.5 pk
1222 1.42 heas /* Enable MII drivers on external transceiver */
1223 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1224 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1225 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1226 1.35 pk else
1227 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1228 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1229 1.35 pk
1230 1.33 pk #if 0
1231 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1232 1.33 pk /*
1233 1.33 pk * Check whether a transceiver is connected by testing
1234 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1235 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1236 1.33 pk */
1237 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1238 1.33 pk delay(100);
1239 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1240 1.33 pk if ((v & mif_mdi_bit) == 0)
1241 1.33 pk return (0);
1242 1.33 pk #endif
1243 1.33 pk
1244 1.1 pk /* Construct the frame command */
1245 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1246 1.1 pk HME_MIF_FO_TAMSB |
1247 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1248 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1249 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
1250 1.1 pk
1251 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1252 1.1 pk for (n = 0; n < 100; n++) {
1253 1.2 pk DELAY(1);
1254 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1255 1.33 pk if (v & HME_MIF_FO_TALSB) {
1256 1.33 pk v &= HME_MIF_FO_DATA;
1257 1.33 pk goto out;
1258 1.33 pk }
1259 1.1 pk }
1260 1.1 pk
1261 1.33 pk v = 0;
1262 1.1 pk printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1263 1.33 pk
1264 1.33 pk out:
1265 1.33 pk /* Restore MIFI_CFG register */
1266 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1267 1.35 pk /* Restore XIF register */
1268 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1269 1.33 pk return (v);
1270 1.1 pk }
1271 1.1 pk
1272 1.1 pk static void
1273 1.1 pk hme_mii_writereg(self, phy, reg, val)
1274 1.1 pk struct device *self;
1275 1.1 pk int phy, reg, val;
1276 1.1 pk {
1277 1.1 pk struct hme_softc *sc = (void *)self;
1278 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1279 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1280 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1281 1.35 pk u_int32_t v, xif_cfg, mifi_cfg;
1282 1.1 pk int n;
1283 1.32 martin
1284 1.33 pk /* We can at most have two PHYs */
1285 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1286 1.32 martin return;
1287 1.1 pk
1288 1.5 pk /* Select the desired PHY in the MIF configuration register */
1289 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1290 1.5 pk v &= ~HME_MIF_CFG_PHY;
1291 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1292 1.5 pk v |= HME_MIF_CFG_PHY;
1293 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1294 1.5 pk
1295 1.42 heas /* Enable MII drivers on external transceiver */
1296 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1297 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1298 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1299 1.35 pk else
1300 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1301 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1302 1.35 pk
1303 1.33 pk #if 0
1304 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1305 1.33 pk /*
1306 1.33 pk * Check whether a transceiver is connected by testing
1307 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1308 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1309 1.33 pk */
1310 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1311 1.33 pk delay(100);
1312 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1313 1.33 pk if ((v & mif_mdi_bit) == 0)
1314 1.33 pk return;
1315 1.33 pk #endif
1316 1.33 pk
1317 1.1 pk /* Construct the frame command */
1318 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1319 1.1 pk HME_MIF_FO_TAMSB |
1320 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1321 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1322 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
1323 1.1 pk (val & HME_MIF_FO_DATA);
1324 1.1 pk
1325 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1326 1.1 pk for (n = 0; n < 100; n++) {
1327 1.2 pk DELAY(1);
1328 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1329 1.1 pk if (v & HME_MIF_FO_TALSB)
1330 1.33 pk goto out;
1331 1.1 pk }
1332 1.1 pk
1333 1.2 pk printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1334 1.33 pk out:
1335 1.33 pk /* Restore MIFI_CFG register */
1336 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1337 1.35 pk /* Restore XIF register */
1338 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1339 1.1 pk }
1340 1.1 pk
1341 1.1 pk static void
1342 1.1 pk hme_mii_statchg(dev)
1343 1.1 pk struct device *dev;
1344 1.1 pk {
1345 1.3 pk struct hme_softc *sc = (void *)dev;
1346 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1347 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1348 1.1 pk u_int32_t v;
1349 1.1 pk
1350 1.5 pk #ifdef HMEDEBUG
1351 1.5 pk if (sc->sc_debug)
1352 1.33 pk printf("hme_mii_statchg: status change\n");
1353 1.5 pk #endif
1354 1.1 pk
1355 1.5 pk /* Set the MAC Full Duplex bit appropriately */
1356 1.30 martin /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1357 1.30 martin but not otherwise. */
1358 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1359 1.30 martin if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1360 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
1361 1.30 martin sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1362 1.30 martin } else {
1363 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
1364 1.30 martin sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1365 1.30 martin }
1366 1.41 heas sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1367 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1368 1.5 pk }
1369 1.5 pk
1370 1.5 pk int
1371 1.5 pk hme_mediachange(ifp)
1372 1.5 pk struct ifnet *ifp;
1373 1.5 pk {
1374 1.5 pk struct hme_softc *sc = ifp->if_softc;
1375 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1376 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1377 1.33 pk bus_space_handle_t mac = sc->sc_mac;
1378 1.33 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1379 1.33 pk int phy = sc->sc_phys[instance];
1380 1.61 dyoung int rc;
1381 1.33 pk u_int32_t v;
1382 1.5 pk
1383 1.33 pk #ifdef HMEDEBUG
1384 1.33 pk if (sc->sc_debug)
1385 1.33 pk printf("hme_mediachange: phy = %d\n", phy);
1386 1.33 pk #endif
1387 1.61 dyoung if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
1388 1.5 pk return (EINVAL);
1389 1.33 pk
1390 1.33 pk /* Select the current PHY in the MIF configuration register */
1391 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1392 1.33 pk v &= ~HME_MIF_CFG_PHY;
1393 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1394 1.33 pk v |= HME_MIF_CFG_PHY;
1395 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1396 1.33 pk
1397 1.33 pk /* If an external transceiver is selected, enable its MII drivers */
1398 1.33 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1399 1.33 pk v &= ~HME_MAC_XIF_MIIENABLE;
1400 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1401 1.33 pk v |= HME_MAC_XIF_MIIENABLE;
1402 1.33 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1403 1.5 pk
1404 1.61 dyoung if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1405 1.61 dyoung return 0;
1406 1.61 dyoung return rc;
1407 1.1 pk }
1408 1.1 pk
1409 1.1 pk /*
1410 1.1 pk * Process an ioctl request.
1411 1.1 pk */
1412 1.1 pk int
1413 1.1 pk hme_ioctl(ifp, cmd, data)
1414 1.1 pk struct ifnet *ifp;
1415 1.1 pk u_long cmd;
1416 1.56 christos void *data;
1417 1.1 pk {
1418 1.1 pk struct hme_softc *sc = ifp->if_softc;
1419 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1420 1.1 pk int s, error = 0;
1421 1.1 pk
1422 1.1 pk s = splnet();
1423 1.1 pk
1424 1.1 pk switch (cmd) {
1425 1.1 pk
1426 1.1 pk case SIOCSIFADDR:
1427 1.1 pk switch (ifa->ifa_addr->sa_family) {
1428 1.1 pk #ifdef INET
1429 1.1 pk case AF_INET:
1430 1.41 heas if (ifp->if_flags & IFF_UP)
1431 1.41 heas hme_setladrf(sc);
1432 1.41 heas else {
1433 1.41 heas ifp->if_flags |= IFF_UP;
1434 1.61 dyoung error = hme_init(sc);
1435 1.41 heas }
1436 1.1 pk arp_ifinit(ifp, ifa);
1437 1.1 pk break;
1438 1.1 pk #endif
1439 1.1 pk default:
1440 1.41 heas ifp->if_flags |= IFF_UP;
1441 1.61 dyoung error = hme_init(sc);
1442 1.1 pk break;
1443 1.1 pk }
1444 1.1 pk break;
1445 1.1 pk
1446 1.1 pk case SIOCSIFFLAGS:
1447 1.45 heas #ifdef HMEDEBUG
1448 1.45 heas sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1449 1.45 heas #endif
1450 1.45 heas
1451 1.1 pk if ((ifp->if_flags & IFF_UP) == 0 &&
1452 1.1 pk (ifp->if_flags & IFF_RUNNING) != 0) {
1453 1.1 pk /*
1454 1.1 pk * If interface is marked down and it is running, then
1455 1.1 pk * stop it.
1456 1.1 pk */
1457 1.58 martin hme_stop(sc, false);
1458 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1459 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0 &&
1460 1.1 pk (ifp->if_flags & IFF_RUNNING) == 0) {
1461 1.1 pk /*
1462 1.1 pk * If interface is marked up and it is stopped, then
1463 1.1 pk * start it.
1464 1.1 pk */
1465 1.61 dyoung error = hme_init(sc);
1466 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0) {
1467 1.1 pk /*
1468 1.41 heas * If setting debug or promiscuous mode, do not reset
1469 1.41 heas * the chip; for everything else, call hme_init()
1470 1.41 heas * which will trigger a reset.
1471 1.1 pk */
1472 1.41 heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1473 1.46 heas if (ifp->if_flags != sc->sc_if_flags) {
1474 1.45 heas if ((ifp->if_flags & (~RESETIGN))
1475 1.45 heas == (sc->sc_if_flags & (~RESETIGN)))
1476 1.45 heas hme_setladrf(sc);
1477 1.45 heas else
1478 1.61 dyoung error = hme_init(sc);
1479 1.45 heas }
1480 1.41 heas #undef RESETIGN
1481 1.1 pk }
1482 1.45 heas
1483 1.45 heas if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1484 1.61 dyoung error = hme_init(sc);
1485 1.45 heas
1486 1.1 pk break;
1487 1.1 pk
1488 1.1 pk case SIOCADDMULTI:
1489 1.1 pk case SIOCDELMULTI:
1490 1.61 dyoung case SIOCGIFMEDIA:
1491 1.61 dyoung case SIOCSIFMEDIA:
1492 1.59 dyoung if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1493 1.1 pk /*
1494 1.1 pk * Multicast list has changed; set the hardware filter
1495 1.1 pk * accordingly.
1496 1.1 pk */
1497 1.43 thorpej if (ifp->if_flags & IFF_RUNNING)
1498 1.43 thorpej hme_setladrf(sc);
1499 1.1 pk error = 0;
1500 1.1 pk }
1501 1.1 pk break;
1502 1.1 pk default:
1503 1.1 pk error = EINVAL;
1504 1.1 pk break;
1505 1.1 pk }
1506 1.1 pk
1507 1.41 heas sc->sc_if_flags = ifp->if_flags;
1508 1.1 pk splx(s);
1509 1.1 pk return (error);
1510 1.1 pk }
1511 1.1 pk
1512 1.1 pk void
1513 1.1 pk hme_shutdown(arg)
1514 1.1 pk void *arg;
1515 1.1 pk {
1516 1.28 tron
1517 1.58 martin hme_stop((struct hme_softc *)arg, false);
1518 1.1 pk }
1519 1.1 pk
1520 1.1 pk /*
1521 1.1 pk * Set up the logical address filter.
1522 1.1 pk */
1523 1.1 pk void
1524 1.1 pk hme_setladrf(sc)
1525 1.1 pk struct hme_softc *sc;
1526 1.1 pk {
1527 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1528 1.1 pk struct ether_multi *enm;
1529 1.1 pk struct ether_multistep step;
1530 1.28 tron struct ethercom *ec = &sc->sc_ethercom;
1531 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1532 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1533 1.1 pk u_char *cp;
1534 1.1 pk u_int32_t crc;
1535 1.1 pk u_int32_t hash[4];
1536 1.14 pk u_int32_t v;
1537 1.1 pk int len;
1538 1.1 pk
1539 1.14 pk /* Clear hash table */
1540 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1541 1.14 pk
1542 1.14 pk /* Get current RX configuration */
1543 1.14 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1544 1.14 pk
1545 1.14 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1546 1.14 pk /* Turn on promiscuous mode; turn off the hash filter */
1547 1.14 pk v |= HME_MAC_RXCFG_PMISC;
1548 1.14 pk v &= ~HME_MAC_RXCFG_HENABLE;
1549 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1550 1.14 pk goto chipit;
1551 1.14 pk }
1552 1.14 pk
1553 1.14 pk /* Turn off promiscuous mode; turn on the hash filter */
1554 1.14 pk v &= ~HME_MAC_RXCFG_PMISC;
1555 1.14 pk v |= HME_MAC_RXCFG_HENABLE;
1556 1.14 pk
1557 1.1 pk /*
1558 1.1 pk * Set up multicast address filter by passing all multicast addresses
1559 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1560 1.1 pk * index into the 64 bit logical address filter. The high order bit
1561 1.1 pk * selects the word, while the rest of the bits select the bit within
1562 1.1 pk * the word.
1563 1.1 pk */
1564 1.1 pk
1565 1.28 tron ETHER_FIRST_MULTI(step, ec, enm);
1566 1.1 pk while (enm != NULL) {
1567 1.28 tron if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1568 1.1 pk /*
1569 1.1 pk * We must listen to a range of multicast addresses.
1570 1.1 pk * For now, just accept all multicasts, rather than
1571 1.1 pk * trying to set only those filter bits needed to match
1572 1.1 pk * the range. (At this time, the only use of address
1573 1.1 pk * ranges is for IP multicast routing, for which the
1574 1.1 pk * range is big enough to require all bits set.)
1575 1.1 pk */
1576 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1577 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1578 1.14 pk goto chipit;
1579 1.1 pk }
1580 1.1 pk
1581 1.1 pk cp = enm->enm_addrlo;
1582 1.1 pk crc = 0xffffffff;
1583 1.1 pk for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1584 1.1 pk int octet = *cp++;
1585 1.1 pk int i;
1586 1.1 pk
1587 1.1 pk #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1588 1.1 pk for (i = 0; i < 8; i++) {
1589 1.1 pk if ((crc & 1) ^ (octet & 1)) {
1590 1.1 pk crc >>= 1;
1591 1.1 pk crc ^= MC_POLY_LE;
1592 1.1 pk } else {
1593 1.1 pk crc >>= 1;
1594 1.1 pk }
1595 1.1 pk octet >>= 1;
1596 1.1 pk }
1597 1.1 pk }
1598 1.1 pk /* Just want the 6 most significant bits. */
1599 1.1 pk crc >>= 26;
1600 1.1 pk
1601 1.1 pk /* Set the corresponding bit in the filter. */
1602 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1603 1.1 pk
1604 1.1 pk ETHER_NEXT_MULTI(step, enm);
1605 1.1 pk }
1606 1.1 pk
1607 1.14 pk ifp->if_flags &= ~IFF_ALLMULTI;
1608 1.14 pk
1609 1.14 pk chipit:
1610 1.14 pk /* Now load the hash table into the chip */
1611 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1612 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1613 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1614 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1615 1.14 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1616 1.1 pk }
1617 1.1 pk
1618 1.28 tron /*
1619 1.28 tron * Routines for accessing the transmit and receive buffers.
1620 1.28 tron * The various CPU and adapter configurations supported by this
1621 1.28 tron * driver require three different access methods for buffers
1622 1.28 tron * and descriptors:
1623 1.28 tron * (1) contig (contiguous data; no padding),
1624 1.28 tron * (2) gap2 (two bytes of data followed by two bytes of padding),
1625 1.28 tron * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1626 1.28 tron */
1627 1.28 tron
1628 1.28 tron #if 0
1629 1.28 tron /*
1630 1.28 tron * contig: contiguous data with no padding.
1631 1.28 tron *
1632 1.28 tron * Buffers may have any alignment.
1633 1.28 tron */
1634 1.28 tron
1635 1.28 tron void
1636 1.28 tron hme_copytobuf_contig(sc, from, ri, len)
1637 1.26 tron struct hme_softc *sc;
1638 1.28 tron void *from;
1639 1.28 tron int ri, len;
1640 1.26 tron {
1641 1.56 christos volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1642 1.26 tron
1643 1.1 pk /*
1644 1.28 tron * Just call memcpy() to do the work.
1645 1.1 pk */
1646 1.28 tron memcpy(buf, from, len);
1647 1.1 pk }
1648 1.1 pk
1649 1.28 tron void
1650 1.28 tron hme_copyfrombuf_contig(sc, to, boff, len)
1651 1.1 pk struct hme_softc *sc;
1652 1.28 tron void *to;
1653 1.28 tron int boff, len;
1654 1.1 pk {
1655 1.56 christos volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1656 1.26 tron
1657 1.28 tron /*
1658 1.28 tron * Just call memcpy() to do the work.
1659 1.28 tron */
1660 1.28 tron memcpy(to, buf, len);
1661 1.1 pk }
1662 1.28 tron #endif
1663