Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.64.4.2
      1  1.64.4.2      yamt /*	$NetBSD: hme.c,v 1.64.4.2 2009/05/04 08:12:41 yamt Exp $	*/
      2       1.1        pk 
      3       1.1        pk /*-
      4       1.1        pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5       1.1        pk  * All rights reserved.
      6       1.1        pk  *
      7       1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1        pk  * by Paul Kranenburg.
      9       1.1        pk  *
     10       1.1        pk  * Redistribution and use in source and binary forms, with or without
     11       1.1        pk  * modification, are permitted provided that the following conditions
     12       1.1        pk  * are met:
     13       1.1        pk  * 1. Redistributions of source code must retain the above copyright
     14       1.1        pk  *    notice, this list of conditions and the following disclaimer.
     15       1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     17       1.1        pk  *    documentation and/or other materials provided with the distribution.
     18       1.1        pk  *
     19       1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1        pk  */
     31       1.1        pk 
     32       1.1        pk /*
     33       1.1        pk  * HME Ethernet module driver.
     34       1.1        pk  */
     35      1.25     lukem 
     36      1.25     lukem #include <sys/cdefs.h>
     37  1.64.4.2      yamt __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.64.4.2 2009/05/04 08:12:41 yamt Exp $");
     38       1.1        pk 
     39      1.39    petrov /* #define HMEDEBUG */
     40       1.1        pk 
     41       1.1        pk #include "opt_inet.h"
     42       1.1        pk #include "bpfilter.h"
     43       1.1        pk #include "rnd.h"
     44       1.1        pk 
     45       1.1        pk #include <sys/param.h>
     46       1.1        pk #include <sys/systm.h>
     47       1.5        pk #include <sys/kernel.h>
     48      1.42      heas #include <sys/mbuf.h>
     49       1.1        pk #include <sys/syslog.h>
     50       1.1        pk #include <sys/socket.h>
     51       1.1        pk #include <sys/device.h>
     52       1.1        pk #include <sys/malloc.h>
     53       1.1        pk #include <sys/ioctl.h>
     54       1.1        pk #include <sys/errno.h>
     55       1.1        pk #if NRND > 0
     56       1.1        pk #include <sys/rnd.h>
     57       1.1        pk #endif
     58       1.1        pk 
     59       1.1        pk #include <net/if.h>
     60       1.1        pk #include <net/if_dl.h>
     61       1.1        pk #include <net/if_ether.h>
     62       1.1        pk #include <net/if_media.h>
     63       1.1        pk 
     64       1.1        pk #ifdef INET
     65  1.64.4.2      yamt #include <net/if_vlanvar.h>
     66       1.1        pk #include <netinet/in.h>
     67       1.1        pk #include <netinet/if_inarp.h>
     68       1.1        pk #include <netinet/in_systm.h>
     69       1.1        pk #include <netinet/in_var.h>
     70       1.1        pk #include <netinet/ip.h>
     71      1.46      heas #include <netinet/tcp.h>
     72      1.46      heas #include <netinet/udp.h>
     73       1.1        pk #endif
     74       1.1        pk 
     75       1.1        pk 
     76       1.1        pk #if NBPFILTER > 0
     77       1.1        pk #include <net/bpf.h>
     78       1.1        pk #include <net/bpfdesc.h>
     79       1.1        pk #endif
     80       1.1        pk 
     81       1.1        pk #include <dev/mii/mii.h>
     82       1.1        pk #include <dev/mii/miivar.h>
     83       1.1        pk 
     84      1.60        ad #include <sys/bus.h>
     85       1.1        pk 
     86       1.1        pk #include <dev/ic/hmereg.h>
     87       1.1        pk #include <dev/ic/hmevar.h>
     88       1.1        pk 
     89      1.44     perry void		hme_start(struct ifnet *);
     90      1.58    martin void		hme_stop(struct hme_softc *,bool);
     91      1.56  christos int		hme_ioctl(struct ifnet *, u_long, void *);
     92      1.44     perry void		hme_tick(void *);
     93      1.44     perry void		hme_watchdog(struct ifnet *);
     94      1.44     perry void		hme_shutdown(void *);
     95      1.61    dyoung int		hme_init(struct hme_softc *);
     96      1.44     perry void		hme_meminit(struct hme_softc *);
     97      1.44     perry void		hme_mifinit(struct hme_softc *);
     98      1.44     perry void		hme_reset(struct hme_softc *);
     99      1.44     perry void		hme_setladrf(struct hme_softc *);
    100       1.1        pk 
    101       1.1        pk /* MII methods & callbacks */
    102      1.44     perry static int	hme_mii_readreg(struct device *, int, int);
    103      1.44     perry static void	hme_mii_writereg(struct device *, int, int, int);
    104      1.44     perry static void	hme_mii_statchg(struct device *);
    105      1.44     perry 
    106      1.44     perry int		hme_mediachange(struct ifnet *);
    107      1.44     perry 
    108      1.46      heas struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    109      1.44     perry int		hme_put(struct hme_softc *, int, struct mbuf *);
    110      1.46      heas void		hme_read(struct hme_softc *, int, uint32_t);
    111      1.44     perry int		hme_eint(struct hme_softc *, u_int);
    112      1.44     perry int		hme_rint(struct hme_softc *);
    113      1.44     perry int		hme_tint(struct hme_softc *);
    114       1.1        pk 
    115      1.28      tron /* Default buffer copy routines */
    116      1.44     perry void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    117      1.44     perry void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    118      1.44     perry void	hme_zerobuf_contig(struct hme_softc *, int, int);
    119      1.28      tron 
    120      1.28      tron 
    121       1.1        pk void
    122  1.64.4.2      yamt hme_config(struct hme_softc *sc)
    123       1.1        pk {
    124       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    125       1.1        pk 	struct mii_data *mii = &sc->sc_mii;
    126       1.5        pk 	struct mii_softc *child;
    127      1.11        pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    128       1.1        pk 	bus_dma_segment_t seg;
    129       1.1        pk 	bus_size_t size;
    130      1.28      tron 	int rseg, error;
    131       1.1        pk 
    132       1.1        pk 	/*
    133       1.1        pk 	 * HME common initialization.
    134       1.1        pk 	 *
    135       1.1        pk 	 * hme_softc fields that must be initialized by the front-end:
    136       1.1        pk 	 *
    137       1.1        pk 	 * the bus tag:
    138       1.1        pk 	 *	sc_bustag
    139       1.1        pk 	 *
    140      1.37       wiz 	 * the DMA bus tag:
    141       1.1        pk 	 *	sc_dmatag
    142       1.1        pk 	 *
    143       1.1        pk 	 * the bus handles:
    144       1.1        pk 	 *	sc_seb		(Shared Ethernet Block registers)
    145       1.1        pk 	 *	sc_erx		(Receiver Unit registers)
    146       1.1        pk 	 *	sc_etx		(Transmitter Unit registers)
    147       1.1        pk 	 *	sc_mac		(MAC registers)
    148      1.36       wiz 	 *	sc_mif		(Management Interface registers)
    149       1.1        pk 	 *
    150       1.1        pk 	 * the maximum bus burst size:
    151       1.1        pk 	 *	sc_burst
    152       1.1        pk 	 *
    153      1.28      tron 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    154      1.28      tron 	 *	rb_membase, rb_dmabase)
    155      1.28      tron 	 *
    156       1.1        pk 	 * the local Ethernet address:
    157       1.1        pk 	 *	sc_enaddr
    158       1.1        pk 	 *
    159       1.1        pk 	 */
    160       1.1        pk 
    161       1.1        pk 	/* Make sure the chip is stopped. */
    162      1.58    martin 	hme_stop(sc, true);
    163       1.1        pk 
    164       1.1        pk 
    165      1.28      tron 	/*
    166      1.28      tron 	 * Allocate descriptors and buffers
    167      1.28      tron 	 * XXX - do all this differently.. and more configurably,
    168      1.28      tron 	 * eg. use things as `dma_load_mbuf()' on transmit,
    169      1.28      tron 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    170      1.38       wiz 	 *     all the time) on the receiver side.
    171      1.28      tron 	 *
    172      1.28      tron 	 * Note: receive buffers must be 64-byte aligned.
    173      1.28      tron 	 * Also, apparently, the buffers must extend to a DMA burst
    174      1.28      tron 	 * boundary beyond the maximum packet size.
    175      1.28      tron 	 */
    176      1.28      tron #define _HME_NDESC	128
    177      1.28      tron #define _HME_BUFSZ	1600
    178      1.28      tron 
    179      1.28      tron 	/* Note: the # of descriptors must be a multiple of 16 */
    180      1.28      tron 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    181      1.28      tron 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    182       1.1        pk 
    183       1.1        pk 	/*
    184       1.1        pk 	 * Allocate DMA capable memory
    185       1.1        pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    186       1.1        pk 	 * take this into account when calculating the size. Note that
    187       1.1        pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    188      1.28      tron 	 * so we allocate that much regardless of _HME_NDESC.
    189       1.1        pk 	 */
    190      1.28      tron 	size =	2048 +					/* TX descriptors */
    191      1.28      tron 		2048 +					/* RX descriptors */
    192      1.28      tron 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    193      1.46      heas 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    194      1.11        pk 
    195      1.11        pk 	/* Allocate DMA buffer */
    196      1.28      tron 	if ((error = bus_dmamem_alloc(dmatag, size,
    197      1.28      tron 				      2048, 0,
    198      1.28      tron 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    199      1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
    200      1.64    cegger 			error);
    201      1.10       mrg 		return;
    202       1.1        pk 	}
    203       1.1        pk 
    204      1.11        pk 	/* Map DMA memory in CPU addressable space */
    205      1.11        pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    206      1.28      tron 				    &sc->sc_rb.rb_membase,
    207      1.28      tron 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    208      1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
    209      1.64    cegger 			error);
    210      1.11        pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    211      1.11        pk 		bus_dmamem_free(dmatag, &seg, rseg);
    212       1.1        pk 		return;
    213       1.1        pk 	}
    214      1.13       mrg 
    215      1.13       mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    216      1.28      tron 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    217      1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
    218      1.64    cegger 			error);
    219      1.13       mrg 		return;
    220      1.13       mrg 	}
    221      1.13       mrg 
    222      1.13       mrg 	/* Load the buffer */
    223      1.13       mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    224      1.17       mrg 	    sc->sc_rb.rb_membase, size, NULL,
    225      1.17       mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    226      1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
    227      1.64    cegger 			error);
    228      1.13       mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    229      1.13       mrg 		return;
    230      1.13       mrg 	}
    231      1.13       mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    232       1.1        pk 
    233      1.64    cegger 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    234      1.22   thorpej 	    ether_sprintf(sc->sc_enaddr));
    235       1.2        pk 
    236       1.1        pk 	/* Initialize ifnet structure. */
    237      1.64    cegger 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    238       1.1        pk 	ifp->if_softc = sc;
    239       1.1        pk 	ifp->if_start = hme_start;
    240       1.1        pk 	ifp->if_ioctl = hme_ioctl;
    241       1.1        pk 	ifp->if_watchdog = hme_watchdog;
    242       1.1        pk 	ifp->if_flags =
    243       1.1        pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    244      1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    245      1.51      yamt 	ifp->if_capabilities |=
    246      1.51      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    247      1.51      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    248      1.20   thorpej 	IFQ_SET_READY(&ifp->if_snd);
    249       1.1        pk 
    250       1.1        pk 	/* Initialize ifmedia structures and MII info */
    251       1.1        pk 	mii->mii_ifp = ifp;
    252      1.34    petrov 	mii->mii_readreg = hme_mii_readreg;
    253       1.1        pk 	mii->mii_writereg = hme_mii_writereg;
    254       1.1        pk 	mii->mii_statchg = hme_mii_statchg;
    255       1.1        pk 
    256      1.61    dyoung 	sc->sc_ethercom.ec_mii = mii;
    257      1.61    dyoung 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    258       1.1        pk 
    259       1.4        pk 	hme_mifinit(sc);
    260       1.4        pk 
    261       1.6   thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    262      1.34    petrov 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    263       1.2        pk 
    264       1.5        pk 	child = LIST_FIRST(&mii->mii_phys);
    265       1.5        pk 	if (child == NULL) {
    266       1.1        pk 		/* No PHY attached */
    267      1.61    dyoung 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    268      1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    269       1.1        pk 	} else {
    270       1.1        pk 		/*
    271       1.5        pk 		 * Walk along the list of attached MII devices and
    272       1.5        pk 		 * establish an `MII instance' to `phy number'
    273       1.5        pk 		 * mapping. We'll use this mapping in media change
    274       1.5        pk 		 * requests to determine which phy to use to program
    275       1.5        pk 		 * the MIF configuration register.
    276       1.5        pk 		 */
    277       1.5        pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    278       1.5        pk 			/*
    279       1.5        pk 			 * Note: we support just two PHYs: the built-in
    280       1.5        pk 			 * internal device and an external on the MII
    281       1.5        pk 			 * connector.
    282       1.5        pk 			 */
    283       1.5        pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    284      1.64    cegger 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
    285      1.28      tron 				       " at phy %d, instance %d\n",
    286  1.64.4.1      yamt 				       device_xname(child->mii_dev),
    287      1.28      tron 				       child->mii_phy, child->mii_inst);
    288       1.5        pk 				continue;
    289       1.5        pk 			}
    290       1.5        pk 
    291       1.5        pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    292       1.5        pk 		}
    293       1.5        pk 
    294       1.5        pk 		/*
    295       1.1        pk 		 * XXX - we can really do the following ONLY if the
    296       1.1        pk 		 * phy indeed has the auto negotiation capability!!
    297       1.1        pk 		 */
    298      1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    299       1.1        pk 	}
    300      1.27      tron 
    301      1.28      tron 	/* claim 802.1q capability */
    302      1.27      tron 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    303       1.1        pk 
    304       1.1        pk 	/* Attach the interface. */
    305       1.1        pk 	if_attach(ifp);
    306       1.1        pk 	ether_ifattach(ifp, sc->sc_enaddr);
    307       1.1        pk 
    308       1.1        pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    309       1.1        pk 	if (sc->sc_sh == NULL)
    310       1.1        pk 		panic("hme_config: can't establish shutdownhook");
    311       1.1        pk 
    312       1.1        pk #if NRND > 0
    313      1.64    cegger 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    314       1.1        pk 			  RND_TYPE_NET, 0);
    315       1.1        pk #endif
    316       1.5        pk 
    317      1.57        ad 	callout_init(&sc->sc_tick_ch, 0);
    318       1.5        pk }
    319       1.5        pk 
    320       1.5        pk void
    321  1.64.4.2      yamt hme_tick(void *arg)
    322       1.5        pk {
    323       1.5        pk 	struct hme_softc *sc = arg;
    324       1.5        pk 	int s;
    325       1.5        pk 
    326       1.5        pk 	s = splnet();
    327       1.5        pk 	mii_tick(&sc->sc_mii);
    328       1.5        pk 	splx(s);
    329       1.5        pk 
    330       1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    331       1.1        pk }
    332       1.1        pk 
    333       1.1        pk void
    334  1.64.4.2      yamt hme_reset(struct hme_softc *sc)
    335       1.1        pk {
    336       1.1        pk 	int s;
    337       1.1        pk 
    338       1.1        pk 	s = splnet();
    339      1.61    dyoung 	(void)hme_init(sc);
    340       1.1        pk 	splx(s);
    341       1.1        pk }
    342       1.1        pk 
    343       1.1        pk void
    344      1.58    martin hme_stop(struct hme_softc *sc, bool chip_only)
    345       1.1        pk {
    346       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    347       1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    348       1.1        pk 	int n;
    349       1.1        pk 
    350      1.58    martin 	if (!chip_only) {
    351      1.58    martin 		callout_stop(&sc->sc_tick_ch);
    352      1.58    martin 		mii_down(&sc->sc_mii);
    353      1.58    martin 	}
    354       1.5        pk 
    355      1.33        pk 	/* Mask all interrupts */
    356      1.33        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    357      1.33        pk 
    358       1.1        pk 	/* Reset transmitter and receiver */
    359       1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    360      1.28      tron 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    361       1.1        pk 
    362       1.1        pk 	for (n = 0; n < 20; n++) {
    363  1.64.4.2      yamt 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    364       1.1        pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    365       1.1        pk 			return;
    366       1.1        pk 		DELAY(20);
    367       1.1        pk 	}
    368       1.1        pk 
    369      1.64    cegger 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
    370       1.1        pk }
    371       1.1        pk 
    372       1.1        pk void
    373  1.64.4.2      yamt hme_meminit(struct hme_softc *sc)
    374       1.1        pk {
    375      1.28      tron 	bus_addr_t txbufdma, rxbufdma;
    376       1.1        pk 	bus_addr_t dma;
    377      1.56  christos 	char *p;
    378      1.28      tron 	unsigned int ntbuf, nrbuf, i;
    379       1.1        pk 	struct hme_ring *hr = &sc->sc_rb;
    380       1.1        pk 
    381       1.1        pk 	p = hr->rb_membase;
    382       1.1        pk 	dma = hr->rb_dmabase;
    383       1.1        pk 
    384      1.28      tron 	ntbuf = hr->rb_ntbuf;
    385      1.28      tron 	nrbuf = hr->rb_nrbuf;
    386      1.28      tron 
    387       1.1        pk 	/*
    388       1.1        pk 	 * Allocate transmit descriptors
    389       1.1        pk 	 */
    390       1.1        pk 	hr->rb_txd = p;
    391       1.1        pk 	hr->rb_txddma = dma;
    392      1.28      tron 	p += ntbuf * HME_XD_SIZE;
    393      1.28      tron 	dma += ntbuf * HME_XD_SIZE;
    394       1.4        pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    395       1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    396      1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    397       1.1        pk 
    398       1.1        pk 	/*
    399       1.1        pk 	 * Allocate receive descriptors
    400       1.1        pk 	 */
    401       1.1        pk 	hr->rb_rxd = p;
    402       1.1        pk 	hr->rb_rxddma = dma;
    403      1.28      tron 	p += nrbuf * HME_XD_SIZE;
    404      1.28      tron 	dma += nrbuf * HME_XD_SIZE;
    405       1.4        pk 	/* Again move forward to the next 2048 byte boundary.*/
    406       1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    407      1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    408       1.1        pk 
    409      1.28      tron 
    410       1.1        pk 	/*
    411      1.28      tron 	 * Allocate transmit buffers
    412       1.1        pk 	 */
    413      1.28      tron 	hr->rb_txbuf = p;
    414      1.28      tron 	txbufdma = dma;
    415      1.28      tron 	p += ntbuf * _HME_BUFSZ;
    416      1.28      tron 	dma += ntbuf * _HME_BUFSZ;
    417      1.28      tron 
    418      1.28      tron 	/*
    419      1.28      tron 	 * Allocate receive buffers
    420      1.28      tron 	 */
    421      1.28      tron 	hr->rb_rxbuf = p;
    422      1.28      tron 	rxbufdma = dma;
    423      1.28      tron 	p += nrbuf * _HME_BUFSZ;
    424      1.28      tron 	dma += nrbuf * _HME_BUFSZ;
    425      1.28      tron 
    426      1.28      tron 	/*
    427      1.28      tron 	 * Initialize transmit buffer descriptors
    428      1.28      tron 	 */
    429      1.28      tron 	for (i = 0; i < ntbuf; i++) {
    430      1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    431      1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    432       1.1        pk 	}
    433       1.1        pk 
    434       1.1        pk 	/*
    435      1.28      tron 	 * Initialize receive buffer descriptors
    436       1.1        pk 	 */
    437      1.28      tron 	for (i = 0; i < nrbuf; i++) {
    438      1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    439      1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    440      1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    441       1.1        pk 	}
    442       1.1        pk 
    443      1.28      tron 	hr->rb_tdhead = hr->rb_tdtail = 0;
    444      1.28      tron 	hr->rb_td_nbusy = 0;
    445      1.28      tron 	hr->rb_rdtail = 0;
    446       1.1        pk }
    447       1.1        pk 
    448       1.1        pk /*
    449       1.1        pk  * Initialization of interface; set up initialization block
    450       1.1        pk  * and transmit/receive descriptor rings.
    451       1.1        pk  */
    452      1.61    dyoung int
    453  1.64.4.2      yamt hme_init(struct hme_softc *sc)
    454       1.1        pk {
    455       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    456       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    457       1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    458       1.1        pk 	bus_space_handle_t etx = sc->sc_etx;
    459       1.1        pk 	bus_space_handle_t erx = sc->sc_erx;
    460       1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
    461  1.64.4.2      yamt 	uint8_t *ea;
    462  1.64.4.2      yamt 	uint32_t v;
    463      1.61    dyoung 	int rc;
    464       1.1        pk 
    465       1.1        pk 	/*
    466       1.1        pk 	 * Initialization sequence. The numbered steps below correspond
    467       1.1        pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    468       1.1        pk 	 * Channel Engine manual (part of the PCIO manual).
    469       1.1        pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    470       1.1        pk 	 */
    471       1.1        pk 
    472       1.1        pk 	/* step 1 & 2. Reset the Ethernet Channel */
    473      1.58    martin 	hme_stop(sc, false);
    474       1.1        pk 
    475       1.4        pk 	/* Re-initialize the MIF */
    476       1.4        pk 	hme_mifinit(sc);
    477       1.4        pk 
    478       1.1        pk 	/* Call MI reset function if any */
    479       1.1        pk 	if (sc->sc_hwreset)
    480       1.1        pk 		(*sc->sc_hwreset)(sc);
    481       1.1        pk 
    482       1.1        pk #if 0
    483       1.1        pk 	/* Mask all MIF interrupts, just in case */
    484       1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    485       1.1        pk #endif
    486       1.1        pk 
    487       1.1        pk 	/* step 3. Setup data structures in host memory */
    488       1.1        pk 	hme_meminit(sc);
    489       1.1        pk 
    490       1.1        pk 	/* step 4. TX MAC registers & counters */
    491       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    492       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    493       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    494       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    495      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    496      1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    497      1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    498      1.45      heas 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    499       1.1        pk 
    500       1.1        pk 	/* Load station MAC address */
    501       1.1        pk 	ea = sc->sc_enaddr;
    502       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    503       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    504       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    505       1.1        pk 
    506       1.1        pk 	/*
    507       1.1        pk 	 * Init seed for backoff
    508       1.1        pk 	 * (source suggested by manual: low 10 bits of MAC address)
    509      1.42      heas 	 */
    510       1.1        pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    511       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    512       1.1        pk 
    513       1.1        pk 
    514       1.1        pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    515       1.1        pk 
    516       1.1        pk 
    517       1.1        pk 	/* step 5. RX MAC registers & counters */
    518       1.1        pk 	hme_setladrf(sc);
    519       1.1        pk 
    520       1.1        pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    521       1.1        pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    522      1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    523       1.1        pk 
    524       1.1        pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    525      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    526      1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    527      1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    528       1.1        pk 
    529       1.1        pk 	/* step 8. Global Configuration & Interrupt Mask */
    530       1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    531      1.28      tron 			~(
    532      1.28      tron 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    533      1.28      tron 			  HME_SEB_STAT_HOSTTOTX |
    534      1.28      tron 			  HME_SEB_STAT_RXTOHOST |
    535      1.28      tron 			  HME_SEB_STAT_TXALL |
    536      1.28      tron 			  HME_SEB_STAT_TXPERR |
    537      1.28      tron 			  HME_SEB_STAT_RCNTEXP |
    538      1.33        pk 			  /*HME_SEB_STAT_MIFIRQ |*/
    539      1.28      tron 			  HME_SEB_STAT_ALL_ERRORS ));
    540       1.1        pk 
    541       1.1        pk 	switch (sc->sc_burst) {
    542       1.1        pk 	default:
    543       1.1        pk 		v = 0;
    544       1.1        pk 		break;
    545       1.1        pk 	case 16:
    546       1.1        pk 		v = HME_SEB_CFG_BURST16;
    547       1.1        pk 		break;
    548       1.1        pk 	case 32:
    549       1.1        pk 		v = HME_SEB_CFG_BURST32;
    550       1.1        pk 		break;
    551       1.1        pk 	case 64:
    552       1.1        pk 		v = HME_SEB_CFG_BURST64;
    553       1.1        pk 		break;
    554       1.1        pk 	}
    555       1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    556       1.1        pk 
    557       1.1        pk 	/* step 9. ETX Configuration: use mostly default values */
    558       1.1        pk 
    559       1.1        pk 	/* Enable DMA */
    560       1.2        pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    561       1.1        pk 	v |= HME_ETX_CFG_DMAENABLE;
    562       1.2        pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    563       1.1        pk 
    564       1.3        pk 	/* Transmit Descriptor ring size: in increments of 16 */
    565      1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    566      1.28      tron 
    567       1.1        pk 
    568       1.3        pk 	/* step 10. ERX Configuration */
    569       1.2        pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    570      1.28      tron 
    571      1.28      tron 	/* Encode Receive Descriptor ring size: four possible values */
    572      1.28      tron 	switch (_HME_NDESC /*XXX*/) {
    573      1.28      tron 	case 32:
    574      1.28      tron 		v |= HME_ERX_CFG_RINGSIZE32;
    575      1.28      tron 		break;
    576      1.28      tron 	case 64:
    577      1.28      tron 		v |= HME_ERX_CFG_RINGSIZE64;
    578      1.28      tron 		break;
    579      1.28      tron 	case 128:
    580      1.28      tron 		v |= HME_ERX_CFG_RINGSIZE128;
    581      1.28      tron 		break;
    582      1.28      tron 	case 256:
    583      1.28      tron 		v |= HME_ERX_CFG_RINGSIZE256;
    584      1.28      tron 		break;
    585      1.28      tron 	default:
    586      1.28      tron 		printf("hme: invalid Receive Descriptor ring size\n");
    587      1.28      tron 		break;
    588      1.28      tron 	}
    589      1.28      tron 
    590       1.3        pk 	/* Enable DMA */
    591      1.28      tron 	v |= HME_ERX_CFG_DMAENABLE;
    592      1.46      heas 
    593      1.46      heas 	/* set h/w rx checksum start offset (# of half-words) */
    594      1.49      heas #ifdef INET
    595  1.64.4.2      yamt 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    596  1.64.4.2      yamt 		<< HME_ERX_CFG_CSUMSHIFT) &
    597      1.46      heas 		HME_ERX_CFG_CSUMSTART;
    598      1.49      heas #endif
    599       1.2        pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    600       1.1        pk 
    601       1.1        pk 	/* step 11. XIF Configuration */
    602       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    603       1.1        pk 	v |= HME_MAC_XIF_OE;
    604       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    605       1.1        pk 
    606       1.1        pk 	/* step 12. RX_MAC Configuration Register */
    607       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    608      1.46      heas 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    609       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    610       1.1        pk 
    611       1.1        pk 	/* step 13. TX_MAC Configuration Register */
    612       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    613       1.2        pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    614       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    615       1.1        pk 
    616       1.1        pk 	/* step 14. Issue Transmit Pending command */
    617       1.1        pk 
    618       1.1        pk 	/* Call MI initialization function if any */
    619       1.1        pk 	if (sc->sc_hwinit)
    620       1.1        pk 		(*sc->sc_hwinit)(sc);
    621      1.29   thorpej 
    622      1.29   thorpej 	/* Set the current media. */
    623      1.61    dyoung 	if ((rc = hme_mediachange(ifp)) != 0)
    624      1.61    dyoung 		return rc;
    625       1.9   thorpej 
    626       1.9   thorpej 	/* Start the one second timer. */
    627       1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    628       1.1        pk 
    629       1.1        pk 	ifp->if_flags |= IFF_RUNNING;
    630       1.1        pk 	ifp->if_flags &= ~IFF_OACTIVE;
    631      1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    632       1.1        pk 	ifp->if_timer = 0;
    633       1.1        pk 	hme_start(ifp);
    634      1.61    dyoung 	return 0;
    635       1.1        pk }
    636       1.1        pk 
    637      1.28      tron /*
    638      1.28      tron  * Routine to copy from mbuf chain to transmit buffer in
    639      1.28      tron  * network buffer memory.
    640      1.28      tron  * Returns the amount of data copied.
    641      1.28      tron  */
    642      1.28      tron int
    643  1.64.4.2      yamt hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    644  1.64.4.2      yamt 	/* ri:			 Ring index */
    645      1.28      tron {
    646      1.28      tron 	struct mbuf *n;
    647      1.28      tron 	int len, tlen = 0;
    648      1.56  christos 	char *bp;
    649      1.28      tron 
    650      1.56  christos 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    651      1.28      tron 	for (; m; m = n) {
    652      1.28      tron 		len = m->m_len;
    653      1.28      tron 		if (len == 0) {
    654      1.28      tron 			MFREE(m, n);
    655      1.28      tron 			continue;
    656      1.28      tron 		}
    657      1.56  christos 		memcpy(bp, mtod(m, void *), len);
    658      1.28      tron 		bp += len;
    659      1.28      tron 		tlen += len;
    660      1.28      tron 		MFREE(m, n);
    661      1.28      tron 	}
    662      1.28      tron 	return (tlen);
    663      1.28      tron }
    664      1.28      tron 
    665      1.28      tron /*
    666      1.28      tron  * Pull data off an interface.
    667      1.28      tron  * Len is length of data, with local net header stripped.
    668      1.28      tron  * We copy the data into mbufs.  When full cluster sized units are present
    669      1.28      tron  * we copy into clusters.
    670      1.28      tron  */
    671      1.28      tron struct mbuf *
    672  1.64.4.2      yamt hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    673      1.28      tron {
    674      1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    675      1.28      tron 	struct mbuf *m, *m0, *newm;
    676      1.56  christos 	char *bp;
    677      1.46      heas 	int len, totlen;
    678  1.64.4.2      yamt #ifdef INET
    679  1.64.4.2      yamt 	int csum_flags;
    680  1.64.4.2      yamt #endif
    681      1.28      tron 
    682      1.46      heas 	totlen = HME_XD_DECODE_RSIZE(flags);
    683      1.28      tron 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    684      1.28      tron 	if (m0 == 0)
    685      1.28      tron 		return (0);
    686      1.28      tron 	m0->m_pkthdr.rcvif = ifp;
    687      1.28      tron 	m0->m_pkthdr.len = totlen;
    688      1.28      tron 	len = MHLEN;
    689      1.28      tron 	m = m0;
    690      1.28      tron 
    691      1.56  christos 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    692      1.28      tron 
    693      1.28      tron 	while (totlen > 0) {
    694      1.28      tron 		if (totlen >= MINCLSIZE) {
    695      1.28      tron 			MCLGET(m, M_DONTWAIT);
    696      1.28      tron 			if ((m->m_flags & M_EXT) == 0)
    697      1.28      tron 				goto bad;
    698      1.28      tron 			len = MCLBYTES;
    699      1.28      tron 		}
    700      1.28      tron 
    701      1.28      tron 		if (m == m0) {
    702      1.56  christos 			char *newdata = (char *)
    703      1.28      tron 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    704      1.28      tron 			    sizeof(struct ether_header);
    705      1.28      tron 			len -= newdata - m->m_data;
    706      1.28      tron 			m->m_data = newdata;
    707      1.28      tron 		}
    708      1.28      tron 
    709      1.28      tron 		m->m_len = len = min(totlen, len);
    710      1.56  christos 		memcpy(mtod(m, void *), bp, len);
    711      1.28      tron 		bp += len;
    712      1.28      tron 
    713      1.28      tron 		totlen -= len;
    714      1.28      tron 		if (totlen > 0) {
    715      1.28      tron 			MGET(newm, M_DONTWAIT, MT_DATA);
    716      1.28      tron 			if (newm == 0)
    717      1.28      tron 				goto bad;
    718      1.28      tron 			len = MLEN;
    719      1.28      tron 			m = m->m_next = newm;
    720      1.28      tron 		}
    721      1.28      tron 	}
    722      1.28      tron 
    723      1.49      heas #ifdef INET
    724      1.49      heas 	/* hardware checksum */
    725  1.64.4.2      yamt 	csum_flags = 0;
    726      1.50     rafal 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    727      1.46      heas 		struct ether_header *eh;
    728  1.64.4.2      yamt 		struct ether_vlan_header *evh;
    729      1.46      heas 		struct ip *ip;
    730      1.46      heas 		struct udphdr *uh;
    731      1.46      heas 		uint16_t *opts;
    732      1.46      heas 		int32_t hlen, pktlen;
    733  1.64.4.2      yamt 		uint32_t csum_data;
    734      1.46      heas 
    735  1.64.4.2      yamt 		eh = mtod(m0, struct ether_header *);
    736  1.64.4.2      yamt 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    737  1.64.4.2      yamt 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    738      1.46      heas 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    739  1.64.4.2      yamt 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    740  1.64.4.2      yamt 			evh = (struct ether_vlan_header *)eh;
    741  1.64.4.2      yamt 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
    742  1.64.4.2      yamt 				goto swcsum;
    743  1.64.4.2      yamt 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    744  1.64.4.2      yamt 			    ETHER_VLAN_ENCAP_LEN);
    745  1.64.4.2      yamt 			pktlen = m0->m_pkthdr.len -
    746  1.64.4.2      yamt 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    747  1.64.4.2      yamt 		} else
    748      1.46      heas 			goto swcsum;
    749      1.46      heas 
    750      1.46      heas 		/* IPv4 only */
    751      1.46      heas 		if (ip->ip_v != IPVERSION)
    752      1.46      heas 			goto swcsum;
    753      1.46      heas 
    754      1.46      heas 		hlen = ip->ip_hl << 2;
    755      1.48     perry 		if (hlen < sizeof(struct ip))
    756      1.46      heas 			goto swcsum;
    757      1.46      heas 
    758      1.49      heas 		/*
    759      1.49      heas 		 * bail if too short, has random trailing garbage, truncated,
    760      1.49      heas 		 * fragment, or has ethernet pad.
    761      1.49      heas 		 */
    762  1.64.4.2      yamt 		if (ntohs(ip->ip_len) < hlen ||
    763  1.64.4.2      yamt 		    ntohs(ip->ip_len) != pktlen ||
    764  1.64.4.2      yamt 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    765      1.49      heas 			goto swcsum;
    766      1.46      heas 
    767      1.46      heas 		switch (ip->ip_p) {
    768      1.46      heas 		case IPPROTO_TCP:
    769  1.64.4.2      yamt 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    770      1.46      heas 				goto swcsum;
    771      1.46      heas 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    772      1.46      heas 				goto swcsum;
    773  1.64.4.2      yamt 			csum_flags =
    774  1.64.4.2      yamt 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    775      1.46      heas 			break;
    776      1.46      heas 		case IPPROTO_UDP:
    777  1.64.4.2      yamt 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    778      1.46      heas 				goto swcsum;
    779      1.46      heas 			if (pktlen < (hlen + sizeof(struct udphdr)))
    780      1.46      heas 				goto swcsum;
    781      1.56  christos 			uh = (struct udphdr *)((char *)ip + hlen);
    782      1.46      heas 			/* no checksum */
    783      1.46      heas 			if (uh->uh_sum == 0)
    784      1.46      heas 				goto swcsum;
    785  1.64.4.2      yamt 			csum_flags =
    786  1.64.4.2      yamt 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    787      1.46      heas 			break;
    788      1.46      heas 		default:
    789      1.49      heas 			goto swcsum;
    790      1.46      heas 		}
    791      1.46      heas 
    792      1.46      heas 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    793  1.64.4.2      yamt 		csum_data = ~flags & HME_XD_RXCKSUM;
    794      1.46      heas 
    795  1.64.4.2      yamt 		/*
    796  1.64.4.2      yamt 		 * If data offset is different from RX cksum start offset,
    797  1.64.4.2      yamt 		 * we have to deduct them.
    798  1.64.4.2      yamt 		 */
    799  1.64.4.2      yamt 		hlen = ((char *)ip + hlen) -
    800  1.64.4.2      yamt 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    801  1.64.4.2      yamt 		if (hlen > 1) {
    802      1.46      heas 			uint32_t optsum;
    803      1.46      heas 
    804      1.46      heas 			optsum = 0;
    805  1.64.4.2      yamt 			opts = (uint16_t *)((char *)eh +
    806  1.64.4.2      yamt 			    ETHER_HDR_LEN + sizeof(struct ip));
    807      1.46      heas 
    808  1.64.4.2      yamt 			while (hlen > 1) {
    809      1.46      heas 				optsum += ntohs(*opts++);
    810  1.64.4.2      yamt 				hlen -= 2;
    811      1.46      heas 			}
    812      1.46      heas 			while (optsum >> 16)
    813      1.46      heas 				optsum = (optsum >> 16) + (optsum & 0xffff);
    814      1.46      heas 
    815  1.64.4.2      yamt 			/* Deduct the ip opts sum from the hwsum. */
    816  1.64.4.2      yamt 			csum_data += (uint16_t)~optsum;
    817      1.46      heas 
    818  1.64.4.2      yamt 			while (csum_data >> 16)
    819  1.64.4.2      yamt 				csum_data =
    820  1.64.4.2      yamt 				    (csum_data >> 16) + (csum_data & 0xffff);
    821  1.64.4.2      yamt 		}
    822  1.64.4.2      yamt 		m0->m_pkthdr.csum_data = csum_data;
    823      1.46      heas 	}
    824      1.49      heas swcsum:
    825  1.64.4.2      yamt 	m0->m_pkthdr.csum_flags = csum_flags;
    826      1.49      heas #endif
    827      1.46      heas 
    828      1.28      tron 	return (m0);
    829      1.28      tron 
    830      1.28      tron bad:
    831      1.28      tron 	m_freem(m0);
    832      1.28      tron 	return (0);
    833      1.28      tron }
    834      1.28      tron 
    835      1.28      tron /*
    836      1.28      tron  * Pass a packet to the higher levels.
    837      1.28      tron  */
    838      1.28      tron void
    839  1.64.4.2      yamt hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    840      1.28      tron {
    841      1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    842      1.28      tron 	struct mbuf *m;
    843      1.46      heas 	int len;
    844      1.28      tron 
    845      1.46      heas 	len = HME_XD_DECODE_RSIZE(flags);
    846      1.28      tron 	if (len <= sizeof(struct ether_header) ||
    847      1.28      tron 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    848      1.28      tron 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    849      1.28      tron 	    ETHERMTU + sizeof(struct ether_header))) {
    850      1.28      tron #ifdef HMEDEBUG
    851      1.28      tron 		printf("%s: invalid packet size %d; dropping\n",
    852      1.64    cegger 		    device_xname(&sc->sc_dev), len);
    853      1.28      tron #endif
    854      1.28      tron 		ifp->if_ierrors++;
    855      1.28      tron 		return;
    856      1.28      tron 	}
    857      1.28      tron 
    858      1.28      tron 	/* Pull packet off interface. */
    859      1.46      heas 	m = hme_get(sc, ix, flags);
    860      1.28      tron 	if (m == 0) {
    861      1.28      tron 		ifp->if_ierrors++;
    862      1.28      tron 		return;
    863      1.28      tron 	}
    864      1.28      tron 
    865      1.28      tron 	ifp->if_ipackets++;
    866      1.28      tron 
    867      1.28      tron #if NBPFILTER > 0
    868      1.28      tron 	/*
    869      1.28      tron 	 * Check if there's a BPF listener on this interface.
    870      1.28      tron 	 * If so, hand off the raw packet to BPF.
    871      1.28      tron 	 */
    872      1.28      tron 	if (ifp->if_bpf)
    873      1.28      tron 		bpf_mtap(ifp->if_bpf, m);
    874      1.28      tron #endif
    875      1.28      tron 
    876      1.28      tron 	/* Pass the packet up. */
    877      1.28      tron 	(*ifp->if_input)(ifp, m);
    878      1.28      tron }
    879      1.28      tron 
    880       1.1        pk void
    881  1.64.4.2      yamt hme_start(struct ifnet *ifp)
    882       1.1        pk {
    883       1.1        pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    884      1.56  christos 	void *txd = sc->sc_rb.rb_txd;
    885       1.1        pk 	struct mbuf *m;
    886      1.46      heas 	unsigned int txflags;
    887      1.28      tron 	unsigned int ri, len;
    888      1.28      tron 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    889       1.1        pk 
    890       1.1        pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    891       1.1        pk 		return;
    892       1.1        pk 
    893      1.28      tron 	ri = sc->sc_rb.rb_tdhead;
    894      1.28      tron 
    895      1.28      tron 	for (;;) {
    896      1.28      tron 		IFQ_DEQUEUE(&ifp->if_snd, m);
    897      1.28      tron 		if (m == 0)
    898       1.1        pk 			break;
    899       1.1        pk 
    900       1.1        pk #if NBPFILTER > 0
    901       1.1        pk 		/*
    902       1.1        pk 		 * If BPF is listening on this interface, let it see the
    903       1.1        pk 		 * packet before we commit it to the wire.
    904       1.1        pk 		 */
    905       1.1        pk 		if (ifp->if_bpf)
    906       1.1        pk 			bpf_mtap(ifp->if_bpf, m);
    907       1.1        pk #endif
    908       1.1        pk 
    909      1.49      heas #ifdef INET
    910      1.46      heas 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    911      1.46      heas 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    912      1.46      heas 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    913      1.46      heas 			struct ether_header *eh;
    914      1.46      heas 			uint16_t offset, start;
    915      1.46      heas 
    916      1.46      heas 			eh = mtod(m, struct ether_header *);
    917      1.46      heas 			switch (ntohs(eh->ether_type)) {
    918      1.46      heas 			case ETHERTYPE_IP:
    919      1.46      heas 				start = ETHER_HDR_LEN;
    920      1.46      heas 				break;
    921      1.46      heas 			case ETHERTYPE_VLAN:
    922      1.46      heas 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    923      1.46      heas 				break;
    924      1.46      heas 			default:
    925      1.46      heas 				/* unsupported, drop it */
    926      1.46      heas 				m_free(m);
    927      1.46      heas 				continue;
    928      1.46      heas 			}
    929      1.47   thorpej 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    930      1.47   thorpej 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    931      1.47   thorpej 			    + start;
    932      1.46      heas 			txflags = HME_XD_TXCKSUM |
    933      1.46      heas 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    934      1.46      heas 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    935      1.46      heas 		} else
    936      1.49      heas #endif
    937      1.46      heas 			txflags = 0;
    938      1.46      heas 
    939      1.28      tron 		/*
    940      1.28      tron 		 * Copy the mbuf chain into the transmit buffer.
    941      1.28      tron 		 */
    942      1.28      tron 		len = hme_put(sc, ri, m);
    943      1.28      tron 
    944      1.28      tron 		/*
    945      1.28      tron 		 * Initialize transmit registers and start transmission
    946      1.28      tron 		 */
    947      1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    948      1.28      tron 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    949      1.46      heas 			HME_XD_ENCODE_TSIZE(len) | txflags);
    950      1.28      tron 
    951      1.28      tron 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    952      1.28      tron 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    953      1.28      tron 				  HME_ETX_TP_DMAWAKEUP);
    954      1.28      tron 
    955      1.28      tron 		if (++ri == ntbuf)
    956      1.28      tron 			ri = 0;
    957      1.28      tron 
    958      1.28      tron 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    959      1.26      tron 			ifp->if_flags |= IFF_OACTIVE;
    960      1.26      tron 			break;
    961      1.26      tron 		}
    962       1.1        pk 	}
    963       1.1        pk 
    964      1.28      tron 	sc->sc_rb.rb_tdhead = ri;
    965       1.1        pk }
    966       1.1        pk 
    967       1.1        pk /*
    968       1.1        pk  * Transmit interrupt.
    969       1.1        pk  */
    970       1.1        pk int
    971  1.64.4.2      yamt hme_tint(struct hme_softc *sc)
    972       1.1        pk {
    973       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    974      1.28      tron 	bus_space_tag_t t = sc->sc_bustag;
    975      1.28      tron 	bus_space_handle_t mac = sc->sc_mac;
    976       1.1        pk 	unsigned int ri, txflags;
    977      1.28      tron 
    978      1.28      tron 	/*
    979      1.28      tron 	 * Unload collision counters
    980      1.28      tron 	 */
    981      1.28      tron 	ifp->if_collisions +=
    982      1.28      tron 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    983      1.28      tron 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
    984      1.28      tron 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    985      1.28      tron 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    986      1.28      tron 
    987      1.28      tron 	/*
    988      1.28      tron 	 * then clear the hardware counters.
    989      1.28      tron 	 */
    990      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    991      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    992      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    993      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    994       1.1        pk 
    995       1.1        pk 	/* Fetch current position in the transmit ring */
    996      1.28      tron 	ri = sc->sc_rb.rb_tdtail;
    997       1.1        pk 
    998       1.1        pk 	for (;;) {
    999      1.28      tron 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1000       1.1        pk 			break;
   1001       1.1        pk 
   1002      1.15       eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1003       1.1        pk 
   1004       1.1        pk 		if (txflags & HME_XD_OWN)
   1005       1.1        pk 			break;
   1006       1.1        pk 
   1007       1.1        pk 		ifp->if_flags &= ~IFF_OACTIVE;
   1008      1.28      tron 		ifp->if_opackets++;
   1009      1.26      tron 
   1010      1.28      tron 		if (++ri == sc->sc_rb.rb_ntbuf)
   1011       1.1        pk 			ri = 0;
   1012       1.1        pk 
   1013      1.28      tron 		--sc->sc_rb.rb_td_nbusy;
   1014       1.1        pk 	}
   1015       1.1        pk 
   1016       1.3        pk 	/* Update ring */
   1017      1.28      tron 	sc->sc_rb.rb_tdtail = ri;
   1018       1.1        pk 
   1019       1.1        pk 	hme_start(ifp);
   1020       1.1        pk 
   1021      1.28      tron 	if (sc->sc_rb.rb_td_nbusy == 0)
   1022       1.1        pk 		ifp->if_timer = 0;
   1023       1.1        pk 
   1024       1.1        pk 	return (1);
   1025       1.1        pk }
   1026       1.1        pk 
   1027       1.1        pk /*
   1028       1.1        pk  * Receive interrupt.
   1029       1.1        pk  */
   1030       1.1        pk int
   1031  1.64.4.2      yamt hme_rint(struct hme_softc *sc)
   1032       1.1        pk {
   1033      1.56  christos 	void *xdr = sc->sc_rb.rb_rxd;
   1034      1.28      tron 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1035      1.46      heas 	unsigned int ri;
   1036  1.64.4.2      yamt 	uint32_t flags;
   1037       1.1        pk 
   1038      1.28      tron 	ri = sc->sc_rb.rb_rdtail;
   1039       1.1        pk 
   1040       1.1        pk 	/*
   1041       1.1        pk 	 * Process all buffers with valid data.
   1042       1.1        pk 	 */
   1043       1.1        pk 	for (;;) {
   1044      1.28      tron 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1045       1.1        pk 		if (flags & HME_XD_OWN)
   1046       1.1        pk 			break;
   1047       1.1        pk 
   1048       1.4        pk 		if (flags & HME_XD_OFL) {
   1049       1.4        pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1050      1.64    cegger 					device_xname(&sc->sc_dev), ri, flags);
   1051      1.46      heas 		} else
   1052      1.46      heas 			hme_read(sc, ri, flags);
   1053       1.1        pk 
   1054      1.28      tron 		/* This buffer can be used by the hardware again */
   1055      1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1056      1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1057      1.26      tron 
   1058      1.28      tron 		if (++ri == nrbuf)
   1059       1.1        pk 			ri = 0;
   1060       1.1        pk 	}
   1061       1.1        pk 
   1062      1.28      tron 	sc->sc_rb.rb_rdtail = ri;
   1063      1.28      tron 
   1064       1.1        pk 	return (1);
   1065       1.1        pk }
   1066       1.1        pk 
   1067       1.1        pk int
   1068  1.64.4.2      yamt hme_eint(struct hme_softc *sc, u_int status)
   1069       1.1        pk {
   1070       1.1        pk 	char bits[128];
   1071       1.1        pk 
   1072       1.1        pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1073      1.33        pk 		bus_space_tag_t t = sc->sc_bustag;
   1074      1.33        pk 		bus_space_handle_t mif = sc->sc_mif;
   1075  1.64.4.2      yamt 		uint32_t cf, st, sm;
   1076      1.33        pk 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1077      1.33        pk 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1078      1.33        pk 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1079      1.33        pk 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1080      1.64    cegger 			device_xname(&sc->sc_dev), cf, st, sm);
   1081       1.1        pk 		return (1);
   1082       1.1        pk 	}
   1083  1.64.4.2      yamt 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1084  1.64.4.2      yamt 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
   1085  1.64.4.2      yamt 
   1086       1.1        pk 	return (1);
   1087       1.1        pk }
   1088       1.1        pk 
   1089       1.1        pk int
   1090  1.64.4.2      yamt hme_intr(void *v)
   1091       1.1        pk {
   1092       1.1        pk 	struct hme_softc *sc = (struct hme_softc *)v;
   1093       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1094       1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
   1095  1.64.4.2      yamt 	uint32_t status;
   1096       1.1        pk 	int r = 0;
   1097       1.1        pk 
   1098       1.1        pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1099       1.1        pk 
   1100       1.1        pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1101       1.1        pk 		r |= hme_eint(sc, status);
   1102       1.1        pk 
   1103       1.1        pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1104       1.1        pk 		r |= hme_tint(sc);
   1105       1.1        pk 
   1106       1.1        pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1107       1.1        pk 		r |= hme_rint(sc);
   1108       1.1        pk 
   1109      1.40       abs #if NRND > 0
   1110      1.40       abs 	rnd_add_uint32(&sc->rnd_source, status);
   1111      1.40       abs #endif
   1112      1.40       abs 
   1113       1.1        pk 	return (r);
   1114       1.1        pk }
   1115       1.1        pk 
   1116       1.1        pk 
   1117       1.1        pk void
   1118  1.64.4.2      yamt hme_watchdog(struct ifnet *ifp)
   1119       1.1        pk {
   1120       1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1121       1.1        pk 
   1122      1.64    cegger 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   1123       1.1        pk 	++ifp->if_oerrors;
   1124       1.1        pk 
   1125       1.1        pk 	hme_reset(sc);
   1126       1.4        pk }
   1127       1.4        pk 
   1128       1.4        pk /*
   1129       1.4        pk  * Initialize the MII Management Interface
   1130       1.4        pk  */
   1131       1.4        pk void
   1132  1.64.4.2      yamt hme_mifinit(struct hme_softc *sc)
   1133       1.4        pk {
   1134       1.4        pk 	bus_space_tag_t t = sc->sc_bustag;
   1135       1.4        pk 	bus_space_handle_t mif = sc->sc_mif;
   1136      1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1137      1.33        pk 	int instance, phy;
   1138  1.64.4.2      yamt 	uint32_t v;
   1139       1.4        pk 
   1140      1.61    dyoung 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1141      1.61    dyoung 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1142      1.33        pk 		phy = sc->sc_phys[instance];
   1143      1.33        pk 	} else
   1144      1.33        pk 		/* No media set yet, pick phy arbitrarily.. */
   1145      1.33        pk 		phy = HME_PHYAD_EXTERNAL;
   1146      1.33        pk 
   1147      1.33        pk 	/* Configure the MIF in frame mode, no poll, current phy select */
   1148      1.33        pk 	v = 0;
   1149      1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1150      1.33        pk 		v |= HME_MIF_CFG_PHY;
   1151       1.4        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1152      1.35        pk 
   1153      1.35        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1154      1.35        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1155      1.35        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1156      1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1157      1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1158      1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1159       1.1        pk }
   1160       1.1        pk 
   1161       1.1        pk /*
   1162       1.1        pk  * MII interface
   1163       1.1        pk  */
   1164       1.1        pk static int
   1165  1.64.4.2      yamt hme_mii_readreg(struct device *self, int phy, int reg)
   1166       1.1        pk {
   1167       1.1        pk 	struct hme_softc *sc = (void *)self;
   1168       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1169       1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1170      1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1171  1.64.4.2      yamt 	uint32_t v, xif_cfg, mifi_cfg;
   1172       1.1        pk 	int n;
   1173       1.1        pk 
   1174      1.33        pk 	/* We can at most have two PHYs */
   1175      1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1176      1.32    martin 		return (0);
   1177      1.32    martin 
   1178       1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1179      1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1180       1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1181       1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1182       1.5        pk 		v |= HME_MIF_CFG_PHY;
   1183       1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1184       1.5        pk 
   1185      1.42      heas 	/* Enable MII drivers on external transceiver */
   1186      1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1187      1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1188      1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1189      1.35        pk 	else
   1190      1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1191      1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1192      1.35        pk 
   1193      1.33        pk #if 0
   1194      1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1195      1.33        pk 	/*
   1196      1.33        pk 	 * Check whether a transceiver is connected by testing
   1197      1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1198      1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1199      1.33        pk 	 */
   1200      1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1201      1.33        pk 	delay(100);
   1202      1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1203      1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1204      1.33        pk 		return (0);
   1205      1.33        pk #endif
   1206      1.33        pk 
   1207       1.1        pk 	/* Construct the frame command */
   1208       1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1209       1.1        pk 	    HME_MIF_FO_TAMSB |
   1210       1.1        pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1211       1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1212       1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1213       1.1        pk 
   1214       1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1215       1.1        pk 	for (n = 0; n < 100; n++) {
   1216       1.2        pk 		DELAY(1);
   1217       1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1218      1.33        pk 		if (v & HME_MIF_FO_TALSB) {
   1219      1.33        pk 			v &= HME_MIF_FO_DATA;
   1220      1.33        pk 			goto out;
   1221      1.33        pk 		}
   1222       1.1        pk 	}
   1223       1.1        pk 
   1224      1.33        pk 	v = 0;
   1225      1.64    cegger 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
   1226      1.33        pk 
   1227      1.33        pk out:
   1228      1.33        pk 	/* Restore MIFI_CFG register */
   1229      1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1230      1.35        pk 	/* Restore XIF register */
   1231      1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1232      1.33        pk 	return (v);
   1233       1.1        pk }
   1234       1.1        pk 
   1235       1.1        pk static void
   1236  1.64.4.2      yamt hme_mii_writereg(struct device *self, int phy, int reg, int val)
   1237       1.1        pk {
   1238       1.1        pk 	struct hme_softc *sc = (void *)self;
   1239       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1240       1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1241      1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1242  1.64.4.2      yamt 	uint32_t v, xif_cfg, mifi_cfg;
   1243       1.1        pk 	int n;
   1244      1.32    martin 
   1245      1.33        pk 	/* We can at most have two PHYs */
   1246      1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1247      1.32    martin 		return;
   1248       1.1        pk 
   1249       1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1250      1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1251       1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1252       1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1253       1.5        pk 		v |= HME_MIF_CFG_PHY;
   1254       1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1255       1.5        pk 
   1256      1.42      heas 	/* Enable MII drivers on external transceiver */
   1257      1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1258      1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1259      1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1260      1.35        pk 	else
   1261      1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1262      1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1263      1.35        pk 
   1264      1.33        pk #if 0
   1265      1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1266      1.33        pk 	/*
   1267      1.33        pk 	 * Check whether a transceiver is connected by testing
   1268      1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1269      1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1270      1.33        pk 	 */
   1271      1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1272      1.33        pk 	delay(100);
   1273      1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1274      1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1275      1.33        pk 		return;
   1276      1.33        pk #endif
   1277      1.33        pk 
   1278       1.1        pk 	/* Construct the frame command */
   1279       1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1280       1.1        pk 	    HME_MIF_FO_TAMSB				|
   1281       1.1        pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1282       1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1283       1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1284       1.1        pk 	    (val & HME_MIF_FO_DATA);
   1285       1.1        pk 
   1286       1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1287       1.1        pk 	for (n = 0; n < 100; n++) {
   1288       1.2        pk 		DELAY(1);
   1289       1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1290       1.1        pk 		if (v & HME_MIF_FO_TALSB)
   1291      1.33        pk 			goto out;
   1292       1.1        pk 	}
   1293       1.1        pk 
   1294      1.64    cegger 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
   1295      1.33        pk out:
   1296      1.33        pk 	/* Restore MIFI_CFG register */
   1297      1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1298      1.35        pk 	/* Restore XIF register */
   1299      1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1300       1.1        pk }
   1301       1.1        pk 
   1302       1.1        pk static void
   1303  1.64.4.2      yamt hme_mii_statchg(struct device *dev)
   1304       1.1        pk {
   1305       1.3        pk 	struct hme_softc *sc = (void *)dev;
   1306       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1307       1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1308  1.64.4.2      yamt 	uint32_t v;
   1309       1.1        pk 
   1310       1.5        pk #ifdef HMEDEBUG
   1311       1.5        pk 	if (sc->sc_debug)
   1312      1.33        pk 		printf("hme_mii_statchg: status change\n");
   1313       1.5        pk #endif
   1314       1.1        pk 
   1315       1.5        pk 	/* Set the MAC Full Duplex bit appropriately */
   1316      1.30    martin 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1317      1.30    martin 	   but not otherwise. */
   1318       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1319      1.30    martin 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1320       1.1        pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1321      1.30    martin 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1322      1.30    martin 	} else {
   1323       1.1        pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1324      1.30    martin 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1325      1.30    martin 	}
   1326      1.41      heas 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1327       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1328       1.5        pk }
   1329       1.5        pk 
   1330       1.5        pk int
   1331  1.64.4.2      yamt hme_mediachange(struct ifnet *ifp)
   1332       1.5        pk {
   1333       1.5        pk 	struct hme_softc *sc = ifp->if_softc;
   1334      1.33        pk 	bus_space_tag_t t = sc->sc_bustag;
   1335      1.33        pk 	bus_space_handle_t mif = sc->sc_mif;
   1336      1.33        pk 	bus_space_handle_t mac = sc->sc_mac;
   1337      1.33        pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1338      1.33        pk 	int phy = sc->sc_phys[instance];
   1339      1.61    dyoung 	int rc;
   1340  1.64.4.2      yamt 	uint32_t v;
   1341       1.5        pk 
   1342      1.33        pk #ifdef HMEDEBUG
   1343      1.33        pk 	if (sc->sc_debug)
   1344      1.33        pk 		printf("hme_mediachange: phy = %d\n", phy);
   1345      1.33        pk #endif
   1346      1.33        pk 
   1347      1.33        pk 	/* Select the current PHY in the MIF configuration register */
   1348      1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1349      1.33        pk 	v &= ~HME_MIF_CFG_PHY;
   1350      1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1351      1.33        pk 		v |= HME_MIF_CFG_PHY;
   1352      1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1353      1.33        pk 
   1354      1.33        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1355      1.33        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1356      1.33        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1357      1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1358      1.33        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1359      1.33        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1360       1.5        pk 
   1361      1.61    dyoung 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1362      1.61    dyoung 		return 0;
   1363      1.61    dyoung 	return rc;
   1364       1.1        pk }
   1365       1.1        pk 
   1366       1.1        pk /*
   1367       1.1        pk  * Process an ioctl request.
   1368       1.1        pk  */
   1369       1.1        pk int
   1370  1.64.4.2      yamt hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1371       1.1        pk {
   1372       1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1373       1.1        pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1374       1.1        pk 	int s, error = 0;
   1375       1.1        pk 
   1376       1.1        pk 	s = splnet();
   1377       1.1        pk 
   1378       1.1        pk 	switch (cmd) {
   1379       1.1        pk 
   1380  1.64.4.2      yamt 	case SIOCINITIFADDR:
   1381       1.1        pk 		switch (ifa->ifa_addr->sa_family) {
   1382       1.1        pk #ifdef INET
   1383       1.1        pk 		case AF_INET:
   1384      1.41      heas 			if (ifp->if_flags & IFF_UP)
   1385      1.41      heas 				hme_setladrf(sc);
   1386      1.41      heas 			else {
   1387      1.41      heas 				ifp->if_flags |= IFF_UP;
   1388      1.61    dyoung 				error = hme_init(sc);
   1389      1.41      heas 			}
   1390       1.1        pk 			arp_ifinit(ifp, ifa);
   1391       1.1        pk 			break;
   1392       1.1        pk #endif
   1393       1.1        pk 		default:
   1394      1.41      heas 			ifp->if_flags |= IFF_UP;
   1395      1.61    dyoung 			error = hme_init(sc);
   1396       1.1        pk 			break;
   1397       1.1        pk 		}
   1398       1.1        pk 		break;
   1399       1.1        pk 
   1400       1.1        pk 	case SIOCSIFFLAGS:
   1401      1.45      heas #ifdef HMEDEBUG
   1402  1.64.4.2      yamt 		{
   1403  1.64.4.2      yamt 			struct ifreq *ifr = data;
   1404  1.64.4.2      yamt 			sc->sc_debug =
   1405  1.64.4.2      yamt 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1406  1.64.4.2      yamt 		}
   1407      1.45      heas #endif
   1408  1.64.4.2      yamt 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1409  1.64.4.2      yamt 			break;
   1410      1.45      heas 
   1411  1.64.4.2      yamt 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1412  1.64.4.2      yamt 		case IFF_RUNNING:
   1413       1.1        pk 			/*
   1414       1.1        pk 			 * If interface is marked down and it is running, then
   1415       1.1        pk 			 * stop it.
   1416       1.1        pk 			 */
   1417      1.58    martin 			hme_stop(sc, false);
   1418       1.1        pk 			ifp->if_flags &= ~IFF_RUNNING;
   1419  1.64.4.2      yamt 			break;
   1420  1.64.4.2      yamt 		case IFF_UP:
   1421       1.1        pk 			/*
   1422       1.1        pk 			 * If interface is marked up and it is stopped, then
   1423       1.1        pk 			 * start it.
   1424       1.1        pk 			 */
   1425      1.61    dyoung 			error = hme_init(sc);
   1426  1.64.4.2      yamt 			break;
   1427  1.64.4.2      yamt 		case IFF_UP|IFF_RUNNING:
   1428       1.1        pk 			/*
   1429      1.41      heas 			 * If setting debug or promiscuous mode, do not reset
   1430      1.41      heas 			 * the chip; for everything else, call hme_init()
   1431      1.41      heas 			 * which will trigger a reset.
   1432       1.1        pk 			 */
   1433      1.41      heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1434      1.46      heas 			if (ifp->if_flags != sc->sc_if_flags) {
   1435      1.45      heas 				if ((ifp->if_flags & (~RESETIGN))
   1436      1.45      heas 				    == (sc->sc_if_flags & (~RESETIGN)))
   1437      1.45      heas 					hme_setladrf(sc);
   1438      1.45      heas 				else
   1439      1.61    dyoung 					error = hme_init(sc);
   1440      1.45      heas 			}
   1441      1.41      heas #undef RESETIGN
   1442  1.64.4.2      yamt 			break;
   1443  1.64.4.2      yamt 		case 0:
   1444  1.64.4.2      yamt 			break;
   1445       1.1        pk 		}
   1446      1.45      heas 
   1447      1.45      heas 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1448      1.61    dyoung 			error = hme_init(sc);
   1449      1.45      heas 
   1450       1.1        pk 		break;
   1451       1.1        pk 
   1452      1.63    dyoung 	default:
   1453      1.63    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1454      1.63    dyoung 			break;
   1455      1.63    dyoung 
   1456      1.63    dyoung 		error = 0;
   1457      1.63    dyoung 
   1458      1.63    dyoung 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1459      1.63    dyoung 			;
   1460      1.63    dyoung 		else if (ifp->if_flags & IFF_RUNNING) {
   1461       1.1        pk 			/*
   1462       1.1        pk 			 * Multicast list has changed; set the hardware filter
   1463       1.1        pk 			 * accordingly.
   1464       1.1        pk 			 */
   1465      1.63    dyoung 			hme_setladrf(sc);
   1466       1.1        pk 		}
   1467       1.1        pk 		break;
   1468       1.1        pk 	}
   1469       1.1        pk 
   1470      1.41      heas 	sc->sc_if_flags = ifp->if_flags;
   1471       1.1        pk 	splx(s);
   1472       1.1        pk 	return (error);
   1473       1.1        pk }
   1474       1.1        pk 
   1475       1.1        pk void
   1476  1.64.4.2      yamt hme_shutdown(void *arg)
   1477       1.1        pk {
   1478      1.28      tron 
   1479      1.58    martin 	hme_stop((struct hme_softc *)arg, false);
   1480       1.1        pk }
   1481       1.1        pk 
   1482       1.1        pk /*
   1483       1.1        pk  * Set up the logical address filter.
   1484       1.1        pk  */
   1485       1.1        pk void
   1486  1.64.4.2      yamt hme_setladrf(struct hme_softc *sc)
   1487       1.1        pk {
   1488       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1489       1.1        pk 	struct ether_multi *enm;
   1490       1.1        pk 	struct ether_multistep step;
   1491      1.28      tron 	struct ethercom *ec = &sc->sc_ethercom;
   1492       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1493       1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1494       1.1        pk 	u_char *cp;
   1495  1.64.4.2      yamt 	uint32_t crc;
   1496  1.64.4.2      yamt 	uint32_t hash[4];
   1497  1.64.4.2      yamt 	uint32_t v;
   1498       1.1        pk 	int len;
   1499       1.1        pk 
   1500      1.14        pk 	/* Clear hash table */
   1501      1.14        pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1502      1.14        pk 
   1503      1.14        pk 	/* Get current RX configuration */
   1504      1.14        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1505      1.14        pk 
   1506      1.14        pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1507      1.14        pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1508      1.14        pk 		v |= HME_MAC_RXCFG_PMISC;
   1509      1.14        pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1510      1.14        pk 		ifp->if_flags |= IFF_ALLMULTI;
   1511      1.14        pk 		goto chipit;
   1512      1.14        pk 	}
   1513      1.14        pk 
   1514      1.14        pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1515      1.14        pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1516      1.14        pk 	v |= HME_MAC_RXCFG_HENABLE;
   1517      1.14        pk 
   1518       1.1        pk 	/*
   1519       1.1        pk 	 * Set up multicast address filter by passing all multicast addresses
   1520       1.1        pk 	 * through a crc generator, and then using the high order 6 bits as an
   1521       1.1        pk 	 * index into the 64 bit logical address filter.  The high order bit
   1522       1.1        pk 	 * selects the word, while the rest of the bits select the bit within
   1523       1.1        pk 	 * the word.
   1524       1.1        pk 	 */
   1525       1.1        pk 
   1526      1.28      tron 	ETHER_FIRST_MULTI(step, ec, enm);
   1527       1.1        pk 	while (enm != NULL) {
   1528  1.64.4.2      yamt 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1529       1.1        pk 			/*
   1530       1.1        pk 			 * We must listen to a range of multicast addresses.
   1531       1.1        pk 			 * For now, just accept all multicasts, rather than
   1532       1.1        pk 			 * trying to set only those filter bits needed to match
   1533       1.1        pk 			 * the range.  (At this time, the only use of address
   1534       1.1        pk 			 * ranges is for IP multicast routing, for which the
   1535       1.1        pk 			 * range is big enough to require all bits set.)
   1536       1.1        pk 			 */
   1537      1.14        pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1538      1.14        pk 			ifp->if_flags |= IFF_ALLMULTI;
   1539      1.14        pk 			goto chipit;
   1540       1.1        pk 		}
   1541       1.1        pk 
   1542       1.1        pk 		cp = enm->enm_addrlo;
   1543       1.1        pk 		crc = 0xffffffff;
   1544       1.1        pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1545       1.1        pk 			int octet = *cp++;
   1546       1.1        pk 			int i;
   1547       1.1        pk 
   1548       1.1        pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1549       1.1        pk 			for (i = 0; i < 8; i++) {
   1550       1.1        pk 				if ((crc & 1) ^ (octet & 1)) {
   1551       1.1        pk 					crc >>= 1;
   1552       1.1        pk 					crc ^= MC_POLY_LE;
   1553       1.1        pk 				} else {
   1554       1.1        pk 					crc >>= 1;
   1555       1.1        pk 				}
   1556       1.1        pk 				octet >>= 1;
   1557       1.1        pk 			}
   1558       1.1        pk 		}
   1559       1.1        pk 		/* Just want the 6 most significant bits. */
   1560       1.1        pk 		crc >>= 26;
   1561       1.1        pk 
   1562       1.1        pk 		/* Set the corresponding bit in the filter. */
   1563       1.1        pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1564       1.1        pk 
   1565       1.1        pk 		ETHER_NEXT_MULTI(step, enm);
   1566       1.1        pk 	}
   1567       1.1        pk 
   1568      1.14        pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1569      1.14        pk 
   1570      1.14        pk chipit:
   1571      1.14        pk 	/* Now load the hash table into the chip */
   1572       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1573       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1574       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1575       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1576      1.14        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1577       1.1        pk }
   1578       1.1        pk 
   1579      1.28      tron /*
   1580      1.28      tron  * Routines for accessing the transmit and receive buffers.
   1581      1.28      tron  * The various CPU and adapter configurations supported by this
   1582      1.28      tron  * driver require three different access methods for buffers
   1583      1.28      tron  * and descriptors:
   1584      1.28      tron  *	(1) contig (contiguous data; no padding),
   1585      1.28      tron  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1586      1.28      tron  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1587      1.28      tron  */
   1588      1.28      tron 
   1589      1.28      tron #if 0
   1590      1.28      tron /*
   1591      1.28      tron  * contig: contiguous data with no padding.
   1592      1.28      tron  *
   1593      1.28      tron  * Buffers may have any alignment.
   1594      1.28      tron  */
   1595      1.28      tron 
   1596      1.28      tron void
   1597  1.64.4.2      yamt hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1598      1.26      tron {
   1599      1.56  christos 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1600      1.26      tron 
   1601       1.1        pk 	/*
   1602      1.28      tron 	 * Just call memcpy() to do the work.
   1603       1.1        pk 	 */
   1604      1.28      tron 	memcpy(buf, from, len);
   1605       1.1        pk }
   1606       1.1        pk 
   1607      1.28      tron void
   1608  1.64.4.2      yamt hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1609       1.1        pk {
   1610      1.56  christos 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1611      1.26      tron 
   1612      1.28      tron 	/*
   1613      1.28      tron 	 * Just call memcpy() to do the work.
   1614      1.28      tron 	 */
   1615      1.28      tron 	memcpy(to, buf, len);
   1616       1.1        pk }
   1617      1.28      tron #endif
   1618