Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.66.8.1
      1  1.66.8.1     skrll /*	$NetBSD: hme.c,v 1.66.8.1 2009/01/19 13:17:55 skrll Exp $	*/
      2       1.1        pk 
      3       1.1        pk /*-
      4       1.1        pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5       1.1        pk  * All rights reserved.
      6       1.1        pk  *
      7       1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1        pk  * by Paul Kranenburg.
      9       1.1        pk  *
     10       1.1        pk  * Redistribution and use in source and binary forms, with or without
     11       1.1        pk  * modification, are permitted provided that the following conditions
     12       1.1        pk  * are met:
     13       1.1        pk  * 1. Redistributions of source code must retain the above copyright
     14       1.1        pk  *    notice, this list of conditions and the following disclaimer.
     15       1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     17       1.1        pk  *    documentation and/or other materials provided with the distribution.
     18       1.1        pk  *
     19       1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1        pk  */
     31       1.1        pk 
     32       1.1        pk /*
     33       1.1        pk  * HME Ethernet module driver.
     34       1.1        pk  */
     35      1.25     lukem 
     36      1.25     lukem #include <sys/cdefs.h>
     37  1.66.8.1     skrll __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.66.8.1 2009/01/19 13:17:55 skrll Exp $");
     38       1.1        pk 
     39      1.39    petrov /* #define HMEDEBUG */
     40       1.1        pk 
     41       1.1        pk #include "opt_inet.h"
     42       1.1        pk #include "bpfilter.h"
     43       1.1        pk #include "rnd.h"
     44       1.1        pk 
     45       1.1        pk #include <sys/param.h>
     46       1.1        pk #include <sys/systm.h>
     47       1.5        pk #include <sys/kernel.h>
     48      1.42      heas #include <sys/mbuf.h>
     49       1.1        pk #include <sys/syslog.h>
     50       1.1        pk #include <sys/socket.h>
     51       1.1        pk #include <sys/device.h>
     52       1.1        pk #include <sys/malloc.h>
     53       1.1        pk #include <sys/ioctl.h>
     54       1.1        pk #include <sys/errno.h>
     55       1.1        pk #if NRND > 0
     56       1.1        pk #include <sys/rnd.h>
     57       1.1        pk #endif
     58       1.1        pk 
     59       1.1        pk #include <net/if.h>
     60       1.1        pk #include <net/if_dl.h>
     61       1.1        pk #include <net/if_ether.h>
     62       1.1        pk #include <net/if_media.h>
     63       1.1        pk 
     64       1.1        pk #ifdef INET
     65       1.1        pk #include <netinet/in.h>
     66       1.1        pk #include <netinet/if_inarp.h>
     67       1.1        pk #include <netinet/in_systm.h>
     68       1.1        pk #include <netinet/in_var.h>
     69       1.1        pk #include <netinet/ip.h>
     70      1.46      heas #include <netinet/tcp.h>
     71      1.46      heas #include <netinet/udp.h>
     72       1.1        pk #endif
     73       1.1        pk 
     74       1.1        pk 
     75       1.1        pk #if NBPFILTER > 0
     76       1.1        pk #include <net/bpf.h>
     77       1.1        pk #include <net/bpfdesc.h>
     78       1.1        pk #endif
     79       1.1        pk 
     80       1.1        pk #include <dev/mii/mii.h>
     81       1.1        pk #include <dev/mii/miivar.h>
     82       1.1        pk 
     83      1.60        ad #include <sys/bus.h>
     84       1.1        pk 
     85       1.1        pk #include <dev/ic/hmereg.h>
     86       1.1        pk #include <dev/ic/hmevar.h>
     87       1.1        pk 
     88      1.44     perry void		hme_start(struct ifnet *);
     89      1.58    martin void		hme_stop(struct hme_softc *,bool);
     90      1.56  christos int		hme_ioctl(struct ifnet *, u_long, void *);
     91      1.44     perry void		hme_tick(void *);
     92      1.44     perry void		hme_watchdog(struct ifnet *);
     93      1.44     perry void		hme_shutdown(void *);
     94      1.61    dyoung int		hme_init(struct hme_softc *);
     95      1.44     perry void		hme_meminit(struct hme_softc *);
     96      1.44     perry void		hme_mifinit(struct hme_softc *);
     97      1.44     perry void		hme_reset(struct hme_softc *);
     98      1.44     perry void		hme_setladrf(struct hme_softc *);
     99       1.1        pk 
    100       1.1        pk /* MII methods & callbacks */
    101      1.44     perry static int	hme_mii_readreg(struct device *, int, int);
    102      1.44     perry static void	hme_mii_writereg(struct device *, int, int, int);
    103      1.44     perry static void	hme_mii_statchg(struct device *);
    104      1.44     perry 
    105      1.44     perry int		hme_mediachange(struct ifnet *);
    106      1.44     perry 
    107      1.46      heas struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    108      1.44     perry int		hme_put(struct hme_softc *, int, struct mbuf *);
    109      1.46      heas void		hme_read(struct hme_softc *, int, uint32_t);
    110      1.44     perry int		hme_eint(struct hme_softc *, u_int);
    111      1.44     perry int		hme_rint(struct hme_softc *);
    112      1.44     perry int		hme_tint(struct hme_softc *);
    113       1.1        pk 
    114      1.44     perry static int	ether_cmp(u_char *, u_char *);
    115      1.28      tron 
    116      1.28      tron /* Default buffer copy routines */
    117      1.44     perry void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    118      1.44     perry void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    119      1.44     perry void	hme_zerobuf_contig(struct hme_softc *, int, int);
    120      1.28      tron 
    121      1.28      tron 
    122       1.1        pk void
    123       1.1        pk hme_config(sc)
    124       1.1        pk 	struct hme_softc *sc;
    125       1.1        pk {
    126       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    127       1.1        pk 	struct mii_data *mii = &sc->sc_mii;
    128       1.5        pk 	struct mii_softc *child;
    129      1.11        pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    130       1.1        pk 	bus_dma_segment_t seg;
    131       1.1        pk 	bus_size_t size;
    132      1.28      tron 	int rseg, error;
    133       1.1        pk 
    134       1.1        pk 	/*
    135       1.1        pk 	 * HME common initialization.
    136       1.1        pk 	 *
    137       1.1        pk 	 * hme_softc fields that must be initialized by the front-end:
    138       1.1        pk 	 *
    139       1.1        pk 	 * the bus tag:
    140       1.1        pk 	 *	sc_bustag
    141       1.1        pk 	 *
    142      1.37       wiz 	 * the DMA bus tag:
    143       1.1        pk 	 *	sc_dmatag
    144       1.1        pk 	 *
    145       1.1        pk 	 * the bus handles:
    146       1.1        pk 	 *	sc_seb		(Shared Ethernet Block registers)
    147       1.1        pk 	 *	sc_erx		(Receiver Unit registers)
    148       1.1        pk 	 *	sc_etx		(Transmitter Unit registers)
    149       1.1        pk 	 *	sc_mac		(MAC registers)
    150      1.36       wiz 	 *	sc_mif		(Management Interface registers)
    151       1.1        pk 	 *
    152       1.1        pk 	 * the maximum bus burst size:
    153       1.1        pk 	 *	sc_burst
    154       1.1        pk 	 *
    155      1.28      tron 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    156      1.28      tron 	 *	rb_membase, rb_dmabase)
    157      1.28      tron 	 *
    158       1.1        pk 	 * the local Ethernet address:
    159       1.1        pk 	 *	sc_enaddr
    160       1.1        pk 	 *
    161       1.1        pk 	 */
    162       1.1        pk 
    163       1.1        pk 	/* Make sure the chip is stopped. */
    164      1.58    martin 	hme_stop(sc, true);
    165       1.1        pk 
    166       1.1        pk 
    167      1.28      tron 	/*
    168      1.28      tron 	 * Allocate descriptors and buffers
    169      1.28      tron 	 * XXX - do all this differently.. and more configurably,
    170      1.28      tron 	 * eg. use things as `dma_load_mbuf()' on transmit,
    171      1.28      tron 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    172      1.38       wiz 	 *     all the time) on the receiver side.
    173      1.28      tron 	 *
    174      1.28      tron 	 * Note: receive buffers must be 64-byte aligned.
    175      1.28      tron 	 * Also, apparently, the buffers must extend to a DMA burst
    176      1.28      tron 	 * boundary beyond the maximum packet size.
    177      1.28      tron 	 */
    178      1.28      tron #define _HME_NDESC	128
    179      1.28      tron #define _HME_BUFSZ	1600
    180      1.28      tron 
    181      1.28      tron 	/* Note: the # of descriptors must be a multiple of 16 */
    182      1.28      tron 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    183      1.28      tron 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    184       1.1        pk 
    185       1.1        pk 	/*
    186       1.1        pk 	 * Allocate DMA capable memory
    187       1.1        pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    188       1.1        pk 	 * take this into account when calculating the size. Note that
    189       1.1        pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    190      1.28      tron 	 * so we allocate that much regardless of _HME_NDESC.
    191       1.1        pk 	 */
    192      1.28      tron 	size =	2048 +					/* TX descriptors */
    193      1.28      tron 		2048 +					/* RX descriptors */
    194      1.28      tron 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    195      1.46      heas 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    196      1.11        pk 
    197      1.11        pk 	/* Allocate DMA buffer */
    198      1.28      tron 	if ((error = bus_dmamem_alloc(dmatag, size,
    199      1.28      tron 				      2048, 0,
    200      1.28      tron 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    201      1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
    202      1.64    cegger 			error);
    203      1.10       mrg 		return;
    204       1.1        pk 	}
    205       1.1        pk 
    206      1.11        pk 	/* Map DMA memory in CPU addressable space */
    207      1.11        pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    208      1.28      tron 				    &sc->sc_rb.rb_membase,
    209      1.28      tron 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    210      1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
    211      1.64    cegger 			error);
    212      1.11        pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    213      1.11        pk 		bus_dmamem_free(dmatag, &seg, rseg);
    214       1.1        pk 		return;
    215       1.1        pk 	}
    216      1.13       mrg 
    217      1.13       mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    218      1.28      tron 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    219      1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
    220      1.64    cegger 			error);
    221      1.13       mrg 		return;
    222      1.13       mrg 	}
    223      1.13       mrg 
    224      1.13       mrg 	/* Load the buffer */
    225      1.13       mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    226      1.17       mrg 	    sc->sc_rb.rb_membase, size, NULL,
    227      1.17       mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    228      1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
    229      1.64    cegger 			error);
    230      1.13       mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    231      1.13       mrg 		return;
    232      1.13       mrg 	}
    233      1.13       mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    234       1.1        pk 
    235      1.64    cegger 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    236      1.22   thorpej 	    ether_sprintf(sc->sc_enaddr));
    237       1.2        pk 
    238       1.1        pk 	/* Initialize ifnet structure. */
    239      1.64    cegger 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    240       1.1        pk 	ifp->if_softc = sc;
    241       1.1        pk 	ifp->if_start = hme_start;
    242       1.1        pk 	ifp->if_ioctl = hme_ioctl;
    243       1.1        pk 	ifp->if_watchdog = hme_watchdog;
    244       1.1        pk 	ifp->if_flags =
    245       1.1        pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    246      1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    247      1.51      yamt 	ifp->if_capabilities |=
    248      1.51      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    249      1.51      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    250      1.20   thorpej 	IFQ_SET_READY(&ifp->if_snd);
    251       1.1        pk 
    252       1.1        pk 	/* Initialize ifmedia structures and MII info */
    253       1.1        pk 	mii->mii_ifp = ifp;
    254      1.34    petrov 	mii->mii_readreg = hme_mii_readreg;
    255       1.1        pk 	mii->mii_writereg = hme_mii_writereg;
    256       1.1        pk 	mii->mii_statchg = hme_mii_statchg;
    257       1.1        pk 
    258      1.61    dyoung 	sc->sc_ethercom.ec_mii = mii;
    259      1.61    dyoung 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    260       1.1        pk 
    261       1.4        pk 	hme_mifinit(sc);
    262       1.4        pk 
    263       1.6   thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    264      1.34    petrov 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    265       1.2        pk 
    266       1.5        pk 	child = LIST_FIRST(&mii->mii_phys);
    267       1.5        pk 	if (child == NULL) {
    268       1.1        pk 		/* No PHY attached */
    269      1.61    dyoung 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    270      1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    271       1.1        pk 	} else {
    272       1.1        pk 		/*
    273       1.5        pk 		 * Walk along the list of attached MII devices and
    274       1.5        pk 		 * establish an `MII instance' to `phy number'
    275       1.5        pk 		 * mapping. We'll use this mapping in media change
    276       1.5        pk 		 * requests to determine which phy to use to program
    277       1.5        pk 		 * the MIF configuration register.
    278       1.5        pk 		 */
    279       1.5        pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    280       1.5        pk 			/*
    281       1.5        pk 			 * Note: we support just two PHYs: the built-in
    282       1.5        pk 			 * internal device and an external on the MII
    283       1.5        pk 			 * connector.
    284       1.5        pk 			 */
    285       1.5        pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    286      1.64    cegger 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
    287      1.28      tron 				       " at phy %d, instance %d\n",
    288      1.66   xtraeme 				       device_xname(child->mii_dev),
    289      1.28      tron 				       child->mii_phy, child->mii_inst);
    290       1.5        pk 				continue;
    291       1.5        pk 			}
    292       1.5        pk 
    293       1.5        pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    294       1.5        pk 		}
    295       1.5        pk 
    296       1.5        pk 		/*
    297       1.1        pk 		 * XXX - we can really do the following ONLY if the
    298       1.1        pk 		 * phy indeed has the auto negotiation capability!!
    299       1.1        pk 		 */
    300      1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    301       1.1        pk 	}
    302      1.27      tron 
    303      1.28      tron 	/* claim 802.1q capability */
    304      1.27      tron 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    305       1.1        pk 
    306       1.1        pk 	/* Attach the interface. */
    307       1.1        pk 	if_attach(ifp);
    308       1.1        pk 	ether_ifattach(ifp, sc->sc_enaddr);
    309       1.1        pk 
    310       1.1        pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    311       1.1        pk 	if (sc->sc_sh == NULL)
    312       1.1        pk 		panic("hme_config: can't establish shutdownhook");
    313       1.1        pk 
    314       1.1        pk #if NRND > 0
    315      1.64    cegger 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    316       1.1        pk 			  RND_TYPE_NET, 0);
    317       1.1        pk #endif
    318       1.5        pk 
    319      1.57        ad 	callout_init(&sc->sc_tick_ch, 0);
    320       1.5        pk }
    321       1.5        pk 
    322       1.5        pk void
    323       1.5        pk hme_tick(arg)
    324       1.5        pk 	void *arg;
    325       1.5        pk {
    326       1.5        pk 	struct hme_softc *sc = arg;
    327       1.5        pk 	int s;
    328       1.5        pk 
    329       1.5        pk 	s = splnet();
    330       1.5        pk 	mii_tick(&sc->sc_mii);
    331       1.5        pk 	splx(s);
    332       1.5        pk 
    333       1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    334       1.1        pk }
    335       1.1        pk 
    336       1.1        pk void
    337       1.1        pk hme_reset(sc)
    338       1.1        pk 	struct hme_softc *sc;
    339       1.1        pk {
    340       1.1        pk 	int s;
    341       1.1        pk 
    342       1.1        pk 	s = splnet();
    343      1.61    dyoung 	(void)hme_init(sc);
    344       1.1        pk 	splx(s);
    345       1.1        pk }
    346       1.1        pk 
    347       1.1        pk void
    348      1.58    martin hme_stop(struct hme_softc *sc, bool chip_only)
    349       1.1        pk {
    350       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    351       1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    352       1.1        pk 	int n;
    353       1.1        pk 
    354      1.58    martin 	if (!chip_only) {
    355      1.58    martin 		callout_stop(&sc->sc_tick_ch);
    356      1.58    martin 		mii_down(&sc->sc_mii);
    357      1.58    martin 	}
    358       1.5        pk 
    359      1.33        pk 	/* Mask all interrupts */
    360      1.33        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    361      1.33        pk 
    362       1.1        pk 	/* Reset transmitter and receiver */
    363       1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    364      1.28      tron 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    365       1.1        pk 
    366       1.1        pk 	for (n = 0; n < 20; n++) {
    367       1.1        pk 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    368       1.1        pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    369       1.1        pk 			return;
    370       1.1        pk 		DELAY(20);
    371       1.1        pk 	}
    372       1.1        pk 
    373      1.64    cegger 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
    374       1.1        pk }
    375       1.1        pk 
    376       1.1        pk void
    377       1.1        pk hme_meminit(sc)
    378       1.1        pk 	struct hme_softc *sc;
    379       1.1        pk {
    380      1.28      tron 	bus_addr_t txbufdma, rxbufdma;
    381       1.1        pk 	bus_addr_t dma;
    382      1.56  christos 	char *p;
    383      1.28      tron 	unsigned int ntbuf, nrbuf, i;
    384       1.1        pk 	struct hme_ring *hr = &sc->sc_rb;
    385       1.1        pk 
    386       1.1        pk 	p = hr->rb_membase;
    387       1.1        pk 	dma = hr->rb_dmabase;
    388       1.1        pk 
    389      1.28      tron 	ntbuf = hr->rb_ntbuf;
    390      1.28      tron 	nrbuf = hr->rb_nrbuf;
    391      1.28      tron 
    392       1.1        pk 	/*
    393       1.1        pk 	 * Allocate transmit descriptors
    394       1.1        pk 	 */
    395       1.1        pk 	hr->rb_txd = p;
    396       1.1        pk 	hr->rb_txddma = dma;
    397      1.28      tron 	p += ntbuf * HME_XD_SIZE;
    398      1.28      tron 	dma += ntbuf * HME_XD_SIZE;
    399       1.4        pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    400       1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    401      1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    402       1.1        pk 
    403       1.1        pk 	/*
    404       1.1        pk 	 * Allocate receive descriptors
    405       1.1        pk 	 */
    406       1.1        pk 	hr->rb_rxd = p;
    407       1.1        pk 	hr->rb_rxddma = dma;
    408      1.28      tron 	p += nrbuf * HME_XD_SIZE;
    409      1.28      tron 	dma += nrbuf * HME_XD_SIZE;
    410       1.4        pk 	/* Again move forward to the next 2048 byte boundary.*/
    411       1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    412      1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    413       1.1        pk 
    414      1.28      tron 
    415       1.1        pk 	/*
    416      1.28      tron 	 * Allocate transmit buffers
    417       1.1        pk 	 */
    418      1.28      tron 	hr->rb_txbuf = p;
    419      1.28      tron 	txbufdma = dma;
    420      1.28      tron 	p += ntbuf * _HME_BUFSZ;
    421      1.28      tron 	dma += ntbuf * _HME_BUFSZ;
    422      1.28      tron 
    423      1.28      tron 	/*
    424      1.28      tron 	 * Allocate receive buffers
    425      1.28      tron 	 */
    426      1.28      tron 	hr->rb_rxbuf = p;
    427      1.28      tron 	rxbufdma = dma;
    428      1.28      tron 	p += nrbuf * _HME_BUFSZ;
    429      1.28      tron 	dma += nrbuf * _HME_BUFSZ;
    430      1.28      tron 
    431      1.28      tron 	/*
    432      1.28      tron 	 * Initialize transmit buffer descriptors
    433      1.28      tron 	 */
    434      1.28      tron 	for (i = 0; i < ntbuf; i++) {
    435      1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    436      1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    437       1.1        pk 	}
    438       1.1        pk 
    439       1.1        pk 	/*
    440      1.28      tron 	 * Initialize receive buffer descriptors
    441       1.1        pk 	 */
    442      1.28      tron 	for (i = 0; i < nrbuf; i++) {
    443      1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    444      1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    445      1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    446       1.1        pk 	}
    447       1.1        pk 
    448      1.28      tron 	hr->rb_tdhead = hr->rb_tdtail = 0;
    449      1.28      tron 	hr->rb_td_nbusy = 0;
    450      1.28      tron 	hr->rb_rdtail = 0;
    451       1.1        pk }
    452       1.1        pk 
    453       1.1        pk /*
    454       1.1        pk  * Initialization of interface; set up initialization block
    455       1.1        pk  * and transmit/receive descriptor rings.
    456       1.1        pk  */
    457      1.61    dyoung int
    458       1.1        pk hme_init(sc)
    459       1.1        pk 	struct hme_softc *sc;
    460       1.1        pk {
    461       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    462       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    463       1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    464       1.1        pk 	bus_space_handle_t etx = sc->sc_etx;
    465       1.1        pk 	bus_space_handle_t erx = sc->sc_erx;
    466       1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
    467       1.1        pk 	u_int8_t *ea;
    468       1.1        pk 	u_int32_t v;
    469      1.61    dyoung 	int rc;
    470       1.1        pk 
    471       1.1        pk 	/*
    472       1.1        pk 	 * Initialization sequence. The numbered steps below correspond
    473       1.1        pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    474       1.1        pk 	 * Channel Engine manual (part of the PCIO manual).
    475       1.1        pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    476       1.1        pk 	 */
    477       1.1        pk 
    478       1.1        pk 	/* step 1 & 2. Reset the Ethernet Channel */
    479      1.58    martin 	hme_stop(sc, false);
    480       1.1        pk 
    481       1.4        pk 	/* Re-initialize the MIF */
    482       1.4        pk 	hme_mifinit(sc);
    483       1.4        pk 
    484       1.1        pk 	/* Call MI reset function if any */
    485       1.1        pk 	if (sc->sc_hwreset)
    486       1.1        pk 		(*sc->sc_hwreset)(sc);
    487       1.1        pk 
    488       1.1        pk #if 0
    489       1.1        pk 	/* Mask all MIF interrupts, just in case */
    490       1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    491       1.1        pk #endif
    492       1.1        pk 
    493       1.1        pk 	/* step 3. Setup data structures in host memory */
    494       1.1        pk 	hme_meminit(sc);
    495       1.1        pk 
    496       1.1        pk 	/* step 4. TX MAC registers & counters */
    497       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    498       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    499       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    500       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    501      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    502      1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    503      1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    504      1.45      heas 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    505       1.1        pk 
    506       1.1        pk 	/* Load station MAC address */
    507       1.1        pk 	ea = sc->sc_enaddr;
    508       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    509       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    510       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    511       1.1        pk 
    512       1.1        pk 	/*
    513       1.1        pk 	 * Init seed for backoff
    514       1.1        pk 	 * (source suggested by manual: low 10 bits of MAC address)
    515      1.42      heas 	 */
    516       1.1        pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    517       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    518       1.1        pk 
    519       1.1        pk 
    520       1.1        pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    521       1.1        pk 
    522       1.1        pk 
    523       1.1        pk 	/* step 5. RX MAC registers & counters */
    524       1.1        pk 	hme_setladrf(sc);
    525       1.1        pk 
    526       1.1        pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    527       1.1        pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    528      1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    529       1.1        pk 
    530       1.1        pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    531      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    532      1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    533      1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    534       1.1        pk 
    535       1.1        pk 	/* step 8. Global Configuration & Interrupt Mask */
    536       1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    537      1.28      tron 			~(
    538      1.28      tron 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    539      1.28      tron 			  HME_SEB_STAT_HOSTTOTX |
    540      1.28      tron 			  HME_SEB_STAT_RXTOHOST |
    541      1.28      tron 			  HME_SEB_STAT_TXALL |
    542      1.28      tron 			  HME_SEB_STAT_TXPERR |
    543      1.28      tron 			  HME_SEB_STAT_RCNTEXP |
    544      1.33        pk 			  /*HME_SEB_STAT_MIFIRQ |*/
    545      1.28      tron 			  HME_SEB_STAT_ALL_ERRORS ));
    546       1.1        pk 
    547       1.1        pk 	switch (sc->sc_burst) {
    548       1.1        pk 	default:
    549       1.1        pk 		v = 0;
    550       1.1        pk 		break;
    551       1.1        pk 	case 16:
    552       1.1        pk 		v = HME_SEB_CFG_BURST16;
    553       1.1        pk 		break;
    554       1.1        pk 	case 32:
    555       1.1        pk 		v = HME_SEB_CFG_BURST32;
    556       1.1        pk 		break;
    557       1.1        pk 	case 64:
    558       1.1        pk 		v = HME_SEB_CFG_BURST64;
    559       1.1        pk 		break;
    560       1.1        pk 	}
    561       1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    562       1.1        pk 
    563       1.1        pk 	/* step 9. ETX Configuration: use mostly default values */
    564       1.1        pk 
    565       1.1        pk 	/* Enable DMA */
    566       1.2        pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    567       1.1        pk 	v |= HME_ETX_CFG_DMAENABLE;
    568       1.2        pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    569       1.1        pk 
    570       1.3        pk 	/* Transmit Descriptor ring size: in increments of 16 */
    571      1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    572      1.28      tron 
    573       1.1        pk 
    574       1.3        pk 	/* step 10. ERX Configuration */
    575       1.2        pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    576      1.28      tron 
    577      1.28      tron 	/* Encode Receive Descriptor ring size: four possible values */
    578      1.28      tron 	switch (_HME_NDESC /*XXX*/) {
    579      1.28      tron 	case 32:
    580      1.28      tron 		v |= HME_ERX_CFG_RINGSIZE32;
    581      1.28      tron 		break;
    582      1.28      tron 	case 64:
    583      1.28      tron 		v |= HME_ERX_CFG_RINGSIZE64;
    584      1.28      tron 		break;
    585      1.28      tron 	case 128:
    586      1.28      tron 		v |= HME_ERX_CFG_RINGSIZE128;
    587      1.28      tron 		break;
    588      1.28      tron 	case 256:
    589      1.28      tron 		v |= HME_ERX_CFG_RINGSIZE256;
    590      1.28      tron 		break;
    591      1.28      tron 	default:
    592      1.28      tron 		printf("hme: invalid Receive Descriptor ring size\n");
    593      1.28      tron 		break;
    594      1.28      tron 	}
    595      1.28      tron 
    596       1.3        pk 	/* Enable DMA */
    597      1.28      tron 	v |= HME_ERX_CFG_DMAENABLE;
    598      1.46      heas 
    599      1.46      heas 	/* set h/w rx checksum start offset (# of half-words) */
    600      1.49      heas #ifdef INET
    601      1.48     perry 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
    602      1.46      heas 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    603      1.46      heas 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
    604      1.46      heas 		HME_ERX_CFG_CSUMSTART;
    605      1.49      heas #endif
    606       1.2        pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    607       1.1        pk 
    608       1.1        pk 	/* step 11. XIF Configuration */
    609       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    610       1.1        pk 	v |= HME_MAC_XIF_OE;
    611       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    612       1.1        pk 
    613       1.1        pk 	/* step 12. RX_MAC Configuration Register */
    614       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    615      1.46      heas 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    616       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    617       1.1        pk 
    618       1.1        pk 	/* step 13. TX_MAC Configuration Register */
    619       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    620       1.2        pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    621       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    622       1.1        pk 
    623       1.1        pk 	/* step 14. Issue Transmit Pending command */
    624       1.1        pk 
    625       1.1        pk 	/* Call MI initialization function if any */
    626       1.1        pk 	if (sc->sc_hwinit)
    627       1.1        pk 		(*sc->sc_hwinit)(sc);
    628      1.29   thorpej 
    629      1.29   thorpej 	/* Set the current media. */
    630      1.61    dyoung 	if ((rc = hme_mediachange(ifp)) != 0)
    631      1.61    dyoung 		return rc;
    632       1.9   thorpej 
    633       1.9   thorpej 	/* Start the one second timer. */
    634       1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    635       1.1        pk 
    636       1.1        pk 	ifp->if_flags |= IFF_RUNNING;
    637       1.1        pk 	ifp->if_flags &= ~IFF_OACTIVE;
    638      1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    639       1.1        pk 	ifp->if_timer = 0;
    640       1.1        pk 	hme_start(ifp);
    641      1.61    dyoung 	return 0;
    642       1.1        pk }
    643       1.1        pk 
    644      1.28      tron /*
    645      1.28      tron  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    646      1.28      tron  * speed.
    647      1.28      tron  */
    648      1.53     perry static inline int
    649      1.28      tron ether_cmp(a, b)
    650      1.28      tron 	u_char *a, *b;
    651      1.42      heas {
    652      1.42      heas 
    653      1.28      tron 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    654      1.28      tron 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    655      1.28      tron 		return (0);
    656      1.28      tron 	return (1);
    657      1.28      tron }
    658      1.28      tron 
    659      1.28      tron 
    660      1.28      tron /*
    661      1.28      tron  * Routine to copy from mbuf chain to transmit buffer in
    662      1.28      tron  * network buffer memory.
    663      1.28      tron  * Returns the amount of data copied.
    664      1.28      tron  */
    665      1.28      tron int
    666      1.28      tron hme_put(sc, ri, m)
    667      1.28      tron 	struct hme_softc *sc;
    668      1.28      tron 	int ri;			/* Ring index */
    669      1.28      tron 	struct mbuf *m;
    670      1.28      tron {
    671      1.28      tron 	struct mbuf *n;
    672      1.28      tron 	int len, tlen = 0;
    673      1.56  christos 	char *bp;
    674      1.28      tron 
    675      1.56  christos 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    676      1.28      tron 	for (; m; m = n) {
    677      1.28      tron 		len = m->m_len;
    678      1.28      tron 		if (len == 0) {
    679      1.28      tron 			MFREE(m, n);
    680      1.28      tron 			continue;
    681      1.28      tron 		}
    682      1.56  christos 		memcpy(bp, mtod(m, void *), len);
    683      1.28      tron 		bp += len;
    684      1.28      tron 		tlen += len;
    685      1.28      tron 		MFREE(m, n);
    686      1.28      tron 	}
    687      1.28      tron 	return (tlen);
    688      1.28      tron }
    689      1.28      tron 
    690      1.28      tron /*
    691      1.28      tron  * Pull data off an interface.
    692      1.28      tron  * Len is length of data, with local net header stripped.
    693      1.28      tron  * We copy the data into mbufs.  When full cluster sized units are present
    694      1.28      tron  * we copy into clusters.
    695      1.28      tron  */
    696      1.28      tron struct mbuf *
    697      1.46      heas hme_get(sc, ri, flags)
    698      1.28      tron 	struct hme_softc *sc;
    699      1.46      heas 	int ri;
    700      1.46      heas 	u_int32_t flags;
    701      1.28      tron {
    702      1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    703      1.28      tron 	struct mbuf *m, *m0, *newm;
    704      1.56  christos 	char *bp;
    705      1.46      heas 	int len, totlen;
    706      1.28      tron 
    707      1.46      heas 	totlen = HME_XD_DECODE_RSIZE(flags);
    708      1.28      tron 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    709      1.28      tron 	if (m0 == 0)
    710      1.28      tron 		return (0);
    711      1.28      tron 	m0->m_pkthdr.rcvif = ifp;
    712      1.28      tron 	m0->m_pkthdr.len = totlen;
    713      1.28      tron 	len = MHLEN;
    714      1.28      tron 	m = m0;
    715      1.28      tron 
    716      1.56  christos 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    717      1.28      tron 
    718      1.28      tron 	while (totlen > 0) {
    719      1.28      tron 		if (totlen >= MINCLSIZE) {
    720      1.28      tron 			MCLGET(m, M_DONTWAIT);
    721      1.28      tron 			if ((m->m_flags & M_EXT) == 0)
    722      1.28      tron 				goto bad;
    723      1.28      tron 			len = MCLBYTES;
    724      1.28      tron 		}
    725      1.28      tron 
    726      1.28      tron 		if (m == m0) {
    727      1.56  christos 			char *newdata = (char *)
    728      1.28      tron 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    729      1.28      tron 			    sizeof(struct ether_header);
    730      1.28      tron 			len -= newdata - m->m_data;
    731      1.28      tron 			m->m_data = newdata;
    732      1.28      tron 		}
    733      1.28      tron 
    734      1.28      tron 		m->m_len = len = min(totlen, len);
    735      1.56  christos 		memcpy(mtod(m, void *), bp, len);
    736      1.28      tron 		bp += len;
    737      1.28      tron 
    738      1.28      tron 		totlen -= len;
    739      1.28      tron 		if (totlen > 0) {
    740      1.28      tron 			MGET(newm, M_DONTWAIT, MT_DATA);
    741      1.28      tron 			if (newm == 0)
    742      1.28      tron 				goto bad;
    743      1.28      tron 			len = MLEN;
    744      1.28      tron 			m = m->m_next = newm;
    745      1.28      tron 		}
    746      1.28      tron 	}
    747      1.28      tron 
    748      1.49      heas #ifdef INET
    749      1.49      heas 	/* hardware checksum */
    750      1.50     rafal 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    751      1.46      heas 		struct ether_header *eh;
    752      1.46      heas 		struct ip *ip;
    753      1.46      heas 		struct udphdr *uh;
    754      1.46      heas 		uint16_t *opts;
    755      1.46      heas 		int32_t hlen, pktlen;
    756      1.46      heas 		uint32_t temp;
    757      1.46      heas 
    758      1.46      heas 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
    759      1.46      heas 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
    760      1.46      heas 				ETHER_VLAN_ENCAP_LEN;
    761      1.56  christos 			eh = (struct ether_header *) mtod(m0, void *) +
    762      1.46      heas 				ETHER_VLAN_ENCAP_LEN;
    763      1.46      heas 		} else {
    764      1.46      heas 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    765      1.46      heas 			eh = mtod(m0, struct ether_header *);
    766      1.46      heas 		}
    767      1.46      heas 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
    768      1.46      heas 			goto swcsum;
    769      1.56  christos 		ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
    770      1.46      heas 
    771      1.46      heas 		/* IPv4 only */
    772      1.46      heas 		if (ip->ip_v != IPVERSION)
    773      1.46      heas 			goto swcsum;
    774      1.46      heas 
    775      1.46      heas 		hlen = ip->ip_hl << 2;
    776      1.48     perry 		if (hlen < sizeof(struct ip))
    777      1.46      heas 			goto swcsum;
    778      1.46      heas 
    779      1.49      heas 		/*
    780      1.49      heas 		 * bail if too short, has random trailing garbage, truncated,
    781      1.49      heas 		 * fragment, or has ethernet pad.
    782      1.49      heas 		 */
    783      1.49      heas 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
    784      1.46      heas 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
    785      1.49      heas 			goto swcsum;
    786      1.46      heas 
    787      1.46      heas 		switch (ip->ip_p) {
    788      1.46      heas 		case IPPROTO_TCP:
    789      1.46      heas 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
    790      1.46      heas 				goto swcsum;
    791      1.46      heas 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    792      1.46      heas 				goto swcsum;
    793      1.46      heas 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
    794      1.46      heas 			break;
    795      1.46      heas 		case IPPROTO_UDP:
    796      1.46      heas 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
    797      1.46      heas 				goto swcsum;
    798      1.46      heas 			if (pktlen < (hlen + sizeof(struct udphdr)))
    799      1.46      heas 				goto swcsum;
    800      1.56  christos 			uh = (struct udphdr *)((char *)ip + hlen);
    801      1.46      heas 			/* no checksum */
    802      1.46      heas 			if (uh->uh_sum == 0)
    803      1.46      heas 				goto swcsum;
    804      1.46      heas 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
    805      1.46      heas 			break;
    806      1.46      heas 		default:
    807      1.49      heas 			goto swcsum;
    808      1.46      heas 		}
    809      1.46      heas 
    810      1.46      heas 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    811      1.46      heas 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
    812      1.46      heas 
    813      1.46      heas 		/* if the pkt had ip options, we have to deduct them */
    814      1.46      heas 		if (hlen > sizeof(struct ip)) {
    815      1.46      heas 			uint32_t optsum;
    816      1.46      heas 
    817      1.46      heas 			optsum = 0;
    818      1.46      heas 			temp = hlen - sizeof(struct ip);
    819      1.56  christos 			opts = (uint16_t *)((char *)ip + sizeof(struct ip));
    820      1.46      heas 
    821      1.49      heas 			while (temp > 1) {
    822      1.46      heas 				optsum += ntohs(*opts++);
    823      1.46      heas 				temp -= 2;
    824      1.46      heas 			}
    825      1.46      heas 			while (optsum >> 16)
    826      1.46      heas 				optsum = (optsum >> 16) + (optsum & 0xffff);
    827      1.46      heas 
    828      1.46      heas 			/* Deduct the ip opts sum from the hwsum (rfc 1624). */
    829      1.46      heas 			m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
    830      1.46      heas 						   ~optsum);
    831      1.46      heas 
    832      1.46      heas 			while (m0->m_pkthdr.csum_data >> 16)
    833      1.46      heas 				m0->m_pkthdr.csum_data =
    834      1.46      heas 					(m0->m_pkthdr.csum_data >> 16) +
    835      1.46      heas 					(m0->m_pkthdr.csum_data & 0xffff);
    836      1.46      heas 		}
    837      1.46      heas 
    838      1.46      heas 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    839      1.46      heas 	}
    840      1.49      heas swcsum:
    841      1.49      heas 		m0->m_pkthdr.csum_flags = 0;
    842      1.49      heas #endif
    843      1.46      heas 
    844      1.28      tron 	return (m0);
    845      1.28      tron 
    846      1.28      tron bad:
    847      1.28      tron 	m_freem(m0);
    848      1.28      tron 	return (0);
    849      1.28      tron }
    850      1.28      tron 
    851      1.28      tron /*
    852      1.28      tron  * Pass a packet to the higher levels.
    853      1.28      tron  */
    854      1.28      tron void
    855      1.46      heas hme_read(sc, ix, flags)
    856      1.28      tron 	struct hme_softc *sc;
    857      1.46      heas 	int ix;
    858      1.46      heas 	u_int32_t flags;
    859      1.28      tron {
    860      1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    861      1.28      tron 	struct mbuf *m;
    862      1.46      heas 	int len;
    863      1.28      tron 
    864      1.46      heas 	len = HME_XD_DECODE_RSIZE(flags);
    865      1.28      tron 	if (len <= sizeof(struct ether_header) ||
    866      1.28      tron 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    867      1.28      tron 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    868      1.28      tron 	    ETHERMTU + sizeof(struct ether_header))) {
    869      1.28      tron #ifdef HMEDEBUG
    870      1.28      tron 		printf("%s: invalid packet size %d; dropping\n",
    871      1.64    cegger 		    device_xname(&sc->sc_dev), len);
    872      1.28      tron #endif
    873      1.28      tron 		ifp->if_ierrors++;
    874      1.28      tron 		return;
    875      1.28      tron 	}
    876      1.28      tron 
    877      1.28      tron 	/* Pull packet off interface. */
    878      1.46      heas 	m = hme_get(sc, ix, flags);
    879      1.28      tron 	if (m == 0) {
    880      1.28      tron 		ifp->if_ierrors++;
    881      1.28      tron 		return;
    882      1.28      tron 	}
    883      1.28      tron 
    884      1.28      tron 	ifp->if_ipackets++;
    885      1.28      tron 
    886      1.28      tron #if NBPFILTER > 0
    887      1.28      tron 	/*
    888      1.28      tron 	 * Check if there's a BPF listener on this interface.
    889      1.28      tron 	 * If so, hand off the raw packet to BPF.
    890      1.28      tron 	 */
    891      1.28      tron 	if (ifp->if_bpf)
    892      1.28      tron 		bpf_mtap(ifp->if_bpf, m);
    893      1.28      tron #endif
    894      1.28      tron 
    895      1.28      tron 	/* Pass the packet up. */
    896      1.28      tron 	(*ifp->if_input)(ifp, m);
    897      1.28      tron }
    898      1.28      tron 
    899       1.1        pk void
    900       1.1        pk hme_start(ifp)
    901       1.1        pk 	struct ifnet *ifp;
    902       1.1        pk {
    903       1.1        pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    904      1.56  christos 	void *txd = sc->sc_rb.rb_txd;
    905       1.1        pk 	struct mbuf *m;
    906      1.46      heas 	unsigned int txflags;
    907      1.28      tron 	unsigned int ri, len;
    908      1.28      tron 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    909       1.1        pk 
    910       1.1        pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    911       1.1        pk 		return;
    912       1.1        pk 
    913      1.28      tron 	ri = sc->sc_rb.rb_tdhead;
    914      1.28      tron 
    915      1.28      tron 	for (;;) {
    916      1.28      tron 		IFQ_DEQUEUE(&ifp->if_snd, m);
    917      1.28      tron 		if (m == 0)
    918       1.1        pk 			break;
    919       1.1        pk 
    920       1.1        pk #if NBPFILTER > 0
    921       1.1        pk 		/*
    922       1.1        pk 		 * If BPF is listening on this interface, let it see the
    923       1.1        pk 		 * packet before we commit it to the wire.
    924       1.1        pk 		 */
    925       1.1        pk 		if (ifp->if_bpf)
    926       1.1        pk 			bpf_mtap(ifp->if_bpf, m);
    927       1.1        pk #endif
    928       1.1        pk 
    929      1.49      heas #ifdef INET
    930      1.46      heas 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    931      1.46      heas 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    932      1.46      heas 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    933      1.46      heas 			struct ether_header *eh;
    934      1.46      heas 			uint16_t offset, start;
    935      1.46      heas 
    936      1.46      heas 			eh = mtod(m, struct ether_header *);
    937      1.46      heas 			switch (ntohs(eh->ether_type)) {
    938      1.46      heas 			case ETHERTYPE_IP:
    939      1.46      heas 				start = ETHER_HDR_LEN;
    940      1.46      heas 				break;
    941      1.46      heas 			case ETHERTYPE_VLAN:
    942      1.46      heas 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    943      1.46      heas 				break;
    944      1.46      heas 			default:
    945      1.46      heas 				/* unsupported, drop it */
    946      1.46      heas 				m_free(m);
    947      1.46      heas 				continue;
    948      1.46      heas 			}
    949      1.47   thorpej 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    950      1.47   thorpej 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    951      1.47   thorpej 			    + start;
    952      1.46      heas 			txflags = HME_XD_TXCKSUM |
    953      1.46      heas 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    954      1.46      heas 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    955      1.46      heas 		} else
    956      1.49      heas #endif
    957      1.46      heas 			txflags = 0;
    958      1.46      heas 
    959      1.28      tron 		/*
    960      1.28      tron 		 * Copy the mbuf chain into the transmit buffer.
    961      1.28      tron 		 */
    962      1.28      tron 		len = hme_put(sc, ri, m);
    963      1.28      tron 
    964      1.28      tron 		/*
    965      1.28      tron 		 * Initialize transmit registers and start transmission
    966      1.28      tron 		 */
    967      1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    968      1.28      tron 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    969      1.46      heas 			HME_XD_ENCODE_TSIZE(len) | txflags);
    970      1.28      tron 
    971      1.28      tron 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    972      1.28      tron 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    973      1.28      tron 				  HME_ETX_TP_DMAWAKEUP);
    974      1.28      tron 
    975      1.28      tron 		if (++ri == ntbuf)
    976      1.28      tron 			ri = 0;
    977      1.28      tron 
    978      1.28      tron 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    979      1.26      tron 			ifp->if_flags |= IFF_OACTIVE;
    980      1.26      tron 			break;
    981      1.26      tron 		}
    982       1.1        pk 	}
    983       1.1        pk 
    984      1.28      tron 	sc->sc_rb.rb_tdhead = ri;
    985       1.1        pk }
    986       1.1        pk 
    987       1.1        pk /*
    988       1.1        pk  * Transmit interrupt.
    989       1.1        pk  */
    990       1.1        pk int
    991       1.1        pk hme_tint(sc)
    992       1.1        pk 	struct hme_softc *sc;
    993       1.1        pk {
    994       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    995      1.28      tron 	bus_space_tag_t t = sc->sc_bustag;
    996      1.28      tron 	bus_space_handle_t mac = sc->sc_mac;
    997       1.1        pk 	unsigned int ri, txflags;
    998      1.28      tron 
    999      1.28      tron 	/*
   1000      1.28      tron 	 * Unload collision counters
   1001      1.28      tron 	 */
   1002      1.28      tron 	ifp->if_collisions +=
   1003      1.28      tron 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
   1004      1.28      tron 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
   1005      1.28      tron 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
   1006      1.28      tron 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
   1007      1.28      tron 
   1008      1.28      tron 	/*
   1009      1.28      tron 	 * then clear the hardware counters.
   1010      1.28      tron 	 */
   1011      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1012      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1013      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1014      1.28      tron 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1015       1.1        pk 
   1016       1.1        pk 	/* Fetch current position in the transmit ring */
   1017      1.28      tron 	ri = sc->sc_rb.rb_tdtail;
   1018       1.1        pk 
   1019       1.1        pk 	for (;;) {
   1020      1.28      tron 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1021       1.1        pk 			break;
   1022       1.1        pk 
   1023      1.15       eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1024       1.1        pk 
   1025       1.1        pk 		if (txflags & HME_XD_OWN)
   1026       1.1        pk 			break;
   1027       1.1        pk 
   1028       1.1        pk 		ifp->if_flags &= ~IFF_OACTIVE;
   1029      1.28      tron 		ifp->if_opackets++;
   1030      1.26      tron 
   1031      1.28      tron 		if (++ri == sc->sc_rb.rb_ntbuf)
   1032       1.1        pk 			ri = 0;
   1033       1.1        pk 
   1034      1.28      tron 		--sc->sc_rb.rb_td_nbusy;
   1035       1.1        pk 	}
   1036       1.1        pk 
   1037       1.3        pk 	/* Update ring */
   1038      1.28      tron 	sc->sc_rb.rb_tdtail = ri;
   1039       1.1        pk 
   1040       1.1        pk 	hme_start(ifp);
   1041       1.1        pk 
   1042      1.28      tron 	if (sc->sc_rb.rb_td_nbusy == 0)
   1043       1.1        pk 		ifp->if_timer = 0;
   1044       1.1        pk 
   1045       1.1        pk 	return (1);
   1046       1.1        pk }
   1047       1.1        pk 
   1048       1.1        pk /*
   1049       1.1        pk  * Receive interrupt.
   1050       1.1        pk  */
   1051       1.1        pk int
   1052       1.1        pk hme_rint(sc)
   1053       1.1        pk 	struct hme_softc *sc;
   1054       1.1        pk {
   1055      1.56  christos 	void *xdr = sc->sc_rb.rb_rxd;
   1056      1.28      tron 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1057      1.46      heas 	unsigned int ri;
   1058       1.1        pk 	u_int32_t flags;
   1059       1.1        pk 
   1060      1.28      tron 	ri = sc->sc_rb.rb_rdtail;
   1061       1.1        pk 
   1062       1.1        pk 	/*
   1063       1.1        pk 	 * Process all buffers with valid data.
   1064       1.1        pk 	 */
   1065       1.1        pk 	for (;;) {
   1066      1.28      tron 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1067       1.1        pk 		if (flags & HME_XD_OWN)
   1068       1.1        pk 			break;
   1069       1.1        pk 
   1070       1.4        pk 		if (flags & HME_XD_OFL) {
   1071       1.4        pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1072      1.64    cegger 					device_xname(&sc->sc_dev), ri, flags);
   1073      1.46      heas 		} else
   1074      1.46      heas 			hme_read(sc, ri, flags);
   1075       1.1        pk 
   1076      1.28      tron 		/* This buffer can be used by the hardware again */
   1077      1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1078      1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1079      1.26      tron 
   1080      1.28      tron 		if (++ri == nrbuf)
   1081       1.1        pk 			ri = 0;
   1082       1.1        pk 	}
   1083       1.1        pk 
   1084      1.28      tron 	sc->sc_rb.rb_rdtail = ri;
   1085      1.28      tron 
   1086       1.1        pk 	return (1);
   1087       1.1        pk }
   1088       1.1        pk 
   1089       1.1        pk int
   1090       1.1        pk hme_eint(sc, status)
   1091       1.1        pk 	struct hme_softc *sc;
   1092       1.1        pk 	u_int status;
   1093       1.1        pk {
   1094       1.1        pk 	char bits[128];
   1095       1.1        pk 
   1096       1.1        pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1097      1.33        pk 		bus_space_tag_t t = sc->sc_bustag;
   1098      1.33        pk 		bus_space_handle_t mif = sc->sc_mif;
   1099      1.33        pk 		u_int32_t cf, st, sm;
   1100      1.33        pk 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1101      1.33        pk 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1102      1.33        pk 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1103      1.33        pk 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1104      1.64    cegger 			device_xname(&sc->sc_dev), cf, st, sm);
   1105       1.1        pk 		return (1);
   1106       1.1        pk 	}
   1107  1.66.8.1     skrll 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1108  1.66.8.1     skrll 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
   1109  1.66.8.1     skrll 
   1110       1.1        pk 	return (1);
   1111       1.1        pk }
   1112       1.1        pk 
   1113       1.1        pk int
   1114       1.1        pk hme_intr(v)
   1115       1.1        pk 	void *v;
   1116       1.1        pk {
   1117       1.1        pk 	struct hme_softc *sc = (struct hme_softc *)v;
   1118       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1119       1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
   1120       1.1        pk 	u_int32_t status;
   1121       1.1        pk 	int r = 0;
   1122       1.1        pk 
   1123       1.1        pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1124       1.1        pk 
   1125       1.1        pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1126       1.1        pk 		r |= hme_eint(sc, status);
   1127       1.1        pk 
   1128       1.1        pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1129       1.1        pk 		r |= hme_tint(sc);
   1130       1.1        pk 
   1131       1.1        pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1132       1.1        pk 		r |= hme_rint(sc);
   1133       1.1        pk 
   1134      1.40       abs #if NRND > 0
   1135      1.40       abs 	rnd_add_uint32(&sc->rnd_source, status);
   1136      1.40       abs #endif
   1137      1.40       abs 
   1138       1.1        pk 	return (r);
   1139       1.1        pk }
   1140       1.1        pk 
   1141       1.1        pk 
   1142       1.1        pk void
   1143       1.1        pk hme_watchdog(ifp)
   1144       1.1        pk 	struct ifnet *ifp;
   1145       1.1        pk {
   1146       1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1147       1.1        pk 
   1148      1.64    cegger 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   1149       1.1        pk 	++ifp->if_oerrors;
   1150       1.1        pk 
   1151       1.1        pk 	hme_reset(sc);
   1152       1.4        pk }
   1153       1.4        pk 
   1154       1.4        pk /*
   1155       1.4        pk  * Initialize the MII Management Interface
   1156       1.4        pk  */
   1157       1.4        pk void
   1158       1.4        pk hme_mifinit(sc)
   1159       1.4        pk 	struct hme_softc *sc;
   1160       1.4        pk {
   1161       1.4        pk 	bus_space_tag_t t = sc->sc_bustag;
   1162       1.4        pk 	bus_space_handle_t mif = sc->sc_mif;
   1163      1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1164      1.33        pk 	int instance, phy;
   1165       1.4        pk 	u_int32_t v;
   1166       1.4        pk 
   1167      1.61    dyoung 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1168      1.61    dyoung 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1169      1.33        pk 		phy = sc->sc_phys[instance];
   1170      1.33        pk 	} else
   1171      1.33        pk 		/* No media set yet, pick phy arbitrarily.. */
   1172      1.33        pk 		phy = HME_PHYAD_EXTERNAL;
   1173      1.33        pk 
   1174      1.33        pk 	/* Configure the MIF in frame mode, no poll, current phy select */
   1175      1.33        pk 	v = 0;
   1176      1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1177      1.33        pk 		v |= HME_MIF_CFG_PHY;
   1178       1.4        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1179      1.35        pk 
   1180      1.35        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1181      1.35        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1182      1.35        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1183      1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1184      1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1185      1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1186       1.1        pk }
   1187       1.1        pk 
   1188       1.1        pk /*
   1189       1.1        pk  * MII interface
   1190       1.1        pk  */
   1191       1.1        pk static int
   1192       1.1        pk hme_mii_readreg(self, phy, reg)
   1193       1.1        pk 	struct device *self;
   1194       1.1        pk 	int phy, reg;
   1195       1.1        pk {
   1196       1.1        pk 	struct hme_softc *sc = (void *)self;
   1197       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1198       1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1199      1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1200      1.35        pk 	u_int32_t v, xif_cfg, mifi_cfg;
   1201       1.1        pk 	int n;
   1202       1.1        pk 
   1203      1.33        pk 	/* We can at most have two PHYs */
   1204      1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1205      1.32    martin 		return (0);
   1206      1.32    martin 
   1207       1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1208      1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1209       1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1210       1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1211       1.5        pk 		v |= HME_MIF_CFG_PHY;
   1212       1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1213       1.5        pk 
   1214      1.42      heas 	/* Enable MII drivers on external transceiver */
   1215      1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1216      1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1217      1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1218      1.35        pk 	else
   1219      1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1220      1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1221      1.35        pk 
   1222      1.33        pk #if 0
   1223      1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1224      1.33        pk 	/*
   1225      1.33        pk 	 * Check whether a transceiver is connected by testing
   1226      1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1227      1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1228      1.33        pk 	 */
   1229      1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1230      1.33        pk 	delay(100);
   1231      1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1232      1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1233      1.33        pk 		return (0);
   1234      1.33        pk #endif
   1235      1.33        pk 
   1236       1.1        pk 	/* Construct the frame command */
   1237       1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1238       1.1        pk 	    HME_MIF_FO_TAMSB |
   1239       1.1        pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1240       1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1241       1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1242       1.1        pk 
   1243       1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1244       1.1        pk 	for (n = 0; n < 100; n++) {
   1245       1.2        pk 		DELAY(1);
   1246       1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1247      1.33        pk 		if (v & HME_MIF_FO_TALSB) {
   1248      1.33        pk 			v &= HME_MIF_FO_DATA;
   1249      1.33        pk 			goto out;
   1250      1.33        pk 		}
   1251       1.1        pk 	}
   1252       1.1        pk 
   1253      1.33        pk 	v = 0;
   1254      1.64    cegger 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
   1255      1.33        pk 
   1256      1.33        pk out:
   1257      1.33        pk 	/* Restore MIFI_CFG register */
   1258      1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1259      1.35        pk 	/* Restore XIF register */
   1260      1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1261      1.33        pk 	return (v);
   1262       1.1        pk }
   1263       1.1        pk 
   1264       1.1        pk static void
   1265       1.1        pk hme_mii_writereg(self, phy, reg, val)
   1266       1.1        pk 	struct device *self;
   1267       1.1        pk 	int phy, reg, val;
   1268       1.1        pk {
   1269       1.1        pk 	struct hme_softc *sc = (void *)self;
   1270       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1271       1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1272      1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1273      1.35        pk 	u_int32_t v, xif_cfg, mifi_cfg;
   1274       1.1        pk 	int n;
   1275      1.32    martin 
   1276      1.33        pk 	/* We can at most have two PHYs */
   1277      1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1278      1.32    martin 		return;
   1279       1.1        pk 
   1280       1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1281      1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1282       1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1283       1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1284       1.5        pk 		v |= HME_MIF_CFG_PHY;
   1285       1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1286       1.5        pk 
   1287      1.42      heas 	/* Enable MII drivers on external transceiver */
   1288      1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1289      1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1290      1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1291      1.35        pk 	else
   1292      1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1293      1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1294      1.35        pk 
   1295      1.33        pk #if 0
   1296      1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1297      1.33        pk 	/*
   1298      1.33        pk 	 * Check whether a transceiver is connected by testing
   1299      1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1300      1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1301      1.33        pk 	 */
   1302      1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1303      1.33        pk 	delay(100);
   1304      1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1305      1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1306      1.33        pk 		return;
   1307      1.33        pk #endif
   1308      1.33        pk 
   1309       1.1        pk 	/* Construct the frame command */
   1310       1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1311       1.1        pk 	    HME_MIF_FO_TAMSB				|
   1312       1.1        pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1313       1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1314       1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1315       1.1        pk 	    (val & HME_MIF_FO_DATA);
   1316       1.1        pk 
   1317       1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1318       1.1        pk 	for (n = 0; n < 100; n++) {
   1319       1.2        pk 		DELAY(1);
   1320       1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1321       1.1        pk 		if (v & HME_MIF_FO_TALSB)
   1322      1.33        pk 			goto out;
   1323       1.1        pk 	}
   1324       1.1        pk 
   1325      1.64    cegger 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
   1326      1.33        pk out:
   1327      1.33        pk 	/* Restore MIFI_CFG register */
   1328      1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1329      1.35        pk 	/* Restore XIF register */
   1330      1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1331       1.1        pk }
   1332       1.1        pk 
   1333       1.1        pk static void
   1334       1.1        pk hme_mii_statchg(dev)
   1335       1.1        pk 	struct device *dev;
   1336       1.1        pk {
   1337       1.3        pk 	struct hme_softc *sc = (void *)dev;
   1338       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1339       1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1340       1.1        pk 	u_int32_t v;
   1341       1.1        pk 
   1342       1.5        pk #ifdef HMEDEBUG
   1343       1.5        pk 	if (sc->sc_debug)
   1344      1.33        pk 		printf("hme_mii_statchg: status change\n");
   1345       1.5        pk #endif
   1346       1.1        pk 
   1347       1.5        pk 	/* Set the MAC Full Duplex bit appropriately */
   1348      1.30    martin 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1349      1.30    martin 	   but not otherwise. */
   1350       1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1351      1.30    martin 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1352       1.1        pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1353      1.30    martin 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1354      1.30    martin 	} else {
   1355       1.1        pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1356      1.30    martin 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1357      1.30    martin 	}
   1358      1.41      heas 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1359       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1360       1.5        pk }
   1361       1.5        pk 
   1362       1.5        pk int
   1363       1.5        pk hme_mediachange(ifp)
   1364       1.5        pk 	struct ifnet *ifp;
   1365       1.5        pk {
   1366       1.5        pk 	struct hme_softc *sc = ifp->if_softc;
   1367      1.33        pk 	bus_space_tag_t t = sc->sc_bustag;
   1368      1.33        pk 	bus_space_handle_t mif = sc->sc_mif;
   1369      1.33        pk 	bus_space_handle_t mac = sc->sc_mac;
   1370      1.33        pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1371      1.33        pk 	int phy = sc->sc_phys[instance];
   1372      1.61    dyoung 	int rc;
   1373      1.33        pk 	u_int32_t v;
   1374       1.5        pk 
   1375      1.33        pk #ifdef HMEDEBUG
   1376      1.33        pk 	if (sc->sc_debug)
   1377      1.33        pk 		printf("hme_mediachange: phy = %d\n", phy);
   1378      1.33        pk #endif
   1379      1.33        pk 
   1380      1.33        pk 	/* Select the current PHY in the MIF configuration register */
   1381      1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1382      1.33        pk 	v &= ~HME_MIF_CFG_PHY;
   1383      1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1384      1.33        pk 		v |= HME_MIF_CFG_PHY;
   1385      1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1386      1.33        pk 
   1387      1.33        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1388      1.33        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1389      1.33        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1390      1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1391      1.33        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1392      1.33        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1393       1.5        pk 
   1394      1.61    dyoung 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1395      1.61    dyoung 		return 0;
   1396      1.61    dyoung 	return rc;
   1397       1.1        pk }
   1398       1.1        pk 
   1399       1.1        pk /*
   1400       1.1        pk  * Process an ioctl request.
   1401       1.1        pk  */
   1402       1.1        pk int
   1403  1.66.8.1     skrll hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1404       1.1        pk {
   1405       1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1406       1.1        pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1407       1.1        pk 	int s, error = 0;
   1408       1.1        pk 
   1409       1.1        pk 	s = splnet();
   1410       1.1        pk 
   1411       1.1        pk 	switch (cmd) {
   1412       1.1        pk 
   1413  1.66.8.1     skrll 	case SIOCINITIFADDR:
   1414       1.1        pk 		switch (ifa->ifa_addr->sa_family) {
   1415       1.1        pk #ifdef INET
   1416       1.1        pk 		case AF_INET:
   1417      1.41      heas 			if (ifp->if_flags & IFF_UP)
   1418      1.41      heas 				hme_setladrf(sc);
   1419      1.41      heas 			else {
   1420      1.41      heas 				ifp->if_flags |= IFF_UP;
   1421      1.61    dyoung 				error = hme_init(sc);
   1422      1.41      heas 			}
   1423       1.1        pk 			arp_ifinit(ifp, ifa);
   1424       1.1        pk 			break;
   1425       1.1        pk #endif
   1426       1.1        pk 		default:
   1427      1.41      heas 			ifp->if_flags |= IFF_UP;
   1428      1.61    dyoung 			error = hme_init(sc);
   1429       1.1        pk 			break;
   1430       1.1        pk 		}
   1431       1.1        pk 		break;
   1432       1.1        pk 
   1433       1.1        pk 	case SIOCSIFFLAGS:
   1434      1.45      heas #ifdef HMEDEBUG
   1435  1.66.8.1     skrll 		{
   1436  1.66.8.1     skrll 			struct ifreq *ifr = data;
   1437  1.66.8.1     skrll 			sc->sc_debug =
   1438  1.66.8.1     skrll 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1439  1.66.8.1     skrll 		}
   1440      1.45      heas #endif
   1441  1.66.8.1     skrll 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1442  1.66.8.1     skrll 			break;
   1443      1.45      heas 
   1444  1.66.8.1     skrll 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1445  1.66.8.1     skrll 		case IFF_RUNNING:
   1446       1.1        pk 			/*
   1447       1.1        pk 			 * If interface is marked down and it is running, then
   1448       1.1        pk 			 * stop it.
   1449       1.1        pk 			 */
   1450      1.58    martin 			hme_stop(sc, false);
   1451       1.1        pk 			ifp->if_flags &= ~IFF_RUNNING;
   1452  1.66.8.1     skrll 			break;
   1453  1.66.8.1     skrll 		case IFF_UP:
   1454       1.1        pk 			/*
   1455       1.1        pk 			 * If interface is marked up and it is stopped, then
   1456       1.1        pk 			 * start it.
   1457       1.1        pk 			 */
   1458      1.61    dyoung 			error = hme_init(sc);
   1459  1.66.8.1     skrll 			break;
   1460  1.66.8.1     skrll 		case IFF_UP|IFF_RUNNING:
   1461       1.1        pk 			/*
   1462      1.41      heas 			 * If setting debug or promiscuous mode, do not reset
   1463      1.41      heas 			 * the chip; for everything else, call hme_init()
   1464      1.41      heas 			 * which will trigger a reset.
   1465       1.1        pk 			 */
   1466      1.41      heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1467      1.46      heas 			if (ifp->if_flags != sc->sc_if_flags) {
   1468      1.45      heas 				if ((ifp->if_flags & (~RESETIGN))
   1469      1.45      heas 				    == (sc->sc_if_flags & (~RESETIGN)))
   1470      1.45      heas 					hme_setladrf(sc);
   1471      1.45      heas 				else
   1472      1.61    dyoung 					error = hme_init(sc);
   1473      1.45      heas 			}
   1474      1.41      heas #undef RESETIGN
   1475  1.66.8.1     skrll 			break;
   1476  1.66.8.1     skrll 		case 0:
   1477  1.66.8.1     skrll 			break;
   1478       1.1        pk 		}
   1479      1.45      heas 
   1480      1.45      heas 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1481      1.61    dyoung 			error = hme_init(sc);
   1482      1.45      heas 
   1483       1.1        pk 		break;
   1484       1.1        pk 
   1485      1.63    dyoung 	default:
   1486      1.63    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1487      1.63    dyoung 			break;
   1488      1.63    dyoung 
   1489      1.63    dyoung 		error = 0;
   1490      1.63    dyoung 
   1491      1.63    dyoung 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1492      1.63    dyoung 			;
   1493      1.63    dyoung 		else if (ifp->if_flags & IFF_RUNNING) {
   1494       1.1        pk 			/*
   1495       1.1        pk 			 * Multicast list has changed; set the hardware filter
   1496       1.1        pk 			 * accordingly.
   1497       1.1        pk 			 */
   1498      1.63    dyoung 			hme_setladrf(sc);
   1499       1.1        pk 		}
   1500       1.1        pk 		break;
   1501       1.1        pk 	}
   1502       1.1        pk 
   1503      1.41      heas 	sc->sc_if_flags = ifp->if_flags;
   1504       1.1        pk 	splx(s);
   1505       1.1        pk 	return (error);
   1506       1.1        pk }
   1507       1.1        pk 
   1508       1.1        pk void
   1509       1.1        pk hme_shutdown(arg)
   1510       1.1        pk 	void *arg;
   1511       1.1        pk {
   1512      1.28      tron 
   1513      1.58    martin 	hme_stop((struct hme_softc *)arg, false);
   1514       1.1        pk }
   1515       1.1        pk 
   1516       1.1        pk /*
   1517       1.1        pk  * Set up the logical address filter.
   1518       1.1        pk  */
   1519       1.1        pk void
   1520       1.1        pk hme_setladrf(sc)
   1521       1.1        pk 	struct hme_softc *sc;
   1522       1.1        pk {
   1523       1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1524       1.1        pk 	struct ether_multi *enm;
   1525       1.1        pk 	struct ether_multistep step;
   1526      1.28      tron 	struct ethercom *ec = &sc->sc_ethercom;
   1527       1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1528       1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1529       1.1        pk 	u_char *cp;
   1530       1.1        pk 	u_int32_t crc;
   1531       1.1        pk 	u_int32_t hash[4];
   1532      1.14        pk 	u_int32_t v;
   1533       1.1        pk 	int len;
   1534       1.1        pk 
   1535      1.14        pk 	/* Clear hash table */
   1536      1.14        pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1537      1.14        pk 
   1538      1.14        pk 	/* Get current RX configuration */
   1539      1.14        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1540      1.14        pk 
   1541      1.14        pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1542      1.14        pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1543      1.14        pk 		v |= HME_MAC_RXCFG_PMISC;
   1544      1.14        pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1545      1.14        pk 		ifp->if_flags |= IFF_ALLMULTI;
   1546      1.14        pk 		goto chipit;
   1547      1.14        pk 	}
   1548      1.14        pk 
   1549      1.14        pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1550      1.14        pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1551      1.14        pk 	v |= HME_MAC_RXCFG_HENABLE;
   1552      1.14        pk 
   1553       1.1        pk 	/*
   1554       1.1        pk 	 * Set up multicast address filter by passing all multicast addresses
   1555       1.1        pk 	 * through a crc generator, and then using the high order 6 bits as an
   1556       1.1        pk 	 * index into the 64 bit logical address filter.  The high order bit
   1557       1.1        pk 	 * selects the word, while the rest of the bits select the bit within
   1558       1.1        pk 	 * the word.
   1559       1.1        pk 	 */
   1560       1.1        pk 
   1561      1.28      tron 	ETHER_FIRST_MULTI(step, ec, enm);
   1562       1.1        pk 	while (enm != NULL) {
   1563      1.28      tron 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1564       1.1        pk 			/*
   1565       1.1        pk 			 * We must listen to a range of multicast addresses.
   1566       1.1        pk 			 * For now, just accept all multicasts, rather than
   1567       1.1        pk 			 * trying to set only those filter bits needed to match
   1568       1.1        pk 			 * the range.  (At this time, the only use of address
   1569       1.1        pk 			 * ranges is for IP multicast routing, for which the
   1570       1.1        pk 			 * range is big enough to require all bits set.)
   1571       1.1        pk 			 */
   1572      1.14        pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1573      1.14        pk 			ifp->if_flags |= IFF_ALLMULTI;
   1574      1.14        pk 			goto chipit;
   1575       1.1        pk 		}
   1576       1.1        pk 
   1577       1.1        pk 		cp = enm->enm_addrlo;
   1578       1.1        pk 		crc = 0xffffffff;
   1579       1.1        pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1580       1.1        pk 			int octet = *cp++;
   1581       1.1        pk 			int i;
   1582       1.1        pk 
   1583       1.1        pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1584       1.1        pk 			for (i = 0; i < 8; i++) {
   1585       1.1        pk 				if ((crc & 1) ^ (octet & 1)) {
   1586       1.1        pk 					crc >>= 1;
   1587       1.1        pk 					crc ^= MC_POLY_LE;
   1588       1.1        pk 				} else {
   1589       1.1        pk 					crc >>= 1;
   1590       1.1        pk 				}
   1591       1.1        pk 				octet >>= 1;
   1592       1.1        pk 			}
   1593       1.1        pk 		}
   1594       1.1        pk 		/* Just want the 6 most significant bits. */
   1595       1.1        pk 		crc >>= 26;
   1596       1.1        pk 
   1597       1.1        pk 		/* Set the corresponding bit in the filter. */
   1598       1.1        pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1599       1.1        pk 
   1600       1.1        pk 		ETHER_NEXT_MULTI(step, enm);
   1601       1.1        pk 	}
   1602       1.1        pk 
   1603      1.14        pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1604      1.14        pk 
   1605      1.14        pk chipit:
   1606      1.14        pk 	/* Now load the hash table into the chip */
   1607       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1608       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1609       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1610       1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1611      1.14        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1612       1.1        pk }
   1613       1.1        pk 
   1614      1.28      tron /*
   1615      1.28      tron  * Routines for accessing the transmit and receive buffers.
   1616      1.28      tron  * The various CPU and adapter configurations supported by this
   1617      1.28      tron  * driver require three different access methods for buffers
   1618      1.28      tron  * and descriptors:
   1619      1.28      tron  *	(1) contig (contiguous data; no padding),
   1620      1.28      tron  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1621      1.28      tron  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1622      1.28      tron  */
   1623      1.28      tron 
   1624      1.28      tron #if 0
   1625      1.28      tron /*
   1626      1.28      tron  * contig: contiguous data with no padding.
   1627      1.28      tron  *
   1628      1.28      tron  * Buffers may have any alignment.
   1629      1.28      tron  */
   1630      1.28      tron 
   1631      1.28      tron void
   1632      1.28      tron hme_copytobuf_contig(sc, from, ri, len)
   1633      1.26      tron 	struct hme_softc *sc;
   1634      1.28      tron 	void *from;
   1635      1.28      tron 	int ri, len;
   1636      1.26      tron {
   1637      1.56  christos 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1638      1.26      tron 
   1639       1.1        pk 	/*
   1640      1.28      tron 	 * Just call memcpy() to do the work.
   1641       1.1        pk 	 */
   1642      1.28      tron 	memcpy(buf, from, len);
   1643       1.1        pk }
   1644       1.1        pk 
   1645      1.28      tron void
   1646      1.28      tron hme_copyfrombuf_contig(sc, to, boff, len)
   1647       1.1        pk 	struct hme_softc *sc;
   1648      1.28      tron 	void *to;
   1649      1.28      tron 	int boff, len;
   1650       1.1        pk {
   1651      1.56  christos 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1652      1.26      tron 
   1653      1.28      tron 	/*
   1654      1.28      tron 	 * Just call memcpy() to do the work.
   1655      1.28      tron 	 */
   1656      1.28      tron 	memcpy(to, buf, len);
   1657       1.1        pk }
   1658      1.28      tron #endif
   1659