Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.68
      1  1.68  christos /*	$NetBSD: hme.c,v 1.68 2008/12/16 22:35:31 christos Exp $	*/
      2   1.1        pk 
      3   1.1        pk /*-
      4   1.1        pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5   1.1        pk  * All rights reserved.
      6   1.1        pk  *
      7   1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1        pk  * by Paul Kranenburg.
      9   1.1        pk  *
     10   1.1        pk  * Redistribution and use in source and binary forms, with or without
     11   1.1        pk  * modification, are permitted provided that the following conditions
     12   1.1        pk  * are met:
     13   1.1        pk  * 1. Redistributions of source code must retain the above copyright
     14   1.1        pk  *    notice, this list of conditions and the following disclaimer.
     15   1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        pk  *    documentation and/or other materials provided with the distribution.
     18   1.1        pk  *
     19   1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1        pk  */
     31   1.1        pk 
     32   1.1        pk /*
     33   1.1        pk  * HME Ethernet module driver.
     34   1.1        pk  */
     35  1.25     lukem 
     36  1.25     lukem #include <sys/cdefs.h>
     37  1.68  christos __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.68 2008/12/16 22:35:31 christos Exp $");
     38   1.1        pk 
     39  1.39    petrov /* #define HMEDEBUG */
     40   1.1        pk 
     41   1.1        pk #include "opt_inet.h"
     42   1.1        pk #include "bpfilter.h"
     43   1.1        pk #include "rnd.h"
     44   1.1        pk 
     45   1.1        pk #include <sys/param.h>
     46   1.1        pk #include <sys/systm.h>
     47   1.5        pk #include <sys/kernel.h>
     48  1.42      heas #include <sys/mbuf.h>
     49   1.1        pk #include <sys/syslog.h>
     50   1.1        pk #include <sys/socket.h>
     51   1.1        pk #include <sys/device.h>
     52   1.1        pk #include <sys/malloc.h>
     53   1.1        pk #include <sys/ioctl.h>
     54   1.1        pk #include <sys/errno.h>
     55   1.1        pk #if NRND > 0
     56   1.1        pk #include <sys/rnd.h>
     57   1.1        pk #endif
     58   1.1        pk 
     59   1.1        pk #include <net/if.h>
     60   1.1        pk #include <net/if_dl.h>
     61   1.1        pk #include <net/if_ether.h>
     62   1.1        pk #include <net/if_media.h>
     63   1.1        pk 
     64   1.1        pk #ifdef INET
     65   1.1        pk #include <netinet/in.h>
     66   1.1        pk #include <netinet/if_inarp.h>
     67   1.1        pk #include <netinet/in_systm.h>
     68   1.1        pk #include <netinet/in_var.h>
     69   1.1        pk #include <netinet/ip.h>
     70  1.46      heas #include <netinet/tcp.h>
     71  1.46      heas #include <netinet/udp.h>
     72   1.1        pk #endif
     73   1.1        pk 
     74   1.1        pk 
     75   1.1        pk #if NBPFILTER > 0
     76   1.1        pk #include <net/bpf.h>
     77   1.1        pk #include <net/bpfdesc.h>
     78   1.1        pk #endif
     79   1.1        pk 
     80   1.1        pk #include <dev/mii/mii.h>
     81   1.1        pk #include <dev/mii/miivar.h>
     82   1.1        pk 
     83  1.60        ad #include <sys/bus.h>
     84   1.1        pk 
     85   1.1        pk #include <dev/ic/hmereg.h>
     86   1.1        pk #include <dev/ic/hmevar.h>
     87   1.1        pk 
     88  1.44     perry void		hme_start(struct ifnet *);
     89  1.58    martin void		hme_stop(struct hme_softc *,bool);
     90  1.56  christos int		hme_ioctl(struct ifnet *, u_long, void *);
     91  1.44     perry void		hme_tick(void *);
     92  1.44     perry void		hme_watchdog(struct ifnet *);
     93  1.44     perry void		hme_shutdown(void *);
     94  1.61    dyoung int		hme_init(struct hme_softc *);
     95  1.44     perry void		hme_meminit(struct hme_softc *);
     96  1.44     perry void		hme_mifinit(struct hme_softc *);
     97  1.44     perry void		hme_reset(struct hme_softc *);
     98  1.44     perry void		hme_setladrf(struct hme_softc *);
     99   1.1        pk 
    100   1.1        pk /* MII methods & callbacks */
    101  1.44     perry static int	hme_mii_readreg(struct device *, int, int);
    102  1.44     perry static void	hme_mii_writereg(struct device *, int, int, int);
    103  1.44     perry static void	hme_mii_statchg(struct device *);
    104  1.44     perry 
    105  1.44     perry int		hme_mediachange(struct ifnet *);
    106  1.44     perry 
    107  1.46      heas struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    108  1.44     perry int		hme_put(struct hme_softc *, int, struct mbuf *);
    109  1.46      heas void		hme_read(struct hme_softc *, int, uint32_t);
    110  1.44     perry int		hme_eint(struct hme_softc *, u_int);
    111  1.44     perry int		hme_rint(struct hme_softc *);
    112  1.44     perry int		hme_tint(struct hme_softc *);
    113   1.1        pk 
    114  1.44     perry static int	ether_cmp(u_char *, u_char *);
    115  1.28      tron 
    116  1.28      tron /* Default buffer copy routines */
    117  1.44     perry void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    118  1.44     perry void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    119  1.44     perry void	hme_zerobuf_contig(struct hme_softc *, int, int);
    120  1.28      tron 
    121  1.28      tron 
    122   1.1        pk void
    123   1.1        pk hme_config(sc)
    124   1.1        pk 	struct hme_softc *sc;
    125   1.1        pk {
    126   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    127   1.1        pk 	struct mii_data *mii = &sc->sc_mii;
    128   1.5        pk 	struct mii_softc *child;
    129  1.11        pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    130   1.1        pk 	bus_dma_segment_t seg;
    131   1.1        pk 	bus_size_t size;
    132  1.28      tron 	int rseg, error;
    133   1.1        pk 
    134   1.1        pk 	/*
    135   1.1        pk 	 * HME common initialization.
    136   1.1        pk 	 *
    137   1.1        pk 	 * hme_softc fields that must be initialized by the front-end:
    138   1.1        pk 	 *
    139   1.1        pk 	 * the bus tag:
    140   1.1        pk 	 *	sc_bustag
    141   1.1        pk 	 *
    142  1.37       wiz 	 * the DMA bus tag:
    143   1.1        pk 	 *	sc_dmatag
    144   1.1        pk 	 *
    145   1.1        pk 	 * the bus handles:
    146   1.1        pk 	 *	sc_seb		(Shared Ethernet Block registers)
    147   1.1        pk 	 *	sc_erx		(Receiver Unit registers)
    148   1.1        pk 	 *	sc_etx		(Transmitter Unit registers)
    149   1.1        pk 	 *	sc_mac		(MAC registers)
    150  1.36       wiz 	 *	sc_mif		(Management Interface registers)
    151   1.1        pk 	 *
    152   1.1        pk 	 * the maximum bus burst size:
    153   1.1        pk 	 *	sc_burst
    154   1.1        pk 	 *
    155  1.28      tron 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    156  1.28      tron 	 *	rb_membase, rb_dmabase)
    157  1.28      tron 	 *
    158   1.1        pk 	 * the local Ethernet address:
    159   1.1        pk 	 *	sc_enaddr
    160   1.1        pk 	 *
    161   1.1        pk 	 */
    162   1.1        pk 
    163   1.1        pk 	/* Make sure the chip is stopped. */
    164  1.58    martin 	hme_stop(sc, true);
    165   1.1        pk 
    166   1.1        pk 
    167  1.28      tron 	/*
    168  1.28      tron 	 * Allocate descriptors and buffers
    169  1.28      tron 	 * XXX - do all this differently.. and more configurably,
    170  1.28      tron 	 * eg. use things as `dma_load_mbuf()' on transmit,
    171  1.28      tron 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    172  1.38       wiz 	 *     all the time) on the receiver side.
    173  1.28      tron 	 *
    174  1.28      tron 	 * Note: receive buffers must be 64-byte aligned.
    175  1.28      tron 	 * Also, apparently, the buffers must extend to a DMA burst
    176  1.28      tron 	 * boundary beyond the maximum packet size.
    177  1.28      tron 	 */
    178  1.28      tron #define _HME_NDESC	128
    179  1.28      tron #define _HME_BUFSZ	1600
    180  1.28      tron 
    181  1.28      tron 	/* Note: the # of descriptors must be a multiple of 16 */
    182  1.28      tron 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    183  1.28      tron 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    184   1.1        pk 
    185   1.1        pk 	/*
    186   1.1        pk 	 * Allocate DMA capable memory
    187   1.1        pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    188   1.1        pk 	 * take this into account when calculating the size. Note that
    189   1.1        pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    190  1.28      tron 	 * so we allocate that much regardless of _HME_NDESC.
    191   1.1        pk 	 */
    192  1.28      tron 	size =	2048 +					/* TX descriptors */
    193  1.28      tron 		2048 +					/* RX descriptors */
    194  1.28      tron 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    195  1.46      heas 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    196  1.11        pk 
    197  1.11        pk 	/* Allocate DMA buffer */
    198  1.28      tron 	if ((error = bus_dmamem_alloc(dmatag, size,
    199  1.28      tron 				      2048, 0,
    200  1.28      tron 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    201  1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
    202  1.64    cegger 			error);
    203  1.10       mrg 		return;
    204   1.1        pk 	}
    205   1.1        pk 
    206  1.11        pk 	/* Map DMA memory in CPU addressable space */
    207  1.11        pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    208  1.28      tron 				    &sc->sc_rb.rb_membase,
    209  1.28      tron 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    210  1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
    211  1.64    cegger 			error);
    212  1.11        pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    213  1.11        pk 		bus_dmamem_free(dmatag, &seg, rseg);
    214   1.1        pk 		return;
    215   1.1        pk 	}
    216  1.13       mrg 
    217  1.13       mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    218  1.28      tron 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    219  1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
    220  1.64    cegger 			error);
    221  1.13       mrg 		return;
    222  1.13       mrg 	}
    223  1.13       mrg 
    224  1.13       mrg 	/* Load the buffer */
    225  1.13       mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    226  1.17       mrg 	    sc->sc_rb.rb_membase, size, NULL,
    227  1.17       mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    228  1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
    229  1.64    cegger 			error);
    230  1.13       mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    231  1.13       mrg 		return;
    232  1.13       mrg 	}
    233  1.13       mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    234   1.1        pk 
    235  1.64    cegger 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    236  1.22   thorpej 	    ether_sprintf(sc->sc_enaddr));
    237   1.2        pk 
    238   1.1        pk 	/* Initialize ifnet structure. */
    239  1.64    cegger 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    240   1.1        pk 	ifp->if_softc = sc;
    241   1.1        pk 	ifp->if_start = hme_start;
    242   1.1        pk 	ifp->if_ioctl = hme_ioctl;
    243   1.1        pk 	ifp->if_watchdog = hme_watchdog;
    244   1.1        pk 	ifp->if_flags =
    245   1.1        pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    246  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    247  1.51      yamt 	ifp->if_capabilities |=
    248  1.51      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    249  1.51      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    250  1.20   thorpej 	IFQ_SET_READY(&ifp->if_snd);
    251   1.1        pk 
    252   1.1        pk 	/* Initialize ifmedia structures and MII info */
    253   1.1        pk 	mii->mii_ifp = ifp;
    254  1.34    petrov 	mii->mii_readreg = hme_mii_readreg;
    255   1.1        pk 	mii->mii_writereg = hme_mii_writereg;
    256   1.1        pk 	mii->mii_statchg = hme_mii_statchg;
    257   1.1        pk 
    258  1.61    dyoung 	sc->sc_ethercom.ec_mii = mii;
    259  1.61    dyoung 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    260   1.1        pk 
    261   1.4        pk 	hme_mifinit(sc);
    262   1.4        pk 
    263   1.6   thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    264  1.34    petrov 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    265   1.2        pk 
    266   1.5        pk 	child = LIST_FIRST(&mii->mii_phys);
    267   1.5        pk 	if (child == NULL) {
    268   1.1        pk 		/* No PHY attached */
    269  1.61    dyoung 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    270  1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    271   1.1        pk 	} else {
    272   1.1        pk 		/*
    273   1.5        pk 		 * Walk along the list of attached MII devices and
    274   1.5        pk 		 * establish an `MII instance' to `phy number'
    275   1.5        pk 		 * mapping. We'll use this mapping in media change
    276   1.5        pk 		 * requests to determine which phy to use to program
    277   1.5        pk 		 * the MIF configuration register.
    278   1.5        pk 		 */
    279   1.5        pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    280   1.5        pk 			/*
    281   1.5        pk 			 * Note: we support just two PHYs: the built-in
    282   1.5        pk 			 * internal device and an external on the MII
    283   1.5        pk 			 * connector.
    284   1.5        pk 			 */
    285   1.5        pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    286  1.64    cegger 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
    287  1.28      tron 				       " at phy %d, instance %d\n",
    288  1.66   xtraeme 				       device_xname(child->mii_dev),
    289  1.28      tron 				       child->mii_phy, child->mii_inst);
    290   1.5        pk 				continue;
    291   1.5        pk 			}
    292   1.5        pk 
    293   1.5        pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    294   1.5        pk 		}
    295   1.5        pk 
    296   1.5        pk 		/*
    297   1.1        pk 		 * XXX - we can really do the following ONLY if the
    298   1.1        pk 		 * phy indeed has the auto negotiation capability!!
    299   1.1        pk 		 */
    300  1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    301   1.1        pk 	}
    302  1.27      tron 
    303  1.28      tron 	/* claim 802.1q capability */
    304  1.27      tron 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    305   1.1        pk 
    306   1.1        pk 	/* Attach the interface. */
    307   1.1        pk 	if_attach(ifp);
    308   1.1        pk 	ether_ifattach(ifp, sc->sc_enaddr);
    309   1.1        pk 
    310   1.1        pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    311   1.1        pk 	if (sc->sc_sh == NULL)
    312   1.1        pk 		panic("hme_config: can't establish shutdownhook");
    313   1.1        pk 
    314   1.1        pk #if NRND > 0
    315  1.64    cegger 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    316   1.1        pk 			  RND_TYPE_NET, 0);
    317   1.1        pk #endif
    318   1.5        pk 
    319  1.57        ad 	callout_init(&sc->sc_tick_ch, 0);
    320   1.5        pk }
    321   1.5        pk 
    322   1.5        pk void
    323   1.5        pk hme_tick(arg)
    324   1.5        pk 	void *arg;
    325   1.5        pk {
    326   1.5        pk 	struct hme_softc *sc = arg;
    327   1.5        pk 	int s;
    328   1.5        pk 
    329   1.5        pk 	s = splnet();
    330   1.5        pk 	mii_tick(&sc->sc_mii);
    331   1.5        pk 	splx(s);
    332   1.5        pk 
    333   1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    334   1.1        pk }
    335   1.1        pk 
    336   1.1        pk void
    337   1.1        pk hme_reset(sc)
    338   1.1        pk 	struct hme_softc *sc;
    339   1.1        pk {
    340   1.1        pk 	int s;
    341   1.1        pk 
    342   1.1        pk 	s = splnet();
    343  1.61    dyoung 	(void)hme_init(sc);
    344   1.1        pk 	splx(s);
    345   1.1        pk }
    346   1.1        pk 
    347   1.1        pk void
    348  1.58    martin hme_stop(struct hme_softc *sc, bool chip_only)
    349   1.1        pk {
    350   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    351   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    352   1.1        pk 	int n;
    353   1.1        pk 
    354  1.58    martin 	if (!chip_only) {
    355  1.58    martin 		callout_stop(&sc->sc_tick_ch);
    356  1.58    martin 		mii_down(&sc->sc_mii);
    357  1.58    martin 	}
    358   1.5        pk 
    359  1.33        pk 	/* Mask all interrupts */
    360  1.33        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    361  1.33        pk 
    362   1.1        pk 	/* Reset transmitter and receiver */
    363   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    364  1.28      tron 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    365   1.1        pk 
    366   1.1        pk 	for (n = 0; n < 20; n++) {
    367   1.1        pk 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    368   1.1        pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    369   1.1        pk 			return;
    370   1.1        pk 		DELAY(20);
    371   1.1        pk 	}
    372   1.1        pk 
    373  1.64    cegger 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
    374   1.1        pk }
    375   1.1        pk 
    376   1.1        pk void
    377   1.1        pk hme_meminit(sc)
    378   1.1        pk 	struct hme_softc *sc;
    379   1.1        pk {
    380  1.28      tron 	bus_addr_t txbufdma, rxbufdma;
    381   1.1        pk 	bus_addr_t dma;
    382  1.56  christos 	char *p;
    383  1.28      tron 	unsigned int ntbuf, nrbuf, i;
    384   1.1        pk 	struct hme_ring *hr = &sc->sc_rb;
    385   1.1        pk 
    386   1.1        pk 	p = hr->rb_membase;
    387   1.1        pk 	dma = hr->rb_dmabase;
    388   1.1        pk 
    389  1.28      tron 	ntbuf = hr->rb_ntbuf;
    390  1.28      tron 	nrbuf = hr->rb_nrbuf;
    391  1.28      tron 
    392   1.1        pk 	/*
    393   1.1        pk 	 * Allocate transmit descriptors
    394   1.1        pk 	 */
    395   1.1        pk 	hr->rb_txd = p;
    396   1.1        pk 	hr->rb_txddma = dma;
    397  1.28      tron 	p += ntbuf * HME_XD_SIZE;
    398  1.28      tron 	dma += ntbuf * HME_XD_SIZE;
    399   1.4        pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    400   1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    401  1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    402   1.1        pk 
    403   1.1        pk 	/*
    404   1.1        pk 	 * Allocate receive descriptors
    405   1.1        pk 	 */
    406   1.1        pk 	hr->rb_rxd = p;
    407   1.1        pk 	hr->rb_rxddma = dma;
    408  1.28      tron 	p += nrbuf * HME_XD_SIZE;
    409  1.28      tron 	dma += nrbuf * HME_XD_SIZE;
    410   1.4        pk 	/* Again move forward to the next 2048 byte boundary.*/
    411   1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    412  1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    413   1.1        pk 
    414  1.28      tron 
    415   1.1        pk 	/*
    416  1.28      tron 	 * Allocate transmit buffers
    417   1.1        pk 	 */
    418  1.28      tron 	hr->rb_txbuf = p;
    419  1.28      tron 	txbufdma = dma;
    420  1.28      tron 	p += ntbuf * _HME_BUFSZ;
    421  1.28      tron 	dma += ntbuf * _HME_BUFSZ;
    422  1.28      tron 
    423  1.28      tron 	/*
    424  1.28      tron 	 * Allocate receive buffers
    425  1.28      tron 	 */
    426  1.28      tron 	hr->rb_rxbuf = p;
    427  1.28      tron 	rxbufdma = dma;
    428  1.28      tron 	p += nrbuf * _HME_BUFSZ;
    429  1.28      tron 	dma += nrbuf * _HME_BUFSZ;
    430  1.28      tron 
    431  1.28      tron 	/*
    432  1.28      tron 	 * Initialize transmit buffer descriptors
    433  1.28      tron 	 */
    434  1.28      tron 	for (i = 0; i < ntbuf; i++) {
    435  1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    436  1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    437   1.1        pk 	}
    438   1.1        pk 
    439   1.1        pk 	/*
    440  1.28      tron 	 * Initialize receive buffer descriptors
    441   1.1        pk 	 */
    442  1.28      tron 	for (i = 0; i < nrbuf; i++) {
    443  1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    444  1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    445  1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    446   1.1        pk 	}
    447   1.1        pk 
    448  1.28      tron 	hr->rb_tdhead = hr->rb_tdtail = 0;
    449  1.28      tron 	hr->rb_td_nbusy = 0;
    450  1.28      tron 	hr->rb_rdtail = 0;
    451   1.1        pk }
    452   1.1        pk 
    453   1.1        pk /*
    454   1.1        pk  * Initialization of interface; set up initialization block
    455   1.1        pk  * and transmit/receive descriptor rings.
    456   1.1        pk  */
    457  1.61    dyoung int
    458   1.1        pk hme_init(sc)
    459   1.1        pk 	struct hme_softc *sc;
    460   1.1        pk {
    461   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    462   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    463   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    464   1.1        pk 	bus_space_handle_t etx = sc->sc_etx;
    465   1.1        pk 	bus_space_handle_t erx = sc->sc_erx;
    466   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
    467   1.1        pk 	u_int8_t *ea;
    468   1.1        pk 	u_int32_t v;
    469  1.61    dyoung 	int rc;
    470   1.1        pk 
    471   1.1        pk 	/*
    472   1.1        pk 	 * Initialization sequence. The numbered steps below correspond
    473   1.1        pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    474   1.1        pk 	 * Channel Engine manual (part of the PCIO manual).
    475   1.1        pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    476   1.1        pk 	 */
    477   1.1        pk 
    478   1.1        pk 	/* step 1 & 2. Reset the Ethernet Channel */
    479  1.58    martin 	hme_stop(sc, false);
    480   1.1        pk 
    481   1.4        pk 	/* Re-initialize the MIF */
    482   1.4        pk 	hme_mifinit(sc);
    483   1.4        pk 
    484   1.1        pk 	/* Call MI reset function if any */
    485   1.1        pk 	if (sc->sc_hwreset)
    486   1.1        pk 		(*sc->sc_hwreset)(sc);
    487   1.1        pk 
    488   1.1        pk #if 0
    489   1.1        pk 	/* Mask all MIF interrupts, just in case */
    490   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    491   1.1        pk #endif
    492   1.1        pk 
    493   1.1        pk 	/* step 3. Setup data structures in host memory */
    494   1.1        pk 	hme_meminit(sc);
    495   1.1        pk 
    496   1.1        pk 	/* step 4. TX MAC registers & counters */
    497   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    498   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    499   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    500   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    501  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    502  1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    503  1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    504  1.45      heas 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    505   1.1        pk 
    506   1.1        pk 	/* Load station MAC address */
    507   1.1        pk 	ea = sc->sc_enaddr;
    508   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    509   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    510   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    511   1.1        pk 
    512   1.1        pk 	/*
    513   1.1        pk 	 * Init seed for backoff
    514   1.1        pk 	 * (source suggested by manual: low 10 bits of MAC address)
    515  1.42      heas 	 */
    516   1.1        pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    517   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    518   1.1        pk 
    519   1.1        pk 
    520   1.1        pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    521   1.1        pk 
    522   1.1        pk 
    523   1.1        pk 	/* step 5. RX MAC registers & counters */
    524   1.1        pk 	hme_setladrf(sc);
    525   1.1        pk 
    526   1.1        pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    527   1.1        pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    528  1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    529   1.1        pk 
    530   1.1        pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    531  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    532  1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    533  1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    534   1.1        pk 
    535   1.1        pk 	/* step 8. Global Configuration & Interrupt Mask */
    536   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    537  1.28      tron 			~(
    538  1.28      tron 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    539  1.28      tron 			  HME_SEB_STAT_HOSTTOTX |
    540  1.28      tron 			  HME_SEB_STAT_RXTOHOST |
    541  1.28      tron 			  HME_SEB_STAT_TXALL |
    542  1.28      tron 			  HME_SEB_STAT_TXPERR |
    543  1.28      tron 			  HME_SEB_STAT_RCNTEXP |
    544  1.33        pk 			  /*HME_SEB_STAT_MIFIRQ |*/
    545  1.28      tron 			  HME_SEB_STAT_ALL_ERRORS ));
    546   1.1        pk 
    547   1.1        pk 	switch (sc->sc_burst) {
    548   1.1        pk 	default:
    549   1.1        pk 		v = 0;
    550   1.1        pk 		break;
    551   1.1        pk 	case 16:
    552   1.1        pk 		v = HME_SEB_CFG_BURST16;
    553   1.1        pk 		break;
    554   1.1        pk 	case 32:
    555   1.1        pk 		v = HME_SEB_CFG_BURST32;
    556   1.1        pk 		break;
    557   1.1        pk 	case 64:
    558   1.1        pk 		v = HME_SEB_CFG_BURST64;
    559   1.1        pk 		break;
    560   1.1        pk 	}
    561   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    562   1.1        pk 
    563   1.1        pk 	/* step 9. ETX Configuration: use mostly default values */
    564   1.1        pk 
    565   1.1        pk 	/* Enable DMA */
    566   1.2        pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    567   1.1        pk 	v |= HME_ETX_CFG_DMAENABLE;
    568   1.2        pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    569   1.1        pk 
    570   1.3        pk 	/* Transmit Descriptor ring size: in increments of 16 */
    571  1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    572  1.28      tron 
    573   1.1        pk 
    574   1.3        pk 	/* step 10. ERX Configuration */
    575   1.2        pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    576  1.28      tron 
    577  1.28      tron 	/* Encode Receive Descriptor ring size: four possible values */
    578  1.28      tron 	switch (_HME_NDESC /*XXX*/) {
    579  1.28      tron 	case 32:
    580  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE32;
    581  1.28      tron 		break;
    582  1.28      tron 	case 64:
    583  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE64;
    584  1.28      tron 		break;
    585  1.28      tron 	case 128:
    586  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE128;
    587  1.28      tron 		break;
    588  1.28      tron 	case 256:
    589  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE256;
    590  1.28      tron 		break;
    591  1.28      tron 	default:
    592  1.28      tron 		printf("hme: invalid Receive Descriptor ring size\n");
    593  1.28      tron 		break;
    594  1.28      tron 	}
    595  1.28      tron 
    596   1.3        pk 	/* Enable DMA */
    597  1.28      tron 	v |= HME_ERX_CFG_DMAENABLE;
    598  1.46      heas 
    599  1.46      heas 	/* set h/w rx checksum start offset (# of half-words) */
    600  1.49      heas #ifdef INET
    601  1.48     perry 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
    602  1.46      heas 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    603  1.46      heas 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
    604  1.46      heas 		HME_ERX_CFG_CSUMSTART;
    605  1.49      heas #endif
    606   1.2        pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    607   1.1        pk 
    608   1.1        pk 	/* step 11. XIF Configuration */
    609   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    610   1.1        pk 	v |= HME_MAC_XIF_OE;
    611   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    612   1.1        pk 
    613   1.1        pk 	/* step 12. RX_MAC Configuration Register */
    614   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    615  1.46      heas 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    616   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    617   1.1        pk 
    618   1.1        pk 	/* step 13. TX_MAC Configuration Register */
    619   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    620   1.2        pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    621   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    622   1.1        pk 
    623   1.1        pk 	/* step 14. Issue Transmit Pending command */
    624   1.1        pk 
    625   1.1        pk 	/* Call MI initialization function if any */
    626   1.1        pk 	if (sc->sc_hwinit)
    627   1.1        pk 		(*sc->sc_hwinit)(sc);
    628  1.29   thorpej 
    629  1.29   thorpej 	/* Set the current media. */
    630  1.61    dyoung 	if ((rc = hme_mediachange(ifp)) != 0)
    631  1.61    dyoung 		return rc;
    632   1.9   thorpej 
    633   1.9   thorpej 	/* Start the one second timer. */
    634   1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    635   1.1        pk 
    636   1.1        pk 	ifp->if_flags |= IFF_RUNNING;
    637   1.1        pk 	ifp->if_flags &= ~IFF_OACTIVE;
    638  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    639   1.1        pk 	ifp->if_timer = 0;
    640   1.1        pk 	hme_start(ifp);
    641  1.61    dyoung 	return 0;
    642   1.1        pk }
    643   1.1        pk 
    644  1.28      tron /*
    645  1.28      tron  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    646  1.28      tron  * speed.
    647  1.28      tron  */
    648  1.53     perry static inline int
    649  1.28      tron ether_cmp(a, b)
    650  1.28      tron 	u_char *a, *b;
    651  1.42      heas {
    652  1.42      heas 
    653  1.28      tron 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    654  1.28      tron 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    655  1.28      tron 		return (0);
    656  1.28      tron 	return (1);
    657  1.28      tron }
    658  1.28      tron 
    659  1.28      tron 
    660  1.28      tron /*
    661  1.28      tron  * Routine to copy from mbuf chain to transmit buffer in
    662  1.28      tron  * network buffer memory.
    663  1.28      tron  * Returns the amount of data copied.
    664  1.28      tron  */
    665  1.28      tron int
    666  1.28      tron hme_put(sc, ri, m)
    667  1.28      tron 	struct hme_softc *sc;
    668  1.28      tron 	int ri;			/* Ring index */
    669  1.28      tron 	struct mbuf *m;
    670  1.28      tron {
    671  1.28      tron 	struct mbuf *n;
    672  1.28      tron 	int len, tlen = 0;
    673  1.56  christos 	char *bp;
    674  1.28      tron 
    675  1.56  christos 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    676  1.28      tron 	for (; m; m = n) {
    677  1.28      tron 		len = m->m_len;
    678  1.28      tron 		if (len == 0) {
    679  1.28      tron 			MFREE(m, n);
    680  1.28      tron 			continue;
    681  1.28      tron 		}
    682  1.56  christos 		memcpy(bp, mtod(m, void *), len);
    683  1.28      tron 		bp += len;
    684  1.28      tron 		tlen += len;
    685  1.28      tron 		MFREE(m, n);
    686  1.28      tron 	}
    687  1.28      tron 	return (tlen);
    688  1.28      tron }
    689  1.28      tron 
    690  1.28      tron /*
    691  1.28      tron  * Pull data off an interface.
    692  1.28      tron  * Len is length of data, with local net header stripped.
    693  1.28      tron  * We copy the data into mbufs.  When full cluster sized units are present
    694  1.28      tron  * we copy into clusters.
    695  1.28      tron  */
    696  1.28      tron struct mbuf *
    697  1.46      heas hme_get(sc, ri, flags)
    698  1.28      tron 	struct hme_softc *sc;
    699  1.46      heas 	int ri;
    700  1.46      heas 	u_int32_t flags;
    701  1.28      tron {
    702  1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    703  1.28      tron 	struct mbuf *m, *m0, *newm;
    704  1.56  christos 	char *bp;
    705  1.46      heas 	int len, totlen;
    706  1.28      tron 
    707  1.46      heas 	totlen = HME_XD_DECODE_RSIZE(flags);
    708  1.28      tron 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    709  1.28      tron 	if (m0 == 0)
    710  1.28      tron 		return (0);
    711  1.28      tron 	m0->m_pkthdr.rcvif = ifp;
    712  1.28      tron 	m0->m_pkthdr.len = totlen;
    713  1.28      tron 	len = MHLEN;
    714  1.28      tron 	m = m0;
    715  1.28      tron 
    716  1.56  christos 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    717  1.28      tron 
    718  1.28      tron 	while (totlen > 0) {
    719  1.28      tron 		if (totlen >= MINCLSIZE) {
    720  1.28      tron 			MCLGET(m, M_DONTWAIT);
    721  1.28      tron 			if ((m->m_flags & M_EXT) == 0)
    722  1.28      tron 				goto bad;
    723  1.28      tron 			len = MCLBYTES;
    724  1.28      tron 		}
    725  1.28      tron 
    726  1.28      tron 		if (m == m0) {
    727  1.56  christos 			char *newdata = (char *)
    728  1.28      tron 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    729  1.28      tron 			    sizeof(struct ether_header);
    730  1.28      tron 			len -= newdata - m->m_data;
    731  1.28      tron 			m->m_data = newdata;
    732  1.28      tron 		}
    733  1.28      tron 
    734  1.28      tron 		m->m_len = len = min(totlen, len);
    735  1.56  christos 		memcpy(mtod(m, void *), bp, len);
    736  1.28      tron 		bp += len;
    737  1.28      tron 
    738  1.28      tron 		totlen -= len;
    739  1.28      tron 		if (totlen > 0) {
    740  1.28      tron 			MGET(newm, M_DONTWAIT, MT_DATA);
    741  1.28      tron 			if (newm == 0)
    742  1.28      tron 				goto bad;
    743  1.28      tron 			len = MLEN;
    744  1.28      tron 			m = m->m_next = newm;
    745  1.28      tron 		}
    746  1.28      tron 	}
    747  1.28      tron 
    748  1.49      heas #ifdef INET
    749  1.49      heas 	/* hardware checksum */
    750  1.50     rafal 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    751  1.46      heas 		struct ether_header *eh;
    752  1.46      heas 		struct ip *ip;
    753  1.46      heas 		struct udphdr *uh;
    754  1.46      heas 		uint16_t *opts;
    755  1.46      heas 		int32_t hlen, pktlen;
    756  1.46      heas 		uint32_t temp;
    757  1.46      heas 
    758  1.46      heas 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
    759  1.46      heas 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
    760  1.46      heas 				ETHER_VLAN_ENCAP_LEN;
    761  1.56  christos 			eh = (struct ether_header *) mtod(m0, void *) +
    762  1.46      heas 				ETHER_VLAN_ENCAP_LEN;
    763  1.46      heas 		} else {
    764  1.46      heas 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    765  1.46      heas 			eh = mtod(m0, struct ether_header *);
    766  1.46      heas 		}
    767  1.46      heas 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
    768  1.46      heas 			goto swcsum;
    769  1.56  christos 		ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
    770  1.46      heas 
    771  1.46      heas 		/* IPv4 only */
    772  1.46      heas 		if (ip->ip_v != IPVERSION)
    773  1.46      heas 			goto swcsum;
    774  1.46      heas 
    775  1.46      heas 		hlen = ip->ip_hl << 2;
    776  1.48     perry 		if (hlen < sizeof(struct ip))
    777  1.46      heas 			goto swcsum;
    778  1.46      heas 
    779  1.49      heas 		/*
    780  1.49      heas 		 * bail if too short, has random trailing garbage, truncated,
    781  1.49      heas 		 * fragment, or has ethernet pad.
    782  1.49      heas 		 */
    783  1.49      heas 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
    784  1.46      heas 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
    785  1.49      heas 			goto swcsum;
    786  1.46      heas 
    787  1.46      heas 		switch (ip->ip_p) {
    788  1.46      heas 		case IPPROTO_TCP:
    789  1.46      heas 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
    790  1.46      heas 				goto swcsum;
    791  1.46      heas 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    792  1.46      heas 				goto swcsum;
    793  1.46      heas 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
    794  1.46      heas 			break;
    795  1.46      heas 		case IPPROTO_UDP:
    796  1.46      heas 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
    797  1.46      heas 				goto swcsum;
    798  1.46      heas 			if (pktlen < (hlen + sizeof(struct udphdr)))
    799  1.46      heas 				goto swcsum;
    800  1.56  christos 			uh = (struct udphdr *)((char *)ip + hlen);
    801  1.46      heas 			/* no checksum */
    802  1.46      heas 			if (uh->uh_sum == 0)
    803  1.46      heas 				goto swcsum;
    804  1.46      heas 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
    805  1.46      heas 			break;
    806  1.46      heas 		default:
    807  1.49      heas 			goto swcsum;
    808  1.46      heas 		}
    809  1.46      heas 
    810  1.46      heas 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    811  1.46      heas 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
    812  1.46      heas 
    813  1.46      heas 		/* if the pkt had ip options, we have to deduct them */
    814  1.46      heas 		if (hlen > sizeof(struct ip)) {
    815  1.46      heas 			uint32_t optsum;
    816  1.46      heas 
    817  1.46      heas 			optsum = 0;
    818  1.46      heas 			temp = hlen - sizeof(struct ip);
    819  1.56  christos 			opts = (uint16_t *)((char *)ip + sizeof(struct ip));
    820  1.46      heas 
    821  1.49      heas 			while (temp > 1) {
    822  1.46      heas 				optsum += ntohs(*opts++);
    823  1.46      heas 				temp -= 2;
    824  1.46      heas 			}
    825  1.46      heas 			while (optsum >> 16)
    826  1.46      heas 				optsum = (optsum >> 16) + (optsum & 0xffff);
    827  1.46      heas 
    828  1.46      heas 			/* Deduct the ip opts sum from the hwsum (rfc 1624). */
    829  1.46      heas 			m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
    830  1.46      heas 						   ~optsum);
    831  1.46      heas 
    832  1.46      heas 			while (m0->m_pkthdr.csum_data >> 16)
    833  1.46      heas 				m0->m_pkthdr.csum_data =
    834  1.46      heas 					(m0->m_pkthdr.csum_data >> 16) +
    835  1.46      heas 					(m0->m_pkthdr.csum_data & 0xffff);
    836  1.46      heas 		}
    837  1.46      heas 
    838  1.46      heas 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    839  1.46      heas 	}
    840  1.49      heas swcsum:
    841  1.49      heas 		m0->m_pkthdr.csum_flags = 0;
    842  1.49      heas #endif
    843  1.46      heas 
    844  1.28      tron 	return (m0);
    845  1.28      tron 
    846  1.28      tron bad:
    847  1.28      tron 	m_freem(m0);
    848  1.28      tron 	return (0);
    849  1.28      tron }
    850  1.28      tron 
    851  1.28      tron /*
    852  1.28      tron  * Pass a packet to the higher levels.
    853  1.28      tron  */
    854  1.28      tron void
    855  1.46      heas hme_read(sc, ix, flags)
    856  1.28      tron 	struct hme_softc *sc;
    857  1.46      heas 	int ix;
    858  1.46      heas 	u_int32_t flags;
    859  1.28      tron {
    860  1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    861  1.28      tron 	struct mbuf *m;
    862  1.46      heas 	int len;
    863  1.28      tron 
    864  1.46      heas 	len = HME_XD_DECODE_RSIZE(flags);
    865  1.28      tron 	if (len <= sizeof(struct ether_header) ||
    866  1.28      tron 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    867  1.28      tron 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    868  1.28      tron 	    ETHERMTU + sizeof(struct ether_header))) {
    869  1.28      tron #ifdef HMEDEBUG
    870  1.28      tron 		printf("%s: invalid packet size %d; dropping\n",
    871  1.64    cegger 		    device_xname(&sc->sc_dev), len);
    872  1.28      tron #endif
    873  1.28      tron 		ifp->if_ierrors++;
    874  1.28      tron 		return;
    875  1.28      tron 	}
    876  1.28      tron 
    877  1.28      tron 	/* Pull packet off interface. */
    878  1.46      heas 	m = hme_get(sc, ix, flags);
    879  1.28      tron 	if (m == 0) {
    880  1.28      tron 		ifp->if_ierrors++;
    881  1.28      tron 		return;
    882  1.28      tron 	}
    883  1.28      tron 
    884  1.28      tron 	ifp->if_ipackets++;
    885  1.28      tron 
    886  1.28      tron #if NBPFILTER > 0
    887  1.28      tron 	/*
    888  1.28      tron 	 * Check if there's a BPF listener on this interface.
    889  1.28      tron 	 * If so, hand off the raw packet to BPF.
    890  1.28      tron 	 */
    891  1.28      tron 	if (ifp->if_bpf)
    892  1.28      tron 		bpf_mtap(ifp->if_bpf, m);
    893  1.28      tron #endif
    894  1.28      tron 
    895  1.28      tron 	/* Pass the packet up. */
    896  1.28      tron 	(*ifp->if_input)(ifp, m);
    897  1.28      tron }
    898  1.28      tron 
    899   1.1        pk void
    900   1.1        pk hme_start(ifp)
    901   1.1        pk 	struct ifnet *ifp;
    902   1.1        pk {
    903   1.1        pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    904  1.56  christos 	void *txd = sc->sc_rb.rb_txd;
    905   1.1        pk 	struct mbuf *m;
    906  1.46      heas 	unsigned int txflags;
    907  1.28      tron 	unsigned int ri, len;
    908  1.28      tron 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    909   1.1        pk 
    910   1.1        pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    911   1.1        pk 		return;
    912   1.1        pk 
    913  1.28      tron 	ri = sc->sc_rb.rb_tdhead;
    914  1.28      tron 
    915  1.28      tron 	for (;;) {
    916  1.28      tron 		IFQ_DEQUEUE(&ifp->if_snd, m);
    917  1.28      tron 		if (m == 0)
    918   1.1        pk 			break;
    919   1.1        pk 
    920   1.1        pk #if NBPFILTER > 0
    921   1.1        pk 		/*
    922   1.1        pk 		 * If BPF is listening on this interface, let it see the
    923   1.1        pk 		 * packet before we commit it to the wire.
    924   1.1        pk 		 */
    925   1.1        pk 		if (ifp->if_bpf)
    926   1.1        pk 			bpf_mtap(ifp->if_bpf, m);
    927   1.1        pk #endif
    928   1.1        pk 
    929  1.49      heas #ifdef INET
    930  1.46      heas 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    931  1.46      heas 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    932  1.46      heas 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    933  1.46      heas 			struct ether_header *eh;
    934  1.46      heas 			uint16_t offset, start;
    935  1.46      heas 
    936  1.46      heas 			eh = mtod(m, struct ether_header *);
    937  1.46      heas 			switch (ntohs(eh->ether_type)) {
    938  1.46      heas 			case ETHERTYPE_IP:
    939  1.46      heas 				start = ETHER_HDR_LEN;
    940  1.46      heas 				break;
    941  1.46      heas 			case ETHERTYPE_VLAN:
    942  1.46      heas 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    943  1.46      heas 				break;
    944  1.46      heas 			default:
    945  1.46      heas 				/* unsupported, drop it */
    946  1.46      heas 				m_free(m);
    947  1.46      heas 				continue;
    948  1.46      heas 			}
    949  1.47   thorpej 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    950  1.47   thorpej 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    951  1.47   thorpej 			    + start;
    952  1.46      heas 			txflags = HME_XD_TXCKSUM |
    953  1.46      heas 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    954  1.46      heas 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    955  1.46      heas 		} else
    956  1.49      heas #endif
    957  1.46      heas 			txflags = 0;
    958  1.46      heas 
    959  1.28      tron 		/*
    960  1.28      tron 		 * Copy the mbuf chain into the transmit buffer.
    961  1.28      tron 		 */
    962  1.28      tron 		len = hme_put(sc, ri, m);
    963  1.28      tron 
    964  1.28      tron 		/*
    965  1.28      tron 		 * Initialize transmit registers and start transmission
    966  1.28      tron 		 */
    967  1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    968  1.28      tron 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    969  1.46      heas 			HME_XD_ENCODE_TSIZE(len) | txflags);
    970  1.28      tron 
    971  1.28      tron 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    972  1.28      tron 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    973  1.28      tron 				  HME_ETX_TP_DMAWAKEUP);
    974  1.28      tron 
    975  1.28      tron 		if (++ri == ntbuf)
    976  1.28      tron 			ri = 0;
    977  1.28      tron 
    978  1.28      tron 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    979  1.26      tron 			ifp->if_flags |= IFF_OACTIVE;
    980  1.26      tron 			break;
    981  1.26      tron 		}
    982   1.1        pk 	}
    983   1.1        pk 
    984  1.28      tron 	sc->sc_rb.rb_tdhead = ri;
    985   1.1        pk }
    986   1.1        pk 
    987   1.1        pk /*
    988   1.1        pk  * Transmit interrupt.
    989   1.1        pk  */
    990   1.1        pk int
    991   1.1        pk hme_tint(sc)
    992   1.1        pk 	struct hme_softc *sc;
    993   1.1        pk {
    994   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    995  1.28      tron 	bus_space_tag_t t = sc->sc_bustag;
    996  1.28      tron 	bus_space_handle_t mac = sc->sc_mac;
    997   1.1        pk 	unsigned int ri, txflags;
    998  1.28      tron 
    999  1.28      tron 	/*
   1000  1.28      tron 	 * Unload collision counters
   1001  1.28      tron 	 */
   1002  1.28      tron 	ifp->if_collisions +=
   1003  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
   1004  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
   1005  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
   1006  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
   1007  1.28      tron 
   1008  1.28      tron 	/*
   1009  1.28      tron 	 * then clear the hardware counters.
   1010  1.28      tron 	 */
   1011  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1012  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1013  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1014  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1015   1.1        pk 
   1016   1.1        pk 	/* Fetch current position in the transmit ring */
   1017  1.28      tron 	ri = sc->sc_rb.rb_tdtail;
   1018   1.1        pk 
   1019   1.1        pk 	for (;;) {
   1020  1.28      tron 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1021   1.1        pk 			break;
   1022   1.1        pk 
   1023  1.15       eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1024   1.1        pk 
   1025   1.1        pk 		if (txflags & HME_XD_OWN)
   1026   1.1        pk 			break;
   1027   1.1        pk 
   1028   1.1        pk 		ifp->if_flags &= ~IFF_OACTIVE;
   1029  1.28      tron 		ifp->if_opackets++;
   1030  1.26      tron 
   1031  1.28      tron 		if (++ri == sc->sc_rb.rb_ntbuf)
   1032   1.1        pk 			ri = 0;
   1033   1.1        pk 
   1034  1.28      tron 		--sc->sc_rb.rb_td_nbusy;
   1035   1.1        pk 	}
   1036   1.1        pk 
   1037   1.3        pk 	/* Update ring */
   1038  1.28      tron 	sc->sc_rb.rb_tdtail = ri;
   1039   1.1        pk 
   1040   1.1        pk 	hme_start(ifp);
   1041   1.1        pk 
   1042  1.28      tron 	if (sc->sc_rb.rb_td_nbusy == 0)
   1043   1.1        pk 		ifp->if_timer = 0;
   1044   1.1        pk 
   1045   1.1        pk 	return (1);
   1046   1.1        pk }
   1047   1.1        pk 
   1048   1.1        pk /*
   1049   1.1        pk  * Receive interrupt.
   1050   1.1        pk  */
   1051   1.1        pk int
   1052   1.1        pk hme_rint(sc)
   1053   1.1        pk 	struct hme_softc *sc;
   1054   1.1        pk {
   1055  1.56  christos 	void *xdr = sc->sc_rb.rb_rxd;
   1056  1.28      tron 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1057  1.46      heas 	unsigned int ri;
   1058   1.1        pk 	u_int32_t flags;
   1059   1.1        pk 
   1060  1.28      tron 	ri = sc->sc_rb.rb_rdtail;
   1061   1.1        pk 
   1062   1.1        pk 	/*
   1063   1.1        pk 	 * Process all buffers with valid data.
   1064   1.1        pk 	 */
   1065   1.1        pk 	for (;;) {
   1066  1.28      tron 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1067   1.1        pk 		if (flags & HME_XD_OWN)
   1068   1.1        pk 			break;
   1069   1.1        pk 
   1070   1.4        pk 		if (flags & HME_XD_OFL) {
   1071   1.4        pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1072  1.64    cegger 					device_xname(&sc->sc_dev), ri, flags);
   1073  1.46      heas 		} else
   1074  1.46      heas 			hme_read(sc, ri, flags);
   1075   1.1        pk 
   1076  1.28      tron 		/* This buffer can be used by the hardware again */
   1077  1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1078  1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1079  1.26      tron 
   1080  1.28      tron 		if (++ri == nrbuf)
   1081   1.1        pk 			ri = 0;
   1082   1.1        pk 	}
   1083   1.1        pk 
   1084  1.28      tron 	sc->sc_rb.rb_rdtail = ri;
   1085  1.28      tron 
   1086   1.1        pk 	return (1);
   1087   1.1        pk }
   1088   1.1        pk 
   1089   1.1        pk int
   1090   1.1        pk hme_eint(sc, status)
   1091   1.1        pk 	struct hme_softc *sc;
   1092   1.1        pk 	u_int status;
   1093   1.1        pk {
   1094   1.1        pk 	char bits[128];
   1095   1.1        pk 
   1096   1.1        pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1097  1.33        pk 		bus_space_tag_t t = sc->sc_bustag;
   1098  1.33        pk 		bus_space_handle_t mif = sc->sc_mif;
   1099  1.33        pk 		u_int32_t cf, st, sm;
   1100  1.33        pk 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1101  1.33        pk 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1102  1.33        pk 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1103  1.33        pk 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1104  1.64    cegger 			device_xname(&sc->sc_dev), cf, st, sm);
   1105   1.1        pk 		return (1);
   1106   1.1        pk 	}
   1107  1.68  christos 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1108  1.68  christos 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
   1109  1.68  christos 
   1110   1.1        pk 	return (1);
   1111   1.1        pk }
   1112   1.1        pk 
   1113   1.1        pk int
   1114   1.1        pk hme_intr(v)
   1115   1.1        pk 	void *v;
   1116   1.1        pk {
   1117   1.1        pk 	struct hme_softc *sc = (struct hme_softc *)v;
   1118   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1119   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
   1120   1.1        pk 	u_int32_t status;
   1121   1.1        pk 	int r = 0;
   1122   1.1        pk 
   1123   1.1        pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1124   1.1        pk 
   1125   1.1        pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1126   1.1        pk 		r |= hme_eint(sc, status);
   1127   1.1        pk 
   1128   1.1        pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1129   1.1        pk 		r |= hme_tint(sc);
   1130   1.1        pk 
   1131   1.1        pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1132   1.1        pk 		r |= hme_rint(sc);
   1133   1.1        pk 
   1134  1.40       abs #if NRND > 0
   1135  1.40       abs 	rnd_add_uint32(&sc->rnd_source, status);
   1136  1.40       abs #endif
   1137  1.40       abs 
   1138   1.1        pk 	return (r);
   1139   1.1        pk }
   1140   1.1        pk 
   1141   1.1        pk 
   1142   1.1        pk void
   1143   1.1        pk hme_watchdog(ifp)
   1144   1.1        pk 	struct ifnet *ifp;
   1145   1.1        pk {
   1146   1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1147   1.1        pk 
   1148  1.64    cegger 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   1149   1.1        pk 	++ifp->if_oerrors;
   1150   1.1        pk 
   1151   1.1        pk 	hme_reset(sc);
   1152   1.4        pk }
   1153   1.4        pk 
   1154   1.4        pk /*
   1155   1.4        pk  * Initialize the MII Management Interface
   1156   1.4        pk  */
   1157   1.4        pk void
   1158   1.4        pk hme_mifinit(sc)
   1159   1.4        pk 	struct hme_softc *sc;
   1160   1.4        pk {
   1161   1.4        pk 	bus_space_tag_t t = sc->sc_bustag;
   1162   1.4        pk 	bus_space_handle_t mif = sc->sc_mif;
   1163  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1164  1.33        pk 	int instance, phy;
   1165   1.4        pk 	u_int32_t v;
   1166   1.4        pk 
   1167  1.61    dyoung 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1168  1.61    dyoung 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1169  1.33        pk 		phy = sc->sc_phys[instance];
   1170  1.33        pk 	} else
   1171  1.33        pk 		/* No media set yet, pick phy arbitrarily.. */
   1172  1.33        pk 		phy = HME_PHYAD_EXTERNAL;
   1173  1.33        pk 
   1174  1.33        pk 	/* Configure the MIF in frame mode, no poll, current phy select */
   1175  1.33        pk 	v = 0;
   1176  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1177  1.33        pk 		v |= HME_MIF_CFG_PHY;
   1178   1.4        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1179  1.35        pk 
   1180  1.35        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1181  1.35        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1182  1.35        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1183  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1184  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1185  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1186   1.1        pk }
   1187   1.1        pk 
   1188   1.1        pk /*
   1189   1.1        pk  * MII interface
   1190   1.1        pk  */
   1191   1.1        pk static int
   1192   1.1        pk hme_mii_readreg(self, phy, reg)
   1193   1.1        pk 	struct device *self;
   1194   1.1        pk 	int phy, reg;
   1195   1.1        pk {
   1196   1.1        pk 	struct hme_softc *sc = (void *)self;
   1197   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1198   1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1199  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1200  1.35        pk 	u_int32_t v, xif_cfg, mifi_cfg;
   1201   1.1        pk 	int n;
   1202   1.1        pk 
   1203  1.33        pk 	/* We can at most have two PHYs */
   1204  1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1205  1.32    martin 		return (0);
   1206  1.32    martin 
   1207   1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1208  1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1209   1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1210   1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1211   1.5        pk 		v |= HME_MIF_CFG_PHY;
   1212   1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1213   1.5        pk 
   1214  1.42      heas 	/* Enable MII drivers on external transceiver */
   1215  1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1216  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1217  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1218  1.35        pk 	else
   1219  1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1220  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1221  1.35        pk 
   1222  1.33        pk #if 0
   1223  1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1224  1.33        pk 	/*
   1225  1.33        pk 	 * Check whether a transceiver is connected by testing
   1226  1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1227  1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1228  1.33        pk 	 */
   1229  1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1230  1.33        pk 	delay(100);
   1231  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1232  1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1233  1.33        pk 		return (0);
   1234  1.33        pk #endif
   1235  1.33        pk 
   1236   1.1        pk 	/* Construct the frame command */
   1237   1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1238   1.1        pk 	    HME_MIF_FO_TAMSB |
   1239   1.1        pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1240   1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1241   1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1242   1.1        pk 
   1243   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1244   1.1        pk 	for (n = 0; n < 100; n++) {
   1245   1.2        pk 		DELAY(1);
   1246   1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1247  1.33        pk 		if (v & HME_MIF_FO_TALSB) {
   1248  1.33        pk 			v &= HME_MIF_FO_DATA;
   1249  1.33        pk 			goto out;
   1250  1.33        pk 		}
   1251   1.1        pk 	}
   1252   1.1        pk 
   1253  1.33        pk 	v = 0;
   1254  1.64    cegger 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
   1255  1.33        pk 
   1256  1.33        pk out:
   1257  1.33        pk 	/* Restore MIFI_CFG register */
   1258  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1259  1.35        pk 	/* Restore XIF register */
   1260  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1261  1.33        pk 	return (v);
   1262   1.1        pk }
   1263   1.1        pk 
   1264   1.1        pk static void
   1265   1.1        pk hme_mii_writereg(self, phy, reg, val)
   1266   1.1        pk 	struct device *self;
   1267   1.1        pk 	int phy, reg, val;
   1268   1.1        pk {
   1269   1.1        pk 	struct hme_softc *sc = (void *)self;
   1270   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1271   1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1272  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1273  1.35        pk 	u_int32_t v, xif_cfg, mifi_cfg;
   1274   1.1        pk 	int n;
   1275  1.32    martin 
   1276  1.33        pk 	/* We can at most have two PHYs */
   1277  1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1278  1.32    martin 		return;
   1279   1.1        pk 
   1280   1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1281  1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1282   1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1283   1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1284   1.5        pk 		v |= HME_MIF_CFG_PHY;
   1285   1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1286   1.5        pk 
   1287  1.42      heas 	/* Enable MII drivers on external transceiver */
   1288  1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1289  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1290  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1291  1.35        pk 	else
   1292  1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1293  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1294  1.35        pk 
   1295  1.33        pk #if 0
   1296  1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1297  1.33        pk 	/*
   1298  1.33        pk 	 * Check whether a transceiver is connected by testing
   1299  1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1300  1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1301  1.33        pk 	 */
   1302  1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1303  1.33        pk 	delay(100);
   1304  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1305  1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1306  1.33        pk 		return;
   1307  1.33        pk #endif
   1308  1.33        pk 
   1309   1.1        pk 	/* Construct the frame command */
   1310   1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1311   1.1        pk 	    HME_MIF_FO_TAMSB				|
   1312   1.1        pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1313   1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1314   1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1315   1.1        pk 	    (val & HME_MIF_FO_DATA);
   1316   1.1        pk 
   1317   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1318   1.1        pk 	for (n = 0; n < 100; n++) {
   1319   1.2        pk 		DELAY(1);
   1320   1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1321   1.1        pk 		if (v & HME_MIF_FO_TALSB)
   1322  1.33        pk 			goto out;
   1323   1.1        pk 	}
   1324   1.1        pk 
   1325  1.64    cegger 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
   1326  1.33        pk out:
   1327  1.33        pk 	/* Restore MIFI_CFG register */
   1328  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1329  1.35        pk 	/* Restore XIF register */
   1330  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1331   1.1        pk }
   1332   1.1        pk 
   1333   1.1        pk static void
   1334   1.1        pk hme_mii_statchg(dev)
   1335   1.1        pk 	struct device *dev;
   1336   1.1        pk {
   1337   1.3        pk 	struct hme_softc *sc = (void *)dev;
   1338   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1339   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1340   1.1        pk 	u_int32_t v;
   1341   1.1        pk 
   1342   1.5        pk #ifdef HMEDEBUG
   1343   1.5        pk 	if (sc->sc_debug)
   1344  1.33        pk 		printf("hme_mii_statchg: status change\n");
   1345   1.5        pk #endif
   1346   1.1        pk 
   1347   1.5        pk 	/* Set the MAC Full Duplex bit appropriately */
   1348  1.30    martin 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1349  1.30    martin 	   but not otherwise. */
   1350   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1351  1.30    martin 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1352   1.1        pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1353  1.30    martin 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1354  1.30    martin 	} else {
   1355   1.1        pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1356  1.30    martin 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1357  1.30    martin 	}
   1358  1.41      heas 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1359   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1360   1.5        pk }
   1361   1.5        pk 
   1362   1.5        pk int
   1363   1.5        pk hme_mediachange(ifp)
   1364   1.5        pk 	struct ifnet *ifp;
   1365   1.5        pk {
   1366   1.5        pk 	struct hme_softc *sc = ifp->if_softc;
   1367  1.33        pk 	bus_space_tag_t t = sc->sc_bustag;
   1368  1.33        pk 	bus_space_handle_t mif = sc->sc_mif;
   1369  1.33        pk 	bus_space_handle_t mac = sc->sc_mac;
   1370  1.33        pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1371  1.33        pk 	int phy = sc->sc_phys[instance];
   1372  1.61    dyoung 	int rc;
   1373  1.33        pk 	u_int32_t v;
   1374   1.5        pk 
   1375  1.33        pk #ifdef HMEDEBUG
   1376  1.33        pk 	if (sc->sc_debug)
   1377  1.33        pk 		printf("hme_mediachange: phy = %d\n", phy);
   1378  1.33        pk #endif
   1379  1.33        pk 
   1380  1.33        pk 	/* Select the current PHY in the MIF configuration register */
   1381  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1382  1.33        pk 	v &= ~HME_MIF_CFG_PHY;
   1383  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1384  1.33        pk 		v |= HME_MIF_CFG_PHY;
   1385  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1386  1.33        pk 
   1387  1.33        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1388  1.33        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1389  1.33        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1390  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1391  1.33        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1392  1.33        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1393   1.5        pk 
   1394  1.61    dyoung 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1395  1.61    dyoung 		return 0;
   1396  1.61    dyoung 	return rc;
   1397   1.1        pk }
   1398   1.1        pk 
   1399   1.1        pk /*
   1400   1.1        pk  * Process an ioctl request.
   1401   1.1        pk  */
   1402   1.1        pk int
   1403  1.67    dyoung hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1404   1.1        pk {
   1405   1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1406   1.1        pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1407   1.1        pk 	int s, error = 0;
   1408   1.1        pk 
   1409   1.1        pk 	s = splnet();
   1410   1.1        pk 
   1411   1.1        pk 	switch (cmd) {
   1412   1.1        pk 
   1413  1.67    dyoung 	case SIOCINITIFADDR:
   1414   1.1        pk 		switch (ifa->ifa_addr->sa_family) {
   1415   1.1        pk #ifdef INET
   1416   1.1        pk 		case AF_INET:
   1417  1.41      heas 			if (ifp->if_flags & IFF_UP)
   1418  1.41      heas 				hme_setladrf(sc);
   1419  1.41      heas 			else {
   1420  1.41      heas 				ifp->if_flags |= IFF_UP;
   1421  1.61    dyoung 				error = hme_init(sc);
   1422  1.41      heas 			}
   1423   1.1        pk 			arp_ifinit(ifp, ifa);
   1424   1.1        pk 			break;
   1425   1.1        pk #endif
   1426   1.1        pk 		default:
   1427  1.41      heas 			ifp->if_flags |= IFF_UP;
   1428  1.61    dyoung 			error = hme_init(sc);
   1429   1.1        pk 			break;
   1430   1.1        pk 		}
   1431   1.1        pk 		break;
   1432   1.1        pk 
   1433   1.1        pk 	case SIOCSIFFLAGS:
   1434  1.45      heas #ifdef HMEDEBUG
   1435  1.67    dyoung 		{
   1436  1.67    dyoung 			struct ifreq *ifr = data;
   1437  1.67    dyoung 			sc->sc_debug =
   1438  1.67    dyoung 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1439  1.67    dyoung 		}
   1440  1.45      heas #endif
   1441  1.67    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1442  1.67    dyoung 			break;
   1443  1.45      heas 
   1444  1.67    dyoung 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1445  1.67    dyoung 		case IFF_RUNNING:
   1446   1.1        pk 			/*
   1447   1.1        pk 			 * If interface is marked down and it is running, then
   1448   1.1        pk 			 * stop it.
   1449   1.1        pk 			 */
   1450  1.58    martin 			hme_stop(sc, false);
   1451   1.1        pk 			ifp->if_flags &= ~IFF_RUNNING;
   1452  1.67    dyoung 			break;
   1453  1.67    dyoung 		case IFF_UP:
   1454   1.1        pk 			/*
   1455   1.1        pk 			 * If interface is marked up and it is stopped, then
   1456   1.1        pk 			 * start it.
   1457   1.1        pk 			 */
   1458  1.61    dyoung 			error = hme_init(sc);
   1459  1.67    dyoung 			break;
   1460  1.67    dyoung 		case IFF_UP|IFF_RUNNING:
   1461   1.1        pk 			/*
   1462  1.41      heas 			 * If setting debug or promiscuous mode, do not reset
   1463  1.41      heas 			 * the chip; for everything else, call hme_init()
   1464  1.41      heas 			 * which will trigger a reset.
   1465   1.1        pk 			 */
   1466  1.41      heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1467  1.46      heas 			if (ifp->if_flags != sc->sc_if_flags) {
   1468  1.45      heas 				if ((ifp->if_flags & (~RESETIGN))
   1469  1.45      heas 				    == (sc->sc_if_flags & (~RESETIGN)))
   1470  1.45      heas 					hme_setladrf(sc);
   1471  1.45      heas 				else
   1472  1.61    dyoung 					error = hme_init(sc);
   1473  1.45      heas 			}
   1474  1.41      heas #undef RESETIGN
   1475  1.67    dyoung 			break;
   1476  1.67    dyoung 		case 0:
   1477  1.67    dyoung 			break;
   1478   1.1        pk 		}
   1479  1.45      heas 
   1480  1.45      heas 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1481  1.61    dyoung 			error = hme_init(sc);
   1482  1.45      heas 
   1483   1.1        pk 		break;
   1484   1.1        pk 
   1485  1.63    dyoung 	default:
   1486  1.63    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1487  1.63    dyoung 			break;
   1488  1.63    dyoung 
   1489  1.63    dyoung 		error = 0;
   1490  1.63    dyoung 
   1491  1.63    dyoung 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1492  1.63    dyoung 			;
   1493  1.63    dyoung 		else if (ifp->if_flags & IFF_RUNNING) {
   1494   1.1        pk 			/*
   1495   1.1        pk 			 * Multicast list has changed; set the hardware filter
   1496   1.1        pk 			 * accordingly.
   1497   1.1        pk 			 */
   1498  1.63    dyoung 			hme_setladrf(sc);
   1499   1.1        pk 		}
   1500   1.1        pk 		break;
   1501   1.1        pk 	}
   1502   1.1        pk 
   1503  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
   1504   1.1        pk 	splx(s);
   1505   1.1        pk 	return (error);
   1506   1.1        pk }
   1507   1.1        pk 
   1508   1.1        pk void
   1509   1.1        pk hme_shutdown(arg)
   1510   1.1        pk 	void *arg;
   1511   1.1        pk {
   1512  1.28      tron 
   1513  1.58    martin 	hme_stop((struct hme_softc *)arg, false);
   1514   1.1        pk }
   1515   1.1        pk 
   1516   1.1        pk /*
   1517   1.1        pk  * Set up the logical address filter.
   1518   1.1        pk  */
   1519   1.1        pk void
   1520   1.1        pk hme_setladrf(sc)
   1521   1.1        pk 	struct hme_softc *sc;
   1522   1.1        pk {
   1523   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1524   1.1        pk 	struct ether_multi *enm;
   1525   1.1        pk 	struct ether_multistep step;
   1526  1.28      tron 	struct ethercom *ec = &sc->sc_ethercom;
   1527   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1528   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1529   1.1        pk 	u_char *cp;
   1530   1.1        pk 	u_int32_t crc;
   1531   1.1        pk 	u_int32_t hash[4];
   1532  1.14        pk 	u_int32_t v;
   1533   1.1        pk 	int len;
   1534   1.1        pk 
   1535  1.14        pk 	/* Clear hash table */
   1536  1.14        pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1537  1.14        pk 
   1538  1.14        pk 	/* Get current RX configuration */
   1539  1.14        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1540  1.14        pk 
   1541  1.14        pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1542  1.14        pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1543  1.14        pk 		v |= HME_MAC_RXCFG_PMISC;
   1544  1.14        pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1545  1.14        pk 		ifp->if_flags |= IFF_ALLMULTI;
   1546  1.14        pk 		goto chipit;
   1547  1.14        pk 	}
   1548  1.14        pk 
   1549  1.14        pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1550  1.14        pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1551  1.14        pk 	v |= HME_MAC_RXCFG_HENABLE;
   1552  1.14        pk 
   1553   1.1        pk 	/*
   1554   1.1        pk 	 * Set up multicast address filter by passing all multicast addresses
   1555   1.1        pk 	 * through a crc generator, and then using the high order 6 bits as an
   1556   1.1        pk 	 * index into the 64 bit logical address filter.  The high order bit
   1557   1.1        pk 	 * selects the word, while the rest of the bits select the bit within
   1558   1.1        pk 	 * the word.
   1559   1.1        pk 	 */
   1560   1.1        pk 
   1561  1.28      tron 	ETHER_FIRST_MULTI(step, ec, enm);
   1562   1.1        pk 	while (enm != NULL) {
   1563  1.28      tron 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1564   1.1        pk 			/*
   1565   1.1        pk 			 * We must listen to a range of multicast addresses.
   1566   1.1        pk 			 * For now, just accept all multicasts, rather than
   1567   1.1        pk 			 * trying to set only those filter bits needed to match
   1568   1.1        pk 			 * the range.  (At this time, the only use of address
   1569   1.1        pk 			 * ranges is for IP multicast routing, for which the
   1570   1.1        pk 			 * range is big enough to require all bits set.)
   1571   1.1        pk 			 */
   1572  1.14        pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1573  1.14        pk 			ifp->if_flags |= IFF_ALLMULTI;
   1574  1.14        pk 			goto chipit;
   1575   1.1        pk 		}
   1576   1.1        pk 
   1577   1.1        pk 		cp = enm->enm_addrlo;
   1578   1.1        pk 		crc = 0xffffffff;
   1579   1.1        pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1580   1.1        pk 			int octet = *cp++;
   1581   1.1        pk 			int i;
   1582   1.1        pk 
   1583   1.1        pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1584   1.1        pk 			for (i = 0; i < 8; i++) {
   1585   1.1        pk 				if ((crc & 1) ^ (octet & 1)) {
   1586   1.1        pk 					crc >>= 1;
   1587   1.1        pk 					crc ^= MC_POLY_LE;
   1588   1.1        pk 				} else {
   1589   1.1        pk 					crc >>= 1;
   1590   1.1        pk 				}
   1591   1.1        pk 				octet >>= 1;
   1592   1.1        pk 			}
   1593   1.1        pk 		}
   1594   1.1        pk 		/* Just want the 6 most significant bits. */
   1595   1.1        pk 		crc >>= 26;
   1596   1.1        pk 
   1597   1.1        pk 		/* Set the corresponding bit in the filter. */
   1598   1.1        pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1599   1.1        pk 
   1600   1.1        pk 		ETHER_NEXT_MULTI(step, enm);
   1601   1.1        pk 	}
   1602   1.1        pk 
   1603  1.14        pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1604  1.14        pk 
   1605  1.14        pk chipit:
   1606  1.14        pk 	/* Now load the hash table into the chip */
   1607   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1608   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1609   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1610   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1611  1.14        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1612   1.1        pk }
   1613   1.1        pk 
   1614  1.28      tron /*
   1615  1.28      tron  * Routines for accessing the transmit and receive buffers.
   1616  1.28      tron  * The various CPU and adapter configurations supported by this
   1617  1.28      tron  * driver require three different access methods for buffers
   1618  1.28      tron  * and descriptors:
   1619  1.28      tron  *	(1) contig (contiguous data; no padding),
   1620  1.28      tron  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1621  1.28      tron  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1622  1.28      tron  */
   1623  1.28      tron 
   1624  1.28      tron #if 0
   1625  1.28      tron /*
   1626  1.28      tron  * contig: contiguous data with no padding.
   1627  1.28      tron  *
   1628  1.28      tron  * Buffers may have any alignment.
   1629  1.28      tron  */
   1630  1.28      tron 
   1631  1.28      tron void
   1632  1.28      tron hme_copytobuf_contig(sc, from, ri, len)
   1633  1.26      tron 	struct hme_softc *sc;
   1634  1.28      tron 	void *from;
   1635  1.28      tron 	int ri, len;
   1636  1.26      tron {
   1637  1.56  christos 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1638  1.26      tron 
   1639   1.1        pk 	/*
   1640  1.28      tron 	 * Just call memcpy() to do the work.
   1641   1.1        pk 	 */
   1642  1.28      tron 	memcpy(buf, from, len);
   1643   1.1        pk }
   1644   1.1        pk 
   1645  1.28      tron void
   1646  1.28      tron hme_copyfrombuf_contig(sc, to, boff, len)
   1647   1.1        pk 	struct hme_softc *sc;
   1648  1.28      tron 	void *to;
   1649  1.28      tron 	int boff, len;
   1650   1.1        pk {
   1651  1.56  christos 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1652  1.26      tron 
   1653  1.28      tron 	/*
   1654  1.28      tron 	 * Just call memcpy() to do the work.
   1655  1.28      tron 	 */
   1656  1.28      tron 	memcpy(to, buf, len);
   1657   1.1        pk }
   1658  1.28      tron #endif
   1659