hme.c revision 1.70 1 1.70 tsutsui /* $NetBSD: hme.c,v 1.70 2009/03/07 16:46:25 tsutsui Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk *
19 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
30 1.1 pk */
31 1.1 pk
32 1.1 pk /*
33 1.1 pk * HME Ethernet module driver.
34 1.1 pk */
35 1.25 lukem
36 1.25 lukem #include <sys/cdefs.h>
37 1.70 tsutsui __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.70 2009/03/07 16:46:25 tsutsui Exp $");
38 1.1 pk
39 1.39 petrov /* #define HMEDEBUG */
40 1.1 pk
41 1.1 pk #include "opt_inet.h"
42 1.1 pk #include "bpfilter.h"
43 1.1 pk #include "rnd.h"
44 1.1 pk
45 1.1 pk #include <sys/param.h>
46 1.1 pk #include <sys/systm.h>
47 1.5 pk #include <sys/kernel.h>
48 1.42 heas #include <sys/mbuf.h>
49 1.1 pk #include <sys/syslog.h>
50 1.1 pk #include <sys/socket.h>
51 1.1 pk #include <sys/device.h>
52 1.1 pk #include <sys/malloc.h>
53 1.1 pk #include <sys/ioctl.h>
54 1.1 pk #include <sys/errno.h>
55 1.1 pk #if NRND > 0
56 1.1 pk #include <sys/rnd.h>
57 1.1 pk #endif
58 1.1 pk
59 1.1 pk #include <net/if.h>
60 1.1 pk #include <net/if_dl.h>
61 1.1 pk #include <net/if_ether.h>
62 1.1 pk #include <net/if_media.h>
63 1.1 pk
64 1.1 pk #ifdef INET
65 1.1 pk #include <netinet/in.h>
66 1.1 pk #include <netinet/if_inarp.h>
67 1.1 pk #include <netinet/in_systm.h>
68 1.1 pk #include <netinet/in_var.h>
69 1.1 pk #include <netinet/ip.h>
70 1.46 heas #include <netinet/tcp.h>
71 1.46 heas #include <netinet/udp.h>
72 1.1 pk #endif
73 1.1 pk
74 1.1 pk
75 1.1 pk #if NBPFILTER > 0
76 1.1 pk #include <net/bpf.h>
77 1.1 pk #include <net/bpfdesc.h>
78 1.1 pk #endif
79 1.1 pk
80 1.1 pk #include <dev/mii/mii.h>
81 1.1 pk #include <dev/mii/miivar.h>
82 1.1 pk
83 1.60 ad #include <sys/bus.h>
84 1.1 pk
85 1.1 pk #include <dev/ic/hmereg.h>
86 1.1 pk #include <dev/ic/hmevar.h>
87 1.1 pk
88 1.44 perry void hme_start(struct ifnet *);
89 1.58 martin void hme_stop(struct hme_softc *,bool);
90 1.56 christos int hme_ioctl(struct ifnet *, u_long, void *);
91 1.44 perry void hme_tick(void *);
92 1.44 perry void hme_watchdog(struct ifnet *);
93 1.44 perry void hme_shutdown(void *);
94 1.61 dyoung int hme_init(struct hme_softc *);
95 1.44 perry void hme_meminit(struct hme_softc *);
96 1.44 perry void hme_mifinit(struct hme_softc *);
97 1.44 perry void hme_reset(struct hme_softc *);
98 1.44 perry void hme_setladrf(struct hme_softc *);
99 1.1 pk
100 1.1 pk /* MII methods & callbacks */
101 1.44 perry static int hme_mii_readreg(struct device *, int, int);
102 1.44 perry static void hme_mii_writereg(struct device *, int, int, int);
103 1.44 perry static void hme_mii_statchg(struct device *);
104 1.44 perry
105 1.44 perry int hme_mediachange(struct ifnet *);
106 1.44 perry
107 1.46 heas struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
108 1.44 perry int hme_put(struct hme_softc *, int, struct mbuf *);
109 1.46 heas void hme_read(struct hme_softc *, int, uint32_t);
110 1.44 perry int hme_eint(struct hme_softc *, u_int);
111 1.44 perry int hme_rint(struct hme_softc *);
112 1.44 perry int hme_tint(struct hme_softc *);
113 1.1 pk
114 1.28 tron /* Default buffer copy routines */
115 1.44 perry void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
116 1.44 perry void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
117 1.44 perry void hme_zerobuf_contig(struct hme_softc *, int, int);
118 1.28 tron
119 1.28 tron
120 1.1 pk void
121 1.1 pk hme_config(sc)
122 1.1 pk struct hme_softc *sc;
123 1.1 pk {
124 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
125 1.1 pk struct mii_data *mii = &sc->sc_mii;
126 1.5 pk struct mii_softc *child;
127 1.11 pk bus_dma_tag_t dmatag = sc->sc_dmatag;
128 1.1 pk bus_dma_segment_t seg;
129 1.1 pk bus_size_t size;
130 1.28 tron int rseg, error;
131 1.1 pk
132 1.1 pk /*
133 1.1 pk * HME common initialization.
134 1.1 pk *
135 1.1 pk * hme_softc fields that must be initialized by the front-end:
136 1.1 pk *
137 1.1 pk * the bus tag:
138 1.1 pk * sc_bustag
139 1.1 pk *
140 1.37 wiz * the DMA bus tag:
141 1.1 pk * sc_dmatag
142 1.1 pk *
143 1.1 pk * the bus handles:
144 1.1 pk * sc_seb (Shared Ethernet Block registers)
145 1.1 pk * sc_erx (Receiver Unit registers)
146 1.1 pk * sc_etx (Transmitter Unit registers)
147 1.1 pk * sc_mac (MAC registers)
148 1.36 wiz * sc_mif (Management Interface registers)
149 1.1 pk *
150 1.1 pk * the maximum bus burst size:
151 1.1 pk * sc_burst
152 1.1 pk *
153 1.28 tron * (notyet:DMA capable memory for the ring descriptors & packet buffers:
154 1.28 tron * rb_membase, rb_dmabase)
155 1.28 tron *
156 1.1 pk * the local Ethernet address:
157 1.1 pk * sc_enaddr
158 1.1 pk *
159 1.1 pk */
160 1.1 pk
161 1.1 pk /* Make sure the chip is stopped. */
162 1.58 martin hme_stop(sc, true);
163 1.1 pk
164 1.1 pk
165 1.28 tron /*
166 1.28 tron * Allocate descriptors and buffers
167 1.28 tron * XXX - do all this differently.. and more configurably,
168 1.28 tron * eg. use things as `dma_load_mbuf()' on transmit,
169 1.28 tron * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
170 1.38 wiz * all the time) on the receiver side.
171 1.28 tron *
172 1.28 tron * Note: receive buffers must be 64-byte aligned.
173 1.28 tron * Also, apparently, the buffers must extend to a DMA burst
174 1.28 tron * boundary beyond the maximum packet size.
175 1.28 tron */
176 1.28 tron #define _HME_NDESC 128
177 1.28 tron #define _HME_BUFSZ 1600
178 1.28 tron
179 1.28 tron /* Note: the # of descriptors must be a multiple of 16 */
180 1.28 tron sc->sc_rb.rb_ntbuf = _HME_NDESC;
181 1.28 tron sc->sc_rb.rb_nrbuf = _HME_NDESC;
182 1.1 pk
183 1.1 pk /*
184 1.1 pk * Allocate DMA capable memory
185 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
186 1.1 pk * take this into account when calculating the size. Note that
187 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
188 1.28 tron * so we allocate that much regardless of _HME_NDESC.
189 1.1 pk */
190 1.28 tron size = 2048 + /* TX descriptors */
191 1.28 tron 2048 + /* RX descriptors */
192 1.28 tron sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
193 1.46 heas sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
194 1.11 pk
195 1.11 pk /* Allocate DMA buffer */
196 1.28 tron if ((error = bus_dmamem_alloc(dmatag, size,
197 1.28 tron 2048, 0,
198 1.28 tron &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
199 1.64 cegger aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
200 1.64 cegger error);
201 1.10 mrg return;
202 1.1 pk }
203 1.1 pk
204 1.11 pk /* Map DMA memory in CPU addressable space */
205 1.11 pk if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
206 1.28 tron &sc->sc_rb.rb_membase,
207 1.28 tron BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
208 1.64 cegger aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
209 1.64 cegger error);
210 1.11 pk bus_dmamap_unload(dmatag, sc->sc_dmamap);
211 1.11 pk bus_dmamem_free(dmatag, &seg, rseg);
212 1.1 pk return;
213 1.1 pk }
214 1.13 mrg
215 1.13 mrg if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
216 1.28 tron BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
217 1.64 cegger aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
218 1.64 cegger error);
219 1.13 mrg return;
220 1.13 mrg }
221 1.13 mrg
222 1.13 mrg /* Load the buffer */
223 1.13 mrg if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
224 1.17 mrg sc->sc_rb.rb_membase, size, NULL,
225 1.17 mrg BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
226 1.64 cegger aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
227 1.64 cegger error);
228 1.13 mrg bus_dmamem_free(dmatag, &seg, rseg);
229 1.13 mrg return;
230 1.13 mrg }
231 1.13 mrg sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
232 1.1 pk
233 1.64 cegger printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
234 1.22 thorpej ether_sprintf(sc->sc_enaddr));
235 1.2 pk
236 1.1 pk /* Initialize ifnet structure. */
237 1.64 cegger strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
238 1.1 pk ifp->if_softc = sc;
239 1.1 pk ifp->if_start = hme_start;
240 1.1 pk ifp->if_ioctl = hme_ioctl;
241 1.1 pk ifp->if_watchdog = hme_watchdog;
242 1.1 pk ifp->if_flags =
243 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
244 1.41 heas sc->sc_if_flags = ifp->if_flags;
245 1.51 yamt ifp->if_capabilities |=
246 1.51 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
247 1.51 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
248 1.20 thorpej IFQ_SET_READY(&ifp->if_snd);
249 1.1 pk
250 1.1 pk /* Initialize ifmedia structures and MII info */
251 1.1 pk mii->mii_ifp = ifp;
252 1.34 petrov mii->mii_readreg = hme_mii_readreg;
253 1.1 pk mii->mii_writereg = hme_mii_writereg;
254 1.1 pk mii->mii_statchg = hme_mii_statchg;
255 1.1 pk
256 1.61 dyoung sc->sc_ethercom.ec_mii = mii;
257 1.61 dyoung ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
258 1.1 pk
259 1.4 pk hme_mifinit(sc);
260 1.4 pk
261 1.6 thorpej mii_attach(&sc->sc_dev, mii, 0xffffffff,
262 1.34 petrov MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
263 1.2 pk
264 1.5 pk child = LIST_FIRST(&mii->mii_phys);
265 1.5 pk if (child == NULL) {
266 1.1 pk /* No PHY attached */
267 1.61 dyoung ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
268 1.61 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
269 1.1 pk } else {
270 1.1 pk /*
271 1.5 pk * Walk along the list of attached MII devices and
272 1.5 pk * establish an `MII instance' to `phy number'
273 1.5 pk * mapping. We'll use this mapping in media change
274 1.5 pk * requests to determine which phy to use to program
275 1.5 pk * the MIF configuration register.
276 1.5 pk */
277 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
278 1.5 pk /*
279 1.5 pk * Note: we support just two PHYs: the built-in
280 1.5 pk * internal device and an external on the MII
281 1.5 pk * connector.
282 1.5 pk */
283 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) {
284 1.64 cegger aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
285 1.28 tron " at phy %d, instance %d\n",
286 1.66 xtraeme device_xname(child->mii_dev),
287 1.28 tron child->mii_phy, child->mii_inst);
288 1.5 pk continue;
289 1.5 pk }
290 1.5 pk
291 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy;
292 1.5 pk }
293 1.5 pk
294 1.5 pk /*
295 1.1 pk * XXX - we can really do the following ONLY if the
296 1.1 pk * phy indeed has the auto negotiation capability!!
297 1.1 pk */
298 1.61 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
299 1.1 pk }
300 1.27 tron
301 1.28 tron /* claim 802.1q capability */
302 1.27 tron sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
303 1.1 pk
304 1.1 pk /* Attach the interface. */
305 1.1 pk if_attach(ifp);
306 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
307 1.1 pk
308 1.1 pk sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
309 1.1 pk if (sc->sc_sh == NULL)
310 1.1 pk panic("hme_config: can't establish shutdownhook");
311 1.1 pk
312 1.1 pk #if NRND > 0
313 1.64 cegger rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
314 1.1 pk RND_TYPE_NET, 0);
315 1.1 pk #endif
316 1.5 pk
317 1.57 ad callout_init(&sc->sc_tick_ch, 0);
318 1.5 pk }
319 1.5 pk
320 1.5 pk void
321 1.5 pk hme_tick(arg)
322 1.5 pk void *arg;
323 1.5 pk {
324 1.5 pk struct hme_softc *sc = arg;
325 1.5 pk int s;
326 1.5 pk
327 1.5 pk s = splnet();
328 1.5 pk mii_tick(&sc->sc_mii);
329 1.5 pk splx(s);
330 1.5 pk
331 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
332 1.1 pk }
333 1.1 pk
334 1.1 pk void
335 1.1 pk hme_reset(sc)
336 1.1 pk struct hme_softc *sc;
337 1.1 pk {
338 1.1 pk int s;
339 1.1 pk
340 1.1 pk s = splnet();
341 1.61 dyoung (void)hme_init(sc);
342 1.1 pk splx(s);
343 1.1 pk }
344 1.1 pk
345 1.1 pk void
346 1.58 martin hme_stop(struct hme_softc *sc, bool chip_only)
347 1.1 pk {
348 1.1 pk bus_space_tag_t t = sc->sc_bustag;
349 1.1 pk bus_space_handle_t seb = sc->sc_seb;
350 1.1 pk int n;
351 1.1 pk
352 1.58 martin if (!chip_only) {
353 1.58 martin callout_stop(&sc->sc_tick_ch);
354 1.58 martin mii_down(&sc->sc_mii);
355 1.58 martin }
356 1.5 pk
357 1.33 pk /* Mask all interrupts */
358 1.33 pk bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
359 1.33 pk
360 1.1 pk /* Reset transmitter and receiver */
361 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
362 1.28 tron (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
363 1.1 pk
364 1.1 pk for (n = 0; n < 20; n++) {
365 1.1 pk u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
366 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
367 1.1 pk return;
368 1.1 pk DELAY(20);
369 1.1 pk }
370 1.1 pk
371 1.64 cegger printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
372 1.1 pk }
373 1.1 pk
374 1.1 pk void
375 1.1 pk hme_meminit(sc)
376 1.1 pk struct hme_softc *sc;
377 1.1 pk {
378 1.28 tron bus_addr_t txbufdma, rxbufdma;
379 1.1 pk bus_addr_t dma;
380 1.56 christos char *p;
381 1.28 tron unsigned int ntbuf, nrbuf, i;
382 1.1 pk struct hme_ring *hr = &sc->sc_rb;
383 1.1 pk
384 1.1 pk p = hr->rb_membase;
385 1.1 pk dma = hr->rb_dmabase;
386 1.1 pk
387 1.28 tron ntbuf = hr->rb_ntbuf;
388 1.28 tron nrbuf = hr->rb_nrbuf;
389 1.28 tron
390 1.1 pk /*
391 1.1 pk * Allocate transmit descriptors
392 1.1 pk */
393 1.1 pk hr->rb_txd = p;
394 1.1 pk hr->rb_txddma = dma;
395 1.28 tron p += ntbuf * HME_XD_SIZE;
396 1.28 tron dma += ntbuf * HME_XD_SIZE;
397 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/
398 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
399 1.56 christos p = (void *)roundup((u_long)p, 2048);
400 1.1 pk
401 1.1 pk /*
402 1.1 pk * Allocate receive descriptors
403 1.1 pk */
404 1.1 pk hr->rb_rxd = p;
405 1.1 pk hr->rb_rxddma = dma;
406 1.28 tron p += nrbuf * HME_XD_SIZE;
407 1.28 tron dma += nrbuf * HME_XD_SIZE;
408 1.4 pk /* Again move forward to the next 2048 byte boundary.*/
409 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
410 1.56 christos p = (void *)roundup((u_long)p, 2048);
411 1.1 pk
412 1.28 tron
413 1.1 pk /*
414 1.28 tron * Allocate transmit buffers
415 1.1 pk */
416 1.28 tron hr->rb_txbuf = p;
417 1.28 tron txbufdma = dma;
418 1.28 tron p += ntbuf * _HME_BUFSZ;
419 1.28 tron dma += ntbuf * _HME_BUFSZ;
420 1.28 tron
421 1.28 tron /*
422 1.28 tron * Allocate receive buffers
423 1.28 tron */
424 1.28 tron hr->rb_rxbuf = p;
425 1.28 tron rxbufdma = dma;
426 1.28 tron p += nrbuf * _HME_BUFSZ;
427 1.28 tron dma += nrbuf * _HME_BUFSZ;
428 1.28 tron
429 1.28 tron /*
430 1.28 tron * Initialize transmit buffer descriptors
431 1.28 tron */
432 1.28 tron for (i = 0; i < ntbuf; i++) {
433 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
434 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
435 1.1 pk }
436 1.1 pk
437 1.1 pk /*
438 1.28 tron * Initialize receive buffer descriptors
439 1.1 pk */
440 1.28 tron for (i = 0; i < nrbuf; i++) {
441 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
442 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
443 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
444 1.1 pk }
445 1.1 pk
446 1.28 tron hr->rb_tdhead = hr->rb_tdtail = 0;
447 1.28 tron hr->rb_td_nbusy = 0;
448 1.28 tron hr->rb_rdtail = 0;
449 1.1 pk }
450 1.1 pk
451 1.1 pk /*
452 1.1 pk * Initialization of interface; set up initialization block
453 1.1 pk * and transmit/receive descriptor rings.
454 1.1 pk */
455 1.61 dyoung int
456 1.1 pk hme_init(sc)
457 1.1 pk struct hme_softc *sc;
458 1.1 pk {
459 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
460 1.1 pk bus_space_tag_t t = sc->sc_bustag;
461 1.1 pk bus_space_handle_t seb = sc->sc_seb;
462 1.1 pk bus_space_handle_t etx = sc->sc_etx;
463 1.1 pk bus_space_handle_t erx = sc->sc_erx;
464 1.1 pk bus_space_handle_t mac = sc->sc_mac;
465 1.1 pk u_int8_t *ea;
466 1.1 pk u_int32_t v;
467 1.61 dyoung int rc;
468 1.1 pk
469 1.1 pk /*
470 1.1 pk * Initialization sequence. The numbered steps below correspond
471 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
472 1.1 pk * Channel Engine manual (part of the PCIO manual).
473 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
474 1.1 pk */
475 1.1 pk
476 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
477 1.58 martin hme_stop(sc, false);
478 1.1 pk
479 1.4 pk /* Re-initialize the MIF */
480 1.4 pk hme_mifinit(sc);
481 1.4 pk
482 1.1 pk /* Call MI reset function if any */
483 1.1 pk if (sc->sc_hwreset)
484 1.1 pk (*sc->sc_hwreset)(sc);
485 1.1 pk
486 1.1 pk #if 0
487 1.1 pk /* Mask all MIF interrupts, just in case */
488 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
489 1.1 pk #endif
490 1.1 pk
491 1.1 pk /* step 3. Setup data structures in host memory */
492 1.1 pk hme_meminit(sc);
493 1.1 pk
494 1.1 pk /* step 4. TX MAC registers & counters */
495 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
496 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
497 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
498 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
499 1.28 tron bus_space_write_4(t, mac, HME_MACI_TXSIZE,
500 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
501 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
502 1.45 heas sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
503 1.1 pk
504 1.1 pk /* Load station MAC address */
505 1.1 pk ea = sc->sc_enaddr;
506 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
507 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
508 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
509 1.1 pk
510 1.1 pk /*
511 1.1 pk * Init seed for backoff
512 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
513 1.42 heas */
514 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
515 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
516 1.1 pk
517 1.1 pk
518 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
519 1.1 pk
520 1.1 pk
521 1.1 pk /* step 5. RX MAC registers & counters */
522 1.1 pk hme_setladrf(sc);
523 1.1 pk
524 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
525 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
526 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
527 1.1 pk
528 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
529 1.28 tron bus_space_write_4(t, mac, HME_MACI_RXSIZE,
530 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
531 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
532 1.1 pk
533 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
534 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
535 1.28 tron ~(
536 1.28 tron /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
537 1.28 tron HME_SEB_STAT_HOSTTOTX |
538 1.28 tron HME_SEB_STAT_RXTOHOST |
539 1.28 tron HME_SEB_STAT_TXALL |
540 1.28 tron HME_SEB_STAT_TXPERR |
541 1.28 tron HME_SEB_STAT_RCNTEXP |
542 1.33 pk /*HME_SEB_STAT_MIFIRQ |*/
543 1.28 tron HME_SEB_STAT_ALL_ERRORS ));
544 1.1 pk
545 1.1 pk switch (sc->sc_burst) {
546 1.1 pk default:
547 1.1 pk v = 0;
548 1.1 pk break;
549 1.1 pk case 16:
550 1.1 pk v = HME_SEB_CFG_BURST16;
551 1.1 pk break;
552 1.1 pk case 32:
553 1.1 pk v = HME_SEB_CFG_BURST32;
554 1.1 pk break;
555 1.1 pk case 64:
556 1.1 pk v = HME_SEB_CFG_BURST64;
557 1.1 pk break;
558 1.1 pk }
559 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
560 1.1 pk
561 1.1 pk /* step 9. ETX Configuration: use mostly default values */
562 1.1 pk
563 1.1 pk /* Enable DMA */
564 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
565 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
566 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
567 1.1 pk
568 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
569 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
570 1.28 tron
571 1.1 pk
572 1.3 pk /* step 10. ERX Configuration */
573 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
574 1.28 tron
575 1.28 tron /* Encode Receive Descriptor ring size: four possible values */
576 1.28 tron switch (_HME_NDESC /*XXX*/) {
577 1.28 tron case 32:
578 1.28 tron v |= HME_ERX_CFG_RINGSIZE32;
579 1.28 tron break;
580 1.28 tron case 64:
581 1.28 tron v |= HME_ERX_CFG_RINGSIZE64;
582 1.28 tron break;
583 1.28 tron case 128:
584 1.28 tron v |= HME_ERX_CFG_RINGSIZE128;
585 1.28 tron break;
586 1.28 tron case 256:
587 1.28 tron v |= HME_ERX_CFG_RINGSIZE256;
588 1.28 tron break;
589 1.28 tron default:
590 1.28 tron printf("hme: invalid Receive Descriptor ring size\n");
591 1.28 tron break;
592 1.28 tron }
593 1.28 tron
594 1.3 pk /* Enable DMA */
595 1.28 tron v |= HME_ERX_CFG_DMAENABLE;
596 1.46 heas
597 1.46 heas /* set h/w rx checksum start offset (# of half-words) */
598 1.49 heas #ifdef INET
599 1.48 perry v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
600 1.46 heas ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
601 1.46 heas ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
602 1.46 heas HME_ERX_CFG_CSUMSTART;
603 1.49 heas #endif
604 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
605 1.1 pk
606 1.1 pk /* step 11. XIF Configuration */
607 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
608 1.1 pk v |= HME_MAC_XIF_OE;
609 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
610 1.1 pk
611 1.1 pk /* step 12. RX_MAC Configuration Register */
612 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
613 1.46 heas v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
614 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
615 1.1 pk
616 1.1 pk /* step 13. TX_MAC Configuration Register */
617 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
618 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
619 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
620 1.1 pk
621 1.1 pk /* step 14. Issue Transmit Pending command */
622 1.1 pk
623 1.1 pk /* Call MI initialization function if any */
624 1.1 pk if (sc->sc_hwinit)
625 1.1 pk (*sc->sc_hwinit)(sc);
626 1.29 thorpej
627 1.29 thorpej /* Set the current media. */
628 1.61 dyoung if ((rc = hme_mediachange(ifp)) != 0)
629 1.61 dyoung return rc;
630 1.9 thorpej
631 1.9 thorpej /* Start the one second timer. */
632 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
633 1.1 pk
634 1.1 pk ifp->if_flags |= IFF_RUNNING;
635 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
636 1.41 heas sc->sc_if_flags = ifp->if_flags;
637 1.1 pk ifp->if_timer = 0;
638 1.1 pk hme_start(ifp);
639 1.61 dyoung return 0;
640 1.1 pk }
641 1.1 pk
642 1.28 tron /*
643 1.28 tron * Routine to copy from mbuf chain to transmit buffer in
644 1.28 tron * network buffer memory.
645 1.28 tron * Returns the amount of data copied.
646 1.28 tron */
647 1.28 tron int
648 1.28 tron hme_put(sc, ri, m)
649 1.28 tron struct hme_softc *sc;
650 1.28 tron int ri; /* Ring index */
651 1.28 tron struct mbuf *m;
652 1.28 tron {
653 1.28 tron struct mbuf *n;
654 1.28 tron int len, tlen = 0;
655 1.56 christos char *bp;
656 1.28 tron
657 1.56 christos bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
658 1.28 tron for (; m; m = n) {
659 1.28 tron len = m->m_len;
660 1.28 tron if (len == 0) {
661 1.28 tron MFREE(m, n);
662 1.28 tron continue;
663 1.28 tron }
664 1.56 christos memcpy(bp, mtod(m, void *), len);
665 1.28 tron bp += len;
666 1.28 tron tlen += len;
667 1.28 tron MFREE(m, n);
668 1.28 tron }
669 1.28 tron return (tlen);
670 1.28 tron }
671 1.28 tron
672 1.28 tron /*
673 1.28 tron * Pull data off an interface.
674 1.28 tron * Len is length of data, with local net header stripped.
675 1.28 tron * We copy the data into mbufs. When full cluster sized units are present
676 1.28 tron * we copy into clusters.
677 1.28 tron */
678 1.28 tron struct mbuf *
679 1.46 heas hme_get(sc, ri, flags)
680 1.28 tron struct hme_softc *sc;
681 1.46 heas int ri;
682 1.46 heas u_int32_t flags;
683 1.28 tron {
684 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
685 1.28 tron struct mbuf *m, *m0, *newm;
686 1.56 christos char *bp;
687 1.46 heas int len, totlen;
688 1.28 tron
689 1.46 heas totlen = HME_XD_DECODE_RSIZE(flags);
690 1.28 tron MGETHDR(m0, M_DONTWAIT, MT_DATA);
691 1.28 tron if (m0 == 0)
692 1.28 tron return (0);
693 1.28 tron m0->m_pkthdr.rcvif = ifp;
694 1.28 tron m0->m_pkthdr.len = totlen;
695 1.28 tron len = MHLEN;
696 1.28 tron m = m0;
697 1.28 tron
698 1.56 christos bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
699 1.28 tron
700 1.28 tron while (totlen > 0) {
701 1.28 tron if (totlen >= MINCLSIZE) {
702 1.28 tron MCLGET(m, M_DONTWAIT);
703 1.28 tron if ((m->m_flags & M_EXT) == 0)
704 1.28 tron goto bad;
705 1.28 tron len = MCLBYTES;
706 1.28 tron }
707 1.28 tron
708 1.28 tron if (m == m0) {
709 1.56 christos char *newdata = (char *)
710 1.28 tron ALIGN(m->m_data + sizeof(struct ether_header)) -
711 1.28 tron sizeof(struct ether_header);
712 1.28 tron len -= newdata - m->m_data;
713 1.28 tron m->m_data = newdata;
714 1.28 tron }
715 1.28 tron
716 1.28 tron m->m_len = len = min(totlen, len);
717 1.56 christos memcpy(mtod(m, void *), bp, len);
718 1.28 tron bp += len;
719 1.28 tron
720 1.28 tron totlen -= len;
721 1.28 tron if (totlen > 0) {
722 1.28 tron MGET(newm, M_DONTWAIT, MT_DATA);
723 1.28 tron if (newm == 0)
724 1.28 tron goto bad;
725 1.28 tron len = MLEN;
726 1.28 tron m = m->m_next = newm;
727 1.28 tron }
728 1.28 tron }
729 1.28 tron
730 1.49 heas #ifdef INET
731 1.49 heas /* hardware checksum */
732 1.50 rafal if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
733 1.46 heas struct ether_header *eh;
734 1.46 heas struct ip *ip;
735 1.46 heas struct udphdr *uh;
736 1.46 heas uint16_t *opts;
737 1.46 heas int32_t hlen, pktlen;
738 1.46 heas uint32_t temp;
739 1.46 heas
740 1.46 heas if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
741 1.46 heas pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
742 1.46 heas ETHER_VLAN_ENCAP_LEN;
743 1.56 christos eh = (struct ether_header *) mtod(m0, void *) +
744 1.46 heas ETHER_VLAN_ENCAP_LEN;
745 1.46 heas } else {
746 1.46 heas pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
747 1.46 heas eh = mtod(m0, struct ether_header *);
748 1.46 heas }
749 1.46 heas if (ntohs(eh->ether_type) != ETHERTYPE_IP)
750 1.46 heas goto swcsum;
751 1.56 christos ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
752 1.46 heas
753 1.46 heas /* IPv4 only */
754 1.46 heas if (ip->ip_v != IPVERSION)
755 1.46 heas goto swcsum;
756 1.46 heas
757 1.46 heas hlen = ip->ip_hl << 2;
758 1.48 perry if (hlen < sizeof(struct ip))
759 1.46 heas goto swcsum;
760 1.46 heas
761 1.49 heas /*
762 1.49 heas * bail if too short, has random trailing garbage, truncated,
763 1.49 heas * fragment, or has ethernet pad.
764 1.49 heas */
765 1.49 heas if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
766 1.46 heas || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
767 1.49 heas goto swcsum;
768 1.46 heas
769 1.46 heas switch (ip->ip_p) {
770 1.46 heas case IPPROTO_TCP:
771 1.46 heas if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
772 1.46 heas goto swcsum;
773 1.46 heas if (pktlen < (hlen + sizeof(struct tcphdr)))
774 1.46 heas goto swcsum;
775 1.46 heas m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
776 1.46 heas break;
777 1.46 heas case IPPROTO_UDP:
778 1.46 heas if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
779 1.46 heas goto swcsum;
780 1.46 heas if (pktlen < (hlen + sizeof(struct udphdr)))
781 1.46 heas goto swcsum;
782 1.56 christos uh = (struct udphdr *)((char *)ip + hlen);
783 1.46 heas /* no checksum */
784 1.46 heas if (uh->uh_sum == 0)
785 1.46 heas goto swcsum;
786 1.46 heas m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
787 1.46 heas break;
788 1.46 heas default:
789 1.49 heas goto swcsum;
790 1.46 heas }
791 1.46 heas
792 1.46 heas /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
793 1.46 heas m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
794 1.46 heas
795 1.46 heas /* if the pkt had ip options, we have to deduct them */
796 1.46 heas if (hlen > sizeof(struct ip)) {
797 1.46 heas uint32_t optsum;
798 1.46 heas
799 1.46 heas optsum = 0;
800 1.46 heas temp = hlen - sizeof(struct ip);
801 1.56 christos opts = (uint16_t *)((char *)ip + sizeof(struct ip));
802 1.46 heas
803 1.49 heas while (temp > 1) {
804 1.46 heas optsum += ntohs(*opts++);
805 1.46 heas temp -= 2;
806 1.46 heas }
807 1.46 heas while (optsum >> 16)
808 1.46 heas optsum = (optsum >> 16) + (optsum & 0xffff);
809 1.46 heas
810 1.46 heas /* Deduct the ip opts sum from the hwsum (rfc 1624). */
811 1.46 heas m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
812 1.46 heas ~optsum);
813 1.46 heas
814 1.46 heas while (m0->m_pkthdr.csum_data >> 16)
815 1.46 heas m0->m_pkthdr.csum_data =
816 1.46 heas (m0->m_pkthdr.csum_data >> 16) +
817 1.46 heas (m0->m_pkthdr.csum_data & 0xffff);
818 1.46 heas }
819 1.46 heas
820 1.46 heas m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
821 1.69 tsutsui } else
822 1.49 heas swcsum:
823 1.49 heas m0->m_pkthdr.csum_flags = 0;
824 1.49 heas #endif
825 1.46 heas
826 1.28 tron return (m0);
827 1.28 tron
828 1.28 tron bad:
829 1.28 tron m_freem(m0);
830 1.28 tron return (0);
831 1.28 tron }
832 1.28 tron
833 1.28 tron /*
834 1.28 tron * Pass a packet to the higher levels.
835 1.28 tron */
836 1.28 tron void
837 1.46 heas hme_read(sc, ix, flags)
838 1.28 tron struct hme_softc *sc;
839 1.46 heas int ix;
840 1.46 heas u_int32_t flags;
841 1.28 tron {
842 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
843 1.28 tron struct mbuf *m;
844 1.46 heas int len;
845 1.28 tron
846 1.46 heas len = HME_XD_DECODE_RSIZE(flags);
847 1.28 tron if (len <= sizeof(struct ether_header) ||
848 1.28 tron len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
849 1.28 tron ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
850 1.28 tron ETHERMTU + sizeof(struct ether_header))) {
851 1.28 tron #ifdef HMEDEBUG
852 1.28 tron printf("%s: invalid packet size %d; dropping\n",
853 1.64 cegger device_xname(&sc->sc_dev), len);
854 1.28 tron #endif
855 1.28 tron ifp->if_ierrors++;
856 1.28 tron return;
857 1.28 tron }
858 1.28 tron
859 1.28 tron /* Pull packet off interface. */
860 1.46 heas m = hme_get(sc, ix, flags);
861 1.28 tron if (m == 0) {
862 1.28 tron ifp->if_ierrors++;
863 1.28 tron return;
864 1.28 tron }
865 1.28 tron
866 1.28 tron ifp->if_ipackets++;
867 1.28 tron
868 1.28 tron #if NBPFILTER > 0
869 1.28 tron /*
870 1.28 tron * Check if there's a BPF listener on this interface.
871 1.28 tron * If so, hand off the raw packet to BPF.
872 1.28 tron */
873 1.28 tron if (ifp->if_bpf)
874 1.28 tron bpf_mtap(ifp->if_bpf, m);
875 1.28 tron #endif
876 1.28 tron
877 1.28 tron /* Pass the packet up. */
878 1.28 tron (*ifp->if_input)(ifp, m);
879 1.28 tron }
880 1.28 tron
881 1.1 pk void
882 1.1 pk hme_start(ifp)
883 1.1 pk struct ifnet *ifp;
884 1.1 pk {
885 1.1 pk struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
886 1.56 christos void *txd = sc->sc_rb.rb_txd;
887 1.1 pk struct mbuf *m;
888 1.46 heas unsigned int txflags;
889 1.28 tron unsigned int ri, len;
890 1.28 tron unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
891 1.1 pk
892 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
893 1.1 pk return;
894 1.1 pk
895 1.28 tron ri = sc->sc_rb.rb_tdhead;
896 1.28 tron
897 1.28 tron for (;;) {
898 1.28 tron IFQ_DEQUEUE(&ifp->if_snd, m);
899 1.28 tron if (m == 0)
900 1.1 pk break;
901 1.1 pk
902 1.1 pk #if NBPFILTER > 0
903 1.1 pk /*
904 1.1 pk * If BPF is listening on this interface, let it see the
905 1.1 pk * packet before we commit it to the wire.
906 1.1 pk */
907 1.1 pk if (ifp->if_bpf)
908 1.1 pk bpf_mtap(ifp->if_bpf, m);
909 1.1 pk #endif
910 1.1 pk
911 1.49 heas #ifdef INET
912 1.46 heas /* collect bits for h/w csum, before hme_put frees the mbuf */
913 1.46 heas if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
914 1.46 heas m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
915 1.46 heas struct ether_header *eh;
916 1.46 heas uint16_t offset, start;
917 1.46 heas
918 1.46 heas eh = mtod(m, struct ether_header *);
919 1.46 heas switch (ntohs(eh->ether_type)) {
920 1.46 heas case ETHERTYPE_IP:
921 1.46 heas start = ETHER_HDR_LEN;
922 1.46 heas break;
923 1.46 heas case ETHERTYPE_VLAN:
924 1.46 heas start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
925 1.46 heas break;
926 1.46 heas default:
927 1.46 heas /* unsupported, drop it */
928 1.46 heas m_free(m);
929 1.46 heas continue;
930 1.46 heas }
931 1.47 thorpej start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
932 1.47 thorpej offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
933 1.47 thorpej + start;
934 1.46 heas txflags = HME_XD_TXCKSUM |
935 1.46 heas (offset << HME_XD_TXCSSTUFFSHIFT) |
936 1.46 heas (start << HME_XD_TXCSSTARTSHIFT);
937 1.46 heas } else
938 1.49 heas #endif
939 1.46 heas txflags = 0;
940 1.46 heas
941 1.28 tron /*
942 1.28 tron * Copy the mbuf chain into the transmit buffer.
943 1.28 tron */
944 1.28 tron len = hme_put(sc, ri, m);
945 1.28 tron
946 1.28 tron /*
947 1.28 tron * Initialize transmit registers and start transmission
948 1.28 tron */
949 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
950 1.28 tron HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
951 1.46 heas HME_XD_ENCODE_TSIZE(len) | txflags);
952 1.28 tron
953 1.28 tron /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
954 1.28 tron bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
955 1.28 tron HME_ETX_TP_DMAWAKEUP);
956 1.28 tron
957 1.28 tron if (++ri == ntbuf)
958 1.28 tron ri = 0;
959 1.28 tron
960 1.28 tron if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
961 1.26 tron ifp->if_flags |= IFF_OACTIVE;
962 1.26 tron break;
963 1.26 tron }
964 1.1 pk }
965 1.1 pk
966 1.28 tron sc->sc_rb.rb_tdhead = ri;
967 1.1 pk }
968 1.1 pk
969 1.1 pk /*
970 1.1 pk * Transmit interrupt.
971 1.1 pk */
972 1.1 pk int
973 1.1 pk hme_tint(sc)
974 1.1 pk struct hme_softc *sc;
975 1.1 pk {
976 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
977 1.28 tron bus_space_tag_t t = sc->sc_bustag;
978 1.28 tron bus_space_handle_t mac = sc->sc_mac;
979 1.1 pk unsigned int ri, txflags;
980 1.28 tron
981 1.28 tron /*
982 1.28 tron * Unload collision counters
983 1.28 tron */
984 1.28 tron ifp->if_collisions +=
985 1.28 tron bus_space_read_4(t, mac, HME_MACI_NCCNT) +
986 1.28 tron bus_space_read_4(t, mac, HME_MACI_FCCNT) +
987 1.28 tron bus_space_read_4(t, mac, HME_MACI_EXCNT) +
988 1.28 tron bus_space_read_4(t, mac, HME_MACI_LTCNT);
989 1.28 tron
990 1.28 tron /*
991 1.28 tron * then clear the hardware counters.
992 1.28 tron */
993 1.28 tron bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
994 1.28 tron bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
995 1.28 tron bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
996 1.28 tron bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
997 1.1 pk
998 1.1 pk /* Fetch current position in the transmit ring */
999 1.28 tron ri = sc->sc_rb.rb_tdtail;
1000 1.1 pk
1001 1.1 pk for (;;) {
1002 1.28 tron if (sc->sc_rb.rb_td_nbusy <= 0)
1003 1.1 pk break;
1004 1.1 pk
1005 1.15 eeh txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1006 1.1 pk
1007 1.1 pk if (txflags & HME_XD_OWN)
1008 1.1 pk break;
1009 1.1 pk
1010 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
1011 1.28 tron ifp->if_opackets++;
1012 1.26 tron
1013 1.28 tron if (++ri == sc->sc_rb.rb_ntbuf)
1014 1.1 pk ri = 0;
1015 1.1 pk
1016 1.28 tron --sc->sc_rb.rb_td_nbusy;
1017 1.1 pk }
1018 1.1 pk
1019 1.3 pk /* Update ring */
1020 1.28 tron sc->sc_rb.rb_tdtail = ri;
1021 1.1 pk
1022 1.1 pk hme_start(ifp);
1023 1.1 pk
1024 1.28 tron if (sc->sc_rb.rb_td_nbusy == 0)
1025 1.1 pk ifp->if_timer = 0;
1026 1.1 pk
1027 1.1 pk return (1);
1028 1.1 pk }
1029 1.1 pk
1030 1.1 pk /*
1031 1.1 pk * Receive interrupt.
1032 1.1 pk */
1033 1.1 pk int
1034 1.1 pk hme_rint(sc)
1035 1.1 pk struct hme_softc *sc;
1036 1.1 pk {
1037 1.56 christos void *xdr = sc->sc_rb.rb_rxd;
1038 1.28 tron unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1039 1.46 heas unsigned int ri;
1040 1.1 pk u_int32_t flags;
1041 1.1 pk
1042 1.28 tron ri = sc->sc_rb.rb_rdtail;
1043 1.1 pk
1044 1.1 pk /*
1045 1.1 pk * Process all buffers with valid data.
1046 1.1 pk */
1047 1.1 pk for (;;) {
1048 1.28 tron flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1049 1.1 pk if (flags & HME_XD_OWN)
1050 1.1 pk break;
1051 1.1 pk
1052 1.4 pk if (flags & HME_XD_OFL) {
1053 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1054 1.64 cegger device_xname(&sc->sc_dev), ri, flags);
1055 1.46 heas } else
1056 1.46 heas hme_read(sc, ri, flags);
1057 1.1 pk
1058 1.28 tron /* This buffer can be used by the hardware again */
1059 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1060 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1061 1.26 tron
1062 1.28 tron if (++ri == nrbuf)
1063 1.1 pk ri = 0;
1064 1.1 pk }
1065 1.1 pk
1066 1.28 tron sc->sc_rb.rb_rdtail = ri;
1067 1.28 tron
1068 1.1 pk return (1);
1069 1.1 pk }
1070 1.1 pk
1071 1.1 pk int
1072 1.1 pk hme_eint(sc, status)
1073 1.1 pk struct hme_softc *sc;
1074 1.1 pk u_int status;
1075 1.1 pk {
1076 1.1 pk char bits[128];
1077 1.1 pk
1078 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1079 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1080 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1081 1.33 pk u_int32_t cf, st, sm;
1082 1.33 pk cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1083 1.33 pk st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1084 1.33 pk sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1085 1.33 pk printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1086 1.64 cegger device_xname(&sc->sc_dev), cf, st, sm);
1087 1.1 pk return (1);
1088 1.1 pk }
1089 1.68 christos snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1090 1.68 christos printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
1091 1.68 christos
1092 1.1 pk return (1);
1093 1.1 pk }
1094 1.1 pk
1095 1.1 pk int
1096 1.1 pk hme_intr(v)
1097 1.1 pk void *v;
1098 1.1 pk {
1099 1.1 pk struct hme_softc *sc = (struct hme_softc *)v;
1100 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1101 1.1 pk bus_space_handle_t seb = sc->sc_seb;
1102 1.1 pk u_int32_t status;
1103 1.1 pk int r = 0;
1104 1.1 pk
1105 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1106 1.1 pk
1107 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1108 1.1 pk r |= hme_eint(sc, status);
1109 1.1 pk
1110 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1111 1.1 pk r |= hme_tint(sc);
1112 1.1 pk
1113 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1114 1.1 pk r |= hme_rint(sc);
1115 1.1 pk
1116 1.40 abs #if NRND > 0
1117 1.40 abs rnd_add_uint32(&sc->rnd_source, status);
1118 1.40 abs #endif
1119 1.40 abs
1120 1.1 pk return (r);
1121 1.1 pk }
1122 1.1 pk
1123 1.1 pk
1124 1.1 pk void
1125 1.1 pk hme_watchdog(ifp)
1126 1.1 pk struct ifnet *ifp;
1127 1.1 pk {
1128 1.1 pk struct hme_softc *sc = ifp->if_softc;
1129 1.1 pk
1130 1.64 cegger log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
1131 1.1 pk ++ifp->if_oerrors;
1132 1.1 pk
1133 1.1 pk hme_reset(sc);
1134 1.4 pk }
1135 1.4 pk
1136 1.4 pk /*
1137 1.4 pk * Initialize the MII Management Interface
1138 1.4 pk */
1139 1.4 pk void
1140 1.4 pk hme_mifinit(sc)
1141 1.4 pk struct hme_softc *sc;
1142 1.4 pk {
1143 1.4 pk bus_space_tag_t t = sc->sc_bustag;
1144 1.4 pk bus_space_handle_t mif = sc->sc_mif;
1145 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1146 1.33 pk int instance, phy;
1147 1.4 pk u_int32_t v;
1148 1.4 pk
1149 1.61 dyoung if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1150 1.61 dyoung instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1151 1.33 pk phy = sc->sc_phys[instance];
1152 1.33 pk } else
1153 1.33 pk /* No media set yet, pick phy arbitrarily.. */
1154 1.33 pk phy = HME_PHYAD_EXTERNAL;
1155 1.33 pk
1156 1.33 pk /* Configure the MIF in frame mode, no poll, current phy select */
1157 1.33 pk v = 0;
1158 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1159 1.33 pk v |= HME_MIF_CFG_PHY;
1160 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1161 1.35 pk
1162 1.35 pk /* If an external transceiver is selected, enable its MII drivers */
1163 1.35 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1164 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1165 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1166 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1167 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1168 1.1 pk }
1169 1.1 pk
1170 1.1 pk /*
1171 1.1 pk * MII interface
1172 1.1 pk */
1173 1.1 pk static int
1174 1.1 pk hme_mii_readreg(self, phy, reg)
1175 1.1 pk struct device *self;
1176 1.1 pk int phy, reg;
1177 1.1 pk {
1178 1.1 pk struct hme_softc *sc = (void *)self;
1179 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1180 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1181 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1182 1.35 pk u_int32_t v, xif_cfg, mifi_cfg;
1183 1.1 pk int n;
1184 1.1 pk
1185 1.33 pk /* We can at most have two PHYs */
1186 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1187 1.32 martin return (0);
1188 1.32 martin
1189 1.5 pk /* Select the desired PHY in the MIF configuration register */
1190 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1191 1.5 pk v &= ~HME_MIF_CFG_PHY;
1192 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1193 1.5 pk v |= HME_MIF_CFG_PHY;
1194 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1195 1.5 pk
1196 1.42 heas /* Enable MII drivers on external transceiver */
1197 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1198 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1199 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1200 1.35 pk else
1201 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1202 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1203 1.35 pk
1204 1.33 pk #if 0
1205 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1206 1.33 pk /*
1207 1.33 pk * Check whether a transceiver is connected by testing
1208 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1209 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1210 1.33 pk */
1211 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1212 1.33 pk delay(100);
1213 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1214 1.33 pk if ((v & mif_mdi_bit) == 0)
1215 1.33 pk return (0);
1216 1.33 pk #endif
1217 1.33 pk
1218 1.1 pk /* Construct the frame command */
1219 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1220 1.1 pk HME_MIF_FO_TAMSB |
1221 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1222 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1223 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
1224 1.1 pk
1225 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1226 1.1 pk for (n = 0; n < 100; n++) {
1227 1.2 pk DELAY(1);
1228 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1229 1.33 pk if (v & HME_MIF_FO_TALSB) {
1230 1.33 pk v &= HME_MIF_FO_DATA;
1231 1.33 pk goto out;
1232 1.33 pk }
1233 1.1 pk }
1234 1.1 pk
1235 1.33 pk v = 0;
1236 1.64 cegger printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
1237 1.33 pk
1238 1.33 pk out:
1239 1.33 pk /* Restore MIFI_CFG register */
1240 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1241 1.35 pk /* Restore XIF register */
1242 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1243 1.33 pk return (v);
1244 1.1 pk }
1245 1.1 pk
1246 1.1 pk static void
1247 1.1 pk hme_mii_writereg(self, phy, reg, val)
1248 1.1 pk struct device *self;
1249 1.1 pk int phy, reg, val;
1250 1.1 pk {
1251 1.1 pk struct hme_softc *sc = (void *)self;
1252 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1253 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1254 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1255 1.35 pk u_int32_t v, xif_cfg, mifi_cfg;
1256 1.1 pk int n;
1257 1.32 martin
1258 1.33 pk /* We can at most have two PHYs */
1259 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1260 1.32 martin return;
1261 1.1 pk
1262 1.5 pk /* Select the desired PHY in the MIF configuration register */
1263 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1264 1.5 pk v &= ~HME_MIF_CFG_PHY;
1265 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1266 1.5 pk v |= HME_MIF_CFG_PHY;
1267 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1268 1.5 pk
1269 1.42 heas /* Enable MII drivers on external transceiver */
1270 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1271 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1272 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1273 1.35 pk else
1274 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1275 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1276 1.35 pk
1277 1.33 pk #if 0
1278 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1279 1.33 pk /*
1280 1.33 pk * Check whether a transceiver is connected by testing
1281 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1282 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1283 1.33 pk */
1284 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1285 1.33 pk delay(100);
1286 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1287 1.33 pk if ((v & mif_mdi_bit) == 0)
1288 1.33 pk return;
1289 1.33 pk #endif
1290 1.33 pk
1291 1.1 pk /* Construct the frame command */
1292 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1293 1.1 pk HME_MIF_FO_TAMSB |
1294 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1295 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1296 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
1297 1.1 pk (val & HME_MIF_FO_DATA);
1298 1.1 pk
1299 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1300 1.1 pk for (n = 0; n < 100; n++) {
1301 1.2 pk DELAY(1);
1302 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1303 1.1 pk if (v & HME_MIF_FO_TALSB)
1304 1.33 pk goto out;
1305 1.1 pk }
1306 1.1 pk
1307 1.64 cegger printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
1308 1.33 pk out:
1309 1.33 pk /* Restore MIFI_CFG register */
1310 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1311 1.35 pk /* Restore XIF register */
1312 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1313 1.1 pk }
1314 1.1 pk
1315 1.1 pk static void
1316 1.1 pk hme_mii_statchg(dev)
1317 1.1 pk struct device *dev;
1318 1.1 pk {
1319 1.3 pk struct hme_softc *sc = (void *)dev;
1320 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1321 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1322 1.1 pk u_int32_t v;
1323 1.1 pk
1324 1.5 pk #ifdef HMEDEBUG
1325 1.5 pk if (sc->sc_debug)
1326 1.33 pk printf("hme_mii_statchg: status change\n");
1327 1.5 pk #endif
1328 1.1 pk
1329 1.5 pk /* Set the MAC Full Duplex bit appropriately */
1330 1.30 martin /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1331 1.30 martin but not otherwise. */
1332 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1333 1.30 martin if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1334 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
1335 1.30 martin sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1336 1.30 martin } else {
1337 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
1338 1.30 martin sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1339 1.30 martin }
1340 1.41 heas sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1341 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1342 1.5 pk }
1343 1.5 pk
1344 1.5 pk int
1345 1.5 pk hme_mediachange(ifp)
1346 1.5 pk struct ifnet *ifp;
1347 1.5 pk {
1348 1.5 pk struct hme_softc *sc = ifp->if_softc;
1349 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1350 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1351 1.33 pk bus_space_handle_t mac = sc->sc_mac;
1352 1.33 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1353 1.33 pk int phy = sc->sc_phys[instance];
1354 1.61 dyoung int rc;
1355 1.33 pk u_int32_t v;
1356 1.5 pk
1357 1.33 pk #ifdef HMEDEBUG
1358 1.33 pk if (sc->sc_debug)
1359 1.33 pk printf("hme_mediachange: phy = %d\n", phy);
1360 1.33 pk #endif
1361 1.33 pk
1362 1.33 pk /* Select the current PHY in the MIF configuration register */
1363 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1364 1.33 pk v &= ~HME_MIF_CFG_PHY;
1365 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1366 1.33 pk v |= HME_MIF_CFG_PHY;
1367 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1368 1.33 pk
1369 1.33 pk /* If an external transceiver is selected, enable its MII drivers */
1370 1.33 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1371 1.33 pk v &= ~HME_MAC_XIF_MIIENABLE;
1372 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1373 1.33 pk v |= HME_MAC_XIF_MIIENABLE;
1374 1.33 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1375 1.5 pk
1376 1.61 dyoung if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1377 1.61 dyoung return 0;
1378 1.61 dyoung return rc;
1379 1.1 pk }
1380 1.1 pk
1381 1.1 pk /*
1382 1.1 pk * Process an ioctl request.
1383 1.1 pk */
1384 1.1 pk int
1385 1.67 dyoung hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1386 1.1 pk {
1387 1.1 pk struct hme_softc *sc = ifp->if_softc;
1388 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1389 1.1 pk int s, error = 0;
1390 1.1 pk
1391 1.1 pk s = splnet();
1392 1.1 pk
1393 1.1 pk switch (cmd) {
1394 1.1 pk
1395 1.67 dyoung case SIOCINITIFADDR:
1396 1.1 pk switch (ifa->ifa_addr->sa_family) {
1397 1.1 pk #ifdef INET
1398 1.1 pk case AF_INET:
1399 1.41 heas if (ifp->if_flags & IFF_UP)
1400 1.41 heas hme_setladrf(sc);
1401 1.41 heas else {
1402 1.41 heas ifp->if_flags |= IFF_UP;
1403 1.61 dyoung error = hme_init(sc);
1404 1.41 heas }
1405 1.1 pk arp_ifinit(ifp, ifa);
1406 1.1 pk break;
1407 1.1 pk #endif
1408 1.1 pk default:
1409 1.41 heas ifp->if_flags |= IFF_UP;
1410 1.61 dyoung error = hme_init(sc);
1411 1.1 pk break;
1412 1.1 pk }
1413 1.1 pk break;
1414 1.1 pk
1415 1.1 pk case SIOCSIFFLAGS:
1416 1.45 heas #ifdef HMEDEBUG
1417 1.67 dyoung {
1418 1.67 dyoung struct ifreq *ifr = data;
1419 1.67 dyoung sc->sc_debug =
1420 1.67 dyoung (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1421 1.67 dyoung }
1422 1.45 heas #endif
1423 1.67 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1424 1.67 dyoung break;
1425 1.45 heas
1426 1.67 dyoung switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1427 1.67 dyoung case IFF_RUNNING:
1428 1.1 pk /*
1429 1.1 pk * If interface is marked down and it is running, then
1430 1.1 pk * stop it.
1431 1.1 pk */
1432 1.58 martin hme_stop(sc, false);
1433 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1434 1.67 dyoung break;
1435 1.67 dyoung case IFF_UP:
1436 1.1 pk /*
1437 1.1 pk * If interface is marked up and it is stopped, then
1438 1.1 pk * start it.
1439 1.1 pk */
1440 1.61 dyoung error = hme_init(sc);
1441 1.67 dyoung break;
1442 1.67 dyoung case IFF_UP|IFF_RUNNING:
1443 1.1 pk /*
1444 1.41 heas * If setting debug or promiscuous mode, do not reset
1445 1.41 heas * the chip; for everything else, call hme_init()
1446 1.41 heas * which will trigger a reset.
1447 1.1 pk */
1448 1.41 heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1449 1.46 heas if (ifp->if_flags != sc->sc_if_flags) {
1450 1.45 heas if ((ifp->if_flags & (~RESETIGN))
1451 1.45 heas == (sc->sc_if_flags & (~RESETIGN)))
1452 1.45 heas hme_setladrf(sc);
1453 1.45 heas else
1454 1.61 dyoung error = hme_init(sc);
1455 1.45 heas }
1456 1.41 heas #undef RESETIGN
1457 1.67 dyoung break;
1458 1.67 dyoung case 0:
1459 1.67 dyoung break;
1460 1.1 pk }
1461 1.45 heas
1462 1.45 heas if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1463 1.61 dyoung error = hme_init(sc);
1464 1.45 heas
1465 1.1 pk break;
1466 1.1 pk
1467 1.63 dyoung default:
1468 1.63 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1469 1.63 dyoung break;
1470 1.63 dyoung
1471 1.63 dyoung error = 0;
1472 1.63 dyoung
1473 1.63 dyoung if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1474 1.63 dyoung ;
1475 1.63 dyoung else if (ifp->if_flags & IFF_RUNNING) {
1476 1.1 pk /*
1477 1.1 pk * Multicast list has changed; set the hardware filter
1478 1.1 pk * accordingly.
1479 1.1 pk */
1480 1.63 dyoung hme_setladrf(sc);
1481 1.1 pk }
1482 1.1 pk break;
1483 1.1 pk }
1484 1.1 pk
1485 1.41 heas sc->sc_if_flags = ifp->if_flags;
1486 1.1 pk splx(s);
1487 1.1 pk return (error);
1488 1.1 pk }
1489 1.1 pk
1490 1.1 pk void
1491 1.1 pk hme_shutdown(arg)
1492 1.1 pk void *arg;
1493 1.1 pk {
1494 1.28 tron
1495 1.58 martin hme_stop((struct hme_softc *)arg, false);
1496 1.1 pk }
1497 1.1 pk
1498 1.1 pk /*
1499 1.1 pk * Set up the logical address filter.
1500 1.1 pk */
1501 1.1 pk void
1502 1.1 pk hme_setladrf(sc)
1503 1.1 pk struct hme_softc *sc;
1504 1.1 pk {
1505 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1506 1.1 pk struct ether_multi *enm;
1507 1.1 pk struct ether_multistep step;
1508 1.28 tron struct ethercom *ec = &sc->sc_ethercom;
1509 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1510 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1511 1.1 pk u_char *cp;
1512 1.1 pk u_int32_t crc;
1513 1.1 pk u_int32_t hash[4];
1514 1.14 pk u_int32_t v;
1515 1.1 pk int len;
1516 1.1 pk
1517 1.14 pk /* Clear hash table */
1518 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1519 1.14 pk
1520 1.14 pk /* Get current RX configuration */
1521 1.14 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1522 1.14 pk
1523 1.14 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1524 1.14 pk /* Turn on promiscuous mode; turn off the hash filter */
1525 1.14 pk v |= HME_MAC_RXCFG_PMISC;
1526 1.14 pk v &= ~HME_MAC_RXCFG_HENABLE;
1527 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1528 1.14 pk goto chipit;
1529 1.14 pk }
1530 1.14 pk
1531 1.14 pk /* Turn off promiscuous mode; turn on the hash filter */
1532 1.14 pk v &= ~HME_MAC_RXCFG_PMISC;
1533 1.14 pk v |= HME_MAC_RXCFG_HENABLE;
1534 1.14 pk
1535 1.1 pk /*
1536 1.1 pk * Set up multicast address filter by passing all multicast addresses
1537 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1538 1.1 pk * index into the 64 bit logical address filter. The high order bit
1539 1.1 pk * selects the word, while the rest of the bits select the bit within
1540 1.1 pk * the word.
1541 1.1 pk */
1542 1.1 pk
1543 1.28 tron ETHER_FIRST_MULTI(step, ec, enm);
1544 1.1 pk while (enm != NULL) {
1545 1.70 tsutsui if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1546 1.1 pk /*
1547 1.1 pk * We must listen to a range of multicast addresses.
1548 1.1 pk * For now, just accept all multicasts, rather than
1549 1.1 pk * trying to set only those filter bits needed to match
1550 1.1 pk * the range. (At this time, the only use of address
1551 1.1 pk * ranges is for IP multicast routing, for which the
1552 1.1 pk * range is big enough to require all bits set.)
1553 1.1 pk */
1554 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1555 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1556 1.14 pk goto chipit;
1557 1.1 pk }
1558 1.1 pk
1559 1.1 pk cp = enm->enm_addrlo;
1560 1.1 pk crc = 0xffffffff;
1561 1.1 pk for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1562 1.1 pk int octet = *cp++;
1563 1.1 pk int i;
1564 1.1 pk
1565 1.1 pk #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1566 1.1 pk for (i = 0; i < 8; i++) {
1567 1.1 pk if ((crc & 1) ^ (octet & 1)) {
1568 1.1 pk crc >>= 1;
1569 1.1 pk crc ^= MC_POLY_LE;
1570 1.1 pk } else {
1571 1.1 pk crc >>= 1;
1572 1.1 pk }
1573 1.1 pk octet >>= 1;
1574 1.1 pk }
1575 1.1 pk }
1576 1.1 pk /* Just want the 6 most significant bits. */
1577 1.1 pk crc >>= 26;
1578 1.1 pk
1579 1.1 pk /* Set the corresponding bit in the filter. */
1580 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1581 1.1 pk
1582 1.1 pk ETHER_NEXT_MULTI(step, enm);
1583 1.1 pk }
1584 1.1 pk
1585 1.14 pk ifp->if_flags &= ~IFF_ALLMULTI;
1586 1.14 pk
1587 1.14 pk chipit:
1588 1.14 pk /* Now load the hash table into the chip */
1589 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1590 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1591 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1592 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1593 1.14 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1594 1.1 pk }
1595 1.1 pk
1596 1.28 tron /*
1597 1.28 tron * Routines for accessing the transmit and receive buffers.
1598 1.28 tron * The various CPU and adapter configurations supported by this
1599 1.28 tron * driver require three different access methods for buffers
1600 1.28 tron * and descriptors:
1601 1.28 tron * (1) contig (contiguous data; no padding),
1602 1.28 tron * (2) gap2 (two bytes of data followed by two bytes of padding),
1603 1.28 tron * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1604 1.28 tron */
1605 1.28 tron
1606 1.28 tron #if 0
1607 1.28 tron /*
1608 1.28 tron * contig: contiguous data with no padding.
1609 1.28 tron *
1610 1.28 tron * Buffers may have any alignment.
1611 1.28 tron */
1612 1.28 tron
1613 1.28 tron void
1614 1.28 tron hme_copytobuf_contig(sc, from, ri, len)
1615 1.26 tron struct hme_softc *sc;
1616 1.28 tron void *from;
1617 1.28 tron int ri, len;
1618 1.26 tron {
1619 1.56 christos volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1620 1.26 tron
1621 1.1 pk /*
1622 1.28 tron * Just call memcpy() to do the work.
1623 1.1 pk */
1624 1.28 tron memcpy(buf, from, len);
1625 1.1 pk }
1626 1.1 pk
1627 1.28 tron void
1628 1.28 tron hme_copyfrombuf_contig(sc, to, boff, len)
1629 1.1 pk struct hme_softc *sc;
1630 1.28 tron void *to;
1631 1.28 tron int boff, len;
1632 1.1 pk {
1633 1.56 christos volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1634 1.26 tron
1635 1.28 tron /*
1636 1.28 tron * Just call memcpy() to do the work.
1637 1.28 tron */
1638 1.28 tron memcpy(to, buf, len);
1639 1.1 pk }
1640 1.28 tron #endif
1641