Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.75
      1  1.75   tsutsui /*	$NetBSD: hme.c,v 1.75 2009/04/16 14:08:18 tsutsui Exp $	*/
      2   1.1        pk 
      3   1.1        pk /*-
      4   1.1        pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5   1.1        pk  * All rights reserved.
      6   1.1        pk  *
      7   1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1        pk  * by Paul Kranenburg.
      9   1.1        pk  *
     10   1.1        pk  * Redistribution and use in source and binary forms, with or without
     11   1.1        pk  * modification, are permitted provided that the following conditions
     12   1.1        pk  * are met:
     13   1.1        pk  * 1. Redistributions of source code must retain the above copyright
     14   1.1        pk  *    notice, this list of conditions and the following disclaimer.
     15   1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        pk  *    documentation and/or other materials provided with the distribution.
     18   1.1        pk  *
     19   1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1        pk  */
     31   1.1        pk 
     32   1.1        pk /*
     33   1.1        pk  * HME Ethernet module driver.
     34   1.1        pk  */
     35  1.25     lukem 
     36  1.25     lukem #include <sys/cdefs.h>
     37  1.75   tsutsui __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.75 2009/04/16 14:08:18 tsutsui Exp $");
     38   1.1        pk 
     39  1.39    petrov /* #define HMEDEBUG */
     40   1.1        pk 
     41   1.1        pk #include "opt_inet.h"
     42   1.1        pk #include "bpfilter.h"
     43   1.1        pk #include "rnd.h"
     44   1.1        pk 
     45   1.1        pk #include <sys/param.h>
     46   1.1        pk #include <sys/systm.h>
     47   1.5        pk #include <sys/kernel.h>
     48  1.42      heas #include <sys/mbuf.h>
     49   1.1        pk #include <sys/syslog.h>
     50   1.1        pk #include <sys/socket.h>
     51   1.1        pk #include <sys/device.h>
     52   1.1        pk #include <sys/malloc.h>
     53   1.1        pk #include <sys/ioctl.h>
     54   1.1        pk #include <sys/errno.h>
     55   1.1        pk #if NRND > 0
     56   1.1        pk #include <sys/rnd.h>
     57   1.1        pk #endif
     58   1.1        pk 
     59   1.1        pk #include <net/if.h>
     60   1.1        pk #include <net/if_dl.h>
     61   1.1        pk #include <net/if_ether.h>
     62   1.1        pk #include <net/if_media.h>
     63   1.1        pk 
     64   1.1        pk #ifdef INET
     65  1.74   tsutsui #include <net/if_vlanvar.h>
     66   1.1        pk #include <netinet/in.h>
     67   1.1        pk #include <netinet/if_inarp.h>
     68   1.1        pk #include <netinet/in_systm.h>
     69   1.1        pk #include <netinet/in_var.h>
     70   1.1        pk #include <netinet/ip.h>
     71  1.46      heas #include <netinet/tcp.h>
     72  1.46      heas #include <netinet/udp.h>
     73   1.1        pk #endif
     74   1.1        pk 
     75   1.1        pk 
     76   1.1        pk #if NBPFILTER > 0
     77   1.1        pk #include <net/bpf.h>
     78   1.1        pk #include <net/bpfdesc.h>
     79   1.1        pk #endif
     80   1.1        pk 
     81   1.1        pk #include <dev/mii/mii.h>
     82   1.1        pk #include <dev/mii/miivar.h>
     83   1.1        pk 
     84  1.60        ad #include <sys/bus.h>
     85   1.1        pk 
     86   1.1        pk #include <dev/ic/hmereg.h>
     87   1.1        pk #include <dev/ic/hmevar.h>
     88   1.1        pk 
     89  1.44     perry void		hme_start(struct ifnet *);
     90  1.58    martin void		hme_stop(struct hme_softc *,bool);
     91  1.56  christos int		hme_ioctl(struct ifnet *, u_long, void *);
     92  1.44     perry void		hme_tick(void *);
     93  1.44     perry void		hme_watchdog(struct ifnet *);
     94  1.44     perry void		hme_shutdown(void *);
     95  1.61    dyoung int		hme_init(struct hme_softc *);
     96  1.44     perry void		hme_meminit(struct hme_softc *);
     97  1.44     perry void		hme_mifinit(struct hme_softc *);
     98  1.44     perry void		hme_reset(struct hme_softc *);
     99  1.44     perry void		hme_setladrf(struct hme_softc *);
    100   1.1        pk 
    101   1.1        pk /* MII methods & callbacks */
    102  1.44     perry static int	hme_mii_readreg(struct device *, int, int);
    103  1.44     perry static void	hme_mii_writereg(struct device *, int, int, int);
    104  1.44     perry static void	hme_mii_statchg(struct device *);
    105  1.44     perry 
    106  1.44     perry int		hme_mediachange(struct ifnet *);
    107  1.44     perry 
    108  1.46      heas struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    109  1.44     perry int		hme_put(struct hme_softc *, int, struct mbuf *);
    110  1.46      heas void		hme_read(struct hme_softc *, int, uint32_t);
    111  1.44     perry int		hme_eint(struct hme_softc *, u_int);
    112  1.44     perry int		hme_rint(struct hme_softc *);
    113  1.44     perry int		hme_tint(struct hme_softc *);
    114   1.1        pk 
    115  1.28      tron /* Default buffer copy routines */
    116  1.44     perry void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    117  1.44     perry void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    118  1.44     perry void	hme_zerobuf_contig(struct hme_softc *, int, int);
    119  1.28      tron 
    120  1.28      tron 
    121   1.1        pk void
    122  1.71       dsl hme_config(struct hme_softc *sc)
    123   1.1        pk {
    124   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    125   1.1        pk 	struct mii_data *mii = &sc->sc_mii;
    126   1.5        pk 	struct mii_softc *child;
    127  1.11        pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    128   1.1        pk 	bus_dma_segment_t seg;
    129   1.1        pk 	bus_size_t size;
    130  1.28      tron 	int rseg, error;
    131   1.1        pk 
    132   1.1        pk 	/*
    133   1.1        pk 	 * HME common initialization.
    134   1.1        pk 	 *
    135   1.1        pk 	 * hme_softc fields that must be initialized by the front-end:
    136   1.1        pk 	 *
    137   1.1        pk 	 * the bus tag:
    138   1.1        pk 	 *	sc_bustag
    139   1.1        pk 	 *
    140  1.37       wiz 	 * the DMA bus tag:
    141   1.1        pk 	 *	sc_dmatag
    142   1.1        pk 	 *
    143   1.1        pk 	 * the bus handles:
    144   1.1        pk 	 *	sc_seb		(Shared Ethernet Block registers)
    145   1.1        pk 	 *	sc_erx		(Receiver Unit registers)
    146   1.1        pk 	 *	sc_etx		(Transmitter Unit registers)
    147   1.1        pk 	 *	sc_mac		(MAC registers)
    148  1.36       wiz 	 *	sc_mif		(Management Interface registers)
    149   1.1        pk 	 *
    150   1.1        pk 	 * the maximum bus burst size:
    151   1.1        pk 	 *	sc_burst
    152   1.1        pk 	 *
    153  1.28      tron 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    154  1.28      tron 	 *	rb_membase, rb_dmabase)
    155  1.28      tron 	 *
    156   1.1        pk 	 * the local Ethernet address:
    157   1.1        pk 	 *	sc_enaddr
    158   1.1        pk 	 *
    159   1.1        pk 	 */
    160   1.1        pk 
    161   1.1        pk 	/* Make sure the chip is stopped. */
    162  1.58    martin 	hme_stop(sc, true);
    163   1.1        pk 
    164   1.1        pk 
    165  1.28      tron 	/*
    166  1.28      tron 	 * Allocate descriptors and buffers
    167  1.28      tron 	 * XXX - do all this differently.. and more configurably,
    168  1.28      tron 	 * eg. use things as `dma_load_mbuf()' on transmit,
    169  1.28      tron 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    170  1.38       wiz 	 *     all the time) on the receiver side.
    171  1.28      tron 	 *
    172  1.28      tron 	 * Note: receive buffers must be 64-byte aligned.
    173  1.28      tron 	 * Also, apparently, the buffers must extend to a DMA burst
    174  1.28      tron 	 * boundary beyond the maximum packet size.
    175  1.28      tron 	 */
    176  1.28      tron #define _HME_NDESC	128
    177  1.28      tron #define _HME_BUFSZ	1600
    178  1.28      tron 
    179  1.28      tron 	/* Note: the # of descriptors must be a multiple of 16 */
    180  1.28      tron 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    181  1.28      tron 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    182   1.1        pk 
    183   1.1        pk 	/*
    184   1.1        pk 	 * Allocate DMA capable memory
    185   1.1        pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    186   1.1        pk 	 * take this into account when calculating the size. Note that
    187   1.1        pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    188  1.28      tron 	 * so we allocate that much regardless of _HME_NDESC.
    189   1.1        pk 	 */
    190  1.28      tron 	size =	2048 +					/* TX descriptors */
    191  1.28      tron 		2048 +					/* RX descriptors */
    192  1.28      tron 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    193  1.46      heas 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    194  1.11        pk 
    195  1.11        pk 	/* Allocate DMA buffer */
    196  1.28      tron 	if ((error = bus_dmamem_alloc(dmatag, size,
    197  1.28      tron 				      2048, 0,
    198  1.28      tron 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    199  1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
    200  1.64    cegger 			error);
    201  1.10       mrg 		return;
    202   1.1        pk 	}
    203   1.1        pk 
    204  1.11        pk 	/* Map DMA memory in CPU addressable space */
    205  1.11        pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    206  1.28      tron 				    &sc->sc_rb.rb_membase,
    207  1.28      tron 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    208  1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
    209  1.64    cegger 			error);
    210  1.11        pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    211  1.11        pk 		bus_dmamem_free(dmatag, &seg, rseg);
    212   1.1        pk 		return;
    213   1.1        pk 	}
    214  1.13       mrg 
    215  1.13       mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    216  1.28      tron 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    217  1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
    218  1.64    cegger 			error);
    219  1.13       mrg 		return;
    220  1.13       mrg 	}
    221  1.13       mrg 
    222  1.13       mrg 	/* Load the buffer */
    223  1.13       mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    224  1.17       mrg 	    sc->sc_rb.rb_membase, size, NULL,
    225  1.17       mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    226  1.64    cegger 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
    227  1.64    cegger 			error);
    228  1.13       mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    229  1.13       mrg 		return;
    230  1.13       mrg 	}
    231  1.13       mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    232   1.1        pk 
    233  1.64    cegger 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    234  1.22   thorpej 	    ether_sprintf(sc->sc_enaddr));
    235   1.2        pk 
    236   1.1        pk 	/* Initialize ifnet structure. */
    237  1.64    cegger 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    238   1.1        pk 	ifp->if_softc = sc;
    239   1.1        pk 	ifp->if_start = hme_start;
    240   1.1        pk 	ifp->if_ioctl = hme_ioctl;
    241   1.1        pk 	ifp->if_watchdog = hme_watchdog;
    242   1.1        pk 	ifp->if_flags =
    243   1.1        pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    244  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    245  1.51      yamt 	ifp->if_capabilities |=
    246  1.51      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    247  1.51      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    248  1.20   thorpej 	IFQ_SET_READY(&ifp->if_snd);
    249   1.1        pk 
    250   1.1        pk 	/* Initialize ifmedia structures and MII info */
    251   1.1        pk 	mii->mii_ifp = ifp;
    252  1.34    petrov 	mii->mii_readreg = hme_mii_readreg;
    253   1.1        pk 	mii->mii_writereg = hme_mii_writereg;
    254   1.1        pk 	mii->mii_statchg = hme_mii_statchg;
    255   1.1        pk 
    256  1.61    dyoung 	sc->sc_ethercom.ec_mii = mii;
    257  1.61    dyoung 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    258   1.1        pk 
    259   1.4        pk 	hme_mifinit(sc);
    260   1.4        pk 
    261   1.6   thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    262  1.34    petrov 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    263   1.2        pk 
    264   1.5        pk 	child = LIST_FIRST(&mii->mii_phys);
    265   1.5        pk 	if (child == NULL) {
    266   1.1        pk 		/* No PHY attached */
    267  1.61    dyoung 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    268  1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    269   1.1        pk 	} else {
    270   1.1        pk 		/*
    271   1.5        pk 		 * Walk along the list of attached MII devices and
    272   1.5        pk 		 * establish an `MII instance' to `phy number'
    273   1.5        pk 		 * mapping. We'll use this mapping in media change
    274   1.5        pk 		 * requests to determine which phy to use to program
    275   1.5        pk 		 * the MIF configuration register.
    276   1.5        pk 		 */
    277   1.5        pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    278   1.5        pk 			/*
    279   1.5        pk 			 * Note: we support just two PHYs: the built-in
    280   1.5        pk 			 * internal device and an external on the MII
    281   1.5        pk 			 * connector.
    282   1.5        pk 			 */
    283   1.5        pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    284  1.64    cegger 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
    285  1.28      tron 				       " at phy %d, instance %d\n",
    286  1.66   xtraeme 				       device_xname(child->mii_dev),
    287  1.28      tron 				       child->mii_phy, child->mii_inst);
    288   1.5        pk 				continue;
    289   1.5        pk 			}
    290   1.5        pk 
    291   1.5        pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    292   1.5        pk 		}
    293   1.5        pk 
    294   1.5        pk 		/*
    295   1.1        pk 		 * XXX - we can really do the following ONLY if the
    296   1.1        pk 		 * phy indeed has the auto negotiation capability!!
    297   1.1        pk 		 */
    298  1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    299   1.1        pk 	}
    300  1.27      tron 
    301  1.28      tron 	/* claim 802.1q capability */
    302  1.27      tron 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    303   1.1        pk 
    304   1.1        pk 	/* Attach the interface. */
    305   1.1        pk 	if_attach(ifp);
    306   1.1        pk 	ether_ifattach(ifp, sc->sc_enaddr);
    307   1.1        pk 
    308   1.1        pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    309   1.1        pk 	if (sc->sc_sh == NULL)
    310   1.1        pk 		panic("hme_config: can't establish shutdownhook");
    311   1.1        pk 
    312   1.1        pk #if NRND > 0
    313  1.64    cegger 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    314   1.1        pk 			  RND_TYPE_NET, 0);
    315   1.1        pk #endif
    316   1.5        pk 
    317  1.57        ad 	callout_init(&sc->sc_tick_ch, 0);
    318   1.5        pk }
    319   1.5        pk 
    320   1.5        pk void
    321  1.71       dsl hme_tick(void *arg)
    322   1.5        pk {
    323   1.5        pk 	struct hme_softc *sc = arg;
    324   1.5        pk 	int s;
    325   1.5        pk 
    326   1.5        pk 	s = splnet();
    327   1.5        pk 	mii_tick(&sc->sc_mii);
    328   1.5        pk 	splx(s);
    329   1.5        pk 
    330   1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    331   1.1        pk }
    332   1.1        pk 
    333   1.1        pk void
    334  1.71       dsl hme_reset(struct hme_softc *sc)
    335   1.1        pk {
    336   1.1        pk 	int s;
    337   1.1        pk 
    338   1.1        pk 	s = splnet();
    339  1.61    dyoung 	(void)hme_init(sc);
    340   1.1        pk 	splx(s);
    341   1.1        pk }
    342   1.1        pk 
    343   1.1        pk void
    344  1.58    martin hme_stop(struct hme_softc *sc, bool chip_only)
    345   1.1        pk {
    346   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    347   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    348   1.1        pk 	int n;
    349   1.1        pk 
    350  1.58    martin 	if (!chip_only) {
    351  1.58    martin 		callout_stop(&sc->sc_tick_ch);
    352  1.58    martin 		mii_down(&sc->sc_mii);
    353  1.58    martin 	}
    354   1.5        pk 
    355  1.33        pk 	/* Mask all interrupts */
    356  1.33        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    357  1.33        pk 
    358   1.1        pk 	/* Reset transmitter and receiver */
    359   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    360  1.28      tron 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    361   1.1        pk 
    362   1.1        pk 	for (n = 0; n < 20; n++) {
    363  1.75   tsutsui 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    364   1.1        pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    365   1.1        pk 			return;
    366   1.1        pk 		DELAY(20);
    367   1.1        pk 	}
    368   1.1        pk 
    369  1.64    cegger 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
    370   1.1        pk }
    371   1.1        pk 
    372   1.1        pk void
    373  1.71       dsl hme_meminit(struct hme_softc *sc)
    374   1.1        pk {
    375  1.28      tron 	bus_addr_t txbufdma, rxbufdma;
    376   1.1        pk 	bus_addr_t dma;
    377  1.56  christos 	char *p;
    378  1.28      tron 	unsigned int ntbuf, nrbuf, i;
    379   1.1        pk 	struct hme_ring *hr = &sc->sc_rb;
    380   1.1        pk 
    381   1.1        pk 	p = hr->rb_membase;
    382   1.1        pk 	dma = hr->rb_dmabase;
    383   1.1        pk 
    384  1.28      tron 	ntbuf = hr->rb_ntbuf;
    385  1.28      tron 	nrbuf = hr->rb_nrbuf;
    386  1.28      tron 
    387   1.1        pk 	/*
    388   1.1        pk 	 * Allocate transmit descriptors
    389   1.1        pk 	 */
    390   1.1        pk 	hr->rb_txd = p;
    391   1.1        pk 	hr->rb_txddma = dma;
    392  1.28      tron 	p += ntbuf * HME_XD_SIZE;
    393  1.28      tron 	dma += ntbuf * HME_XD_SIZE;
    394   1.4        pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    395   1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    396  1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    397   1.1        pk 
    398   1.1        pk 	/*
    399   1.1        pk 	 * Allocate receive descriptors
    400   1.1        pk 	 */
    401   1.1        pk 	hr->rb_rxd = p;
    402   1.1        pk 	hr->rb_rxddma = dma;
    403  1.28      tron 	p += nrbuf * HME_XD_SIZE;
    404  1.28      tron 	dma += nrbuf * HME_XD_SIZE;
    405   1.4        pk 	/* Again move forward to the next 2048 byte boundary.*/
    406   1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    407  1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    408   1.1        pk 
    409  1.28      tron 
    410   1.1        pk 	/*
    411  1.28      tron 	 * Allocate transmit buffers
    412   1.1        pk 	 */
    413  1.28      tron 	hr->rb_txbuf = p;
    414  1.28      tron 	txbufdma = dma;
    415  1.28      tron 	p += ntbuf * _HME_BUFSZ;
    416  1.28      tron 	dma += ntbuf * _HME_BUFSZ;
    417  1.28      tron 
    418  1.28      tron 	/*
    419  1.28      tron 	 * Allocate receive buffers
    420  1.28      tron 	 */
    421  1.28      tron 	hr->rb_rxbuf = p;
    422  1.28      tron 	rxbufdma = dma;
    423  1.28      tron 	p += nrbuf * _HME_BUFSZ;
    424  1.28      tron 	dma += nrbuf * _HME_BUFSZ;
    425  1.28      tron 
    426  1.28      tron 	/*
    427  1.28      tron 	 * Initialize transmit buffer descriptors
    428  1.28      tron 	 */
    429  1.28      tron 	for (i = 0; i < ntbuf; i++) {
    430  1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    431  1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    432   1.1        pk 	}
    433   1.1        pk 
    434   1.1        pk 	/*
    435  1.28      tron 	 * Initialize receive buffer descriptors
    436   1.1        pk 	 */
    437  1.28      tron 	for (i = 0; i < nrbuf; i++) {
    438  1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    439  1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    440  1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    441   1.1        pk 	}
    442   1.1        pk 
    443  1.28      tron 	hr->rb_tdhead = hr->rb_tdtail = 0;
    444  1.28      tron 	hr->rb_td_nbusy = 0;
    445  1.28      tron 	hr->rb_rdtail = 0;
    446   1.1        pk }
    447   1.1        pk 
    448   1.1        pk /*
    449   1.1        pk  * Initialization of interface; set up initialization block
    450   1.1        pk  * and transmit/receive descriptor rings.
    451   1.1        pk  */
    452  1.61    dyoung int
    453  1.71       dsl hme_init(struct hme_softc *sc)
    454   1.1        pk {
    455   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    456   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    457   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    458   1.1        pk 	bus_space_handle_t etx = sc->sc_etx;
    459   1.1        pk 	bus_space_handle_t erx = sc->sc_erx;
    460   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
    461  1.75   tsutsui 	uint8_t *ea;
    462  1.75   tsutsui 	uint32_t v;
    463  1.61    dyoung 	int rc;
    464   1.1        pk 
    465   1.1        pk 	/*
    466   1.1        pk 	 * Initialization sequence. The numbered steps below correspond
    467   1.1        pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    468   1.1        pk 	 * Channel Engine manual (part of the PCIO manual).
    469   1.1        pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    470   1.1        pk 	 */
    471   1.1        pk 
    472   1.1        pk 	/* step 1 & 2. Reset the Ethernet Channel */
    473  1.58    martin 	hme_stop(sc, false);
    474   1.1        pk 
    475   1.4        pk 	/* Re-initialize the MIF */
    476   1.4        pk 	hme_mifinit(sc);
    477   1.4        pk 
    478   1.1        pk 	/* Call MI reset function if any */
    479   1.1        pk 	if (sc->sc_hwreset)
    480   1.1        pk 		(*sc->sc_hwreset)(sc);
    481   1.1        pk 
    482   1.1        pk #if 0
    483   1.1        pk 	/* Mask all MIF interrupts, just in case */
    484   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    485   1.1        pk #endif
    486   1.1        pk 
    487   1.1        pk 	/* step 3. Setup data structures in host memory */
    488   1.1        pk 	hme_meminit(sc);
    489   1.1        pk 
    490   1.1        pk 	/* step 4. TX MAC registers & counters */
    491   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    492   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    493   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    494   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    495  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    496  1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    497  1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    498  1.45      heas 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    499   1.1        pk 
    500   1.1        pk 	/* Load station MAC address */
    501   1.1        pk 	ea = sc->sc_enaddr;
    502   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    503   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    504   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    505   1.1        pk 
    506   1.1        pk 	/*
    507   1.1        pk 	 * Init seed for backoff
    508   1.1        pk 	 * (source suggested by manual: low 10 bits of MAC address)
    509  1.42      heas 	 */
    510   1.1        pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    511   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    512   1.1        pk 
    513   1.1        pk 
    514   1.1        pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    515   1.1        pk 
    516   1.1        pk 
    517   1.1        pk 	/* step 5. RX MAC registers & counters */
    518   1.1        pk 	hme_setladrf(sc);
    519   1.1        pk 
    520   1.1        pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    521   1.1        pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    522  1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    523   1.1        pk 
    524   1.1        pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    525  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    526  1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    527  1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    528   1.1        pk 
    529   1.1        pk 	/* step 8. Global Configuration & Interrupt Mask */
    530   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    531  1.28      tron 			~(
    532  1.28      tron 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    533  1.28      tron 			  HME_SEB_STAT_HOSTTOTX |
    534  1.28      tron 			  HME_SEB_STAT_RXTOHOST |
    535  1.28      tron 			  HME_SEB_STAT_TXALL |
    536  1.28      tron 			  HME_SEB_STAT_TXPERR |
    537  1.28      tron 			  HME_SEB_STAT_RCNTEXP |
    538  1.33        pk 			  /*HME_SEB_STAT_MIFIRQ |*/
    539  1.28      tron 			  HME_SEB_STAT_ALL_ERRORS ));
    540   1.1        pk 
    541   1.1        pk 	switch (sc->sc_burst) {
    542   1.1        pk 	default:
    543   1.1        pk 		v = 0;
    544   1.1        pk 		break;
    545   1.1        pk 	case 16:
    546   1.1        pk 		v = HME_SEB_CFG_BURST16;
    547   1.1        pk 		break;
    548   1.1        pk 	case 32:
    549   1.1        pk 		v = HME_SEB_CFG_BURST32;
    550   1.1        pk 		break;
    551   1.1        pk 	case 64:
    552   1.1        pk 		v = HME_SEB_CFG_BURST64;
    553   1.1        pk 		break;
    554   1.1        pk 	}
    555   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    556   1.1        pk 
    557   1.1        pk 	/* step 9. ETX Configuration: use mostly default values */
    558   1.1        pk 
    559   1.1        pk 	/* Enable DMA */
    560   1.2        pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    561   1.1        pk 	v |= HME_ETX_CFG_DMAENABLE;
    562   1.2        pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    563   1.1        pk 
    564   1.3        pk 	/* Transmit Descriptor ring size: in increments of 16 */
    565  1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    566  1.28      tron 
    567   1.1        pk 
    568   1.3        pk 	/* step 10. ERX Configuration */
    569   1.2        pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    570  1.28      tron 
    571  1.28      tron 	/* Encode Receive Descriptor ring size: four possible values */
    572  1.28      tron 	switch (_HME_NDESC /*XXX*/) {
    573  1.28      tron 	case 32:
    574  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE32;
    575  1.28      tron 		break;
    576  1.28      tron 	case 64:
    577  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE64;
    578  1.28      tron 		break;
    579  1.28      tron 	case 128:
    580  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE128;
    581  1.28      tron 		break;
    582  1.28      tron 	case 256:
    583  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE256;
    584  1.28      tron 		break;
    585  1.28      tron 	default:
    586  1.28      tron 		printf("hme: invalid Receive Descriptor ring size\n");
    587  1.28      tron 		break;
    588  1.28      tron 	}
    589  1.28      tron 
    590   1.3        pk 	/* Enable DMA */
    591  1.28      tron 	v |= HME_ERX_CFG_DMAENABLE;
    592  1.46      heas 
    593  1.46      heas 	/* set h/w rx checksum start offset (# of half-words) */
    594  1.49      heas #ifdef INET
    595  1.74   tsutsui 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    596  1.74   tsutsui 		<< HME_ERX_CFG_CSUMSHIFT) &
    597  1.46      heas 		HME_ERX_CFG_CSUMSTART;
    598  1.49      heas #endif
    599   1.2        pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    600   1.1        pk 
    601   1.1        pk 	/* step 11. XIF Configuration */
    602   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    603   1.1        pk 	v |= HME_MAC_XIF_OE;
    604   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    605   1.1        pk 
    606   1.1        pk 	/* step 12. RX_MAC Configuration Register */
    607   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    608  1.46      heas 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    609   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    610   1.1        pk 
    611   1.1        pk 	/* step 13. TX_MAC Configuration Register */
    612   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    613   1.2        pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    614   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    615   1.1        pk 
    616   1.1        pk 	/* step 14. Issue Transmit Pending command */
    617   1.1        pk 
    618   1.1        pk 	/* Call MI initialization function if any */
    619   1.1        pk 	if (sc->sc_hwinit)
    620   1.1        pk 		(*sc->sc_hwinit)(sc);
    621  1.29   thorpej 
    622  1.29   thorpej 	/* Set the current media. */
    623  1.61    dyoung 	if ((rc = hme_mediachange(ifp)) != 0)
    624  1.61    dyoung 		return rc;
    625   1.9   thorpej 
    626   1.9   thorpej 	/* Start the one second timer. */
    627   1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    628   1.1        pk 
    629   1.1        pk 	ifp->if_flags |= IFF_RUNNING;
    630   1.1        pk 	ifp->if_flags &= ~IFF_OACTIVE;
    631  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    632   1.1        pk 	ifp->if_timer = 0;
    633   1.1        pk 	hme_start(ifp);
    634  1.61    dyoung 	return 0;
    635   1.1        pk }
    636   1.1        pk 
    637  1.28      tron /*
    638  1.28      tron  * Routine to copy from mbuf chain to transmit buffer in
    639  1.28      tron  * network buffer memory.
    640  1.28      tron  * Returns the amount of data copied.
    641  1.28      tron  */
    642  1.28      tron int
    643  1.72       dsl hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    644  1.72       dsl 	/* ri:			 Ring index */
    645  1.28      tron {
    646  1.28      tron 	struct mbuf *n;
    647  1.28      tron 	int len, tlen = 0;
    648  1.56  christos 	char *bp;
    649  1.28      tron 
    650  1.56  christos 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    651  1.28      tron 	for (; m; m = n) {
    652  1.28      tron 		len = m->m_len;
    653  1.28      tron 		if (len == 0) {
    654  1.28      tron 			MFREE(m, n);
    655  1.28      tron 			continue;
    656  1.28      tron 		}
    657  1.56  christos 		memcpy(bp, mtod(m, void *), len);
    658  1.28      tron 		bp += len;
    659  1.28      tron 		tlen += len;
    660  1.28      tron 		MFREE(m, n);
    661  1.28      tron 	}
    662  1.28      tron 	return (tlen);
    663  1.28      tron }
    664  1.28      tron 
    665  1.28      tron /*
    666  1.28      tron  * Pull data off an interface.
    667  1.28      tron  * Len is length of data, with local net header stripped.
    668  1.28      tron  * We copy the data into mbufs.  When full cluster sized units are present
    669  1.28      tron  * we copy into clusters.
    670  1.28      tron  */
    671  1.28      tron struct mbuf *
    672  1.75   tsutsui hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    673  1.28      tron {
    674  1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    675  1.28      tron 	struct mbuf *m, *m0, *newm;
    676  1.56  christos 	char *bp;
    677  1.46      heas 	int len, totlen;
    678  1.28      tron 
    679  1.46      heas 	totlen = HME_XD_DECODE_RSIZE(flags);
    680  1.28      tron 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    681  1.28      tron 	if (m0 == 0)
    682  1.28      tron 		return (0);
    683  1.28      tron 	m0->m_pkthdr.rcvif = ifp;
    684  1.28      tron 	m0->m_pkthdr.len = totlen;
    685  1.28      tron 	len = MHLEN;
    686  1.28      tron 	m = m0;
    687  1.28      tron 
    688  1.56  christos 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    689  1.28      tron 
    690  1.28      tron 	while (totlen > 0) {
    691  1.28      tron 		if (totlen >= MINCLSIZE) {
    692  1.28      tron 			MCLGET(m, M_DONTWAIT);
    693  1.28      tron 			if ((m->m_flags & M_EXT) == 0)
    694  1.28      tron 				goto bad;
    695  1.28      tron 			len = MCLBYTES;
    696  1.28      tron 		}
    697  1.28      tron 
    698  1.28      tron 		if (m == m0) {
    699  1.56  christos 			char *newdata = (char *)
    700  1.28      tron 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    701  1.28      tron 			    sizeof(struct ether_header);
    702  1.28      tron 			len -= newdata - m->m_data;
    703  1.28      tron 			m->m_data = newdata;
    704  1.28      tron 		}
    705  1.28      tron 
    706  1.28      tron 		m->m_len = len = min(totlen, len);
    707  1.56  christos 		memcpy(mtod(m, void *), bp, len);
    708  1.28      tron 		bp += len;
    709  1.28      tron 
    710  1.28      tron 		totlen -= len;
    711  1.28      tron 		if (totlen > 0) {
    712  1.28      tron 			MGET(newm, M_DONTWAIT, MT_DATA);
    713  1.28      tron 			if (newm == 0)
    714  1.28      tron 				goto bad;
    715  1.28      tron 			len = MLEN;
    716  1.28      tron 			m = m->m_next = newm;
    717  1.28      tron 		}
    718  1.28      tron 	}
    719  1.28      tron 
    720  1.49      heas #ifdef INET
    721  1.49      heas 	/* hardware checksum */
    722  1.50     rafal 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    723  1.46      heas 		struct ether_header *eh;
    724  1.74   tsutsui 		struct ether_vlan_header *evh;
    725  1.46      heas 		struct ip *ip;
    726  1.46      heas 		struct udphdr *uh;
    727  1.46      heas 		uint16_t *opts;
    728  1.46      heas 		int32_t hlen, pktlen;
    729  1.46      heas 		uint32_t temp;
    730  1.46      heas 
    731  1.74   tsutsui 		eh = mtod(m0, struct ether_header *);
    732  1.74   tsutsui 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    733  1.74   tsutsui 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    734  1.46      heas 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    735  1.74   tsutsui 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    736  1.74   tsutsui 			evh = (struct ether_vlan_header *)eh;
    737  1.74   tsutsui 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
    738  1.74   tsutsui 				goto swcsum;
    739  1.74   tsutsui 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    740  1.74   tsutsui 			    ETHER_VLAN_ENCAP_LEN);
    741  1.74   tsutsui 			pktlen = m0->m_pkthdr.len -
    742  1.74   tsutsui 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    743  1.74   tsutsui 		} else
    744  1.46      heas 			goto swcsum;
    745  1.46      heas 
    746  1.46      heas 		/* IPv4 only */
    747  1.46      heas 		if (ip->ip_v != IPVERSION)
    748  1.46      heas 			goto swcsum;
    749  1.46      heas 
    750  1.46      heas 		hlen = ip->ip_hl << 2;
    751  1.48     perry 		if (hlen < sizeof(struct ip))
    752  1.46      heas 			goto swcsum;
    753  1.46      heas 
    754  1.49      heas 		/*
    755  1.49      heas 		 * bail if too short, has random trailing garbage, truncated,
    756  1.49      heas 		 * fragment, or has ethernet pad.
    757  1.49      heas 		 */
    758  1.49      heas 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
    759  1.46      heas 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
    760  1.49      heas 			goto swcsum;
    761  1.46      heas 
    762  1.46      heas 		switch (ip->ip_p) {
    763  1.46      heas 		case IPPROTO_TCP:
    764  1.46      heas 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
    765  1.46      heas 				goto swcsum;
    766  1.46      heas 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    767  1.46      heas 				goto swcsum;
    768  1.46      heas 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
    769  1.46      heas 			break;
    770  1.46      heas 		case IPPROTO_UDP:
    771  1.46      heas 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
    772  1.46      heas 				goto swcsum;
    773  1.46      heas 			if (pktlen < (hlen + sizeof(struct udphdr)))
    774  1.46      heas 				goto swcsum;
    775  1.56  christos 			uh = (struct udphdr *)((char *)ip + hlen);
    776  1.46      heas 			/* no checksum */
    777  1.46      heas 			if (uh->uh_sum == 0)
    778  1.46      heas 				goto swcsum;
    779  1.46      heas 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
    780  1.46      heas 			break;
    781  1.46      heas 		default:
    782  1.49      heas 			goto swcsum;
    783  1.46      heas 		}
    784  1.46      heas 
    785  1.46      heas 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    786  1.46      heas 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
    787  1.46      heas 
    788  1.74   tsutsui 		/*
    789  1.74   tsutsui 		 * If data offset is different from RX cksum start offset,
    790  1.74   tsutsui 		 * we have to deduct them.
    791  1.74   tsutsui 		 */
    792  1.74   tsutsui 		temp = ((char *)ip + hlen) -
    793  1.74   tsutsui 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    794  1.74   tsutsui 		if (temp > 1) {
    795  1.46      heas 			uint32_t optsum;
    796  1.46      heas 
    797  1.46      heas 			optsum = 0;
    798  1.74   tsutsui 			opts = (uint16_t *)((char *)eh +
    799  1.74   tsutsui 			    ETHER_HDR_LEN + sizeof(struct ip));
    800  1.46      heas 
    801  1.49      heas 			while (temp > 1) {
    802  1.46      heas 				optsum += ntohs(*opts++);
    803  1.46      heas 				temp -= 2;
    804  1.46      heas 			}
    805  1.46      heas 			while (optsum >> 16)
    806  1.46      heas 				optsum = (optsum >> 16) + (optsum & 0xffff);
    807  1.46      heas 
    808  1.73   tsutsui 			/* Deduct the ip opts sum from the hwsum. */
    809  1.73   tsutsui 			m0->m_pkthdr.csum_data += (uint16_t)~optsum;
    810  1.46      heas 
    811  1.46      heas 			while (m0->m_pkthdr.csum_data >> 16)
    812  1.46      heas 				m0->m_pkthdr.csum_data =
    813  1.46      heas 					(m0->m_pkthdr.csum_data >> 16) +
    814  1.46      heas 					(m0->m_pkthdr.csum_data & 0xffff);
    815  1.46      heas 		}
    816  1.46      heas 
    817  1.46      heas 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    818  1.69   tsutsui 	} else
    819  1.49      heas swcsum:
    820  1.49      heas 		m0->m_pkthdr.csum_flags = 0;
    821  1.49      heas #endif
    822  1.46      heas 
    823  1.28      tron 	return (m0);
    824  1.28      tron 
    825  1.28      tron bad:
    826  1.28      tron 	m_freem(m0);
    827  1.28      tron 	return (0);
    828  1.28      tron }
    829  1.28      tron 
    830  1.28      tron /*
    831  1.28      tron  * Pass a packet to the higher levels.
    832  1.28      tron  */
    833  1.28      tron void
    834  1.75   tsutsui hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    835  1.28      tron {
    836  1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    837  1.28      tron 	struct mbuf *m;
    838  1.46      heas 	int len;
    839  1.28      tron 
    840  1.46      heas 	len = HME_XD_DECODE_RSIZE(flags);
    841  1.28      tron 	if (len <= sizeof(struct ether_header) ||
    842  1.28      tron 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    843  1.28      tron 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    844  1.28      tron 	    ETHERMTU + sizeof(struct ether_header))) {
    845  1.28      tron #ifdef HMEDEBUG
    846  1.28      tron 		printf("%s: invalid packet size %d; dropping\n",
    847  1.64    cegger 		    device_xname(&sc->sc_dev), len);
    848  1.28      tron #endif
    849  1.28      tron 		ifp->if_ierrors++;
    850  1.28      tron 		return;
    851  1.28      tron 	}
    852  1.28      tron 
    853  1.28      tron 	/* Pull packet off interface. */
    854  1.46      heas 	m = hme_get(sc, ix, flags);
    855  1.28      tron 	if (m == 0) {
    856  1.28      tron 		ifp->if_ierrors++;
    857  1.28      tron 		return;
    858  1.28      tron 	}
    859  1.28      tron 
    860  1.28      tron 	ifp->if_ipackets++;
    861  1.28      tron 
    862  1.28      tron #if NBPFILTER > 0
    863  1.28      tron 	/*
    864  1.28      tron 	 * Check if there's a BPF listener on this interface.
    865  1.28      tron 	 * If so, hand off the raw packet to BPF.
    866  1.28      tron 	 */
    867  1.28      tron 	if (ifp->if_bpf)
    868  1.28      tron 		bpf_mtap(ifp->if_bpf, m);
    869  1.28      tron #endif
    870  1.28      tron 
    871  1.28      tron 	/* Pass the packet up. */
    872  1.28      tron 	(*ifp->if_input)(ifp, m);
    873  1.28      tron }
    874  1.28      tron 
    875   1.1        pk void
    876  1.71       dsl hme_start(struct ifnet *ifp)
    877   1.1        pk {
    878   1.1        pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    879  1.56  christos 	void *txd = sc->sc_rb.rb_txd;
    880   1.1        pk 	struct mbuf *m;
    881  1.46      heas 	unsigned int txflags;
    882  1.28      tron 	unsigned int ri, len;
    883  1.28      tron 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    884   1.1        pk 
    885   1.1        pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    886   1.1        pk 		return;
    887   1.1        pk 
    888  1.28      tron 	ri = sc->sc_rb.rb_tdhead;
    889  1.28      tron 
    890  1.28      tron 	for (;;) {
    891  1.28      tron 		IFQ_DEQUEUE(&ifp->if_snd, m);
    892  1.28      tron 		if (m == 0)
    893   1.1        pk 			break;
    894   1.1        pk 
    895   1.1        pk #if NBPFILTER > 0
    896   1.1        pk 		/*
    897   1.1        pk 		 * If BPF is listening on this interface, let it see the
    898   1.1        pk 		 * packet before we commit it to the wire.
    899   1.1        pk 		 */
    900   1.1        pk 		if (ifp->if_bpf)
    901   1.1        pk 			bpf_mtap(ifp->if_bpf, m);
    902   1.1        pk #endif
    903   1.1        pk 
    904  1.49      heas #ifdef INET
    905  1.46      heas 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    906  1.46      heas 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    907  1.46      heas 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    908  1.46      heas 			struct ether_header *eh;
    909  1.46      heas 			uint16_t offset, start;
    910  1.46      heas 
    911  1.46      heas 			eh = mtod(m, struct ether_header *);
    912  1.46      heas 			switch (ntohs(eh->ether_type)) {
    913  1.46      heas 			case ETHERTYPE_IP:
    914  1.46      heas 				start = ETHER_HDR_LEN;
    915  1.46      heas 				break;
    916  1.46      heas 			case ETHERTYPE_VLAN:
    917  1.46      heas 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    918  1.46      heas 				break;
    919  1.46      heas 			default:
    920  1.46      heas 				/* unsupported, drop it */
    921  1.46      heas 				m_free(m);
    922  1.46      heas 				continue;
    923  1.46      heas 			}
    924  1.47   thorpej 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    925  1.47   thorpej 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    926  1.47   thorpej 			    + start;
    927  1.46      heas 			txflags = HME_XD_TXCKSUM |
    928  1.46      heas 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    929  1.46      heas 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    930  1.46      heas 		} else
    931  1.49      heas #endif
    932  1.46      heas 			txflags = 0;
    933  1.46      heas 
    934  1.28      tron 		/*
    935  1.28      tron 		 * Copy the mbuf chain into the transmit buffer.
    936  1.28      tron 		 */
    937  1.28      tron 		len = hme_put(sc, ri, m);
    938  1.28      tron 
    939  1.28      tron 		/*
    940  1.28      tron 		 * Initialize transmit registers and start transmission
    941  1.28      tron 		 */
    942  1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    943  1.28      tron 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    944  1.46      heas 			HME_XD_ENCODE_TSIZE(len) | txflags);
    945  1.28      tron 
    946  1.28      tron 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    947  1.28      tron 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    948  1.28      tron 				  HME_ETX_TP_DMAWAKEUP);
    949  1.28      tron 
    950  1.28      tron 		if (++ri == ntbuf)
    951  1.28      tron 			ri = 0;
    952  1.28      tron 
    953  1.28      tron 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    954  1.26      tron 			ifp->if_flags |= IFF_OACTIVE;
    955  1.26      tron 			break;
    956  1.26      tron 		}
    957   1.1        pk 	}
    958   1.1        pk 
    959  1.28      tron 	sc->sc_rb.rb_tdhead = ri;
    960   1.1        pk }
    961   1.1        pk 
    962   1.1        pk /*
    963   1.1        pk  * Transmit interrupt.
    964   1.1        pk  */
    965   1.1        pk int
    966  1.71       dsl hme_tint(struct hme_softc *sc)
    967   1.1        pk {
    968   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    969  1.28      tron 	bus_space_tag_t t = sc->sc_bustag;
    970  1.28      tron 	bus_space_handle_t mac = sc->sc_mac;
    971   1.1        pk 	unsigned int ri, txflags;
    972  1.28      tron 
    973  1.28      tron 	/*
    974  1.28      tron 	 * Unload collision counters
    975  1.28      tron 	 */
    976  1.28      tron 	ifp->if_collisions +=
    977  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    978  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
    979  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    980  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    981  1.28      tron 
    982  1.28      tron 	/*
    983  1.28      tron 	 * then clear the hardware counters.
    984  1.28      tron 	 */
    985  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    986  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    987  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    988  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    989   1.1        pk 
    990   1.1        pk 	/* Fetch current position in the transmit ring */
    991  1.28      tron 	ri = sc->sc_rb.rb_tdtail;
    992   1.1        pk 
    993   1.1        pk 	for (;;) {
    994  1.28      tron 		if (sc->sc_rb.rb_td_nbusy <= 0)
    995   1.1        pk 			break;
    996   1.1        pk 
    997  1.15       eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
    998   1.1        pk 
    999   1.1        pk 		if (txflags & HME_XD_OWN)
   1000   1.1        pk 			break;
   1001   1.1        pk 
   1002   1.1        pk 		ifp->if_flags &= ~IFF_OACTIVE;
   1003  1.28      tron 		ifp->if_opackets++;
   1004  1.26      tron 
   1005  1.28      tron 		if (++ri == sc->sc_rb.rb_ntbuf)
   1006   1.1        pk 			ri = 0;
   1007   1.1        pk 
   1008  1.28      tron 		--sc->sc_rb.rb_td_nbusy;
   1009   1.1        pk 	}
   1010   1.1        pk 
   1011   1.3        pk 	/* Update ring */
   1012  1.28      tron 	sc->sc_rb.rb_tdtail = ri;
   1013   1.1        pk 
   1014   1.1        pk 	hme_start(ifp);
   1015   1.1        pk 
   1016  1.28      tron 	if (sc->sc_rb.rb_td_nbusy == 0)
   1017   1.1        pk 		ifp->if_timer = 0;
   1018   1.1        pk 
   1019   1.1        pk 	return (1);
   1020   1.1        pk }
   1021   1.1        pk 
   1022   1.1        pk /*
   1023   1.1        pk  * Receive interrupt.
   1024   1.1        pk  */
   1025   1.1        pk int
   1026  1.71       dsl hme_rint(struct hme_softc *sc)
   1027   1.1        pk {
   1028  1.56  christos 	void *xdr = sc->sc_rb.rb_rxd;
   1029  1.28      tron 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1030  1.46      heas 	unsigned int ri;
   1031  1.75   tsutsui 	uint32_t flags;
   1032   1.1        pk 
   1033  1.28      tron 	ri = sc->sc_rb.rb_rdtail;
   1034   1.1        pk 
   1035   1.1        pk 	/*
   1036   1.1        pk 	 * Process all buffers with valid data.
   1037   1.1        pk 	 */
   1038   1.1        pk 	for (;;) {
   1039  1.28      tron 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1040   1.1        pk 		if (flags & HME_XD_OWN)
   1041   1.1        pk 			break;
   1042   1.1        pk 
   1043   1.4        pk 		if (flags & HME_XD_OFL) {
   1044   1.4        pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1045  1.64    cegger 					device_xname(&sc->sc_dev), ri, flags);
   1046  1.46      heas 		} else
   1047  1.46      heas 			hme_read(sc, ri, flags);
   1048   1.1        pk 
   1049  1.28      tron 		/* This buffer can be used by the hardware again */
   1050  1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1051  1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1052  1.26      tron 
   1053  1.28      tron 		if (++ri == nrbuf)
   1054   1.1        pk 			ri = 0;
   1055   1.1        pk 	}
   1056   1.1        pk 
   1057  1.28      tron 	sc->sc_rb.rb_rdtail = ri;
   1058  1.28      tron 
   1059   1.1        pk 	return (1);
   1060   1.1        pk }
   1061   1.1        pk 
   1062   1.1        pk int
   1063  1.71       dsl hme_eint(struct hme_softc *sc, u_int status)
   1064   1.1        pk {
   1065   1.1        pk 	char bits[128];
   1066   1.1        pk 
   1067   1.1        pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1068  1.33        pk 		bus_space_tag_t t = sc->sc_bustag;
   1069  1.33        pk 		bus_space_handle_t mif = sc->sc_mif;
   1070  1.75   tsutsui 		uint32_t cf, st, sm;
   1071  1.33        pk 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1072  1.33        pk 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1073  1.33        pk 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1074  1.33        pk 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1075  1.64    cegger 			device_xname(&sc->sc_dev), cf, st, sm);
   1076   1.1        pk 		return (1);
   1077   1.1        pk 	}
   1078  1.68  christos 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1079  1.68  christos 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
   1080  1.68  christos 
   1081   1.1        pk 	return (1);
   1082   1.1        pk }
   1083   1.1        pk 
   1084   1.1        pk int
   1085  1.71       dsl hme_intr(void *v)
   1086   1.1        pk {
   1087   1.1        pk 	struct hme_softc *sc = (struct hme_softc *)v;
   1088   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1089   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
   1090  1.75   tsutsui 	uint32_t status;
   1091   1.1        pk 	int r = 0;
   1092   1.1        pk 
   1093   1.1        pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1094   1.1        pk 
   1095   1.1        pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1096   1.1        pk 		r |= hme_eint(sc, status);
   1097   1.1        pk 
   1098   1.1        pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1099   1.1        pk 		r |= hme_tint(sc);
   1100   1.1        pk 
   1101   1.1        pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1102   1.1        pk 		r |= hme_rint(sc);
   1103   1.1        pk 
   1104  1.40       abs #if NRND > 0
   1105  1.40       abs 	rnd_add_uint32(&sc->rnd_source, status);
   1106  1.40       abs #endif
   1107  1.40       abs 
   1108   1.1        pk 	return (r);
   1109   1.1        pk }
   1110   1.1        pk 
   1111   1.1        pk 
   1112   1.1        pk void
   1113  1.71       dsl hme_watchdog(struct ifnet *ifp)
   1114   1.1        pk {
   1115   1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1116   1.1        pk 
   1117  1.64    cegger 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   1118   1.1        pk 	++ifp->if_oerrors;
   1119   1.1        pk 
   1120   1.1        pk 	hme_reset(sc);
   1121   1.4        pk }
   1122   1.4        pk 
   1123   1.4        pk /*
   1124   1.4        pk  * Initialize the MII Management Interface
   1125   1.4        pk  */
   1126   1.4        pk void
   1127  1.71       dsl hme_mifinit(struct hme_softc *sc)
   1128   1.4        pk {
   1129   1.4        pk 	bus_space_tag_t t = sc->sc_bustag;
   1130   1.4        pk 	bus_space_handle_t mif = sc->sc_mif;
   1131  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1132  1.33        pk 	int instance, phy;
   1133  1.75   tsutsui 	uint32_t v;
   1134   1.4        pk 
   1135  1.61    dyoung 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1136  1.61    dyoung 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1137  1.33        pk 		phy = sc->sc_phys[instance];
   1138  1.33        pk 	} else
   1139  1.33        pk 		/* No media set yet, pick phy arbitrarily.. */
   1140  1.33        pk 		phy = HME_PHYAD_EXTERNAL;
   1141  1.33        pk 
   1142  1.33        pk 	/* Configure the MIF in frame mode, no poll, current phy select */
   1143  1.33        pk 	v = 0;
   1144  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1145  1.33        pk 		v |= HME_MIF_CFG_PHY;
   1146   1.4        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1147  1.35        pk 
   1148  1.35        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1149  1.35        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1150  1.35        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1151  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1152  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1153  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1154   1.1        pk }
   1155   1.1        pk 
   1156   1.1        pk /*
   1157   1.1        pk  * MII interface
   1158   1.1        pk  */
   1159   1.1        pk static int
   1160  1.72       dsl hme_mii_readreg(struct device *self, int phy, int reg)
   1161   1.1        pk {
   1162   1.1        pk 	struct hme_softc *sc = (void *)self;
   1163   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1164   1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1165  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1166  1.75   tsutsui 	uint32_t v, xif_cfg, mifi_cfg;
   1167   1.1        pk 	int n;
   1168   1.1        pk 
   1169  1.33        pk 	/* We can at most have two PHYs */
   1170  1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1171  1.32    martin 		return (0);
   1172  1.32    martin 
   1173   1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1174  1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1175   1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1176   1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1177   1.5        pk 		v |= HME_MIF_CFG_PHY;
   1178   1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1179   1.5        pk 
   1180  1.42      heas 	/* Enable MII drivers on external transceiver */
   1181  1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1182  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1183  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1184  1.35        pk 	else
   1185  1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1186  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1187  1.35        pk 
   1188  1.33        pk #if 0
   1189  1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1190  1.33        pk 	/*
   1191  1.33        pk 	 * Check whether a transceiver is connected by testing
   1192  1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1193  1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1194  1.33        pk 	 */
   1195  1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1196  1.33        pk 	delay(100);
   1197  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1198  1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1199  1.33        pk 		return (0);
   1200  1.33        pk #endif
   1201  1.33        pk 
   1202   1.1        pk 	/* Construct the frame command */
   1203   1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1204   1.1        pk 	    HME_MIF_FO_TAMSB |
   1205   1.1        pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1206   1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1207   1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1208   1.1        pk 
   1209   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1210   1.1        pk 	for (n = 0; n < 100; n++) {
   1211   1.2        pk 		DELAY(1);
   1212   1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1213  1.33        pk 		if (v & HME_MIF_FO_TALSB) {
   1214  1.33        pk 			v &= HME_MIF_FO_DATA;
   1215  1.33        pk 			goto out;
   1216  1.33        pk 		}
   1217   1.1        pk 	}
   1218   1.1        pk 
   1219  1.33        pk 	v = 0;
   1220  1.64    cegger 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
   1221  1.33        pk 
   1222  1.33        pk out:
   1223  1.33        pk 	/* Restore MIFI_CFG register */
   1224  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1225  1.35        pk 	/* Restore XIF register */
   1226  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1227  1.33        pk 	return (v);
   1228   1.1        pk }
   1229   1.1        pk 
   1230   1.1        pk static void
   1231  1.72       dsl hme_mii_writereg(struct device *self, int phy, int reg, int val)
   1232   1.1        pk {
   1233   1.1        pk 	struct hme_softc *sc = (void *)self;
   1234   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1235   1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1236  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1237  1.75   tsutsui 	uint32_t v, xif_cfg, mifi_cfg;
   1238   1.1        pk 	int n;
   1239  1.32    martin 
   1240  1.33        pk 	/* We can at most have two PHYs */
   1241  1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1242  1.32    martin 		return;
   1243   1.1        pk 
   1244   1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1245  1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1246   1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1247   1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1248   1.5        pk 		v |= HME_MIF_CFG_PHY;
   1249   1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1250   1.5        pk 
   1251  1.42      heas 	/* Enable MII drivers on external transceiver */
   1252  1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1253  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1254  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1255  1.35        pk 	else
   1256  1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1257  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1258  1.35        pk 
   1259  1.33        pk #if 0
   1260  1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1261  1.33        pk 	/*
   1262  1.33        pk 	 * Check whether a transceiver is connected by testing
   1263  1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1264  1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1265  1.33        pk 	 */
   1266  1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1267  1.33        pk 	delay(100);
   1268  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1269  1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1270  1.33        pk 		return;
   1271  1.33        pk #endif
   1272  1.33        pk 
   1273   1.1        pk 	/* Construct the frame command */
   1274   1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1275   1.1        pk 	    HME_MIF_FO_TAMSB				|
   1276   1.1        pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1277   1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1278   1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1279   1.1        pk 	    (val & HME_MIF_FO_DATA);
   1280   1.1        pk 
   1281   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1282   1.1        pk 	for (n = 0; n < 100; n++) {
   1283   1.2        pk 		DELAY(1);
   1284   1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1285   1.1        pk 		if (v & HME_MIF_FO_TALSB)
   1286  1.33        pk 			goto out;
   1287   1.1        pk 	}
   1288   1.1        pk 
   1289  1.64    cegger 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
   1290  1.33        pk out:
   1291  1.33        pk 	/* Restore MIFI_CFG register */
   1292  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1293  1.35        pk 	/* Restore XIF register */
   1294  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1295   1.1        pk }
   1296   1.1        pk 
   1297   1.1        pk static void
   1298  1.71       dsl hme_mii_statchg(struct device *dev)
   1299   1.1        pk {
   1300   1.3        pk 	struct hme_softc *sc = (void *)dev;
   1301   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1302   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1303  1.75   tsutsui 	uint32_t v;
   1304   1.1        pk 
   1305   1.5        pk #ifdef HMEDEBUG
   1306   1.5        pk 	if (sc->sc_debug)
   1307  1.33        pk 		printf("hme_mii_statchg: status change\n");
   1308   1.5        pk #endif
   1309   1.1        pk 
   1310   1.5        pk 	/* Set the MAC Full Duplex bit appropriately */
   1311  1.30    martin 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1312  1.30    martin 	   but not otherwise. */
   1313   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1314  1.30    martin 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1315   1.1        pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1316  1.30    martin 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1317  1.30    martin 	} else {
   1318   1.1        pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1319  1.30    martin 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1320  1.30    martin 	}
   1321  1.41      heas 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1322   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1323   1.5        pk }
   1324   1.5        pk 
   1325   1.5        pk int
   1326  1.71       dsl hme_mediachange(struct ifnet *ifp)
   1327   1.5        pk {
   1328   1.5        pk 	struct hme_softc *sc = ifp->if_softc;
   1329  1.33        pk 	bus_space_tag_t t = sc->sc_bustag;
   1330  1.33        pk 	bus_space_handle_t mif = sc->sc_mif;
   1331  1.33        pk 	bus_space_handle_t mac = sc->sc_mac;
   1332  1.33        pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1333  1.33        pk 	int phy = sc->sc_phys[instance];
   1334  1.61    dyoung 	int rc;
   1335  1.75   tsutsui 	uint32_t v;
   1336   1.5        pk 
   1337  1.33        pk #ifdef HMEDEBUG
   1338  1.33        pk 	if (sc->sc_debug)
   1339  1.33        pk 		printf("hme_mediachange: phy = %d\n", phy);
   1340  1.33        pk #endif
   1341  1.33        pk 
   1342  1.33        pk 	/* Select the current PHY in the MIF configuration register */
   1343  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1344  1.33        pk 	v &= ~HME_MIF_CFG_PHY;
   1345  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1346  1.33        pk 		v |= HME_MIF_CFG_PHY;
   1347  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1348  1.33        pk 
   1349  1.33        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1350  1.33        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1351  1.33        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1352  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1353  1.33        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1354  1.33        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1355   1.5        pk 
   1356  1.61    dyoung 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1357  1.61    dyoung 		return 0;
   1358  1.61    dyoung 	return rc;
   1359   1.1        pk }
   1360   1.1        pk 
   1361   1.1        pk /*
   1362   1.1        pk  * Process an ioctl request.
   1363   1.1        pk  */
   1364   1.1        pk int
   1365  1.67    dyoung hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1366   1.1        pk {
   1367   1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1368   1.1        pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1369   1.1        pk 	int s, error = 0;
   1370   1.1        pk 
   1371   1.1        pk 	s = splnet();
   1372   1.1        pk 
   1373   1.1        pk 	switch (cmd) {
   1374   1.1        pk 
   1375  1.67    dyoung 	case SIOCINITIFADDR:
   1376   1.1        pk 		switch (ifa->ifa_addr->sa_family) {
   1377   1.1        pk #ifdef INET
   1378   1.1        pk 		case AF_INET:
   1379  1.41      heas 			if (ifp->if_flags & IFF_UP)
   1380  1.41      heas 				hme_setladrf(sc);
   1381  1.41      heas 			else {
   1382  1.41      heas 				ifp->if_flags |= IFF_UP;
   1383  1.61    dyoung 				error = hme_init(sc);
   1384  1.41      heas 			}
   1385   1.1        pk 			arp_ifinit(ifp, ifa);
   1386   1.1        pk 			break;
   1387   1.1        pk #endif
   1388   1.1        pk 		default:
   1389  1.41      heas 			ifp->if_flags |= IFF_UP;
   1390  1.61    dyoung 			error = hme_init(sc);
   1391   1.1        pk 			break;
   1392   1.1        pk 		}
   1393   1.1        pk 		break;
   1394   1.1        pk 
   1395   1.1        pk 	case SIOCSIFFLAGS:
   1396  1.45      heas #ifdef HMEDEBUG
   1397  1.67    dyoung 		{
   1398  1.67    dyoung 			struct ifreq *ifr = data;
   1399  1.67    dyoung 			sc->sc_debug =
   1400  1.67    dyoung 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1401  1.67    dyoung 		}
   1402  1.45      heas #endif
   1403  1.67    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1404  1.67    dyoung 			break;
   1405  1.45      heas 
   1406  1.67    dyoung 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1407  1.67    dyoung 		case IFF_RUNNING:
   1408   1.1        pk 			/*
   1409   1.1        pk 			 * If interface is marked down and it is running, then
   1410   1.1        pk 			 * stop it.
   1411   1.1        pk 			 */
   1412  1.58    martin 			hme_stop(sc, false);
   1413   1.1        pk 			ifp->if_flags &= ~IFF_RUNNING;
   1414  1.67    dyoung 			break;
   1415  1.67    dyoung 		case IFF_UP:
   1416   1.1        pk 			/*
   1417   1.1        pk 			 * If interface is marked up and it is stopped, then
   1418   1.1        pk 			 * start it.
   1419   1.1        pk 			 */
   1420  1.61    dyoung 			error = hme_init(sc);
   1421  1.67    dyoung 			break;
   1422  1.67    dyoung 		case IFF_UP|IFF_RUNNING:
   1423   1.1        pk 			/*
   1424  1.41      heas 			 * If setting debug or promiscuous mode, do not reset
   1425  1.41      heas 			 * the chip; for everything else, call hme_init()
   1426  1.41      heas 			 * which will trigger a reset.
   1427   1.1        pk 			 */
   1428  1.41      heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1429  1.46      heas 			if (ifp->if_flags != sc->sc_if_flags) {
   1430  1.45      heas 				if ((ifp->if_flags & (~RESETIGN))
   1431  1.45      heas 				    == (sc->sc_if_flags & (~RESETIGN)))
   1432  1.45      heas 					hme_setladrf(sc);
   1433  1.45      heas 				else
   1434  1.61    dyoung 					error = hme_init(sc);
   1435  1.45      heas 			}
   1436  1.41      heas #undef RESETIGN
   1437  1.67    dyoung 			break;
   1438  1.67    dyoung 		case 0:
   1439  1.67    dyoung 			break;
   1440   1.1        pk 		}
   1441  1.45      heas 
   1442  1.45      heas 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1443  1.61    dyoung 			error = hme_init(sc);
   1444  1.45      heas 
   1445   1.1        pk 		break;
   1446   1.1        pk 
   1447  1.63    dyoung 	default:
   1448  1.63    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1449  1.63    dyoung 			break;
   1450  1.63    dyoung 
   1451  1.63    dyoung 		error = 0;
   1452  1.63    dyoung 
   1453  1.63    dyoung 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1454  1.63    dyoung 			;
   1455  1.63    dyoung 		else if (ifp->if_flags & IFF_RUNNING) {
   1456   1.1        pk 			/*
   1457   1.1        pk 			 * Multicast list has changed; set the hardware filter
   1458   1.1        pk 			 * accordingly.
   1459   1.1        pk 			 */
   1460  1.63    dyoung 			hme_setladrf(sc);
   1461   1.1        pk 		}
   1462   1.1        pk 		break;
   1463   1.1        pk 	}
   1464   1.1        pk 
   1465  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
   1466   1.1        pk 	splx(s);
   1467   1.1        pk 	return (error);
   1468   1.1        pk }
   1469   1.1        pk 
   1470   1.1        pk void
   1471  1.71       dsl hme_shutdown(void *arg)
   1472   1.1        pk {
   1473  1.28      tron 
   1474  1.58    martin 	hme_stop((struct hme_softc *)arg, false);
   1475   1.1        pk }
   1476   1.1        pk 
   1477   1.1        pk /*
   1478   1.1        pk  * Set up the logical address filter.
   1479   1.1        pk  */
   1480   1.1        pk void
   1481  1.71       dsl hme_setladrf(struct hme_softc *sc)
   1482   1.1        pk {
   1483   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1484   1.1        pk 	struct ether_multi *enm;
   1485   1.1        pk 	struct ether_multistep step;
   1486  1.28      tron 	struct ethercom *ec = &sc->sc_ethercom;
   1487   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1488   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1489   1.1        pk 	u_char *cp;
   1490  1.75   tsutsui 	uint32_t crc;
   1491  1.75   tsutsui 	uint32_t hash[4];
   1492  1.75   tsutsui 	uint32_t v;
   1493   1.1        pk 	int len;
   1494   1.1        pk 
   1495  1.14        pk 	/* Clear hash table */
   1496  1.14        pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1497  1.14        pk 
   1498  1.14        pk 	/* Get current RX configuration */
   1499  1.14        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1500  1.14        pk 
   1501  1.14        pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1502  1.14        pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1503  1.14        pk 		v |= HME_MAC_RXCFG_PMISC;
   1504  1.14        pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1505  1.14        pk 		ifp->if_flags |= IFF_ALLMULTI;
   1506  1.14        pk 		goto chipit;
   1507  1.14        pk 	}
   1508  1.14        pk 
   1509  1.14        pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1510  1.14        pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1511  1.14        pk 	v |= HME_MAC_RXCFG_HENABLE;
   1512  1.14        pk 
   1513   1.1        pk 	/*
   1514   1.1        pk 	 * Set up multicast address filter by passing all multicast addresses
   1515   1.1        pk 	 * through a crc generator, and then using the high order 6 bits as an
   1516   1.1        pk 	 * index into the 64 bit logical address filter.  The high order bit
   1517   1.1        pk 	 * selects the word, while the rest of the bits select the bit within
   1518   1.1        pk 	 * the word.
   1519   1.1        pk 	 */
   1520   1.1        pk 
   1521  1.28      tron 	ETHER_FIRST_MULTI(step, ec, enm);
   1522   1.1        pk 	while (enm != NULL) {
   1523  1.70   tsutsui 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1524   1.1        pk 			/*
   1525   1.1        pk 			 * We must listen to a range of multicast addresses.
   1526   1.1        pk 			 * For now, just accept all multicasts, rather than
   1527   1.1        pk 			 * trying to set only those filter bits needed to match
   1528   1.1        pk 			 * the range.  (At this time, the only use of address
   1529   1.1        pk 			 * ranges is for IP multicast routing, for which the
   1530   1.1        pk 			 * range is big enough to require all bits set.)
   1531   1.1        pk 			 */
   1532  1.14        pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1533  1.14        pk 			ifp->if_flags |= IFF_ALLMULTI;
   1534  1.14        pk 			goto chipit;
   1535   1.1        pk 		}
   1536   1.1        pk 
   1537   1.1        pk 		cp = enm->enm_addrlo;
   1538   1.1        pk 		crc = 0xffffffff;
   1539   1.1        pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1540   1.1        pk 			int octet = *cp++;
   1541   1.1        pk 			int i;
   1542   1.1        pk 
   1543   1.1        pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1544   1.1        pk 			for (i = 0; i < 8; i++) {
   1545   1.1        pk 				if ((crc & 1) ^ (octet & 1)) {
   1546   1.1        pk 					crc >>= 1;
   1547   1.1        pk 					crc ^= MC_POLY_LE;
   1548   1.1        pk 				} else {
   1549   1.1        pk 					crc >>= 1;
   1550   1.1        pk 				}
   1551   1.1        pk 				octet >>= 1;
   1552   1.1        pk 			}
   1553   1.1        pk 		}
   1554   1.1        pk 		/* Just want the 6 most significant bits. */
   1555   1.1        pk 		crc >>= 26;
   1556   1.1        pk 
   1557   1.1        pk 		/* Set the corresponding bit in the filter. */
   1558   1.1        pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1559   1.1        pk 
   1560   1.1        pk 		ETHER_NEXT_MULTI(step, enm);
   1561   1.1        pk 	}
   1562   1.1        pk 
   1563  1.14        pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1564  1.14        pk 
   1565  1.14        pk chipit:
   1566  1.14        pk 	/* Now load the hash table into the chip */
   1567   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1568   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1569   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1570   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1571  1.14        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1572   1.1        pk }
   1573   1.1        pk 
   1574  1.28      tron /*
   1575  1.28      tron  * Routines for accessing the transmit and receive buffers.
   1576  1.28      tron  * The various CPU and adapter configurations supported by this
   1577  1.28      tron  * driver require three different access methods for buffers
   1578  1.28      tron  * and descriptors:
   1579  1.28      tron  *	(1) contig (contiguous data; no padding),
   1580  1.28      tron  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1581  1.28      tron  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1582  1.28      tron  */
   1583  1.28      tron 
   1584  1.28      tron #if 0
   1585  1.28      tron /*
   1586  1.28      tron  * contig: contiguous data with no padding.
   1587  1.28      tron  *
   1588  1.28      tron  * Buffers may have any alignment.
   1589  1.28      tron  */
   1590  1.28      tron 
   1591  1.28      tron void
   1592  1.72       dsl hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1593  1.26      tron {
   1594  1.56  christos 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1595  1.26      tron 
   1596   1.1        pk 	/*
   1597  1.28      tron 	 * Just call memcpy() to do the work.
   1598   1.1        pk 	 */
   1599  1.28      tron 	memcpy(buf, from, len);
   1600   1.1        pk }
   1601   1.1        pk 
   1602  1.28      tron void
   1603  1.72       dsl hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1604   1.1        pk {
   1605  1.56  christos 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1606  1.26      tron 
   1607  1.28      tron 	/*
   1608  1.28      tron 	 * Just call memcpy() to do the work.
   1609  1.28      tron 	 */
   1610  1.28      tron 	memcpy(to, buf, len);
   1611   1.1        pk }
   1612  1.28      tron #endif
   1613