hme.c revision 1.77 1 1.77 jdc /* $NetBSD: hme.c,v 1.77 2009/05/06 20:40:19 jdc Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk *
19 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
30 1.1 pk */
31 1.1 pk
32 1.1 pk /*
33 1.1 pk * HME Ethernet module driver.
34 1.1 pk */
35 1.25 lukem
36 1.25 lukem #include <sys/cdefs.h>
37 1.77 jdc __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.77 2009/05/06 20:40:19 jdc Exp $");
38 1.1 pk
39 1.39 petrov /* #define HMEDEBUG */
40 1.1 pk
41 1.1 pk #include "opt_inet.h"
42 1.1 pk #include "bpfilter.h"
43 1.1 pk #include "rnd.h"
44 1.1 pk
45 1.1 pk #include <sys/param.h>
46 1.1 pk #include <sys/systm.h>
47 1.5 pk #include <sys/kernel.h>
48 1.42 heas #include <sys/mbuf.h>
49 1.1 pk #include <sys/syslog.h>
50 1.1 pk #include <sys/socket.h>
51 1.1 pk #include <sys/device.h>
52 1.1 pk #include <sys/malloc.h>
53 1.1 pk #include <sys/ioctl.h>
54 1.1 pk #include <sys/errno.h>
55 1.1 pk #if NRND > 0
56 1.1 pk #include <sys/rnd.h>
57 1.1 pk #endif
58 1.1 pk
59 1.1 pk #include <net/if.h>
60 1.1 pk #include <net/if_dl.h>
61 1.1 pk #include <net/if_ether.h>
62 1.1 pk #include <net/if_media.h>
63 1.1 pk
64 1.1 pk #ifdef INET
65 1.74 tsutsui #include <net/if_vlanvar.h>
66 1.1 pk #include <netinet/in.h>
67 1.1 pk #include <netinet/if_inarp.h>
68 1.1 pk #include <netinet/in_systm.h>
69 1.1 pk #include <netinet/in_var.h>
70 1.1 pk #include <netinet/ip.h>
71 1.46 heas #include <netinet/tcp.h>
72 1.46 heas #include <netinet/udp.h>
73 1.1 pk #endif
74 1.1 pk
75 1.1 pk
76 1.1 pk #if NBPFILTER > 0
77 1.1 pk #include <net/bpf.h>
78 1.1 pk #include <net/bpfdesc.h>
79 1.1 pk #endif
80 1.1 pk
81 1.1 pk #include <dev/mii/mii.h>
82 1.1 pk #include <dev/mii/miivar.h>
83 1.1 pk
84 1.60 ad #include <sys/bus.h>
85 1.1 pk
86 1.1 pk #include <dev/ic/hmereg.h>
87 1.1 pk #include <dev/ic/hmevar.h>
88 1.1 pk
89 1.44 perry void hme_start(struct ifnet *);
90 1.58 martin void hme_stop(struct hme_softc *,bool);
91 1.56 christos int hme_ioctl(struct ifnet *, u_long, void *);
92 1.44 perry void hme_tick(void *);
93 1.44 perry void hme_watchdog(struct ifnet *);
94 1.44 perry void hme_shutdown(void *);
95 1.61 dyoung int hme_init(struct hme_softc *);
96 1.44 perry void hme_meminit(struct hme_softc *);
97 1.44 perry void hme_mifinit(struct hme_softc *);
98 1.44 perry void hme_reset(struct hme_softc *);
99 1.44 perry void hme_setladrf(struct hme_softc *);
100 1.1 pk
101 1.1 pk /* MII methods & callbacks */
102 1.44 perry static int hme_mii_readreg(struct device *, int, int);
103 1.44 perry static void hme_mii_writereg(struct device *, int, int, int);
104 1.44 perry static void hme_mii_statchg(struct device *);
105 1.44 perry
106 1.44 perry int hme_mediachange(struct ifnet *);
107 1.44 perry
108 1.46 heas struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
109 1.44 perry int hme_put(struct hme_softc *, int, struct mbuf *);
110 1.46 heas void hme_read(struct hme_softc *, int, uint32_t);
111 1.44 perry int hme_eint(struct hme_softc *, u_int);
112 1.44 perry int hme_rint(struct hme_softc *);
113 1.44 perry int hme_tint(struct hme_softc *);
114 1.1 pk
115 1.28 tron /* Default buffer copy routines */
116 1.44 perry void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
117 1.44 perry void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
118 1.44 perry void hme_zerobuf_contig(struct hme_softc *, int, int);
119 1.28 tron
120 1.28 tron
121 1.1 pk void
122 1.71 dsl hme_config(struct hme_softc *sc)
123 1.1 pk {
124 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
125 1.1 pk struct mii_data *mii = &sc->sc_mii;
126 1.5 pk struct mii_softc *child;
127 1.11 pk bus_dma_tag_t dmatag = sc->sc_dmatag;
128 1.1 pk bus_dma_segment_t seg;
129 1.1 pk bus_size_t size;
130 1.28 tron int rseg, error;
131 1.1 pk
132 1.1 pk /*
133 1.1 pk * HME common initialization.
134 1.1 pk *
135 1.1 pk * hme_softc fields that must be initialized by the front-end:
136 1.1 pk *
137 1.1 pk * the bus tag:
138 1.1 pk * sc_bustag
139 1.1 pk *
140 1.37 wiz * the DMA bus tag:
141 1.1 pk * sc_dmatag
142 1.1 pk *
143 1.1 pk * the bus handles:
144 1.1 pk * sc_seb (Shared Ethernet Block registers)
145 1.1 pk * sc_erx (Receiver Unit registers)
146 1.1 pk * sc_etx (Transmitter Unit registers)
147 1.1 pk * sc_mac (MAC registers)
148 1.36 wiz * sc_mif (Management Interface registers)
149 1.1 pk *
150 1.1 pk * the maximum bus burst size:
151 1.1 pk * sc_burst
152 1.1 pk *
153 1.28 tron * (notyet:DMA capable memory for the ring descriptors & packet buffers:
154 1.28 tron * rb_membase, rb_dmabase)
155 1.28 tron *
156 1.1 pk * the local Ethernet address:
157 1.1 pk * sc_enaddr
158 1.1 pk *
159 1.1 pk */
160 1.1 pk
161 1.1 pk /* Make sure the chip is stopped. */
162 1.58 martin hme_stop(sc, true);
163 1.1 pk
164 1.1 pk
165 1.28 tron /*
166 1.28 tron * Allocate descriptors and buffers
167 1.28 tron * XXX - do all this differently.. and more configurably,
168 1.28 tron * eg. use things as `dma_load_mbuf()' on transmit,
169 1.28 tron * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
170 1.38 wiz * all the time) on the receiver side.
171 1.28 tron *
172 1.28 tron * Note: receive buffers must be 64-byte aligned.
173 1.28 tron * Also, apparently, the buffers must extend to a DMA burst
174 1.28 tron * boundary beyond the maximum packet size.
175 1.28 tron */
176 1.28 tron #define _HME_NDESC 128
177 1.28 tron #define _HME_BUFSZ 1600
178 1.28 tron
179 1.28 tron /* Note: the # of descriptors must be a multiple of 16 */
180 1.28 tron sc->sc_rb.rb_ntbuf = _HME_NDESC;
181 1.28 tron sc->sc_rb.rb_nrbuf = _HME_NDESC;
182 1.1 pk
183 1.1 pk /*
184 1.1 pk * Allocate DMA capable memory
185 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
186 1.1 pk * take this into account when calculating the size. Note that
187 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
188 1.28 tron * so we allocate that much regardless of _HME_NDESC.
189 1.1 pk */
190 1.28 tron size = 2048 + /* TX descriptors */
191 1.28 tron 2048 + /* RX descriptors */
192 1.28 tron sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
193 1.46 heas sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
194 1.11 pk
195 1.11 pk /* Allocate DMA buffer */
196 1.28 tron if ((error = bus_dmamem_alloc(dmatag, size,
197 1.28 tron 2048, 0,
198 1.28 tron &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
199 1.64 cegger aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
200 1.64 cegger error);
201 1.10 mrg return;
202 1.1 pk }
203 1.1 pk
204 1.11 pk /* Map DMA memory in CPU addressable space */
205 1.11 pk if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
206 1.28 tron &sc->sc_rb.rb_membase,
207 1.28 tron BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
208 1.64 cegger aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
209 1.64 cegger error);
210 1.11 pk bus_dmamap_unload(dmatag, sc->sc_dmamap);
211 1.11 pk bus_dmamem_free(dmatag, &seg, rseg);
212 1.1 pk return;
213 1.1 pk }
214 1.13 mrg
215 1.13 mrg if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
216 1.28 tron BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
217 1.64 cegger aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
218 1.64 cegger error);
219 1.13 mrg return;
220 1.13 mrg }
221 1.13 mrg
222 1.13 mrg /* Load the buffer */
223 1.13 mrg if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
224 1.17 mrg sc->sc_rb.rb_membase, size, NULL,
225 1.17 mrg BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
226 1.64 cegger aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
227 1.64 cegger error);
228 1.13 mrg bus_dmamem_free(dmatag, &seg, rseg);
229 1.13 mrg return;
230 1.13 mrg }
231 1.13 mrg sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
232 1.1 pk
233 1.64 cegger printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
234 1.22 thorpej ether_sprintf(sc->sc_enaddr));
235 1.2 pk
236 1.1 pk /* Initialize ifnet structure. */
237 1.64 cegger strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
238 1.1 pk ifp->if_softc = sc;
239 1.1 pk ifp->if_start = hme_start;
240 1.1 pk ifp->if_ioctl = hme_ioctl;
241 1.1 pk ifp->if_watchdog = hme_watchdog;
242 1.1 pk ifp->if_flags =
243 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
244 1.41 heas sc->sc_if_flags = ifp->if_flags;
245 1.51 yamt ifp->if_capabilities |=
246 1.51 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
247 1.51 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
248 1.20 thorpej IFQ_SET_READY(&ifp->if_snd);
249 1.1 pk
250 1.1 pk /* Initialize ifmedia structures and MII info */
251 1.1 pk mii->mii_ifp = ifp;
252 1.34 petrov mii->mii_readreg = hme_mii_readreg;
253 1.1 pk mii->mii_writereg = hme_mii_writereg;
254 1.1 pk mii->mii_statchg = hme_mii_statchg;
255 1.1 pk
256 1.61 dyoung sc->sc_ethercom.ec_mii = mii;
257 1.61 dyoung ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
258 1.1 pk
259 1.4 pk hme_mifinit(sc);
260 1.4 pk
261 1.77 jdc /*
262 1.77 jdc * Some HME's have an MII connector, as well as RJ45. Try attaching
263 1.77 jdc * the RJ45 (internal) PHY first, so that the MII PHY is always
264 1.77 jdc * instance 1.
265 1.77 jdc */
266 1.77 jdc mii_attach(&sc->sc_dev, mii, 0xffffffff,
267 1.77 jdc HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
268 1.6 thorpej mii_attach(&sc->sc_dev, mii, 0xffffffff,
269 1.77 jdc HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
270 1.2 pk
271 1.5 pk child = LIST_FIRST(&mii->mii_phys);
272 1.5 pk if (child == NULL) {
273 1.1 pk /* No PHY attached */
274 1.61 dyoung ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
275 1.61 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
276 1.1 pk } else {
277 1.1 pk /*
278 1.5 pk * Walk along the list of attached MII devices and
279 1.5 pk * establish an `MII instance' to `phy number'
280 1.5 pk * mapping. We'll use this mapping in media change
281 1.5 pk * requests to determine which phy to use to program
282 1.5 pk * the MIF configuration register.
283 1.5 pk */
284 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
285 1.5 pk /*
286 1.5 pk * Note: we support just two PHYs: the built-in
287 1.5 pk * internal device and an external on the MII
288 1.5 pk * connector.
289 1.5 pk */
290 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) {
291 1.64 cegger aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
292 1.28 tron " at phy %d, instance %d\n",
293 1.66 xtraeme device_xname(child->mii_dev),
294 1.28 tron child->mii_phy, child->mii_inst);
295 1.5 pk continue;
296 1.5 pk }
297 1.5 pk
298 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy;
299 1.5 pk }
300 1.5 pk
301 1.5 pk /*
302 1.77 jdc * Set the default media to auto negotiation if the phy has
303 1.77 jdc * the auto negotiation capability.
304 1.77 jdc * XXX; What to do otherwise?
305 1.1 pk */
306 1.77 jdc if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
307 1.77 jdc ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
308 1.77 jdc /*
309 1.77 jdc else
310 1.77 jdc ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
311 1.77 jdc */
312 1.1 pk }
313 1.27 tron
314 1.28 tron /* claim 802.1q capability */
315 1.27 tron sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
316 1.1 pk
317 1.1 pk /* Attach the interface. */
318 1.1 pk if_attach(ifp);
319 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
320 1.1 pk
321 1.1 pk sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
322 1.1 pk if (sc->sc_sh == NULL)
323 1.1 pk panic("hme_config: can't establish shutdownhook");
324 1.1 pk
325 1.1 pk #if NRND > 0
326 1.64 cegger rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
327 1.1 pk RND_TYPE_NET, 0);
328 1.1 pk #endif
329 1.5 pk
330 1.57 ad callout_init(&sc->sc_tick_ch, 0);
331 1.5 pk }
332 1.5 pk
333 1.5 pk void
334 1.71 dsl hme_tick(void *arg)
335 1.5 pk {
336 1.5 pk struct hme_softc *sc = arg;
337 1.5 pk int s;
338 1.5 pk
339 1.5 pk s = splnet();
340 1.5 pk mii_tick(&sc->sc_mii);
341 1.5 pk splx(s);
342 1.5 pk
343 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
344 1.1 pk }
345 1.1 pk
346 1.1 pk void
347 1.71 dsl hme_reset(struct hme_softc *sc)
348 1.1 pk {
349 1.1 pk int s;
350 1.1 pk
351 1.1 pk s = splnet();
352 1.61 dyoung (void)hme_init(sc);
353 1.1 pk splx(s);
354 1.1 pk }
355 1.1 pk
356 1.1 pk void
357 1.58 martin hme_stop(struct hme_softc *sc, bool chip_only)
358 1.1 pk {
359 1.1 pk bus_space_tag_t t = sc->sc_bustag;
360 1.1 pk bus_space_handle_t seb = sc->sc_seb;
361 1.1 pk int n;
362 1.1 pk
363 1.58 martin if (!chip_only) {
364 1.58 martin callout_stop(&sc->sc_tick_ch);
365 1.58 martin mii_down(&sc->sc_mii);
366 1.58 martin }
367 1.5 pk
368 1.33 pk /* Mask all interrupts */
369 1.33 pk bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
370 1.33 pk
371 1.1 pk /* Reset transmitter and receiver */
372 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
373 1.28 tron (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
374 1.1 pk
375 1.1 pk for (n = 0; n < 20; n++) {
376 1.75 tsutsui uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
377 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
378 1.1 pk return;
379 1.1 pk DELAY(20);
380 1.1 pk }
381 1.1 pk
382 1.64 cegger printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
383 1.1 pk }
384 1.1 pk
385 1.1 pk void
386 1.71 dsl hme_meminit(struct hme_softc *sc)
387 1.1 pk {
388 1.28 tron bus_addr_t txbufdma, rxbufdma;
389 1.1 pk bus_addr_t dma;
390 1.56 christos char *p;
391 1.28 tron unsigned int ntbuf, nrbuf, i;
392 1.1 pk struct hme_ring *hr = &sc->sc_rb;
393 1.1 pk
394 1.1 pk p = hr->rb_membase;
395 1.1 pk dma = hr->rb_dmabase;
396 1.1 pk
397 1.28 tron ntbuf = hr->rb_ntbuf;
398 1.28 tron nrbuf = hr->rb_nrbuf;
399 1.28 tron
400 1.1 pk /*
401 1.1 pk * Allocate transmit descriptors
402 1.1 pk */
403 1.1 pk hr->rb_txd = p;
404 1.1 pk hr->rb_txddma = dma;
405 1.28 tron p += ntbuf * HME_XD_SIZE;
406 1.28 tron dma += ntbuf * HME_XD_SIZE;
407 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/
408 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
409 1.56 christos p = (void *)roundup((u_long)p, 2048);
410 1.1 pk
411 1.1 pk /*
412 1.1 pk * Allocate receive descriptors
413 1.1 pk */
414 1.1 pk hr->rb_rxd = p;
415 1.1 pk hr->rb_rxddma = dma;
416 1.28 tron p += nrbuf * HME_XD_SIZE;
417 1.28 tron dma += nrbuf * HME_XD_SIZE;
418 1.4 pk /* Again move forward to the next 2048 byte boundary.*/
419 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
420 1.56 christos p = (void *)roundup((u_long)p, 2048);
421 1.1 pk
422 1.28 tron
423 1.1 pk /*
424 1.28 tron * Allocate transmit buffers
425 1.1 pk */
426 1.28 tron hr->rb_txbuf = p;
427 1.28 tron txbufdma = dma;
428 1.28 tron p += ntbuf * _HME_BUFSZ;
429 1.28 tron dma += ntbuf * _HME_BUFSZ;
430 1.28 tron
431 1.28 tron /*
432 1.28 tron * Allocate receive buffers
433 1.28 tron */
434 1.28 tron hr->rb_rxbuf = p;
435 1.28 tron rxbufdma = dma;
436 1.28 tron p += nrbuf * _HME_BUFSZ;
437 1.28 tron dma += nrbuf * _HME_BUFSZ;
438 1.28 tron
439 1.28 tron /*
440 1.28 tron * Initialize transmit buffer descriptors
441 1.28 tron */
442 1.28 tron for (i = 0; i < ntbuf; i++) {
443 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
444 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
445 1.1 pk }
446 1.1 pk
447 1.1 pk /*
448 1.28 tron * Initialize receive buffer descriptors
449 1.1 pk */
450 1.28 tron for (i = 0; i < nrbuf; i++) {
451 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
452 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
453 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
454 1.1 pk }
455 1.1 pk
456 1.28 tron hr->rb_tdhead = hr->rb_tdtail = 0;
457 1.28 tron hr->rb_td_nbusy = 0;
458 1.28 tron hr->rb_rdtail = 0;
459 1.1 pk }
460 1.1 pk
461 1.1 pk /*
462 1.1 pk * Initialization of interface; set up initialization block
463 1.1 pk * and transmit/receive descriptor rings.
464 1.1 pk */
465 1.61 dyoung int
466 1.71 dsl hme_init(struct hme_softc *sc)
467 1.1 pk {
468 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
469 1.1 pk bus_space_tag_t t = sc->sc_bustag;
470 1.1 pk bus_space_handle_t seb = sc->sc_seb;
471 1.1 pk bus_space_handle_t etx = sc->sc_etx;
472 1.1 pk bus_space_handle_t erx = sc->sc_erx;
473 1.1 pk bus_space_handle_t mac = sc->sc_mac;
474 1.75 tsutsui uint8_t *ea;
475 1.75 tsutsui uint32_t v;
476 1.61 dyoung int rc;
477 1.1 pk
478 1.1 pk /*
479 1.1 pk * Initialization sequence. The numbered steps below correspond
480 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
481 1.1 pk * Channel Engine manual (part of the PCIO manual).
482 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
483 1.1 pk */
484 1.1 pk
485 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
486 1.58 martin hme_stop(sc, false);
487 1.1 pk
488 1.4 pk /* Re-initialize the MIF */
489 1.4 pk hme_mifinit(sc);
490 1.4 pk
491 1.1 pk /* Call MI reset function if any */
492 1.1 pk if (sc->sc_hwreset)
493 1.1 pk (*sc->sc_hwreset)(sc);
494 1.1 pk
495 1.1 pk #if 0
496 1.1 pk /* Mask all MIF interrupts, just in case */
497 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
498 1.1 pk #endif
499 1.1 pk
500 1.1 pk /* step 3. Setup data structures in host memory */
501 1.1 pk hme_meminit(sc);
502 1.1 pk
503 1.1 pk /* step 4. TX MAC registers & counters */
504 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
505 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
506 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
507 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
508 1.28 tron bus_space_write_4(t, mac, HME_MACI_TXSIZE,
509 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
510 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
511 1.45 heas sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
512 1.1 pk
513 1.1 pk /* Load station MAC address */
514 1.1 pk ea = sc->sc_enaddr;
515 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
516 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
517 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
518 1.1 pk
519 1.1 pk /*
520 1.1 pk * Init seed for backoff
521 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
522 1.42 heas */
523 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
524 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
525 1.1 pk
526 1.1 pk
527 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
528 1.1 pk
529 1.1 pk
530 1.1 pk /* step 5. RX MAC registers & counters */
531 1.1 pk hme_setladrf(sc);
532 1.1 pk
533 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
534 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
535 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
536 1.1 pk
537 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
538 1.28 tron bus_space_write_4(t, mac, HME_MACI_RXSIZE,
539 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
540 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
541 1.1 pk
542 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
543 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
544 1.28 tron ~(
545 1.28 tron /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
546 1.28 tron HME_SEB_STAT_HOSTTOTX |
547 1.28 tron HME_SEB_STAT_RXTOHOST |
548 1.28 tron HME_SEB_STAT_TXALL |
549 1.28 tron HME_SEB_STAT_TXPERR |
550 1.28 tron HME_SEB_STAT_RCNTEXP |
551 1.77 jdc HME_SEB_STAT_MIFIRQ |
552 1.28 tron HME_SEB_STAT_ALL_ERRORS ));
553 1.1 pk
554 1.1 pk switch (sc->sc_burst) {
555 1.1 pk default:
556 1.1 pk v = 0;
557 1.1 pk break;
558 1.1 pk case 16:
559 1.1 pk v = HME_SEB_CFG_BURST16;
560 1.1 pk break;
561 1.1 pk case 32:
562 1.1 pk v = HME_SEB_CFG_BURST32;
563 1.1 pk break;
564 1.1 pk case 64:
565 1.1 pk v = HME_SEB_CFG_BURST64;
566 1.1 pk break;
567 1.1 pk }
568 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
569 1.1 pk
570 1.1 pk /* step 9. ETX Configuration: use mostly default values */
571 1.1 pk
572 1.1 pk /* Enable DMA */
573 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
574 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
575 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
576 1.1 pk
577 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
578 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
579 1.28 tron
580 1.1 pk
581 1.3 pk /* step 10. ERX Configuration */
582 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
583 1.28 tron
584 1.28 tron /* Encode Receive Descriptor ring size: four possible values */
585 1.28 tron switch (_HME_NDESC /*XXX*/) {
586 1.28 tron case 32:
587 1.28 tron v |= HME_ERX_CFG_RINGSIZE32;
588 1.28 tron break;
589 1.28 tron case 64:
590 1.28 tron v |= HME_ERX_CFG_RINGSIZE64;
591 1.28 tron break;
592 1.28 tron case 128:
593 1.28 tron v |= HME_ERX_CFG_RINGSIZE128;
594 1.28 tron break;
595 1.28 tron case 256:
596 1.28 tron v |= HME_ERX_CFG_RINGSIZE256;
597 1.28 tron break;
598 1.28 tron default:
599 1.28 tron printf("hme: invalid Receive Descriptor ring size\n");
600 1.28 tron break;
601 1.28 tron }
602 1.28 tron
603 1.3 pk /* Enable DMA */
604 1.28 tron v |= HME_ERX_CFG_DMAENABLE;
605 1.46 heas
606 1.46 heas /* set h/w rx checksum start offset (# of half-words) */
607 1.49 heas #ifdef INET
608 1.74 tsutsui v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
609 1.74 tsutsui << HME_ERX_CFG_CSUMSHIFT) &
610 1.46 heas HME_ERX_CFG_CSUMSTART;
611 1.49 heas #endif
612 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
613 1.1 pk
614 1.1 pk /* step 11. XIF Configuration */
615 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
616 1.1 pk v |= HME_MAC_XIF_OE;
617 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
618 1.1 pk
619 1.1 pk /* step 12. RX_MAC Configuration Register */
620 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
621 1.46 heas v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
622 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
623 1.1 pk
624 1.1 pk /* step 13. TX_MAC Configuration Register */
625 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
626 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
627 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
628 1.1 pk
629 1.1 pk /* step 14. Issue Transmit Pending command */
630 1.1 pk
631 1.1 pk /* Call MI initialization function if any */
632 1.1 pk if (sc->sc_hwinit)
633 1.1 pk (*sc->sc_hwinit)(sc);
634 1.29 thorpej
635 1.29 thorpej /* Set the current media. */
636 1.61 dyoung if ((rc = hme_mediachange(ifp)) != 0)
637 1.61 dyoung return rc;
638 1.9 thorpej
639 1.9 thorpej /* Start the one second timer. */
640 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
641 1.1 pk
642 1.1 pk ifp->if_flags |= IFF_RUNNING;
643 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
644 1.41 heas sc->sc_if_flags = ifp->if_flags;
645 1.1 pk ifp->if_timer = 0;
646 1.1 pk hme_start(ifp);
647 1.61 dyoung return 0;
648 1.1 pk }
649 1.1 pk
650 1.28 tron /*
651 1.28 tron * Routine to copy from mbuf chain to transmit buffer in
652 1.28 tron * network buffer memory.
653 1.28 tron * Returns the amount of data copied.
654 1.28 tron */
655 1.28 tron int
656 1.72 dsl hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
657 1.72 dsl /* ri: Ring index */
658 1.28 tron {
659 1.28 tron struct mbuf *n;
660 1.28 tron int len, tlen = 0;
661 1.56 christos char *bp;
662 1.28 tron
663 1.56 christos bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
664 1.28 tron for (; m; m = n) {
665 1.28 tron len = m->m_len;
666 1.28 tron if (len == 0) {
667 1.28 tron MFREE(m, n);
668 1.28 tron continue;
669 1.28 tron }
670 1.56 christos memcpy(bp, mtod(m, void *), len);
671 1.28 tron bp += len;
672 1.28 tron tlen += len;
673 1.28 tron MFREE(m, n);
674 1.28 tron }
675 1.28 tron return (tlen);
676 1.28 tron }
677 1.28 tron
678 1.28 tron /*
679 1.28 tron * Pull data off an interface.
680 1.28 tron * Len is length of data, with local net header stripped.
681 1.28 tron * We copy the data into mbufs. When full cluster sized units are present
682 1.28 tron * we copy into clusters.
683 1.28 tron */
684 1.28 tron struct mbuf *
685 1.75 tsutsui hme_get(struct hme_softc *sc, int ri, uint32_t flags)
686 1.28 tron {
687 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
688 1.28 tron struct mbuf *m, *m0, *newm;
689 1.56 christos char *bp;
690 1.46 heas int len, totlen;
691 1.76 tsutsui #ifdef INET
692 1.76 tsutsui int csum_flags;
693 1.76 tsutsui #endif
694 1.28 tron
695 1.46 heas totlen = HME_XD_DECODE_RSIZE(flags);
696 1.28 tron MGETHDR(m0, M_DONTWAIT, MT_DATA);
697 1.28 tron if (m0 == 0)
698 1.28 tron return (0);
699 1.28 tron m0->m_pkthdr.rcvif = ifp;
700 1.28 tron m0->m_pkthdr.len = totlen;
701 1.28 tron len = MHLEN;
702 1.28 tron m = m0;
703 1.28 tron
704 1.56 christos bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
705 1.28 tron
706 1.28 tron while (totlen > 0) {
707 1.28 tron if (totlen >= MINCLSIZE) {
708 1.28 tron MCLGET(m, M_DONTWAIT);
709 1.28 tron if ((m->m_flags & M_EXT) == 0)
710 1.28 tron goto bad;
711 1.28 tron len = MCLBYTES;
712 1.28 tron }
713 1.28 tron
714 1.28 tron if (m == m0) {
715 1.56 christos char *newdata = (char *)
716 1.28 tron ALIGN(m->m_data + sizeof(struct ether_header)) -
717 1.28 tron sizeof(struct ether_header);
718 1.28 tron len -= newdata - m->m_data;
719 1.28 tron m->m_data = newdata;
720 1.28 tron }
721 1.28 tron
722 1.28 tron m->m_len = len = min(totlen, len);
723 1.56 christos memcpy(mtod(m, void *), bp, len);
724 1.28 tron bp += len;
725 1.28 tron
726 1.28 tron totlen -= len;
727 1.28 tron if (totlen > 0) {
728 1.28 tron MGET(newm, M_DONTWAIT, MT_DATA);
729 1.28 tron if (newm == 0)
730 1.28 tron goto bad;
731 1.28 tron len = MLEN;
732 1.28 tron m = m->m_next = newm;
733 1.28 tron }
734 1.28 tron }
735 1.28 tron
736 1.49 heas #ifdef INET
737 1.49 heas /* hardware checksum */
738 1.76 tsutsui csum_flags = 0;
739 1.50 rafal if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
740 1.46 heas struct ether_header *eh;
741 1.74 tsutsui struct ether_vlan_header *evh;
742 1.46 heas struct ip *ip;
743 1.46 heas struct udphdr *uh;
744 1.46 heas uint16_t *opts;
745 1.46 heas int32_t hlen, pktlen;
746 1.76 tsutsui uint32_t csum_data;
747 1.46 heas
748 1.74 tsutsui eh = mtod(m0, struct ether_header *);
749 1.74 tsutsui if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
750 1.74 tsutsui ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
751 1.46 heas pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
752 1.74 tsutsui } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
753 1.74 tsutsui evh = (struct ether_vlan_header *)eh;
754 1.74 tsutsui if (ntohs(evh->evl_proto != ETHERTYPE_IP))
755 1.74 tsutsui goto swcsum;
756 1.74 tsutsui ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
757 1.74 tsutsui ETHER_VLAN_ENCAP_LEN);
758 1.74 tsutsui pktlen = m0->m_pkthdr.len -
759 1.74 tsutsui ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
760 1.74 tsutsui } else
761 1.46 heas goto swcsum;
762 1.46 heas
763 1.46 heas /* IPv4 only */
764 1.46 heas if (ip->ip_v != IPVERSION)
765 1.46 heas goto swcsum;
766 1.46 heas
767 1.46 heas hlen = ip->ip_hl << 2;
768 1.48 perry if (hlen < sizeof(struct ip))
769 1.46 heas goto swcsum;
770 1.46 heas
771 1.49 heas /*
772 1.49 heas * bail if too short, has random trailing garbage, truncated,
773 1.49 heas * fragment, or has ethernet pad.
774 1.49 heas */
775 1.76 tsutsui if (ntohs(ip->ip_len) < hlen ||
776 1.76 tsutsui ntohs(ip->ip_len) != pktlen ||
777 1.76 tsutsui (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
778 1.49 heas goto swcsum;
779 1.46 heas
780 1.46 heas switch (ip->ip_p) {
781 1.46 heas case IPPROTO_TCP:
782 1.76 tsutsui if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
783 1.46 heas goto swcsum;
784 1.46 heas if (pktlen < (hlen + sizeof(struct tcphdr)))
785 1.46 heas goto swcsum;
786 1.76 tsutsui csum_flags =
787 1.76 tsutsui M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
788 1.46 heas break;
789 1.46 heas case IPPROTO_UDP:
790 1.76 tsutsui if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
791 1.46 heas goto swcsum;
792 1.46 heas if (pktlen < (hlen + sizeof(struct udphdr)))
793 1.46 heas goto swcsum;
794 1.56 christos uh = (struct udphdr *)((char *)ip + hlen);
795 1.46 heas /* no checksum */
796 1.46 heas if (uh->uh_sum == 0)
797 1.46 heas goto swcsum;
798 1.76 tsutsui csum_flags =
799 1.76 tsutsui M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
800 1.46 heas break;
801 1.46 heas default:
802 1.49 heas goto swcsum;
803 1.46 heas }
804 1.46 heas
805 1.46 heas /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
806 1.76 tsutsui csum_data = ~flags & HME_XD_RXCKSUM;
807 1.46 heas
808 1.74 tsutsui /*
809 1.74 tsutsui * If data offset is different from RX cksum start offset,
810 1.74 tsutsui * we have to deduct them.
811 1.74 tsutsui */
812 1.76 tsutsui hlen = ((char *)ip + hlen) -
813 1.74 tsutsui ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
814 1.76 tsutsui if (hlen > 1) {
815 1.46 heas uint32_t optsum;
816 1.46 heas
817 1.46 heas optsum = 0;
818 1.74 tsutsui opts = (uint16_t *)((char *)eh +
819 1.74 tsutsui ETHER_HDR_LEN + sizeof(struct ip));
820 1.46 heas
821 1.76 tsutsui while (hlen > 1) {
822 1.46 heas optsum += ntohs(*opts++);
823 1.76 tsutsui hlen -= 2;
824 1.46 heas }
825 1.46 heas while (optsum >> 16)
826 1.46 heas optsum = (optsum >> 16) + (optsum & 0xffff);
827 1.46 heas
828 1.73 tsutsui /* Deduct the ip opts sum from the hwsum. */
829 1.76 tsutsui csum_data += (uint16_t)~optsum;
830 1.46 heas
831 1.76 tsutsui while (csum_data >> 16)
832 1.76 tsutsui csum_data =
833 1.76 tsutsui (csum_data >> 16) + (csum_data & 0xffff);
834 1.46 heas }
835 1.76 tsutsui m0->m_pkthdr.csum_data = csum_data;
836 1.76 tsutsui }
837 1.49 heas swcsum:
838 1.76 tsutsui m0->m_pkthdr.csum_flags = csum_flags;
839 1.49 heas #endif
840 1.46 heas
841 1.28 tron return (m0);
842 1.28 tron
843 1.28 tron bad:
844 1.28 tron m_freem(m0);
845 1.28 tron return (0);
846 1.28 tron }
847 1.28 tron
848 1.28 tron /*
849 1.28 tron * Pass a packet to the higher levels.
850 1.28 tron */
851 1.28 tron void
852 1.75 tsutsui hme_read(struct hme_softc *sc, int ix, uint32_t flags)
853 1.28 tron {
854 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
855 1.28 tron struct mbuf *m;
856 1.46 heas int len;
857 1.28 tron
858 1.46 heas len = HME_XD_DECODE_RSIZE(flags);
859 1.28 tron if (len <= sizeof(struct ether_header) ||
860 1.28 tron len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
861 1.28 tron ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
862 1.28 tron ETHERMTU + sizeof(struct ether_header))) {
863 1.28 tron #ifdef HMEDEBUG
864 1.28 tron printf("%s: invalid packet size %d; dropping\n",
865 1.64 cegger device_xname(&sc->sc_dev), len);
866 1.28 tron #endif
867 1.28 tron ifp->if_ierrors++;
868 1.28 tron return;
869 1.28 tron }
870 1.28 tron
871 1.28 tron /* Pull packet off interface. */
872 1.46 heas m = hme_get(sc, ix, flags);
873 1.28 tron if (m == 0) {
874 1.28 tron ifp->if_ierrors++;
875 1.28 tron return;
876 1.28 tron }
877 1.28 tron
878 1.28 tron ifp->if_ipackets++;
879 1.28 tron
880 1.28 tron #if NBPFILTER > 0
881 1.28 tron /*
882 1.28 tron * Check if there's a BPF listener on this interface.
883 1.28 tron * If so, hand off the raw packet to BPF.
884 1.28 tron */
885 1.28 tron if (ifp->if_bpf)
886 1.28 tron bpf_mtap(ifp->if_bpf, m);
887 1.28 tron #endif
888 1.28 tron
889 1.28 tron /* Pass the packet up. */
890 1.28 tron (*ifp->if_input)(ifp, m);
891 1.28 tron }
892 1.28 tron
893 1.1 pk void
894 1.71 dsl hme_start(struct ifnet *ifp)
895 1.1 pk {
896 1.1 pk struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
897 1.56 christos void *txd = sc->sc_rb.rb_txd;
898 1.1 pk struct mbuf *m;
899 1.46 heas unsigned int txflags;
900 1.28 tron unsigned int ri, len;
901 1.28 tron unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
902 1.1 pk
903 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
904 1.1 pk return;
905 1.1 pk
906 1.28 tron ri = sc->sc_rb.rb_tdhead;
907 1.28 tron
908 1.28 tron for (;;) {
909 1.28 tron IFQ_DEQUEUE(&ifp->if_snd, m);
910 1.28 tron if (m == 0)
911 1.1 pk break;
912 1.1 pk
913 1.1 pk #if NBPFILTER > 0
914 1.1 pk /*
915 1.1 pk * If BPF is listening on this interface, let it see the
916 1.1 pk * packet before we commit it to the wire.
917 1.1 pk */
918 1.1 pk if (ifp->if_bpf)
919 1.1 pk bpf_mtap(ifp->if_bpf, m);
920 1.1 pk #endif
921 1.1 pk
922 1.49 heas #ifdef INET
923 1.46 heas /* collect bits for h/w csum, before hme_put frees the mbuf */
924 1.46 heas if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
925 1.46 heas m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
926 1.46 heas struct ether_header *eh;
927 1.46 heas uint16_t offset, start;
928 1.46 heas
929 1.46 heas eh = mtod(m, struct ether_header *);
930 1.46 heas switch (ntohs(eh->ether_type)) {
931 1.46 heas case ETHERTYPE_IP:
932 1.46 heas start = ETHER_HDR_LEN;
933 1.46 heas break;
934 1.46 heas case ETHERTYPE_VLAN:
935 1.46 heas start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
936 1.46 heas break;
937 1.46 heas default:
938 1.46 heas /* unsupported, drop it */
939 1.46 heas m_free(m);
940 1.46 heas continue;
941 1.46 heas }
942 1.47 thorpej start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
943 1.47 thorpej offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
944 1.47 thorpej + start;
945 1.46 heas txflags = HME_XD_TXCKSUM |
946 1.46 heas (offset << HME_XD_TXCSSTUFFSHIFT) |
947 1.46 heas (start << HME_XD_TXCSSTARTSHIFT);
948 1.46 heas } else
949 1.49 heas #endif
950 1.46 heas txflags = 0;
951 1.46 heas
952 1.28 tron /*
953 1.28 tron * Copy the mbuf chain into the transmit buffer.
954 1.28 tron */
955 1.28 tron len = hme_put(sc, ri, m);
956 1.28 tron
957 1.28 tron /*
958 1.28 tron * Initialize transmit registers and start transmission
959 1.28 tron */
960 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
961 1.28 tron HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
962 1.46 heas HME_XD_ENCODE_TSIZE(len) | txflags);
963 1.28 tron
964 1.28 tron /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
965 1.28 tron bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
966 1.28 tron HME_ETX_TP_DMAWAKEUP);
967 1.28 tron
968 1.28 tron if (++ri == ntbuf)
969 1.28 tron ri = 0;
970 1.28 tron
971 1.28 tron if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
972 1.26 tron ifp->if_flags |= IFF_OACTIVE;
973 1.26 tron break;
974 1.26 tron }
975 1.1 pk }
976 1.1 pk
977 1.28 tron sc->sc_rb.rb_tdhead = ri;
978 1.1 pk }
979 1.1 pk
980 1.1 pk /*
981 1.1 pk * Transmit interrupt.
982 1.1 pk */
983 1.1 pk int
984 1.71 dsl hme_tint(struct hme_softc *sc)
985 1.1 pk {
986 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
987 1.28 tron bus_space_tag_t t = sc->sc_bustag;
988 1.28 tron bus_space_handle_t mac = sc->sc_mac;
989 1.1 pk unsigned int ri, txflags;
990 1.28 tron
991 1.28 tron /*
992 1.28 tron * Unload collision counters
993 1.28 tron */
994 1.28 tron ifp->if_collisions +=
995 1.28 tron bus_space_read_4(t, mac, HME_MACI_NCCNT) +
996 1.77 jdc bus_space_read_4(t, mac, HME_MACI_FCCNT);
997 1.77 jdc ifp->if_oerrors +=
998 1.28 tron bus_space_read_4(t, mac, HME_MACI_EXCNT) +
999 1.28 tron bus_space_read_4(t, mac, HME_MACI_LTCNT);
1000 1.28 tron
1001 1.28 tron /*
1002 1.28 tron * then clear the hardware counters.
1003 1.28 tron */
1004 1.28 tron bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1005 1.28 tron bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1006 1.28 tron bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1007 1.28 tron bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1008 1.1 pk
1009 1.1 pk /* Fetch current position in the transmit ring */
1010 1.28 tron ri = sc->sc_rb.rb_tdtail;
1011 1.1 pk
1012 1.1 pk for (;;) {
1013 1.28 tron if (sc->sc_rb.rb_td_nbusy <= 0)
1014 1.1 pk break;
1015 1.1 pk
1016 1.15 eeh txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1017 1.1 pk
1018 1.1 pk if (txflags & HME_XD_OWN)
1019 1.1 pk break;
1020 1.1 pk
1021 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
1022 1.28 tron ifp->if_opackets++;
1023 1.26 tron
1024 1.28 tron if (++ri == sc->sc_rb.rb_ntbuf)
1025 1.1 pk ri = 0;
1026 1.1 pk
1027 1.28 tron --sc->sc_rb.rb_td_nbusy;
1028 1.1 pk }
1029 1.1 pk
1030 1.3 pk /* Update ring */
1031 1.28 tron sc->sc_rb.rb_tdtail = ri;
1032 1.1 pk
1033 1.1 pk hme_start(ifp);
1034 1.1 pk
1035 1.28 tron if (sc->sc_rb.rb_td_nbusy == 0)
1036 1.1 pk ifp->if_timer = 0;
1037 1.1 pk
1038 1.1 pk return (1);
1039 1.1 pk }
1040 1.1 pk
1041 1.1 pk /*
1042 1.1 pk * Receive interrupt.
1043 1.1 pk */
1044 1.1 pk int
1045 1.71 dsl hme_rint(struct hme_softc *sc)
1046 1.1 pk {
1047 1.77 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1048 1.77 jdc bus_space_tag_t t = sc->sc_bustag;
1049 1.77 jdc bus_space_handle_t mac = sc->sc_mac;
1050 1.56 christos void *xdr = sc->sc_rb.rb_rxd;
1051 1.28 tron unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1052 1.46 heas unsigned int ri;
1053 1.75 tsutsui uint32_t flags;
1054 1.1 pk
1055 1.28 tron ri = sc->sc_rb.rb_rdtail;
1056 1.1 pk
1057 1.1 pk /*
1058 1.1 pk * Process all buffers with valid data.
1059 1.1 pk */
1060 1.1 pk for (;;) {
1061 1.28 tron flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1062 1.1 pk if (flags & HME_XD_OWN)
1063 1.1 pk break;
1064 1.1 pk
1065 1.4 pk if (flags & HME_XD_OFL) {
1066 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1067 1.64 cegger device_xname(&sc->sc_dev), ri, flags);
1068 1.46 heas } else
1069 1.46 heas hme_read(sc, ri, flags);
1070 1.1 pk
1071 1.28 tron /* This buffer can be used by the hardware again */
1072 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1073 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1074 1.26 tron
1075 1.28 tron if (++ri == nrbuf)
1076 1.1 pk ri = 0;
1077 1.1 pk }
1078 1.1 pk
1079 1.28 tron sc->sc_rb.rb_rdtail = ri;
1080 1.28 tron
1081 1.77 jdc /* Read error counters ... */
1082 1.77 jdc ifp->if_ierrors +=
1083 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1084 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1085 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1086 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1087 1.77 jdc
1088 1.77 jdc /* ... then clear the hardware counters. */
1089 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1090 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1091 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1092 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1093 1.1 pk return (1);
1094 1.1 pk }
1095 1.1 pk
1096 1.1 pk int
1097 1.71 dsl hme_eint(struct hme_softc *sc, u_int status)
1098 1.1 pk {
1099 1.77 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1100 1.1 pk char bits[128];
1101 1.1 pk
1102 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1103 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1104 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1105 1.75 tsutsui uint32_t cf, st, sm;
1106 1.33 pk cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1107 1.33 pk st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1108 1.33 pk sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1109 1.33 pk printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1110 1.64 cegger device_xname(&sc->sc_dev), cf, st, sm);
1111 1.1 pk return (1);
1112 1.1 pk }
1113 1.77 jdc
1114 1.77 jdc /* Receive error counters rolled over */
1115 1.77 jdc if (status & HME_SEB_STAT_ACNTEXP)
1116 1.77 jdc ifp->if_ierrors += 0xff;
1117 1.77 jdc if (status & HME_SEB_STAT_CCNTEXP)
1118 1.77 jdc ifp->if_ierrors += 0xff;
1119 1.77 jdc if (status & HME_SEB_STAT_LCNTEXP)
1120 1.77 jdc ifp->if_ierrors += 0xff;
1121 1.77 jdc if (status & HME_SEB_STAT_CVCNTEXP)
1122 1.77 jdc ifp->if_ierrors += 0xff;
1123 1.77 jdc
1124 1.77 jdc /* RXTERR locks up the interface, so do a reset */
1125 1.77 jdc if (status & HME_SEB_STAT_RXTERR)
1126 1.77 jdc hme_reset(sc);
1127 1.77 jdc
1128 1.68 christos snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1129 1.68 christos printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
1130 1.68 christos
1131 1.1 pk return (1);
1132 1.1 pk }
1133 1.1 pk
1134 1.1 pk int
1135 1.71 dsl hme_intr(void *v)
1136 1.1 pk {
1137 1.1 pk struct hme_softc *sc = (struct hme_softc *)v;
1138 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1139 1.1 pk bus_space_handle_t seb = sc->sc_seb;
1140 1.75 tsutsui uint32_t status;
1141 1.1 pk int r = 0;
1142 1.1 pk
1143 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1144 1.1 pk
1145 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1146 1.1 pk r |= hme_eint(sc, status);
1147 1.1 pk
1148 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1149 1.1 pk r |= hme_tint(sc);
1150 1.1 pk
1151 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1152 1.1 pk r |= hme_rint(sc);
1153 1.1 pk
1154 1.40 abs #if NRND > 0
1155 1.40 abs rnd_add_uint32(&sc->rnd_source, status);
1156 1.40 abs #endif
1157 1.40 abs
1158 1.1 pk return (r);
1159 1.1 pk }
1160 1.1 pk
1161 1.1 pk
1162 1.1 pk void
1163 1.71 dsl hme_watchdog(struct ifnet *ifp)
1164 1.1 pk {
1165 1.1 pk struct hme_softc *sc = ifp->if_softc;
1166 1.1 pk
1167 1.64 cegger log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
1168 1.1 pk ++ifp->if_oerrors;
1169 1.1 pk
1170 1.1 pk hme_reset(sc);
1171 1.4 pk }
1172 1.4 pk
1173 1.4 pk /*
1174 1.4 pk * Initialize the MII Management Interface
1175 1.4 pk */
1176 1.4 pk void
1177 1.71 dsl hme_mifinit(struct hme_softc *sc)
1178 1.4 pk {
1179 1.4 pk bus_space_tag_t t = sc->sc_bustag;
1180 1.4 pk bus_space_handle_t mif = sc->sc_mif;
1181 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1182 1.33 pk int instance, phy;
1183 1.75 tsutsui uint32_t v;
1184 1.4 pk
1185 1.61 dyoung if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1186 1.61 dyoung instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1187 1.33 pk phy = sc->sc_phys[instance];
1188 1.33 pk } else
1189 1.33 pk /* No media set yet, pick phy arbitrarily.. */
1190 1.33 pk phy = HME_PHYAD_EXTERNAL;
1191 1.33 pk
1192 1.33 pk /* Configure the MIF in frame mode, no poll, current phy select */
1193 1.33 pk v = 0;
1194 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1195 1.33 pk v |= HME_MIF_CFG_PHY;
1196 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1197 1.35 pk
1198 1.35 pk /* If an external transceiver is selected, enable its MII drivers */
1199 1.35 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1200 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1201 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1202 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1203 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1204 1.1 pk }
1205 1.1 pk
1206 1.1 pk /*
1207 1.1 pk * MII interface
1208 1.1 pk */
1209 1.1 pk static int
1210 1.72 dsl hme_mii_readreg(struct device *self, int phy, int reg)
1211 1.1 pk {
1212 1.1 pk struct hme_softc *sc = (void *)self;
1213 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1214 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1215 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1216 1.75 tsutsui uint32_t v, xif_cfg, mifi_cfg;
1217 1.1 pk int n;
1218 1.1 pk
1219 1.33 pk /* We can at most have two PHYs */
1220 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1221 1.32 martin return (0);
1222 1.32 martin
1223 1.5 pk /* Select the desired PHY in the MIF configuration register */
1224 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1225 1.5 pk v &= ~HME_MIF_CFG_PHY;
1226 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1227 1.5 pk v |= HME_MIF_CFG_PHY;
1228 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1229 1.5 pk
1230 1.42 heas /* Enable MII drivers on external transceiver */
1231 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1232 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1233 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1234 1.35 pk else
1235 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1236 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1237 1.35 pk
1238 1.33 pk #if 0
1239 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1240 1.33 pk /*
1241 1.33 pk * Check whether a transceiver is connected by testing
1242 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1243 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1244 1.33 pk */
1245 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1246 1.33 pk delay(100);
1247 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1248 1.33 pk if ((v & mif_mdi_bit) == 0)
1249 1.33 pk return (0);
1250 1.33 pk #endif
1251 1.33 pk
1252 1.1 pk /* Construct the frame command */
1253 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1254 1.1 pk HME_MIF_FO_TAMSB |
1255 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1256 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1257 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
1258 1.1 pk
1259 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1260 1.1 pk for (n = 0; n < 100; n++) {
1261 1.2 pk DELAY(1);
1262 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1263 1.33 pk if (v & HME_MIF_FO_TALSB) {
1264 1.33 pk v &= HME_MIF_FO_DATA;
1265 1.33 pk goto out;
1266 1.33 pk }
1267 1.1 pk }
1268 1.1 pk
1269 1.33 pk v = 0;
1270 1.64 cegger printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
1271 1.33 pk
1272 1.33 pk out:
1273 1.33 pk /* Restore MIFI_CFG register */
1274 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1275 1.35 pk /* Restore XIF register */
1276 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1277 1.33 pk return (v);
1278 1.1 pk }
1279 1.1 pk
1280 1.1 pk static void
1281 1.72 dsl hme_mii_writereg(struct device *self, int phy, int reg, int val)
1282 1.1 pk {
1283 1.1 pk struct hme_softc *sc = (void *)self;
1284 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1285 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1286 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1287 1.75 tsutsui uint32_t v, xif_cfg, mifi_cfg;
1288 1.1 pk int n;
1289 1.32 martin
1290 1.33 pk /* We can at most have two PHYs */
1291 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1292 1.32 martin return;
1293 1.1 pk
1294 1.5 pk /* Select the desired PHY in the MIF configuration register */
1295 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1296 1.5 pk v &= ~HME_MIF_CFG_PHY;
1297 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1298 1.5 pk v |= HME_MIF_CFG_PHY;
1299 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1300 1.5 pk
1301 1.42 heas /* Enable MII drivers on external transceiver */
1302 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1303 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1304 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1305 1.35 pk else
1306 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1307 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1308 1.35 pk
1309 1.33 pk #if 0
1310 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1311 1.33 pk /*
1312 1.33 pk * Check whether a transceiver is connected by testing
1313 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1314 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1315 1.33 pk */
1316 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1317 1.33 pk delay(100);
1318 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1319 1.33 pk if ((v & mif_mdi_bit) == 0)
1320 1.33 pk return;
1321 1.33 pk #endif
1322 1.33 pk
1323 1.1 pk /* Construct the frame command */
1324 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1325 1.1 pk HME_MIF_FO_TAMSB |
1326 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1327 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1328 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
1329 1.1 pk (val & HME_MIF_FO_DATA);
1330 1.1 pk
1331 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1332 1.1 pk for (n = 0; n < 100; n++) {
1333 1.2 pk DELAY(1);
1334 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1335 1.1 pk if (v & HME_MIF_FO_TALSB)
1336 1.33 pk goto out;
1337 1.1 pk }
1338 1.1 pk
1339 1.64 cegger printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
1340 1.33 pk out:
1341 1.33 pk /* Restore MIFI_CFG register */
1342 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1343 1.35 pk /* Restore XIF register */
1344 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1345 1.1 pk }
1346 1.1 pk
1347 1.1 pk static void
1348 1.71 dsl hme_mii_statchg(struct device *dev)
1349 1.1 pk {
1350 1.3 pk struct hme_softc *sc = (void *)dev;
1351 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1352 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1353 1.75 tsutsui uint32_t v;
1354 1.1 pk
1355 1.5 pk #ifdef HMEDEBUG
1356 1.5 pk if (sc->sc_debug)
1357 1.33 pk printf("hme_mii_statchg: status change\n");
1358 1.5 pk #endif
1359 1.1 pk
1360 1.5 pk /* Set the MAC Full Duplex bit appropriately */
1361 1.30 martin /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1362 1.30 martin but not otherwise. */
1363 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1364 1.30 martin if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1365 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
1366 1.30 martin sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1367 1.30 martin } else {
1368 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
1369 1.30 martin sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1370 1.30 martin }
1371 1.41 heas sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1372 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1373 1.5 pk }
1374 1.5 pk
1375 1.5 pk int
1376 1.71 dsl hme_mediachange(struct ifnet *ifp)
1377 1.5 pk {
1378 1.5 pk struct hme_softc *sc = ifp->if_softc;
1379 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1380 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1381 1.33 pk bus_space_handle_t mac = sc->sc_mac;
1382 1.33 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1383 1.33 pk int phy = sc->sc_phys[instance];
1384 1.61 dyoung int rc;
1385 1.75 tsutsui uint32_t v;
1386 1.5 pk
1387 1.33 pk #ifdef HMEDEBUG
1388 1.33 pk if (sc->sc_debug)
1389 1.33 pk printf("hme_mediachange: phy = %d\n", phy);
1390 1.33 pk #endif
1391 1.33 pk
1392 1.33 pk /* Select the current PHY in the MIF configuration register */
1393 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1394 1.33 pk v &= ~HME_MIF_CFG_PHY;
1395 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1396 1.33 pk v |= HME_MIF_CFG_PHY;
1397 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1398 1.33 pk
1399 1.33 pk /* If an external transceiver is selected, enable its MII drivers */
1400 1.33 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1401 1.33 pk v &= ~HME_MAC_XIF_MIIENABLE;
1402 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1403 1.33 pk v |= HME_MAC_XIF_MIIENABLE;
1404 1.33 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1405 1.5 pk
1406 1.61 dyoung if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1407 1.61 dyoung return 0;
1408 1.61 dyoung return rc;
1409 1.1 pk }
1410 1.1 pk
1411 1.1 pk /*
1412 1.1 pk * Process an ioctl request.
1413 1.1 pk */
1414 1.1 pk int
1415 1.67 dyoung hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1416 1.1 pk {
1417 1.1 pk struct hme_softc *sc = ifp->if_softc;
1418 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1419 1.1 pk int s, error = 0;
1420 1.1 pk
1421 1.1 pk s = splnet();
1422 1.1 pk
1423 1.1 pk switch (cmd) {
1424 1.1 pk
1425 1.67 dyoung case SIOCINITIFADDR:
1426 1.1 pk switch (ifa->ifa_addr->sa_family) {
1427 1.1 pk #ifdef INET
1428 1.1 pk case AF_INET:
1429 1.41 heas if (ifp->if_flags & IFF_UP)
1430 1.41 heas hme_setladrf(sc);
1431 1.41 heas else {
1432 1.41 heas ifp->if_flags |= IFF_UP;
1433 1.61 dyoung error = hme_init(sc);
1434 1.41 heas }
1435 1.1 pk arp_ifinit(ifp, ifa);
1436 1.1 pk break;
1437 1.1 pk #endif
1438 1.1 pk default:
1439 1.41 heas ifp->if_flags |= IFF_UP;
1440 1.61 dyoung error = hme_init(sc);
1441 1.1 pk break;
1442 1.1 pk }
1443 1.1 pk break;
1444 1.1 pk
1445 1.1 pk case SIOCSIFFLAGS:
1446 1.45 heas #ifdef HMEDEBUG
1447 1.67 dyoung {
1448 1.67 dyoung struct ifreq *ifr = data;
1449 1.67 dyoung sc->sc_debug =
1450 1.67 dyoung (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1451 1.67 dyoung }
1452 1.45 heas #endif
1453 1.67 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1454 1.67 dyoung break;
1455 1.45 heas
1456 1.67 dyoung switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1457 1.67 dyoung case IFF_RUNNING:
1458 1.1 pk /*
1459 1.1 pk * If interface is marked down and it is running, then
1460 1.1 pk * stop it.
1461 1.1 pk */
1462 1.58 martin hme_stop(sc, false);
1463 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1464 1.67 dyoung break;
1465 1.67 dyoung case IFF_UP:
1466 1.1 pk /*
1467 1.1 pk * If interface is marked up and it is stopped, then
1468 1.1 pk * start it.
1469 1.1 pk */
1470 1.61 dyoung error = hme_init(sc);
1471 1.67 dyoung break;
1472 1.67 dyoung case IFF_UP|IFF_RUNNING:
1473 1.1 pk /*
1474 1.41 heas * If setting debug or promiscuous mode, do not reset
1475 1.41 heas * the chip; for everything else, call hme_init()
1476 1.41 heas * which will trigger a reset.
1477 1.1 pk */
1478 1.41 heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1479 1.46 heas if (ifp->if_flags != sc->sc_if_flags) {
1480 1.45 heas if ((ifp->if_flags & (~RESETIGN))
1481 1.45 heas == (sc->sc_if_flags & (~RESETIGN)))
1482 1.45 heas hme_setladrf(sc);
1483 1.45 heas else
1484 1.61 dyoung error = hme_init(sc);
1485 1.45 heas }
1486 1.41 heas #undef RESETIGN
1487 1.67 dyoung break;
1488 1.67 dyoung case 0:
1489 1.67 dyoung break;
1490 1.1 pk }
1491 1.45 heas
1492 1.45 heas if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1493 1.61 dyoung error = hme_init(sc);
1494 1.45 heas
1495 1.1 pk break;
1496 1.1 pk
1497 1.63 dyoung default:
1498 1.63 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1499 1.63 dyoung break;
1500 1.63 dyoung
1501 1.63 dyoung error = 0;
1502 1.63 dyoung
1503 1.63 dyoung if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1504 1.63 dyoung ;
1505 1.63 dyoung else if (ifp->if_flags & IFF_RUNNING) {
1506 1.1 pk /*
1507 1.1 pk * Multicast list has changed; set the hardware filter
1508 1.1 pk * accordingly.
1509 1.1 pk */
1510 1.63 dyoung hme_setladrf(sc);
1511 1.1 pk }
1512 1.1 pk break;
1513 1.1 pk }
1514 1.1 pk
1515 1.41 heas sc->sc_if_flags = ifp->if_flags;
1516 1.1 pk splx(s);
1517 1.1 pk return (error);
1518 1.1 pk }
1519 1.1 pk
1520 1.1 pk void
1521 1.71 dsl hme_shutdown(void *arg)
1522 1.1 pk {
1523 1.28 tron
1524 1.58 martin hme_stop((struct hme_softc *)arg, false);
1525 1.1 pk }
1526 1.1 pk
1527 1.1 pk /*
1528 1.1 pk * Set up the logical address filter.
1529 1.1 pk */
1530 1.1 pk void
1531 1.71 dsl hme_setladrf(struct hme_softc *sc)
1532 1.1 pk {
1533 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1534 1.1 pk struct ether_multi *enm;
1535 1.1 pk struct ether_multistep step;
1536 1.28 tron struct ethercom *ec = &sc->sc_ethercom;
1537 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1538 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1539 1.1 pk u_char *cp;
1540 1.75 tsutsui uint32_t crc;
1541 1.75 tsutsui uint32_t hash[4];
1542 1.75 tsutsui uint32_t v;
1543 1.1 pk int len;
1544 1.1 pk
1545 1.14 pk /* Clear hash table */
1546 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1547 1.14 pk
1548 1.14 pk /* Get current RX configuration */
1549 1.14 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1550 1.14 pk
1551 1.14 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1552 1.14 pk /* Turn on promiscuous mode; turn off the hash filter */
1553 1.14 pk v |= HME_MAC_RXCFG_PMISC;
1554 1.14 pk v &= ~HME_MAC_RXCFG_HENABLE;
1555 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1556 1.14 pk goto chipit;
1557 1.14 pk }
1558 1.14 pk
1559 1.14 pk /* Turn off promiscuous mode; turn on the hash filter */
1560 1.14 pk v &= ~HME_MAC_RXCFG_PMISC;
1561 1.14 pk v |= HME_MAC_RXCFG_HENABLE;
1562 1.14 pk
1563 1.1 pk /*
1564 1.1 pk * Set up multicast address filter by passing all multicast addresses
1565 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1566 1.1 pk * index into the 64 bit logical address filter. The high order bit
1567 1.1 pk * selects the word, while the rest of the bits select the bit within
1568 1.1 pk * the word.
1569 1.1 pk */
1570 1.1 pk
1571 1.28 tron ETHER_FIRST_MULTI(step, ec, enm);
1572 1.1 pk while (enm != NULL) {
1573 1.70 tsutsui if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1574 1.1 pk /*
1575 1.1 pk * We must listen to a range of multicast addresses.
1576 1.1 pk * For now, just accept all multicasts, rather than
1577 1.1 pk * trying to set only those filter bits needed to match
1578 1.1 pk * the range. (At this time, the only use of address
1579 1.1 pk * ranges is for IP multicast routing, for which the
1580 1.1 pk * range is big enough to require all bits set.)
1581 1.1 pk */
1582 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1583 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1584 1.14 pk goto chipit;
1585 1.1 pk }
1586 1.1 pk
1587 1.1 pk cp = enm->enm_addrlo;
1588 1.1 pk crc = 0xffffffff;
1589 1.1 pk for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1590 1.1 pk int octet = *cp++;
1591 1.1 pk int i;
1592 1.1 pk
1593 1.1 pk #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1594 1.1 pk for (i = 0; i < 8; i++) {
1595 1.1 pk if ((crc & 1) ^ (octet & 1)) {
1596 1.1 pk crc >>= 1;
1597 1.1 pk crc ^= MC_POLY_LE;
1598 1.1 pk } else {
1599 1.1 pk crc >>= 1;
1600 1.1 pk }
1601 1.1 pk octet >>= 1;
1602 1.1 pk }
1603 1.1 pk }
1604 1.1 pk /* Just want the 6 most significant bits. */
1605 1.1 pk crc >>= 26;
1606 1.1 pk
1607 1.1 pk /* Set the corresponding bit in the filter. */
1608 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1609 1.1 pk
1610 1.1 pk ETHER_NEXT_MULTI(step, enm);
1611 1.1 pk }
1612 1.1 pk
1613 1.14 pk ifp->if_flags &= ~IFF_ALLMULTI;
1614 1.14 pk
1615 1.14 pk chipit:
1616 1.14 pk /* Now load the hash table into the chip */
1617 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1618 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1619 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1620 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1621 1.14 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1622 1.1 pk }
1623 1.1 pk
1624 1.28 tron /*
1625 1.28 tron * Routines for accessing the transmit and receive buffers.
1626 1.28 tron * The various CPU and adapter configurations supported by this
1627 1.28 tron * driver require three different access methods for buffers
1628 1.28 tron * and descriptors:
1629 1.28 tron * (1) contig (contiguous data; no padding),
1630 1.28 tron * (2) gap2 (two bytes of data followed by two bytes of padding),
1631 1.28 tron * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1632 1.28 tron */
1633 1.28 tron
1634 1.28 tron #if 0
1635 1.28 tron /*
1636 1.28 tron * contig: contiguous data with no padding.
1637 1.28 tron *
1638 1.28 tron * Buffers may have any alignment.
1639 1.28 tron */
1640 1.28 tron
1641 1.28 tron void
1642 1.72 dsl hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1643 1.26 tron {
1644 1.56 christos volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1645 1.26 tron
1646 1.1 pk /*
1647 1.28 tron * Just call memcpy() to do the work.
1648 1.1 pk */
1649 1.28 tron memcpy(buf, from, len);
1650 1.1 pk }
1651 1.1 pk
1652 1.28 tron void
1653 1.72 dsl hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1654 1.1 pk {
1655 1.56 christos volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1656 1.26 tron
1657 1.28 tron /*
1658 1.28 tron * Just call memcpy() to do the work.
1659 1.28 tron */
1660 1.28 tron memcpy(to, buf, len);
1661 1.1 pk }
1662 1.28 tron #endif
1663