Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.8
      1  1.8       pk /*	$NetBSD: hme.c,v 1.8 2000/02/14 17:14:28 pk Exp $	*/
      2  1.1       pk 
      3  1.1       pk /*-
      4  1.1       pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  1.1       pk  * All rights reserved.
      6  1.1       pk  *
      7  1.1       pk  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1       pk  * by Paul Kranenburg.
      9  1.1       pk  *
     10  1.1       pk  * Redistribution and use in source and binary forms, with or without
     11  1.1       pk  * modification, are permitted provided that the following conditions
     12  1.1       pk  * are met:
     13  1.1       pk  * 1. Redistributions of source code must retain the above copyright
     14  1.1       pk  *    notice, this list of conditions and the following disclaimer.
     15  1.1       pk  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1       pk  *    notice, this list of conditions and the following disclaimer in the
     17  1.1       pk  *    documentation and/or other materials provided with the distribution.
     18  1.1       pk  * 3. All advertising materials mentioning features or use of this software
     19  1.1       pk  *    must display the following acknowledgement:
     20  1.1       pk  *        This product includes software developed by the NetBSD
     21  1.1       pk  *        Foundation, Inc. and its contributors.
     22  1.1       pk  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.1       pk  *    contributors may be used to endorse or promote products derived
     24  1.1       pk  *    from this software without specific prior written permission.
     25  1.1       pk  *
     26  1.1       pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.1       pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.1       pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.1       pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.1       pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.1       pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.1       pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.1       pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.1       pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.1       pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.1       pk  * POSSIBILITY OF SUCH DAMAGE.
     37  1.1       pk  */
     38  1.1       pk 
     39  1.1       pk /*
     40  1.1       pk  * HME Ethernet module driver.
     41  1.1       pk  */
     42  1.1       pk 
     43  1.1       pk #define HMEDEBUG
     44  1.1       pk 
     45  1.1       pk #include "opt_inet.h"
     46  1.1       pk #include "opt_ns.h"
     47  1.1       pk #include "bpfilter.h"
     48  1.1       pk #include "rnd.h"
     49  1.1       pk 
     50  1.1       pk #include <sys/param.h>
     51  1.1       pk #include <sys/systm.h>
     52  1.5       pk #include <sys/kernel.h>
     53  1.1       pk #include <sys/mbuf.h>
     54  1.1       pk #include <sys/syslog.h>
     55  1.1       pk #include <sys/socket.h>
     56  1.1       pk #include <sys/device.h>
     57  1.1       pk #include <sys/malloc.h>
     58  1.1       pk #include <sys/ioctl.h>
     59  1.1       pk #include <sys/errno.h>
     60  1.1       pk #if NRND > 0
     61  1.1       pk #include <sys/rnd.h>
     62  1.1       pk #endif
     63  1.1       pk 
     64  1.1       pk #include <net/if.h>
     65  1.1       pk #include <net/if_dl.h>
     66  1.1       pk #include <net/if_ether.h>
     67  1.1       pk #include <net/if_media.h>
     68  1.1       pk 
     69  1.1       pk #ifdef INET
     70  1.1       pk #include <netinet/in.h>
     71  1.1       pk #include <netinet/if_inarp.h>
     72  1.1       pk #include <netinet/in_systm.h>
     73  1.1       pk #include <netinet/in_var.h>
     74  1.1       pk #include <netinet/ip.h>
     75  1.1       pk #endif
     76  1.1       pk 
     77  1.1       pk #ifdef NS
     78  1.1       pk #include <netns/ns.h>
     79  1.1       pk #include <netns/ns_if.h>
     80  1.1       pk #endif
     81  1.1       pk 
     82  1.1       pk #if NBPFILTER > 0
     83  1.1       pk #include <net/bpf.h>
     84  1.1       pk #include <net/bpfdesc.h>
     85  1.1       pk #endif
     86  1.1       pk 
     87  1.1       pk #include <dev/mii/mii.h>
     88  1.1       pk #include <dev/mii/miivar.h>
     89  1.1       pk 
     90  1.1       pk #include <machine/bus.h>
     91  1.1       pk 
     92  1.1       pk #include <dev/ic/hmereg.h>
     93  1.1       pk #include <dev/ic/hmevar.h>
     94  1.1       pk 
     95  1.1       pk void		hme_start __P((struct ifnet *));
     96  1.1       pk void		hme_stop __P((struct hme_softc *));
     97  1.1       pk int		hme_ioctl __P((struct ifnet *, u_long, caddr_t));
     98  1.5       pk void		hme_tick __P((void *));
     99  1.1       pk void		hme_watchdog __P((struct ifnet *));
    100  1.1       pk void		hme_shutdown __P((void *));
    101  1.1       pk void		hme_init __P((struct hme_softc *));
    102  1.1       pk void		hme_meminit __P((struct hme_softc *));
    103  1.4       pk void		hme_mifinit __P((struct hme_softc *));
    104  1.1       pk void		hme_reset __P((struct hme_softc *));
    105  1.1       pk void		hme_setladrf __P((struct hme_softc *));
    106  1.1       pk 
    107  1.1       pk /* MII methods & callbacks */
    108  1.1       pk static int	hme_mii_readreg __P((struct device *, int, int));
    109  1.1       pk static void	hme_mii_writereg __P((struct device *, int, int, int));
    110  1.1       pk static void	hme_mii_statchg __P((struct device *));
    111  1.1       pk 
    112  1.1       pk int		hme_mediachange __P((struct ifnet *));
    113  1.1       pk void		hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
    114  1.1       pk 
    115  1.1       pk struct mbuf	*hme_get __P((struct hme_softc *, int, int));
    116  1.1       pk int		hme_put __P((struct hme_softc *, int, struct mbuf *));
    117  1.1       pk void		hme_read __P((struct hme_softc *, int, int));
    118  1.1       pk int		hme_eint __P((struct hme_softc *, u_int));
    119  1.1       pk int		hme_rint __P((struct hme_softc *));
    120  1.1       pk int		hme_tint __P((struct hme_softc *));
    121  1.1       pk 
    122  1.1       pk static int	ether_cmp __P((u_char *, u_char *));
    123  1.1       pk 
    124  1.1       pk /* Default buffer copy routines */
    125  1.1       pk void	hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
    126  1.1       pk void	hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
    127  1.1       pk void	hme_zerobuf_contig __P((struct hme_softc *, int, int));
    128  1.1       pk 
    129  1.1       pk 
    130  1.1       pk void
    131  1.1       pk hme_config(sc)
    132  1.1       pk 	struct hme_softc *sc;
    133  1.1       pk {
    134  1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    135  1.1       pk 	struct mii_data *mii = &sc->sc_mii;
    136  1.5       pk 	struct mii_softc *child;
    137  1.1       pk 	bus_dma_segment_t seg;
    138  1.1       pk 	bus_size_t size;
    139  1.1       pk 	int rseg, error;
    140  1.1       pk 
    141  1.1       pk 	/*
    142  1.1       pk 	 * HME common initialization.
    143  1.1       pk 	 *
    144  1.1       pk 	 * hme_softc fields that must be initialized by the front-end:
    145  1.1       pk 	 *
    146  1.1       pk 	 * the bus tag:
    147  1.1       pk 	 *	sc_bustag
    148  1.1       pk 	 *
    149  1.1       pk 	 * the dma bus tag:
    150  1.1       pk 	 *	sc_dmatag
    151  1.1       pk 	 *
    152  1.1       pk 	 * the bus handles:
    153  1.1       pk 	 *	sc_seb		(Shared Ethernet Block registers)
    154  1.1       pk 	 *	sc_erx		(Receiver Unit registers)
    155  1.1       pk 	 *	sc_etx		(Transmitter Unit registers)
    156  1.1       pk 	 *	sc_mac		(MAC registers)
    157  1.1       pk 	 *	sc_mif		(Managment Interface registers)
    158  1.1       pk 	 *
    159  1.1       pk 	 * the maximum bus burst size:
    160  1.1       pk 	 *	sc_burst
    161  1.1       pk 	 *
    162  1.1       pk 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    163  1.1       pk 	 *	rb_membase, rb_dmabase)
    164  1.1       pk 	 *
    165  1.1       pk 	 * the local Ethernet address:
    166  1.1       pk 	 *	sc_enaddr
    167  1.1       pk 	 *
    168  1.1       pk 	 */
    169  1.1       pk 
    170  1.1       pk 	/* Make sure the chip is stopped. */
    171  1.1       pk 	hme_stop(sc);
    172  1.1       pk 
    173  1.1       pk 
    174  1.1       pk 	/*
    175  1.1       pk 	 * Allocate descriptors and buffers
    176  1.1       pk 	 * XXX - do all this differently.. and more configurably,
    177  1.1       pk 	 * eg. use things as `dma_load_mbuf()' on transmit,
    178  1.1       pk 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    179  1.1       pk 	 *     all the time) on the reveiver side.
    180  1.8       pk 	 *
    181  1.8       pk 	 * Note: receive buffers must be 64-byte aligned.
    182  1.8       pk 	 * Also, apparently, the buffers must extend to a DMA burst
    183  1.8       pk 	 * boundary beyond the maximum packet size.
    184  1.1       pk 	 */
    185  1.1       pk #define _HME_NDESC	32
    186  1.8       pk #define _HME_BUFSZ	1600
    187  1.1       pk 
    188  1.1       pk 	/* Note: the # of descriptors must be a multiple of 16 */
    189  1.1       pk 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    190  1.1       pk 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    191  1.1       pk 
    192  1.1       pk 	/*
    193  1.1       pk 	 * Allocate DMA capable memory
    194  1.1       pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    195  1.1       pk 	 * take this into account when calculating the size. Note that
    196  1.1       pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    197  1.1       pk 	 * so we allocate that much regardless of _HME_NDESC.
    198  1.1       pk 	 */
    199  1.1       pk 	size =	2048 +					/* TX descriptors */
    200  1.1       pk 		2048 +					/* RX descriptors */
    201  1.1       pk 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    202  1.1       pk 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* TX buffers */
    203  1.1       pk 	if ((error = bus_dmamem_alloc(sc->sc_dmatag, size,
    204  1.1       pk 				      2048, 0,
    205  1.1       pk 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    206  1.1       pk 		printf("%s: DMA buffer alloc error %d\n",
    207  1.1       pk 			sc->sc_dev.dv_xname, error);
    208  1.1       pk 	}
    209  1.1       pk 	sc->sc_rb.rb_dmabase = seg.ds_addr;
    210  1.1       pk 
    211  1.1       pk 	/* Map DMA memory in CPU adressable space */
    212  1.1       pk 	if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, size,
    213  1.1       pk 				    &sc->sc_rb.rb_membase,
    214  1.1       pk 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    215  1.1       pk 		printf("%s: DMA buffer map error %d\n",
    216  1.1       pk 			sc->sc_dev.dv_xname, error);
    217  1.1       pk 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    218  1.1       pk 		return;
    219  1.1       pk 	}
    220  1.1       pk 
    221  1.1       pk #if 0
    222  1.1       pk 	/*
    223  1.1       pk 	 * Install default copy routines if not supplied.
    224  1.1       pk 	 */
    225  1.1       pk 	if (sc->sc_copytobuf == NULL)
    226  1.1       pk 		sc->sc_copytobuf = hme_copytobuf_contig;
    227  1.1       pk 
    228  1.1       pk 	if (sc->sc_copyfrombuf == NULL)
    229  1.1       pk 		sc->sc_copyfrombuf = hme_copyfrombuf_contig;
    230  1.1       pk #endif
    231  1.1       pk 
    232  1.2       pk 	printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
    233  1.2       pk 
    234  1.1       pk 	/* Initialize ifnet structure. */
    235  1.1       pk 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    236  1.1       pk 	ifp->if_softc = sc;
    237  1.1       pk 	ifp->if_start = hme_start;
    238  1.1       pk 	ifp->if_ioctl = hme_ioctl;
    239  1.1       pk 	ifp->if_watchdog = hme_watchdog;
    240  1.1       pk 	ifp->if_flags =
    241  1.1       pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    242  1.1       pk 
    243  1.1       pk 	/* Initialize ifmedia structures and MII info */
    244  1.1       pk 	mii->mii_ifp = ifp;
    245  1.1       pk 	mii->mii_readreg = hme_mii_readreg;
    246  1.1       pk 	mii->mii_writereg = hme_mii_writereg;
    247  1.1       pk 	mii->mii_statchg = hme_mii_statchg;
    248  1.1       pk 
    249  1.1       pk 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
    250  1.1       pk 
    251  1.4       pk 	hme_mifinit(sc);
    252  1.4       pk 
    253  1.6  thorpej 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    254  1.7  thorpej 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
    255  1.2       pk 
    256  1.5       pk 	child = LIST_FIRST(&mii->mii_phys);
    257  1.5       pk 	if (child == NULL) {
    258  1.1       pk 		/* No PHY attached */
    259  1.1       pk 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    260  1.1       pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    261  1.1       pk 	} else {
    262  1.1       pk 		/*
    263  1.5       pk 		 * Walk along the list of attached MII devices and
    264  1.5       pk 		 * establish an `MII instance' to `phy number'
    265  1.5       pk 		 * mapping. We'll use this mapping in media change
    266  1.5       pk 		 * requests to determine which phy to use to program
    267  1.5       pk 		 * the MIF configuration register.
    268  1.5       pk 		 */
    269  1.5       pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    270  1.5       pk 			/*
    271  1.5       pk 			 * Note: we support just two PHYs: the built-in
    272  1.5       pk 			 * internal device and an external on the MII
    273  1.5       pk 			 * connector.
    274  1.5       pk 			 */
    275  1.5       pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    276  1.5       pk 				printf("%s: cannot accomodate MII device %s"
    277  1.5       pk 				       " at phy %d, instance %d\n",
    278  1.5       pk 				       sc->sc_dev.dv_xname,
    279  1.5       pk 				       child->mii_dev.dv_xname,
    280  1.5       pk 				       child->mii_phy, child->mii_inst);
    281  1.5       pk 				continue;
    282  1.5       pk 			}
    283  1.5       pk 
    284  1.5       pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    285  1.5       pk 		}
    286  1.5       pk 
    287  1.5       pk 		/*
    288  1.1       pk 		 * XXX - we can really do the following ONLY if the
    289  1.1       pk 		 * phy indeed has the auto negotiation capability!!
    290  1.1       pk 		 */
    291  1.1       pk 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    292  1.1       pk 	}
    293  1.1       pk 
    294  1.1       pk 	/* Attach the interface. */
    295  1.1       pk 	if_attach(ifp);
    296  1.1       pk 	ether_ifattach(ifp, sc->sc_enaddr);
    297  1.1       pk 
    298  1.1       pk #if NBPFILTER > 0
    299  1.1       pk 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
    300  1.1       pk #endif
    301  1.1       pk 
    302  1.1       pk 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    303  1.1       pk 	if (sc->sc_sh == NULL)
    304  1.1       pk 		panic("hme_config: can't establish shutdownhook");
    305  1.1       pk 
    306  1.1       pk #if 0
    307  1.1       pk 	printf("%s: %d receive buffers, %d transmit buffers\n",
    308  1.1       pk 	    sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
    309  1.1       pk 	sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
    310  1.1       pk 					M_WAITOK);
    311  1.1       pk 	sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
    312  1.1       pk 					M_WAITOK);
    313  1.1       pk #endif
    314  1.1       pk 
    315  1.1       pk #if NRND > 0
    316  1.1       pk 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    317  1.1       pk 			  RND_TYPE_NET, 0);
    318  1.1       pk #endif
    319  1.5       pk 
    320  1.5       pk 	/* Start the one second clock */
    321  1.5       pk 	timeout(hme_tick, sc, hz);
    322  1.5       pk }
    323  1.5       pk 
    324  1.5       pk void
    325  1.5       pk hme_tick(arg)
    326  1.5       pk 	void *arg;
    327  1.5       pk {
    328  1.5       pk 	struct hme_softc *sc = arg;
    329  1.5       pk 	int s;
    330  1.5       pk 
    331  1.5       pk 	s = splnet();
    332  1.5       pk 	mii_tick(&sc->sc_mii);
    333  1.5       pk 	splx(s);
    334  1.5       pk 
    335  1.5       pk 	timeout(hme_tick, sc, hz);
    336  1.1       pk }
    337  1.1       pk 
    338  1.1       pk void
    339  1.1       pk hme_reset(sc)
    340  1.1       pk 	struct hme_softc *sc;
    341  1.1       pk {
    342  1.1       pk 	int s;
    343  1.1       pk 
    344  1.1       pk 	s = splnet();
    345  1.1       pk 	hme_init(sc);
    346  1.1       pk 	splx(s);
    347  1.1       pk }
    348  1.1       pk 
    349  1.1       pk void
    350  1.1       pk hme_stop(sc)
    351  1.1       pk 	struct hme_softc *sc;
    352  1.1       pk {
    353  1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    354  1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    355  1.1       pk 	int n;
    356  1.1       pk 
    357  1.5       pk 	untimeout(hme_tick, sc);
    358  1.5       pk 	mii_down(&sc->sc_mii);
    359  1.5       pk 
    360  1.1       pk 	/* Reset transmitter and receiver */
    361  1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    362  1.1       pk 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    363  1.1       pk 
    364  1.1       pk 	for (n = 0; n < 20; n++) {
    365  1.1       pk 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    366  1.1       pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    367  1.1       pk 			return;
    368  1.1       pk 		DELAY(20);
    369  1.1       pk 	}
    370  1.1       pk 
    371  1.1       pk 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
    372  1.1       pk }
    373  1.1       pk 
    374  1.1       pk void
    375  1.1       pk hme_meminit(sc)
    376  1.1       pk 	struct hme_softc *sc;
    377  1.1       pk {
    378  1.1       pk 	bus_addr_t txbufdma, rxbufdma;
    379  1.1       pk 	bus_addr_t dma;
    380  1.1       pk 	caddr_t p;
    381  1.1       pk 	unsigned int ntbuf, nrbuf, i;
    382  1.1       pk 	struct hme_ring *hr = &sc->sc_rb;
    383  1.1       pk 
    384  1.1       pk 	p = hr->rb_membase;
    385  1.1       pk 	dma = hr->rb_dmabase;
    386  1.1       pk 
    387  1.1       pk 	ntbuf = hr->rb_ntbuf;
    388  1.1       pk 	nrbuf = hr->rb_nrbuf;
    389  1.1       pk 
    390  1.1       pk 	/*
    391  1.1       pk 	 * Allocate transmit descriptors
    392  1.1       pk 	 */
    393  1.1       pk 	hr->rb_txd = p;
    394  1.1       pk 	hr->rb_txddma = dma;
    395  1.1       pk 	p += ntbuf * HME_XD_SIZE;
    396  1.1       pk 	dma += ntbuf * HME_XD_SIZE;
    397  1.4       pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    398  1.4       pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    399  1.4       pk 	p = (caddr_t)roundup((u_long)p, 2048);
    400  1.1       pk 
    401  1.1       pk 	/*
    402  1.1       pk 	 * Allocate receive descriptors
    403  1.1       pk 	 */
    404  1.1       pk 	hr->rb_rxd = p;
    405  1.1       pk 	hr->rb_rxddma = dma;
    406  1.1       pk 	p += nrbuf * HME_XD_SIZE;
    407  1.1       pk 	dma += nrbuf * HME_XD_SIZE;
    408  1.4       pk 	/* Again move forward to the next 2048 byte boundary.*/
    409  1.4       pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    410  1.4       pk 	p = (caddr_t)roundup((u_long)p, 2048);
    411  1.1       pk 
    412  1.1       pk 
    413  1.1       pk 	/*
    414  1.1       pk 	 * Allocate transmit buffers
    415  1.1       pk 	 */
    416  1.1       pk 	hr->rb_txbuf = p;
    417  1.1       pk 	txbufdma = dma;
    418  1.1       pk 	p += ntbuf * _HME_BUFSZ;
    419  1.1       pk 	dma += ntbuf * _HME_BUFSZ;
    420  1.1       pk 
    421  1.1       pk 	/*
    422  1.1       pk 	 * Allocate receive buffers
    423  1.1       pk 	 */
    424  1.1       pk 	hr->rb_rxbuf = p;
    425  1.1       pk 	rxbufdma = dma;
    426  1.1       pk 	p += nrbuf * _HME_BUFSZ;
    427  1.1       pk 	dma += nrbuf * _HME_BUFSZ;
    428  1.1       pk 
    429  1.1       pk 	/*
    430  1.1       pk 	 * Initialize transmit buffer descriptors
    431  1.1       pk 	 */
    432  1.1       pk 	for (i = 0; i < ntbuf; i++) {
    433  1.1       pk 		HME_XD_SETADDR(hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    434  1.1       pk 		HME_XD_SETFLAGS(hr->rb_txd, i, 0);
    435  1.1       pk 	}
    436  1.1       pk 
    437  1.1       pk 	/*
    438  1.1       pk 	 * Initialize receive buffer descriptors
    439  1.1       pk 	 */
    440  1.1       pk 	for (i = 0; i < nrbuf; i++) {
    441  1.2       pk 		HME_XD_SETADDR(hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    442  1.2       pk 		HME_XD_SETFLAGS(hr->rb_rxd, i,
    443  1.1       pk 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    444  1.1       pk 	}
    445  1.1       pk 
    446  1.1       pk 	hr->rb_tdhead = hr->rb_tdtail = 0;
    447  1.1       pk 	hr->rb_td_nbusy = 0;
    448  1.1       pk 	hr->rb_rdtail = 0;
    449  1.1       pk }
    450  1.1       pk 
    451  1.1       pk /*
    452  1.1       pk  * Initialization of interface; set up initialization block
    453  1.1       pk  * and transmit/receive descriptor rings.
    454  1.1       pk  */
    455  1.1       pk void
    456  1.1       pk hme_init(sc)
    457  1.1       pk 	struct hme_softc *sc;
    458  1.1       pk {
    459  1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    460  1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    461  1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    462  1.1       pk 	bus_space_handle_t etx = sc->sc_etx;
    463  1.1       pk 	bus_space_handle_t erx = sc->sc_erx;
    464  1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
    465  1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
    466  1.1       pk 	u_int8_t *ea;
    467  1.1       pk 	u_int32_t v;
    468  1.1       pk 
    469  1.1       pk 	/*
    470  1.1       pk 	 * Initialization sequence. The numbered steps below correspond
    471  1.1       pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    472  1.1       pk 	 * Channel Engine manual (part of the PCIO manual).
    473  1.1       pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    474  1.1       pk 	 */
    475  1.1       pk 
    476  1.1       pk 	/* step 1 & 2. Reset the Ethernet Channel */
    477  1.1       pk 	hme_stop(sc);
    478  1.1       pk 
    479  1.4       pk 	/* Re-initialize the MIF */
    480  1.4       pk 	hme_mifinit(sc);
    481  1.4       pk 
    482  1.1       pk 	/* Call MI reset function if any */
    483  1.1       pk 	if (sc->sc_hwreset)
    484  1.1       pk 		(*sc->sc_hwreset)(sc);
    485  1.1       pk 
    486  1.1       pk #if 0
    487  1.1       pk 	/* Mask all MIF interrupts, just in case */
    488  1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    489  1.1       pk #endif
    490  1.1       pk 
    491  1.1       pk 	/* step 3. Setup data structures in host memory */
    492  1.1       pk 	hme_meminit(sc);
    493  1.1       pk 
    494  1.1       pk 	/* step 4. TX MAC registers & counters */
    495  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    496  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    497  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    498  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    499  1.1       pk 
    500  1.1       pk 	/* Load station MAC address */
    501  1.1       pk 	ea = sc->sc_enaddr;
    502  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    503  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    504  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    505  1.1       pk 
    506  1.1       pk 	/*
    507  1.1       pk 	 * Init seed for backoff
    508  1.1       pk 	 * (source suggested by manual: low 10 bits of MAC address)
    509  1.1       pk 	 */
    510  1.1       pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    511  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    512  1.1       pk 
    513  1.1       pk 
    514  1.1       pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    515  1.1       pk 
    516  1.1       pk 
    517  1.1       pk 	/* step 5. RX MAC registers & counters */
    518  1.1       pk 	hme_setladrf(sc);
    519  1.1       pk 
    520  1.1       pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    521  1.1       pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    522  1.1       pk 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    523  1.1       pk 
    524  1.1       pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    525  1.1       pk 
    526  1.1       pk 
    527  1.1       pk 	/* step 8. Global Configuration & Interrupt Mask */
    528  1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    529  1.2       pk 			~(
    530  1.2       pk 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    531  1.2       pk 			  HME_SEB_STAT_HOSTTOTX |
    532  1.2       pk 			  HME_SEB_STAT_RXTOHOST |
    533  1.2       pk 			  HME_SEB_STAT_TXALL |
    534  1.2       pk 			  HME_SEB_STAT_TXPERR |
    535  1.2       pk 			  HME_SEB_STAT_RCNTEXP |
    536  1.2       pk 			  HME_SEB_STAT_ALL_ERRORS ));
    537  1.1       pk 
    538  1.1       pk 	switch (sc->sc_burst) {
    539  1.1       pk 	default:
    540  1.1       pk 		v = 0;
    541  1.1       pk 		break;
    542  1.1       pk 	case 16:
    543  1.1       pk 		v = HME_SEB_CFG_BURST16;
    544  1.1       pk 		break;
    545  1.1       pk 	case 32:
    546  1.1       pk 		v = HME_SEB_CFG_BURST32;
    547  1.1       pk 		break;
    548  1.1       pk 	case 64:
    549  1.1       pk 		v = HME_SEB_CFG_BURST64;
    550  1.1       pk 		break;
    551  1.1       pk 	}
    552  1.1       pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    553  1.1       pk 
    554  1.1       pk 	/* step 9. ETX Configuration: use mostly default values */
    555  1.1       pk 
    556  1.1       pk 	/* Enable DMA */
    557  1.2       pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    558  1.1       pk 	v |= HME_ETX_CFG_DMAENABLE;
    559  1.2       pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    560  1.1       pk 
    561  1.3       pk 	/* Transmit Descriptor ring size: in increments of 16 */
    562  1.3       pk 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    563  1.1       pk 
    564  1.1       pk 
    565  1.3       pk 	/* step 10. ERX Configuration */
    566  1.2       pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    567  1.3       pk 
    568  1.3       pk 	/* Encode Receive Descriptor ring size: four possible values */
    569  1.3       pk 	switch (_HME_NDESC /*XXX*/) {
    570  1.3       pk 	case 32:
    571  1.3       pk 		v |= HME_ERX_CFG_RINGSIZE32;
    572  1.3       pk 		break;
    573  1.3       pk 	case 64:
    574  1.3       pk 		v |= HME_ERX_CFG_RINGSIZE64;
    575  1.3       pk 		break;
    576  1.3       pk 	case 128:
    577  1.3       pk 		v |= HME_ERX_CFG_RINGSIZE128;
    578  1.3       pk 		break;
    579  1.3       pk 	case 256:
    580  1.3       pk 		v |= HME_ERX_CFG_RINGSIZE256;
    581  1.3       pk 		break;
    582  1.3       pk 	default:
    583  1.3       pk 		printf("hme: invalid Receive Descriptor ring size\n");
    584  1.3       pk 		break;
    585  1.3       pk 	}
    586  1.3       pk 
    587  1.3       pk 	/* Enable DMA */
    588  1.1       pk 	v |= HME_ERX_CFG_DMAENABLE;
    589  1.2       pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    590  1.1       pk 
    591  1.1       pk 	/* step 11. XIF Configuration */
    592  1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    593  1.1       pk 	v |= HME_MAC_XIF_OE;
    594  1.4       pk 	/* If an external transceiver is connected, enable its MII drivers */
    595  1.2       pk 	if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
    596  1.4       pk 		v |= HME_MAC_XIF_MIIENABLE;
    597  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    598  1.1       pk 
    599  1.2       pk 
    600  1.1       pk 	/* step 12. RX_MAC Configuration Register */
    601  1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    602  1.1       pk 	v |= HME_MAC_RXCFG_ENABLE;
    603  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    604  1.1       pk 
    605  1.1       pk 	/* step 13. TX_MAC Configuration Register */
    606  1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    607  1.2       pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    608  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    609  1.1       pk 
    610  1.1       pk 	/* step 14. Issue Transmit Pending command */
    611  1.1       pk 
    612  1.1       pk 	/* Call MI initialization function if any */
    613  1.1       pk 	if (sc->sc_hwinit)
    614  1.1       pk 		(*sc->sc_hwinit)(sc);
    615  1.1       pk 
    616  1.1       pk 	ifp->if_flags |= IFF_RUNNING;
    617  1.1       pk 	ifp->if_flags &= ~IFF_OACTIVE;
    618  1.1       pk 	ifp->if_timer = 0;
    619  1.1       pk 	hme_start(ifp);
    620  1.1       pk }
    621  1.1       pk 
    622  1.1       pk /*
    623  1.1       pk  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    624  1.1       pk  * speed.
    625  1.1       pk  */
    626  1.1       pk static __inline__ int
    627  1.1       pk ether_cmp(a, b)
    628  1.1       pk 	u_char *a, *b;
    629  1.1       pk {
    630  1.1       pk 
    631  1.1       pk 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    632  1.1       pk 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    633  1.1       pk 		return (0);
    634  1.1       pk 	return (1);
    635  1.1       pk }
    636  1.1       pk 
    637  1.1       pk 
    638  1.1       pk /*
    639  1.1       pk  * Routine to copy from mbuf chain to transmit buffer in
    640  1.1       pk  * network buffer memory.
    641  1.1       pk  * Returns the amount of data copied.
    642  1.1       pk  */
    643  1.1       pk int
    644  1.1       pk hme_put(sc, ri, m)
    645  1.1       pk 	struct hme_softc *sc;
    646  1.1       pk 	int ri;			/* Ring index */
    647  1.1       pk 	struct mbuf *m;
    648  1.1       pk {
    649  1.1       pk 	struct mbuf *n;
    650  1.1       pk 	int len, tlen = 0;
    651  1.1       pk 	caddr_t bp;
    652  1.1       pk 
    653  1.1       pk 	bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    654  1.1       pk 	for (; m; m = n) {
    655  1.1       pk 		len = m->m_len;
    656  1.1       pk 		if (len == 0) {
    657  1.1       pk 			MFREE(m, n);
    658  1.1       pk 			continue;
    659  1.1       pk 		}
    660  1.1       pk 		bcopy(mtod(m, caddr_t), bp, len);
    661  1.1       pk 		bp += len;
    662  1.1       pk 		tlen += len;
    663  1.1       pk 		MFREE(m, n);
    664  1.1       pk 	}
    665  1.1       pk 	return (tlen);
    666  1.1       pk }
    667  1.1       pk 
    668  1.1       pk /*
    669  1.1       pk  * Pull data off an interface.
    670  1.1       pk  * Len is length of data, with local net header stripped.
    671  1.1       pk  * We copy the data into mbufs.  When full cluster sized units are present
    672  1.1       pk  * we copy into clusters.
    673  1.1       pk  */
    674  1.1       pk struct mbuf *
    675  1.1       pk hme_get(sc, ri, totlen)
    676  1.1       pk 	struct hme_softc *sc;
    677  1.1       pk 	int ri, totlen;
    678  1.1       pk {
    679  1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    680  1.1       pk 	struct mbuf *m, *m0, *newm;
    681  1.1       pk 	caddr_t bp;
    682  1.1       pk 	int len;
    683  1.1       pk 
    684  1.1       pk 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    685  1.1       pk 	if (m0 == 0)
    686  1.1       pk 		return (0);
    687  1.1       pk 	m0->m_pkthdr.rcvif = ifp;
    688  1.1       pk 	m0->m_pkthdr.len = totlen;
    689  1.1       pk 	len = MHLEN;
    690  1.1       pk 	m = m0;
    691  1.1       pk 
    692  1.1       pk 	bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    693  1.1       pk 
    694  1.1       pk 	while (totlen > 0) {
    695  1.1       pk 		if (totlen >= MINCLSIZE) {
    696  1.1       pk 			MCLGET(m, M_DONTWAIT);
    697  1.1       pk 			if ((m->m_flags & M_EXT) == 0)
    698  1.1       pk 				goto bad;
    699  1.1       pk 			len = MCLBYTES;
    700  1.1       pk 		}
    701  1.1       pk 
    702  1.1       pk 		if (m == m0) {
    703  1.1       pk 			caddr_t newdata = (caddr_t)
    704  1.1       pk 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    705  1.1       pk 			    sizeof(struct ether_header);
    706  1.1       pk 			len -= newdata - m->m_data;
    707  1.1       pk 			m->m_data = newdata;
    708  1.1       pk 		}
    709  1.1       pk 
    710  1.1       pk 		m->m_len = len = min(totlen, len);
    711  1.1       pk 		bcopy(bp, mtod(m, caddr_t), len);
    712  1.1       pk 		bp += len;
    713  1.1       pk 
    714  1.1       pk 		totlen -= len;
    715  1.1       pk 		if (totlen > 0) {
    716  1.1       pk 			MGET(newm, M_DONTWAIT, MT_DATA);
    717  1.1       pk 			if (newm == 0)
    718  1.1       pk 				goto bad;
    719  1.1       pk 			len = MLEN;
    720  1.1       pk 			m = m->m_next = newm;
    721  1.1       pk 		}
    722  1.1       pk 	}
    723  1.1       pk 
    724  1.1       pk 	return (m0);
    725  1.1       pk 
    726  1.1       pk bad:
    727  1.1       pk 	m_freem(m0);
    728  1.1       pk 	return (0);
    729  1.1       pk }
    730  1.1       pk 
    731  1.1       pk /*
    732  1.1       pk  * Pass a packet to the higher levels.
    733  1.1       pk  */
    734  1.1       pk void
    735  1.1       pk hme_read(sc, ix, len)
    736  1.1       pk 	struct hme_softc *sc;
    737  1.1       pk 	int ix, len;
    738  1.1       pk {
    739  1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    740  1.1       pk 	struct mbuf *m;
    741  1.1       pk 
    742  1.1       pk 	if (len <= sizeof(struct ether_header) ||
    743  1.1       pk 	    len > ETHERMTU + sizeof(struct ether_header)) {
    744  1.1       pk #ifdef HMEDEBUG
    745  1.1       pk 		printf("%s: invalid packet size %d; dropping\n",
    746  1.1       pk 		    sc->sc_dev.dv_xname, len);
    747  1.1       pk #endif
    748  1.1       pk 		ifp->if_ierrors++;
    749  1.1       pk 		return;
    750  1.1       pk 	}
    751  1.1       pk 
    752  1.1       pk 	/* Pull packet off interface. */
    753  1.1       pk 	m = hme_get(sc, ix, len);
    754  1.1       pk 	if (m == 0) {
    755  1.1       pk 		ifp->if_ierrors++;
    756  1.1       pk 		return;
    757  1.1       pk 	}
    758  1.1       pk 
    759  1.1       pk 	ifp->if_ipackets++;
    760  1.1       pk 
    761  1.1       pk #if NBPFILTER > 0
    762  1.1       pk 	/*
    763  1.1       pk 	 * Check if there's a BPF listener on this interface.
    764  1.1       pk 	 * If so, hand off the raw packet to BPF.
    765  1.1       pk 	 */
    766  1.1       pk 	if (ifp->if_bpf) {
    767  1.2       pk 		struct ether_header *eh;
    768  1.2       pk 
    769  1.1       pk 		bpf_mtap(ifp->if_bpf, m);
    770  1.1       pk 
    771  1.1       pk 		/*
    772  1.1       pk 		 * Note that the interface cannot be in promiscuous mode if
    773  1.1       pk 		 * there are no BPF listeners.  And if we are in promiscuous
    774  1.1       pk 		 * mode, we have to check if this packet is really ours.
    775  1.1       pk 		 */
    776  1.2       pk 
    777  1.2       pk 		/* We assume that the header fit entirely in one mbuf. */
    778  1.2       pk 		eh = mtod(m, struct ether_header *);
    779  1.2       pk 
    780  1.1       pk 		if ((ifp->if_flags & IFF_PROMISC) != 0 &&
    781  1.1       pk 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
    782  1.4       pk 		    ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) {
    783  1.1       pk 			m_freem(m);
    784  1.1       pk 			return;
    785  1.1       pk 		}
    786  1.1       pk 	}
    787  1.1       pk #endif
    788  1.1       pk 
    789  1.1       pk 	/* Pass the packet up. */
    790  1.1       pk 	(*ifp->if_input)(ifp, m);
    791  1.1       pk }
    792  1.1       pk 
    793  1.1       pk void
    794  1.1       pk hme_start(ifp)
    795  1.1       pk 	struct ifnet *ifp;
    796  1.1       pk {
    797  1.1       pk 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    798  1.1       pk 	caddr_t txd = sc->sc_rb.rb_txd;
    799  1.1       pk 	struct mbuf *m;
    800  1.1       pk 	unsigned int ri, len;
    801  1.1       pk 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    802  1.1       pk 
    803  1.1       pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    804  1.1       pk 		return;
    805  1.1       pk 
    806  1.1       pk 	ri = sc->sc_rb.rb_tdhead;
    807  1.1       pk 
    808  1.1       pk 	for (;;) {
    809  1.1       pk 		IF_DEQUEUE(&ifp->if_snd, m);
    810  1.1       pk 		if (m == 0)
    811  1.1       pk 			break;
    812  1.1       pk 
    813  1.1       pk #if NBPFILTER > 0
    814  1.1       pk 		/*
    815  1.1       pk 		 * If BPF is listening on this interface, let it see the
    816  1.1       pk 		 * packet before we commit it to the wire.
    817  1.1       pk 		 */
    818  1.1       pk 		if (ifp->if_bpf)
    819  1.1       pk 			bpf_mtap(ifp->if_bpf, m);
    820  1.1       pk #endif
    821  1.1       pk 
    822  1.1       pk 		/*
    823  1.1       pk 		 * Copy the mbuf chain into the transmit buffer.
    824  1.1       pk 		 */
    825  1.1       pk 		len = hme_put(sc, ri, m);
    826  1.1       pk 
    827  1.1       pk 		/*
    828  1.1       pk 		 * Initialize transmit registers and start transmission
    829  1.1       pk 		 */
    830  1.1       pk 		HME_XD_SETFLAGS(txd, ri,
    831  1.1       pk 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    832  1.1       pk 			HME_XD_ENCODE_TSIZE(len));
    833  1.1       pk 
    834  1.3       pk 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    835  1.1       pk 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    836  1.1       pk 				  HME_ETX_TP_DMAWAKEUP);
    837  1.1       pk 
    838  1.1       pk 		if (++ri == ntbuf)
    839  1.1       pk 			ri = 0;
    840  1.1       pk 
    841  1.1       pk 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    842  1.1       pk 			ifp->if_flags |= IFF_OACTIVE;
    843  1.1       pk 			break;
    844  1.1       pk 		}
    845  1.1       pk 	}
    846  1.1       pk 
    847  1.1       pk 	sc->sc_rb.rb_tdhead = ri;
    848  1.1       pk }
    849  1.1       pk 
    850  1.1       pk /*
    851  1.1       pk  * Transmit interrupt.
    852  1.1       pk  */
    853  1.1       pk int
    854  1.1       pk hme_tint(sc)
    855  1.1       pk 	struct hme_softc *sc;
    856  1.1       pk {
    857  1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    858  1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    859  1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
    860  1.1       pk 	unsigned int ri, txflags;
    861  1.1       pk 
    862  1.1       pk 	/*
    863  1.1       pk 	 * Unload collision counters
    864  1.1       pk 	 */
    865  1.1       pk 	ifp->if_collisions +=
    866  1.1       pk 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    867  1.1       pk 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
    868  1.1       pk 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    869  1.1       pk 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    870  1.1       pk 
    871  1.1       pk 	/*
    872  1.1       pk 	 * then clear the hardware counters.
    873  1.1       pk 	 */
    874  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    875  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    876  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    877  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    878  1.1       pk 
    879  1.1       pk 	/* Fetch current position in the transmit ring */
    880  1.1       pk 	ri = sc->sc_rb.rb_tdtail;
    881  1.1       pk 
    882  1.1       pk 	for (;;) {
    883  1.1       pk 		if (sc->sc_rb.rb_td_nbusy <= 0)
    884  1.1       pk 			break;
    885  1.1       pk 
    886  1.1       pk 		txflags = HME_XD_GETFLAGS(sc->sc_rb.rb_txd, ri);
    887  1.1       pk 
    888  1.1       pk 		if (txflags & HME_XD_OWN)
    889  1.1       pk 			break;
    890  1.1       pk 
    891  1.1       pk 		ifp->if_flags &= ~IFF_OACTIVE;
    892  1.1       pk 		ifp->if_opackets++;
    893  1.1       pk 
    894  1.3       pk 		if (++ri == sc->sc_rb.rb_ntbuf)
    895  1.1       pk 			ri = 0;
    896  1.1       pk 
    897  1.1       pk 		--sc->sc_rb.rb_td_nbusy;
    898  1.1       pk 	}
    899  1.1       pk 
    900  1.3       pk 	/* Update ring */
    901  1.1       pk 	sc->sc_rb.rb_tdtail = ri;
    902  1.1       pk 
    903  1.1       pk 	hme_start(ifp);
    904  1.1       pk 
    905  1.1       pk 	if (sc->sc_rb.rb_td_nbusy == 0)
    906  1.1       pk 		ifp->if_timer = 0;
    907  1.1       pk 
    908  1.1       pk 	return (1);
    909  1.1       pk }
    910  1.1       pk 
    911  1.1       pk /*
    912  1.1       pk  * Receive interrupt.
    913  1.1       pk  */
    914  1.1       pk int
    915  1.1       pk hme_rint(sc)
    916  1.1       pk 	struct hme_softc *sc;
    917  1.1       pk {
    918  1.1       pk 	caddr_t xdr = sc->sc_rb.rb_rxd;
    919  1.1       pk 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
    920  1.1       pk 	unsigned int ri, len;
    921  1.1       pk 	u_int32_t flags;
    922  1.1       pk 
    923  1.1       pk 	ri = sc->sc_rb.rb_rdtail;
    924  1.1       pk 
    925  1.1       pk 	/*
    926  1.1       pk 	 * Process all buffers with valid data.
    927  1.1       pk 	 */
    928  1.1       pk 	for (;;) {
    929  1.1       pk 		flags = HME_XD_GETFLAGS(xdr, ri);
    930  1.1       pk 		if (flags & HME_XD_OWN)
    931  1.1       pk 			break;
    932  1.1       pk 
    933  1.4       pk 		if (flags & HME_XD_OFL) {
    934  1.4       pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
    935  1.4       pk 					sc->sc_dev.dv_xname, ri, flags);
    936  1.4       pk 		} else {
    937  1.4       pk 			len = HME_XD_DECODE_RSIZE(flags);
    938  1.4       pk 			hme_read(sc, ri, len);
    939  1.4       pk 		}
    940  1.1       pk 
    941  1.1       pk 		/* This buffer can be used by the hardware again */
    942  1.1       pk 		HME_XD_SETFLAGS(xdr, ri,
    943  1.1       pk 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    944  1.1       pk 
    945  1.1       pk 		if (++ri == nrbuf)
    946  1.1       pk 			ri = 0;
    947  1.1       pk 	}
    948  1.1       pk 
    949  1.1       pk 	sc->sc_rb.rb_rdtail = ri;
    950  1.1       pk 
    951  1.1       pk 	return (1);
    952  1.1       pk }
    953  1.1       pk 
    954  1.1       pk int
    955  1.1       pk hme_eint(sc, status)
    956  1.1       pk 	struct hme_softc *sc;
    957  1.1       pk 	u_int status;
    958  1.1       pk {
    959  1.1       pk 	char bits[128];
    960  1.1       pk 
    961  1.1       pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
    962  1.1       pk 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
    963  1.1       pk 		return (1);
    964  1.1       pk 	}
    965  1.1       pk 
    966  1.1       pk 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
    967  1.1       pk 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
    968  1.1       pk 	return (1);
    969  1.1       pk }
    970  1.1       pk 
    971  1.1       pk int
    972  1.1       pk hme_intr(v)
    973  1.1       pk 	void *v;
    974  1.1       pk {
    975  1.1       pk 	struct hme_softc *sc = (struct hme_softc *)v;
    976  1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
    977  1.1       pk 	bus_space_handle_t seb = sc->sc_seb;
    978  1.1       pk 	u_int32_t status;
    979  1.1       pk 	int r = 0;
    980  1.1       pk 
    981  1.1       pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
    982  1.1       pk 
    983  1.1       pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
    984  1.1       pk 		r |= hme_eint(sc, status);
    985  1.1       pk 
    986  1.1       pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
    987  1.1       pk 		r |= hme_tint(sc);
    988  1.1       pk 
    989  1.1       pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
    990  1.1       pk 		r |= hme_rint(sc);
    991  1.1       pk 
    992  1.1       pk 	return (r);
    993  1.1       pk }
    994  1.1       pk 
    995  1.1       pk 
    996  1.1       pk void
    997  1.1       pk hme_watchdog(ifp)
    998  1.1       pk 	struct ifnet *ifp;
    999  1.1       pk {
   1000  1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1001  1.1       pk 
   1002  1.1       pk 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1003  1.1       pk 	++ifp->if_oerrors;
   1004  1.1       pk 
   1005  1.1       pk 	hme_reset(sc);
   1006  1.4       pk }
   1007  1.4       pk 
   1008  1.4       pk /*
   1009  1.4       pk  * Initialize the MII Management Interface
   1010  1.4       pk  */
   1011  1.4       pk void
   1012  1.4       pk hme_mifinit(sc)
   1013  1.4       pk 	struct hme_softc *sc;
   1014  1.4       pk {
   1015  1.4       pk 	bus_space_tag_t t = sc->sc_bustag;
   1016  1.4       pk 	bus_space_handle_t mif = sc->sc_mif;
   1017  1.4       pk 	u_int32_t v;
   1018  1.4       pk 
   1019  1.4       pk 	/* Configure the MIF in frame mode */
   1020  1.4       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1021  1.4       pk 	v &= ~HME_MIF_CFG_BBMODE;
   1022  1.4       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1023  1.1       pk }
   1024  1.1       pk 
   1025  1.1       pk /*
   1026  1.1       pk  * MII interface
   1027  1.1       pk  */
   1028  1.1       pk static int
   1029  1.1       pk hme_mii_readreg(self, phy, reg)
   1030  1.1       pk 	struct device *self;
   1031  1.1       pk 	int phy, reg;
   1032  1.1       pk {
   1033  1.1       pk 	struct hme_softc *sc = (void *)self;
   1034  1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1035  1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
   1036  1.1       pk 	int n;
   1037  1.1       pk 	u_int32_t v;
   1038  1.1       pk 
   1039  1.5       pk 	/* Select the desired PHY in the MIF configuration register */
   1040  1.5       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1041  1.5       pk 	/* Clear PHY select bit */
   1042  1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1043  1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1044  1.5       pk 		/* Set PHY select bit to get at external device */
   1045  1.5       pk 		v |= HME_MIF_CFG_PHY;
   1046  1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1047  1.5       pk 
   1048  1.1       pk 	/* Construct the frame command */
   1049  1.1       pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1050  1.1       pk 	    HME_MIF_FO_TAMSB |
   1051  1.1       pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1052  1.1       pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1053  1.1       pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1054  1.1       pk 
   1055  1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1056  1.1       pk 	for (n = 0; n < 100; n++) {
   1057  1.2       pk 		DELAY(1);
   1058  1.1       pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1059  1.1       pk 		if (v & HME_MIF_FO_TALSB)
   1060  1.1       pk 			return (v & HME_MIF_FO_DATA);
   1061  1.1       pk 	}
   1062  1.1       pk 
   1063  1.1       pk 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1064  1.1       pk 	return (0);
   1065  1.1       pk }
   1066  1.1       pk 
   1067  1.1       pk static void
   1068  1.1       pk hme_mii_writereg(self, phy, reg, val)
   1069  1.1       pk 	struct device *self;
   1070  1.1       pk 	int phy, reg, val;
   1071  1.1       pk {
   1072  1.1       pk 	struct hme_softc *sc = (void *)self;
   1073  1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1074  1.1       pk 	bus_space_handle_t mif = sc->sc_mif;
   1075  1.1       pk 	int n;
   1076  1.1       pk 	u_int32_t v;
   1077  1.1       pk 
   1078  1.5       pk 	/* Select the desired PHY in the MIF configuration register */
   1079  1.5       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1080  1.5       pk 	/* Clear PHY select bit */
   1081  1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1082  1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1083  1.5       pk 		/* Set PHY select bit to get at external device */
   1084  1.5       pk 		v |= HME_MIF_CFG_PHY;
   1085  1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1086  1.5       pk 
   1087  1.1       pk 	/* Construct the frame command */
   1088  1.1       pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1089  1.1       pk 	    HME_MIF_FO_TAMSB				|
   1090  1.1       pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1091  1.1       pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1092  1.1       pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1093  1.1       pk 	    (val & HME_MIF_FO_DATA);
   1094  1.1       pk 
   1095  1.1       pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1096  1.1       pk 	for (n = 0; n < 100; n++) {
   1097  1.2       pk 		DELAY(1);
   1098  1.1       pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1099  1.1       pk 		if (v & HME_MIF_FO_TALSB)
   1100  1.1       pk 			return;
   1101  1.1       pk 	}
   1102  1.1       pk 
   1103  1.2       pk 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1104  1.1       pk }
   1105  1.1       pk 
   1106  1.1       pk static void
   1107  1.1       pk hme_mii_statchg(dev)
   1108  1.1       pk 	struct device *dev;
   1109  1.1       pk {
   1110  1.3       pk 	struct hme_softc *sc = (void *)dev;
   1111  1.5       pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1112  1.5       pk 	int phy = sc->sc_phys[instance];
   1113  1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1114  1.5       pk 	bus_space_handle_t mif = sc->sc_mif;
   1115  1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
   1116  1.1       pk 	u_int32_t v;
   1117  1.1       pk 
   1118  1.5       pk #ifdef HMEDEBUG
   1119  1.5       pk 	if (sc->sc_debug)
   1120  1.5       pk 		printf("hme_mii_statchg: status change: phy = %d\n", phy);
   1121  1.5       pk #endif
   1122  1.1       pk 
   1123  1.5       pk 	/* Select the current PHY in the MIF configuration register */
   1124  1.5       pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1125  1.5       pk 	v &= ~HME_MIF_CFG_PHY;
   1126  1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1127  1.5       pk 		v |= HME_MIF_CFG_PHY;
   1128  1.5       pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1129  1.1       pk 
   1130  1.5       pk 	/* Set the MAC Full Duplex bit appropriately */
   1131  1.1       pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1132  1.1       pk 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1133  1.1       pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1134  1.1       pk 	else
   1135  1.1       pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1136  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1137  1.1       pk 
   1138  1.5       pk 	/* If an external transceiver is selected, enable its MII drivers */
   1139  1.5       pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1140  1.5       pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1141  1.5       pk 	if (phy == HME_PHYAD_EXTERNAL)
   1142  1.5       pk 		v |= HME_MAC_XIF_MIIENABLE;
   1143  1.5       pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1144  1.5       pk }
   1145  1.5       pk 
   1146  1.5       pk int
   1147  1.5       pk hme_mediachange(ifp)
   1148  1.5       pk 	struct ifnet *ifp;
   1149  1.5       pk {
   1150  1.5       pk 	struct hme_softc *sc = ifp->if_softc;
   1151  1.5       pk 
   1152  1.5       pk 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1153  1.5       pk 		return (EINVAL);
   1154  1.5       pk 
   1155  1.5       pk 	return (mii_mediachg(&sc->sc_mii));
   1156  1.1       pk }
   1157  1.1       pk 
   1158  1.1       pk void
   1159  1.1       pk hme_mediastatus(ifp, ifmr)
   1160  1.1       pk 	struct ifnet *ifp;
   1161  1.1       pk 	struct ifmediareq *ifmr;
   1162  1.1       pk {
   1163  1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1164  1.1       pk 
   1165  1.1       pk 	if ((ifp->if_flags & IFF_UP) == 0)
   1166  1.1       pk 		return;
   1167  1.1       pk 
   1168  1.1       pk 	mii_pollstat(&sc->sc_mii);
   1169  1.1       pk 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1170  1.1       pk 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1171  1.1       pk }
   1172  1.1       pk 
   1173  1.1       pk /*
   1174  1.1       pk  * Process an ioctl request.
   1175  1.1       pk  */
   1176  1.1       pk int
   1177  1.1       pk hme_ioctl(ifp, cmd, data)
   1178  1.1       pk 	struct ifnet *ifp;
   1179  1.1       pk 	u_long cmd;
   1180  1.1       pk 	caddr_t data;
   1181  1.1       pk {
   1182  1.1       pk 	struct hme_softc *sc = ifp->if_softc;
   1183  1.1       pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1184  1.1       pk 	struct ifreq *ifr = (struct ifreq *)data;
   1185  1.1       pk 	int s, error = 0;
   1186  1.1       pk 
   1187  1.1       pk 	s = splnet();
   1188  1.1       pk 
   1189  1.1       pk 	switch (cmd) {
   1190  1.1       pk 
   1191  1.1       pk 	case SIOCSIFADDR:
   1192  1.1       pk 		ifp->if_flags |= IFF_UP;
   1193  1.1       pk 
   1194  1.1       pk 		switch (ifa->ifa_addr->sa_family) {
   1195  1.1       pk #ifdef INET
   1196  1.1       pk 		case AF_INET:
   1197  1.1       pk 			hme_init(sc);
   1198  1.1       pk 			arp_ifinit(ifp, ifa);
   1199  1.1       pk 			break;
   1200  1.1       pk #endif
   1201  1.1       pk #ifdef NS
   1202  1.1       pk 		case AF_NS:
   1203  1.1       pk 		    {
   1204  1.1       pk 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1205  1.1       pk 
   1206  1.1       pk 			if (ns_nullhost(*ina))
   1207  1.1       pk 				ina->x_host =
   1208  1.1       pk 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1209  1.1       pk 			else {
   1210  1.1       pk 				bcopy(ina->x_host.c_host,
   1211  1.1       pk 				    LLADDR(ifp->if_sadl),
   1212  1.1       pk 				    sizeof(sc->sc_enaddr));
   1213  1.1       pk 			}
   1214  1.1       pk 			/* Set new address. */
   1215  1.1       pk 			hme_init(sc);
   1216  1.1       pk 			break;
   1217  1.1       pk 		    }
   1218  1.1       pk #endif
   1219  1.1       pk 		default:
   1220  1.1       pk 			hme_init(sc);
   1221  1.1       pk 			break;
   1222  1.1       pk 		}
   1223  1.1       pk 		break;
   1224  1.1       pk 
   1225  1.1       pk 	case SIOCSIFFLAGS:
   1226  1.1       pk 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1227  1.1       pk 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1228  1.1       pk 			/*
   1229  1.1       pk 			 * If interface is marked down and it is running, then
   1230  1.1       pk 			 * stop it.
   1231  1.1       pk 			 */
   1232  1.1       pk 			hme_stop(sc);
   1233  1.1       pk 			ifp->if_flags &= ~IFF_RUNNING;
   1234  1.1       pk 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1235  1.1       pk 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
   1236  1.1       pk 			/*
   1237  1.1       pk 			 * If interface is marked up and it is stopped, then
   1238  1.1       pk 			 * start it.
   1239  1.1       pk 			 */
   1240  1.1       pk 			hme_init(sc);
   1241  1.1       pk 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1242  1.1       pk 			/*
   1243  1.1       pk 			 * Reset the interface to pick up changes in any other
   1244  1.1       pk 			 * flags that affect hardware registers.
   1245  1.1       pk 			 */
   1246  1.1       pk 			/*hme_stop(sc);*/
   1247  1.1       pk 			hme_init(sc);
   1248  1.1       pk 		}
   1249  1.1       pk #ifdef HMEDEBUG
   1250  1.1       pk 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1251  1.1       pk #endif
   1252  1.1       pk 		break;
   1253  1.1       pk 
   1254  1.1       pk 	case SIOCADDMULTI:
   1255  1.1       pk 	case SIOCDELMULTI:
   1256  1.1       pk 		error = (cmd == SIOCADDMULTI) ?
   1257  1.1       pk 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1258  1.1       pk 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1259  1.1       pk 
   1260  1.1       pk 		if (error == ENETRESET) {
   1261  1.1       pk 			/*
   1262  1.1       pk 			 * Multicast list has changed; set the hardware filter
   1263  1.1       pk 			 * accordingly.
   1264  1.1       pk 			 */
   1265  1.1       pk 			hme_setladrf(sc);
   1266  1.1       pk 			error = 0;
   1267  1.1       pk 		}
   1268  1.1       pk 		break;
   1269  1.1       pk 
   1270  1.1       pk 	case SIOCGIFMEDIA:
   1271  1.1       pk 	case SIOCSIFMEDIA:
   1272  1.1       pk 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1273  1.1       pk 		break;
   1274  1.1       pk 
   1275  1.1       pk 	default:
   1276  1.1       pk 		error = EINVAL;
   1277  1.1       pk 		break;
   1278  1.1       pk 	}
   1279  1.1       pk 
   1280  1.1       pk 	splx(s);
   1281  1.1       pk 	return (error);
   1282  1.1       pk }
   1283  1.1       pk 
   1284  1.1       pk void
   1285  1.1       pk hme_shutdown(arg)
   1286  1.1       pk 	void *arg;
   1287  1.1       pk {
   1288  1.1       pk 
   1289  1.1       pk 	hme_stop((struct hme_softc *)arg);
   1290  1.1       pk }
   1291  1.1       pk 
   1292  1.1       pk /*
   1293  1.1       pk  * Set up the logical address filter.
   1294  1.1       pk  */
   1295  1.1       pk void
   1296  1.1       pk hme_setladrf(sc)
   1297  1.1       pk 	struct hme_softc *sc;
   1298  1.1       pk {
   1299  1.1       pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1300  1.1       pk 	struct ether_multi *enm;
   1301  1.1       pk 	struct ether_multistep step;
   1302  1.1       pk 	struct ethercom *ec = &sc->sc_ethercom;
   1303  1.1       pk 	bus_space_tag_t t = sc->sc_bustag;
   1304  1.1       pk 	bus_space_handle_t mac = sc->sc_mac;
   1305  1.1       pk 	u_char *cp;
   1306  1.1       pk 	u_int32_t crc;
   1307  1.1       pk 	u_int32_t hash[4];
   1308  1.1       pk 	int len;
   1309  1.1       pk 
   1310  1.1       pk 	/*
   1311  1.1       pk 	 * Set up multicast address filter by passing all multicast addresses
   1312  1.1       pk 	 * through a crc generator, and then using the high order 6 bits as an
   1313  1.1       pk 	 * index into the 64 bit logical address filter.  The high order bit
   1314  1.1       pk 	 * selects the word, while the rest of the bits select the bit within
   1315  1.1       pk 	 * the word.
   1316  1.1       pk 	 */
   1317  1.1       pk 
   1318  1.1       pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1319  1.1       pk 		u_int32_t v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1320  1.1       pk 		v |= HME_MAC_RXCFG_PMISC;
   1321  1.1       pk 		bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1322  1.1       pk 		goto allmulti;
   1323  1.1       pk 	}
   1324  1.1       pk 
   1325  1.1       pk 	/* Clear hash table */
   1326  1.1       pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1327  1.1       pk 	ETHER_FIRST_MULTI(step, ec, enm);
   1328  1.1       pk 	while (enm != NULL) {
   1329  1.1       pk 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1330  1.1       pk 			/*
   1331  1.1       pk 			 * We must listen to a range of multicast addresses.
   1332  1.1       pk 			 * For now, just accept all multicasts, rather than
   1333  1.1       pk 			 * trying to set only those filter bits needed to match
   1334  1.1       pk 			 * the range.  (At this time, the only use of address
   1335  1.1       pk 			 * ranges is for IP multicast routing, for which the
   1336  1.1       pk 			 * range is big enough to require all bits set.)
   1337  1.1       pk 			 */
   1338  1.1       pk 			goto allmulti;
   1339  1.1       pk 		}
   1340  1.1       pk 
   1341  1.1       pk 		cp = enm->enm_addrlo;
   1342  1.1       pk 		crc = 0xffffffff;
   1343  1.1       pk 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1344  1.1       pk 			int octet = *cp++;
   1345  1.1       pk 			int i;
   1346  1.1       pk 
   1347  1.1       pk #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1348  1.1       pk 			for (i = 0; i < 8; i++) {
   1349  1.1       pk 				if ((crc & 1) ^ (octet & 1)) {
   1350  1.1       pk 					crc >>= 1;
   1351  1.1       pk 					crc ^= MC_POLY_LE;
   1352  1.1       pk 				} else {
   1353  1.1       pk 					crc >>= 1;
   1354  1.1       pk 				}
   1355  1.1       pk 				octet >>= 1;
   1356  1.1       pk 			}
   1357  1.1       pk 		}
   1358  1.1       pk 		/* Just want the 6 most significant bits. */
   1359  1.1       pk 		crc >>= 26;
   1360  1.1       pk 
   1361  1.1       pk 		/* Set the corresponding bit in the filter. */
   1362  1.1       pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1363  1.1       pk 
   1364  1.1       pk 		ETHER_NEXT_MULTI(step, enm);
   1365  1.1       pk 	}
   1366  1.1       pk 
   1367  1.1       pk 	/* Now load the hash table onto the chip */
   1368  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1369  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1370  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1371  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1372  1.1       pk 
   1373  1.1       pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1374  1.1       pk 	return;
   1375  1.1       pk 
   1376  1.1       pk allmulti:
   1377  1.1       pk 	ifp->if_flags |= IFF_ALLMULTI;
   1378  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, 0xffff);
   1379  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, 0xffff);
   1380  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, 0xffff);
   1381  1.1       pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, 0xffff);
   1382  1.1       pk }
   1383  1.1       pk 
   1384  1.1       pk /*
   1385  1.1       pk  * Routines for accessing the transmit and receive buffers.
   1386  1.1       pk  * The various CPU and adapter configurations supported by this
   1387  1.1       pk  * driver require three different access methods for buffers
   1388  1.1       pk  * and descriptors:
   1389  1.1       pk  *	(1) contig (contiguous data; no padding),
   1390  1.1       pk  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1391  1.1       pk  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1392  1.1       pk  */
   1393  1.1       pk 
   1394  1.1       pk #if 0
   1395  1.1       pk /*
   1396  1.1       pk  * contig: contiguous data with no padding.
   1397  1.1       pk  *
   1398  1.1       pk  * Buffers may have any alignment.
   1399  1.1       pk  */
   1400  1.1       pk 
   1401  1.1       pk void
   1402  1.1       pk hme_copytobuf_contig(sc, from, ri, len)
   1403  1.1       pk 	struct hme_softc *sc;
   1404  1.1       pk 	void *from;
   1405  1.1       pk 	int ri, len;
   1406  1.1       pk {
   1407  1.1       pk 	volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1408  1.1       pk 
   1409  1.1       pk 	/*
   1410  1.1       pk 	 * Just call bcopy() to do the work.
   1411  1.1       pk 	 */
   1412  1.1       pk 	bcopy(from, buf, len);
   1413  1.1       pk }
   1414  1.1       pk 
   1415  1.1       pk void
   1416  1.1       pk hme_copyfrombuf_contig(sc, to, boff, len)
   1417  1.1       pk 	struct hme_softc *sc;
   1418  1.1       pk 	void *to;
   1419  1.1       pk 	int boff, len;
   1420  1.1       pk {
   1421  1.1       pk 	volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1422  1.1       pk 
   1423  1.1       pk 	/*
   1424  1.1       pk 	 * Just call bcopy() to do the work.
   1425  1.1       pk 	 */
   1426  1.1       pk 	bcopy(buf, to, len);
   1427  1.1       pk }
   1428  1.1       pk #endif
   1429