hme.c revision 1.8 1 1.8 pk /* $NetBSD: hme.c,v 1.8 2000/02/14 17:14:28 pk Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk * 3. All advertising materials mentioning features or use of this software
19 1.1 pk * must display the following acknowledgement:
20 1.1 pk * This product includes software developed by the NetBSD
21 1.1 pk * Foundation, Inc. and its contributors.
22 1.1 pk * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 pk * contributors may be used to endorse or promote products derived
24 1.1 pk * from this software without specific prior written permission.
25 1.1 pk *
26 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
37 1.1 pk */
38 1.1 pk
39 1.1 pk /*
40 1.1 pk * HME Ethernet module driver.
41 1.1 pk */
42 1.1 pk
43 1.1 pk #define HMEDEBUG
44 1.1 pk
45 1.1 pk #include "opt_inet.h"
46 1.1 pk #include "opt_ns.h"
47 1.1 pk #include "bpfilter.h"
48 1.1 pk #include "rnd.h"
49 1.1 pk
50 1.1 pk #include <sys/param.h>
51 1.1 pk #include <sys/systm.h>
52 1.5 pk #include <sys/kernel.h>
53 1.1 pk #include <sys/mbuf.h>
54 1.1 pk #include <sys/syslog.h>
55 1.1 pk #include <sys/socket.h>
56 1.1 pk #include <sys/device.h>
57 1.1 pk #include <sys/malloc.h>
58 1.1 pk #include <sys/ioctl.h>
59 1.1 pk #include <sys/errno.h>
60 1.1 pk #if NRND > 0
61 1.1 pk #include <sys/rnd.h>
62 1.1 pk #endif
63 1.1 pk
64 1.1 pk #include <net/if.h>
65 1.1 pk #include <net/if_dl.h>
66 1.1 pk #include <net/if_ether.h>
67 1.1 pk #include <net/if_media.h>
68 1.1 pk
69 1.1 pk #ifdef INET
70 1.1 pk #include <netinet/in.h>
71 1.1 pk #include <netinet/if_inarp.h>
72 1.1 pk #include <netinet/in_systm.h>
73 1.1 pk #include <netinet/in_var.h>
74 1.1 pk #include <netinet/ip.h>
75 1.1 pk #endif
76 1.1 pk
77 1.1 pk #ifdef NS
78 1.1 pk #include <netns/ns.h>
79 1.1 pk #include <netns/ns_if.h>
80 1.1 pk #endif
81 1.1 pk
82 1.1 pk #if NBPFILTER > 0
83 1.1 pk #include <net/bpf.h>
84 1.1 pk #include <net/bpfdesc.h>
85 1.1 pk #endif
86 1.1 pk
87 1.1 pk #include <dev/mii/mii.h>
88 1.1 pk #include <dev/mii/miivar.h>
89 1.1 pk
90 1.1 pk #include <machine/bus.h>
91 1.1 pk
92 1.1 pk #include <dev/ic/hmereg.h>
93 1.1 pk #include <dev/ic/hmevar.h>
94 1.1 pk
95 1.1 pk void hme_start __P((struct ifnet *));
96 1.1 pk void hme_stop __P((struct hme_softc *));
97 1.1 pk int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
98 1.5 pk void hme_tick __P((void *));
99 1.1 pk void hme_watchdog __P((struct ifnet *));
100 1.1 pk void hme_shutdown __P((void *));
101 1.1 pk void hme_init __P((struct hme_softc *));
102 1.1 pk void hme_meminit __P((struct hme_softc *));
103 1.4 pk void hme_mifinit __P((struct hme_softc *));
104 1.1 pk void hme_reset __P((struct hme_softc *));
105 1.1 pk void hme_setladrf __P((struct hme_softc *));
106 1.1 pk
107 1.1 pk /* MII methods & callbacks */
108 1.1 pk static int hme_mii_readreg __P((struct device *, int, int));
109 1.1 pk static void hme_mii_writereg __P((struct device *, int, int, int));
110 1.1 pk static void hme_mii_statchg __P((struct device *));
111 1.1 pk
112 1.1 pk int hme_mediachange __P((struct ifnet *));
113 1.1 pk void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
114 1.1 pk
115 1.1 pk struct mbuf *hme_get __P((struct hme_softc *, int, int));
116 1.1 pk int hme_put __P((struct hme_softc *, int, struct mbuf *));
117 1.1 pk void hme_read __P((struct hme_softc *, int, int));
118 1.1 pk int hme_eint __P((struct hme_softc *, u_int));
119 1.1 pk int hme_rint __P((struct hme_softc *));
120 1.1 pk int hme_tint __P((struct hme_softc *));
121 1.1 pk
122 1.1 pk static int ether_cmp __P((u_char *, u_char *));
123 1.1 pk
124 1.1 pk /* Default buffer copy routines */
125 1.1 pk void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
126 1.1 pk void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
127 1.1 pk void hme_zerobuf_contig __P((struct hme_softc *, int, int));
128 1.1 pk
129 1.1 pk
130 1.1 pk void
131 1.1 pk hme_config(sc)
132 1.1 pk struct hme_softc *sc;
133 1.1 pk {
134 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 1.1 pk struct mii_data *mii = &sc->sc_mii;
136 1.5 pk struct mii_softc *child;
137 1.1 pk bus_dma_segment_t seg;
138 1.1 pk bus_size_t size;
139 1.1 pk int rseg, error;
140 1.1 pk
141 1.1 pk /*
142 1.1 pk * HME common initialization.
143 1.1 pk *
144 1.1 pk * hme_softc fields that must be initialized by the front-end:
145 1.1 pk *
146 1.1 pk * the bus tag:
147 1.1 pk * sc_bustag
148 1.1 pk *
149 1.1 pk * the dma bus tag:
150 1.1 pk * sc_dmatag
151 1.1 pk *
152 1.1 pk * the bus handles:
153 1.1 pk * sc_seb (Shared Ethernet Block registers)
154 1.1 pk * sc_erx (Receiver Unit registers)
155 1.1 pk * sc_etx (Transmitter Unit registers)
156 1.1 pk * sc_mac (MAC registers)
157 1.1 pk * sc_mif (Managment Interface registers)
158 1.1 pk *
159 1.1 pk * the maximum bus burst size:
160 1.1 pk * sc_burst
161 1.1 pk *
162 1.1 pk * (notyet:DMA capable memory for the ring descriptors & packet buffers:
163 1.1 pk * rb_membase, rb_dmabase)
164 1.1 pk *
165 1.1 pk * the local Ethernet address:
166 1.1 pk * sc_enaddr
167 1.1 pk *
168 1.1 pk */
169 1.1 pk
170 1.1 pk /* Make sure the chip is stopped. */
171 1.1 pk hme_stop(sc);
172 1.1 pk
173 1.1 pk
174 1.1 pk /*
175 1.1 pk * Allocate descriptors and buffers
176 1.1 pk * XXX - do all this differently.. and more configurably,
177 1.1 pk * eg. use things as `dma_load_mbuf()' on transmit,
178 1.1 pk * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
179 1.1 pk * all the time) on the reveiver side.
180 1.8 pk *
181 1.8 pk * Note: receive buffers must be 64-byte aligned.
182 1.8 pk * Also, apparently, the buffers must extend to a DMA burst
183 1.8 pk * boundary beyond the maximum packet size.
184 1.1 pk */
185 1.1 pk #define _HME_NDESC 32
186 1.8 pk #define _HME_BUFSZ 1600
187 1.1 pk
188 1.1 pk /* Note: the # of descriptors must be a multiple of 16 */
189 1.1 pk sc->sc_rb.rb_ntbuf = _HME_NDESC;
190 1.1 pk sc->sc_rb.rb_nrbuf = _HME_NDESC;
191 1.1 pk
192 1.1 pk /*
193 1.1 pk * Allocate DMA capable memory
194 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
195 1.1 pk * take this into account when calculating the size. Note that
196 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
197 1.1 pk * so we allocate that much regardless of _HME_NDESC.
198 1.1 pk */
199 1.1 pk size = 2048 + /* TX descriptors */
200 1.1 pk 2048 + /* RX descriptors */
201 1.1 pk sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
202 1.1 pk sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
203 1.1 pk if ((error = bus_dmamem_alloc(sc->sc_dmatag, size,
204 1.1 pk 2048, 0,
205 1.1 pk &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
206 1.1 pk printf("%s: DMA buffer alloc error %d\n",
207 1.1 pk sc->sc_dev.dv_xname, error);
208 1.1 pk }
209 1.1 pk sc->sc_rb.rb_dmabase = seg.ds_addr;
210 1.1 pk
211 1.1 pk /* Map DMA memory in CPU adressable space */
212 1.1 pk if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, size,
213 1.1 pk &sc->sc_rb.rb_membase,
214 1.1 pk BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
215 1.1 pk printf("%s: DMA buffer map error %d\n",
216 1.1 pk sc->sc_dev.dv_xname, error);
217 1.1 pk bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
218 1.1 pk return;
219 1.1 pk }
220 1.1 pk
221 1.1 pk #if 0
222 1.1 pk /*
223 1.1 pk * Install default copy routines if not supplied.
224 1.1 pk */
225 1.1 pk if (sc->sc_copytobuf == NULL)
226 1.1 pk sc->sc_copytobuf = hme_copytobuf_contig;
227 1.1 pk
228 1.1 pk if (sc->sc_copyfrombuf == NULL)
229 1.1 pk sc->sc_copyfrombuf = hme_copyfrombuf_contig;
230 1.1 pk #endif
231 1.1 pk
232 1.2 pk printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
233 1.2 pk
234 1.1 pk /* Initialize ifnet structure. */
235 1.1 pk bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
236 1.1 pk ifp->if_softc = sc;
237 1.1 pk ifp->if_start = hme_start;
238 1.1 pk ifp->if_ioctl = hme_ioctl;
239 1.1 pk ifp->if_watchdog = hme_watchdog;
240 1.1 pk ifp->if_flags =
241 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
242 1.1 pk
243 1.1 pk /* Initialize ifmedia structures and MII info */
244 1.1 pk mii->mii_ifp = ifp;
245 1.1 pk mii->mii_readreg = hme_mii_readreg;
246 1.1 pk mii->mii_writereg = hme_mii_writereg;
247 1.1 pk mii->mii_statchg = hme_mii_statchg;
248 1.1 pk
249 1.1 pk ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
250 1.1 pk
251 1.4 pk hme_mifinit(sc);
252 1.4 pk
253 1.6 thorpej mii_attach(&sc->sc_dev, mii, 0xffffffff,
254 1.7 thorpej MII_PHY_ANY, MII_OFFSET_ANY, 0);
255 1.2 pk
256 1.5 pk child = LIST_FIRST(&mii->mii_phys);
257 1.5 pk if (child == NULL) {
258 1.1 pk /* No PHY attached */
259 1.1 pk ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
260 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
261 1.1 pk } else {
262 1.1 pk /*
263 1.5 pk * Walk along the list of attached MII devices and
264 1.5 pk * establish an `MII instance' to `phy number'
265 1.5 pk * mapping. We'll use this mapping in media change
266 1.5 pk * requests to determine which phy to use to program
267 1.5 pk * the MIF configuration register.
268 1.5 pk */
269 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
270 1.5 pk /*
271 1.5 pk * Note: we support just two PHYs: the built-in
272 1.5 pk * internal device and an external on the MII
273 1.5 pk * connector.
274 1.5 pk */
275 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) {
276 1.5 pk printf("%s: cannot accomodate MII device %s"
277 1.5 pk " at phy %d, instance %d\n",
278 1.5 pk sc->sc_dev.dv_xname,
279 1.5 pk child->mii_dev.dv_xname,
280 1.5 pk child->mii_phy, child->mii_inst);
281 1.5 pk continue;
282 1.5 pk }
283 1.5 pk
284 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy;
285 1.5 pk }
286 1.5 pk
287 1.5 pk /*
288 1.1 pk * XXX - we can really do the following ONLY if the
289 1.1 pk * phy indeed has the auto negotiation capability!!
290 1.1 pk */
291 1.1 pk ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
292 1.1 pk }
293 1.1 pk
294 1.1 pk /* Attach the interface. */
295 1.1 pk if_attach(ifp);
296 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
297 1.1 pk
298 1.1 pk #if NBPFILTER > 0
299 1.1 pk bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
300 1.1 pk #endif
301 1.1 pk
302 1.1 pk sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
303 1.1 pk if (sc->sc_sh == NULL)
304 1.1 pk panic("hme_config: can't establish shutdownhook");
305 1.1 pk
306 1.1 pk #if 0
307 1.1 pk printf("%s: %d receive buffers, %d transmit buffers\n",
308 1.1 pk sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
309 1.1 pk sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
310 1.1 pk M_WAITOK);
311 1.1 pk sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
312 1.1 pk M_WAITOK);
313 1.1 pk #endif
314 1.1 pk
315 1.1 pk #if NRND > 0
316 1.1 pk rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
317 1.1 pk RND_TYPE_NET, 0);
318 1.1 pk #endif
319 1.5 pk
320 1.5 pk /* Start the one second clock */
321 1.5 pk timeout(hme_tick, sc, hz);
322 1.5 pk }
323 1.5 pk
324 1.5 pk void
325 1.5 pk hme_tick(arg)
326 1.5 pk void *arg;
327 1.5 pk {
328 1.5 pk struct hme_softc *sc = arg;
329 1.5 pk int s;
330 1.5 pk
331 1.5 pk s = splnet();
332 1.5 pk mii_tick(&sc->sc_mii);
333 1.5 pk splx(s);
334 1.5 pk
335 1.5 pk timeout(hme_tick, sc, hz);
336 1.1 pk }
337 1.1 pk
338 1.1 pk void
339 1.1 pk hme_reset(sc)
340 1.1 pk struct hme_softc *sc;
341 1.1 pk {
342 1.1 pk int s;
343 1.1 pk
344 1.1 pk s = splnet();
345 1.1 pk hme_init(sc);
346 1.1 pk splx(s);
347 1.1 pk }
348 1.1 pk
349 1.1 pk void
350 1.1 pk hme_stop(sc)
351 1.1 pk struct hme_softc *sc;
352 1.1 pk {
353 1.1 pk bus_space_tag_t t = sc->sc_bustag;
354 1.1 pk bus_space_handle_t seb = sc->sc_seb;
355 1.1 pk int n;
356 1.1 pk
357 1.5 pk untimeout(hme_tick, sc);
358 1.5 pk mii_down(&sc->sc_mii);
359 1.5 pk
360 1.1 pk /* Reset transmitter and receiver */
361 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
362 1.1 pk (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
363 1.1 pk
364 1.1 pk for (n = 0; n < 20; n++) {
365 1.1 pk u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
366 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
367 1.1 pk return;
368 1.1 pk DELAY(20);
369 1.1 pk }
370 1.1 pk
371 1.1 pk printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
372 1.1 pk }
373 1.1 pk
374 1.1 pk void
375 1.1 pk hme_meminit(sc)
376 1.1 pk struct hme_softc *sc;
377 1.1 pk {
378 1.1 pk bus_addr_t txbufdma, rxbufdma;
379 1.1 pk bus_addr_t dma;
380 1.1 pk caddr_t p;
381 1.1 pk unsigned int ntbuf, nrbuf, i;
382 1.1 pk struct hme_ring *hr = &sc->sc_rb;
383 1.1 pk
384 1.1 pk p = hr->rb_membase;
385 1.1 pk dma = hr->rb_dmabase;
386 1.1 pk
387 1.1 pk ntbuf = hr->rb_ntbuf;
388 1.1 pk nrbuf = hr->rb_nrbuf;
389 1.1 pk
390 1.1 pk /*
391 1.1 pk * Allocate transmit descriptors
392 1.1 pk */
393 1.1 pk hr->rb_txd = p;
394 1.1 pk hr->rb_txddma = dma;
395 1.1 pk p += ntbuf * HME_XD_SIZE;
396 1.1 pk dma += ntbuf * HME_XD_SIZE;
397 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/
398 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
399 1.4 pk p = (caddr_t)roundup((u_long)p, 2048);
400 1.1 pk
401 1.1 pk /*
402 1.1 pk * Allocate receive descriptors
403 1.1 pk */
404 1.1 pk hr->rb_rxd = p;
405 1.1 pk hr->rb_rxddma = dma;
406 1.1 pk p += nrbuf * HME_XD_SIZE;
407 1.1 pk dma += nrbuf * HME_XD_SIZE;
408 1.4 pk /* Again move forward to the next 2048 byte boundary.*/
409 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
410 1.4 pk p = (caddr_t)roundup((u_long)p, 2048);
411 1.1 pk
412 1.1 pk
413 1.1 pk /*
414 1.1 pk * Allocate transmit buffers
415 1.1 pk */
416 1.1 pk hr->rb_txbuf = p;
417 1.1 pk txbufdma = dma;
418 1.1 pk p += ntbuf * _HME_BUFSZ;
419 1.1 pk dma += ntbuf * _HME_BUFSZ;
420 1.1 pk
421 1.1 pk /*
422 1.1 pk * Allocate receive buffers
423 1.1 pk */
424 1.1 pk hr->rb_rxbuf = p;
425 1.1 pk rxbufdma = dma;
426 1.1 pk p += nrbuf * _HME_BUFSZ;
427 1.1 pk dma += nrbuf * _HME_BUFSZ;
428 1.1 pk
429 1.1 pk /*
430 1.1 pk * Initialize transmit buffer descriptors
431 1.1 pk */
432 1.1 pk for (i = 0; i < ntbuf; i++) {
433 1.1 pk HME_XD_SETADDR(hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
434 1.1 pk HME_XD_SETFLAGS(hr->rb_txd, i, 0);
435 1.1 pk }
436 1.1 pk
437 1.1 pk /*
438 1.1 pk * Initialize receive buffer descriptors
439 1.1 pk */
440 1.1 pk for (i = 0; i < nrbuf; i++) {
441 1.2 pk HME_XD_SETADDR(hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
442 1.2 pk HME_XD_SETFLAGS(hr->rb_rxd, i,
443 1.1 pk HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
444 1.1 pk }
445 1.1 pk
446 1.1 pk hr->rb_tdhead = hr->rb_tdtail = 0;
447 1.1 pk hr->rb_td_nbusy = 0;
448 1.1 pk hr->rb_rdtail = 0;
449 1.1 pk }
450 1.1 pk
451 1.1 pk /*
452 1.1 pk * Initialization of interface; set up initialization block
453 1.1 pk * and transmit/receive descriptor rings.
454 1.1 pk */
455 1.1 pk void
456 1.1 pk hme_init(sc)
457 1.1 pk struct hme_softc *sc;
458 1.1 pk {
459 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
460 1.1 pk bus_space_tag_t t = sc->sc_bustag;
461 1.1 pk bus_space_handle_t seb = sc->sc_seb;
462 1.1 pk bus_space_handle_t etx = sc->sc_etx;
463 1.1 pk bus_space_handle_t erx = sc->sc_erx;
464 1.1 pk bus_space_handle_t mac = sc->sc_mac;
465 1.1 pk bus_space_handle_t mif = sc->sc_mif;
466 1.1 pk u_int8_t *ea;
467 1.1 pk u_int32_t v;
468 1.1 pk
469 1.1 pk /*
470 1.1 pk * Initialization sequence. The numbered steps below correspond
471 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
472 1.1 pk * Channel Engine manual (part of the PCIO manual).
473 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
474 1.1 pk */
475 1.1 pk
476 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
477 1.1 pk hme_stop(sc);
478 1.1 pk
479 1.4 pk /* Re-initialize the MIF */
480 1.4 pk hme_mifinit(sc);
481 1.4 pk
482 1.1 pk /* Call MI reset function if any */
483 1.1 pk if (sc->sc_hwreset)
484 1.1 pk (*sc->sc_hwreset)(sc);
485 1.1 pk
486 1.1 pk #if 0
487 1.1 pk /* Mask all MIF interrupts, just in case */
488 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
489 1.1 pk #endif
490 1.1 pk
491 1.1 pk /* step 3. Setup data structures in host memory */
492 1.1 pk hme_meminit(sc);
493 1.1 pk
494 1.1 pk /* step 4. TX MAC registers & counters */
495 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
496 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
497 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
498 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
499 1.1 pk
500 1.1 pk /* Load station MAC address */
501 1.1 pk ea = sc->sc_enaddr;
502 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
503 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
504 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
505 1.1 pk
506 1.1 pk /*
507 1.1 pk * Init seed for backoff
508 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
509 1.1 pk */
510 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
511 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
512 1.1 pk
513 1.1 pk
514 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
515 1.1 pk
516 1.1 pk
517 1.1 pk /* step 5. RX MAC registers & counters */
518 1.1 pk hme_setladrf(sc);
519 1.1 pk
520 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
521 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
522 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
523 1.1 pk
524 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
525 1.1 pk
526 1.1 pk
527 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
528 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
529 1.2 pk ~(
530 1.2 pk /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
531 1.2 pk HME_SEB_STAT_HOSTTOTX |
532 1.2 pk HME_SEB_STAT_RXTOHOST |
533 1.2 pk HME_SEB_STAT_TXALL |
534 1.2 pk HME_SEB_STAT_TXPERR |
535 1.2 pk HME_SEB_STAT_RCNTEXP |
536 1.2 pk HME_SEB_STAT_ALL_ERRORS ));
537 1.1 pk
538 1.1 pk switch (sc->sc_burst) {
539 1.1 pk default:
540 1.1 pk v = 0;
541 1.1 pk break;
542 1.1 pk case 16:
543 1.1 pk v = HME_SEB_CFG_BURST16;
544 1.1 pk break;
545 1.1 pk case 32:
546 1.1 pk v = HME_SEB_CFG_BURST32;
547 1.1 pk break;
548 1.1 pk case 64:
549 1.1 pk v = HME_SEB_CFG_BURST64;
550 1.1 pk break;
551 1.1 pk }
552 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
553 1.1 pk
554 1.1 pk /* step 9. ETX Configuration: use mostly default values */
555 1.1 pk
556 1.1 pk /* Enable DMA */
557 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
558 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
559 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
560 1.1 pk
561 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
562 1.3 pk bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
563 1.1 pk
564 1.1 pk
565 1.3 pk /* step 10. ERX Configuration */
566 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
567 1.3 pk
568 1.3 pk /* Encode Receive Descriptor ring size: four possible values */
569 1.3 pk switch (_HME_NDESC /*XXX*/) {
570 1.3 pk case 32:
571 1.3 pk v |= HME_ERX_CFG_RINGSIZE32;
572 1.3 pk break;
573 1.3 pk case 64:
574 1.3 pk v |= HME_ERX_CFG_RINGSIZE64;
575 1.3 pk break;
576 1.3 pk case 128:
577 1.3 pk v |= HME_ERX_CFG_RINGSIZE128;
578 1.3 pk break;
579 1.3 pk case 256:
580 1.3 pk v |= HME_ERX_CFG_RINGSIZE256;
581 1.3 pk break;
582 1.3 pk default:
583 1.3 pk printf("hme: invalid Receive Descriptor ring size\n");
584 1.3 pk break;
585 1.3 pk }
586 1.3 pk
587 1.3 pk /* Enable DMA */
588 1.1 pk v |= HME_ERX_CFG_DMAENABLE;
589 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
590 1.1 pk
591 1.1 pk /* step 11. XIF Configuration */
592 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
593 1.1 pk v |= HME_MAC_XIF_OE;
594 1.4 pk /* If an external transceiver is connected, enable its MII drivers */
595 1.2 pk if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
596 1.4 pk v |= HME_MAC_XIF_MIIENABLE;
597 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
598 1.1 pk
599 1.2 pk
600 1.1 pk /* step 12. RX_MAC Configuration Register */
601 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
602 1.1 pk v |= HME_MAC_RXCFG_ENABLE;
603 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
604 1.1 pk
605 1.1 pk /* step 13. TX_MAC Configuration Register */
606 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
607 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
608 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
609 1.1 pk
610 1.1 pk /* step 14. Issue Transmit Pending command */
611 1.1 pk
612 1.1 pk /* Call MI initialization function if any */
613 1.1 pk if (sc->sc_hwinit)
614 1.1 pk (*sc->sc_hwinit)(sc);
615 1.1 pk
616 1.1 pk ifp->if_flags |= IFF_RUNNING;
617 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
618 1.1 pk ifp->if_timer = 0;
619 1.1 pk hme_start(ifp);
620 1.1 pk }
621 1.1 pk
622 1.1 pk /*
623 1.1 pk * Compare two Ether/802 addresses for equality, inlined and unrolled for
624 1.1 pk * speed.
625 1.1 pk */
626 1.1 pk static __inline__ int
627 1.1 pk ether_cmp(a, b)
628 1.1 pk u_char *a, *b;
629 1.1 pk {
630 1.1 pk
631 1.1 pk if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
632 1.1 pk a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
633 1.1 pk return (0);
634 1.1 pk return (1);
635 1.1 pk }
636 1.1 pk
637 1.1 pk
638 1.1 pk /*
639 1.1 pk * Routine to copy from mbuf chain to transmit buffer in
640 1.1 pk * network buffer memory.
641 1.1 pk * Returns the amount of data copied.
642 1.1 pk */
643 1.1 pk int
644 1.1 pk hme_put(sc, ri, m)
645 1.1 pk struct hme_softc *sc;
646 1.1 pk int ri; /* Ring index */
647 1.1 pk struct mbuf *m;
648 1.1 pk {
649 1.1 pk struct mbuf *n;
650 1.1 pk int len, tlen = 0;
651 1.1 pk caddr_t bp;
652 1.1 pk
653 1.1 pk bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
654 1.1 pk for (; m; m = n) {
655 1.1 pk len = m->m_len;
656 1.1 pk if (len == 0) {
657 1.1 pk MFREE(m, n);
658 1.1 pk continue;
659 1.1 pk }
660 1.1 pk bcopy(mtod(m, caddr_t), bp, len);
661 1.1 pk bp += len;
662 1.1 pk tlen += len;
663 1.1 pk MFREE(m, n);
664 1.1 pk }
665 1.1 pk return (tlen);
666 1.1 pk }
667 1.1 pk
668 1.1 pk /*
669 1.1 pk * Pull data off an interface.
670 1.1 pk * Len is length of data, with local net header stripped.
671 1.1 pk * We copy the data into mbufs. When full cluster sized units are present
672 1.1 pk * we copy into clusters.
673 1.1 pk */
674 1.1 pk struct mbuf *
675 1.1 pk hme_get(sc, ri, totlen)
676 1.1 pk struct hme_softc *sc;
677 1.1 pk int ri, totlen;
678 1.1 pk {
679 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
680 1.1 pk struct mbuf *m, *m0, *newm;
681 1.1 pk caddr_t bp;
682 1.1 pk int len;
683 1.1 pk
684 1.1 pk MGETHDR(m0, M_DONTWAIT, MT_DATA);
685 1.1 pk if (m0 == 0)
686 1.1 pk return (0);
687 1.1 pk m0->m_pkthdr.rcvif = ifp;
688 1.1 pk m0->m_pkthdr.len = totlen;
689 1.1 pk len = MHLEN;
690 1.1 pk m = m0;
691 1.1 pk
692 1.1 pk bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
693 1.1 pk
694 1.1 pk while (totlen > 0) {
695 1.1 pk if (totlen >= MINCLSIZE) {
696 1.1 pk MCLGET(m, M_DONTWAIT);
697 1.1 pk if ((m->m_flags & M_EXT) == 0)
698 1.1 pk goto bad;
699 1.1 pk len = MCLBYTES;
700 1.1 pk }
701 1.1 pk
702 1.1 pk if (m == m0) {
703 1.1 pk caddr_t newdata = (caddr_t)
704 1.1 pk ALIGN(m->m_data + sizeof(struct ether_header)) -
705 1.1 pk sizeof(struct ether_header);
706 1.1 pk len -= newdata - m->m_data;
707 1.1 pk m->m_data = newdata;
708 1.1 pk }
709 1.1 pk
710 1.1 pk m->m_len = len = min(totlen, len);
711 1.1 pk bcopy(bp, mtod(m, caddr_t), len);
712 1.1 pk bp += len;
713 1.1 pk
714 1.1 pk totlen -= len;
715 1.1 pk if (totlen > 0) {
716 1.1 pk MGET(newm, M_DONTWAIT, MT_DATA);
717 1.1 pk if (newm == 0)
718 1.1 pk goto bad;
719 1.1 pk len = MLEN;
720 1.1 pk m = m->m_next = newm;
721 1.1 pk }
722 1.1 pk }
723 1.1 pk
724 1.1 pk return (m0);
725 1.1 pk
726 1.1 pk bad:
727 1.1 pk m_freem(m0);
728 1.1 pk return (0);
729 1.1 pk }
730 1.1 pk
731 1.1 pk /*
732 1.1 pk * Pass a packet to the higher levels.
733 1.1 pk */
734 1.1 pk void
735 1.1 pk hme_read(sc, ix, len)
736 1.1 pk struct hme_softc *sc;
737 1.1 pk int ix, len;
738 1.1 pk {
739 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
740 1.1 pk struct mbuf *m;
741 1.1 pk
742 1.1 pk if (len <= sizeof(struct ether_header) ||
743 1.1 pk len > ETHERMTU + sizeof(struct ether_header)) {
744 1.1 pk #ifdef HMEDEBUG
745 1.1 pk printf("%s: invalid packet size %d; dropping\n",
746 1.1 pk sc->sc_dev.dv_xname, len);
747 1.1 pk #endif
748 1.1 pk ifp->if_ierrors++;
749 1.1 pk return;
750 1.1 pk }
751 1.1 pk
752 1.1 pk /* Pull packet off interface. */
753 1.1 pk m = hme_get(sc, ix, len);
754 1.1 pk if (m == 0) {
755 1.1 pk ifp->if_ierrors++;
756 1.1 pk return;
757 1.1 pk }
758 1.1 pk
759 1.1 pk ifp->if_ipackets++;
760 1.1 pk
761 1.1 pk #if NBPFILTER > 0
762 1.1 pk /*
763 1.1 pk * Check if there's a BPF listener on this interface.
764 1.1 pk * If so, hand off the raw packet to BPF.
765 1.1 pk */
766 1.1 pk if (ifp->if_bpf) {
767 1.2 pk struct ether_header *eh;
768 1.2 pk
769 1.1 pk bpf_mtap(ifp->if_bpf, m);
770 1.1 pk
771 1.1 pk /*
772 1.1 pk * Note that the interface cannot be in promiscuous mode if
773 1.1 pk * there are no BPF listeners. And if we are in promiscuous
774 1.1 pk * mode, we have to check if this packet is really ours.
775 1.1 pk */
776 1.2 pk
777 1.2 pk /* We assume that the header fit entirely in one mbuf. */
778 1.2 pk eh = mtod(m, struct ether_header *);
779 1.2 pk
780 1.1 pk if ((ifp->if_flags & IFF_PROMISC) != 0 &&
781 1.1 pk (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
782 1.4 pk ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) {
783 1.1 pk m_freem(m);
784 1.1 pk return;
785 1.1 pk }
786 1.1 pk }
787 1.1 pk #endif
788 1.1 pk
789 1.1 pk /* Pass the packet up. */
790 1.1 pk (*ifp->if_input)(ifp, m);
791 1.1 pk }
792 1.1 pk
793 1.1 pk void
794 1.1 pk hme_start(ifp)
795 1.1 pk struct ifnet *ifp;
796 1.1 pk {
797 1.1 pk struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
798 1.1 pk caddr_t txd = sc->sc_rb.rb_txd;
799 1.1 pk struct mbuf *m;
800 1.1 pk unsigned int ri, len;
801 1.1 pk unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
802 1.1 pk
803 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
804 1.1 pk return;
805 1.1 pk
806 1.1 pk ri = sc->sc_rb.rb_tdhead;
807 1.1 pk
808 1.1 pk for (;;) {
809 1.1 pk IF_DEQUEUE(&ifp->if_snd, m);
810 1.1 pk if (m == 0)
811 1.1 pk break;
812 1.1 pk
813 1.1 pk #if NBPFILTER > 0
814 1.1 pk /*
815 1.1 pk * If BPF is listening on this interface, let it see the
816 1.1 pk * packet before we commit it to the wire.
817 1.1 pk */
818 1.1 pk if (ifp->if_bpf)
819 1.1 pk bpf_mtap(ifp->if_bpf, m);
820 1.1 pk #endif
821 1.1 pk
822 1.1 pk /*
823 1.1 pk * Copy the mbuf chain into the transmit buffer.
824 1.1 pk */
825 1.1 pk len = hme_put(sc, ri, m);
826 1.1 pk
827 1.1 pk /*
828 1.1 pk * Initialize transmit registers and start transmission
829 1.1 pk */
830 1.1 pk HME_XD_SETFLAGS(txd, ri,
831 1.1 pk HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
832 1.1 pk HME_XD_ENCODE_TSIZE(len));
833 1.1 pk
834 1.3 pk /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
835 1.1 pk bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
836 1.1 pk HME_ETX_TP_DMAWAKEUP);
837 1.1 pk
838 1.1 pk if (++ri == ntbuf)
839 1.1 pk ri = 0;
840 1.1 pk
841 1.1 pk if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
842 1.1 pk ifp->if_flags |= IFF_OACTIVE;
843 1.1 pk break;
844 1.1 pk }
845 1.1 pk }
846 1.1 pk
847 1.1 pk sc->sc_rb.rb_tdhead = ri;
848 1.1 pk }
849 1.1 pk
850 1.1 pk /*
851 1.1 pk * Transmit interrupt.
852 1.1 pk */
853 1.1 pk int
854 1.1 pk hme_tint(sc)
855 1.1 pk struct hme_softc *sc;
856 1.1 pk {
857 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
858 1.1 pk bus_space_tag_t t = sc->sc_bustag;
859 1.1 pk bus_space_handle_t mac = sc->sc_mac;
860 1.1 pk unsigned int ri, txflags;
861 1.1 pk
862 1.1 pk /*
863 1.1 pk * Unload collision counters
864 1.1 pk */
865 1.1 pk ifp->if_collisions +=
866 1.1 pk bus_space_read_4(t, mac, HME_MACI_NCCNT) +
867 1.1 pk bus_space_read_4(t, mac, HME_MACI_FCCNT) +
868 1.1 pk bus_space_read_4(t, mac, HME_MACI_EXCNT) +
869 1.1 pk bus_space_read_4(t, mac, HME_MACI_LTCNT);
870 1.1 pk
871 1.1 pk /*
872 1.1 pk * then clear the hardware counters.
873 1.1 pk */
874 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
875 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
876 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
877 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
878 1.1 pk
879 1.1 pk /* Fetch current position in the transmit ring */
880 1.1 pk ri = sc->sc_rb.rb_tdtail;
881 1.1 pk
882 1.1 pk for (;;) {
883 1.1 pk if (sc->sc_rb.rb_td_nbusy <= 0)
884 1.1 pk break;
885 1.1 pk
886 1.1 pk txflags = HME_XD_GETFLAGS(sc->sc_rb.rb_txd, ri);
887 1.1 pk
888 1.1 pk if (txflags & HME_XD_OWN)
889 1.1 pk break;
890 1.1 pk
891 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
892 1.1 pk ifp->if_opackets++;
893 1.1 pk
894 1.3 pk if (++ri == sc->sc_rb.rb_ntbuf)
895 1.1 pk ri = 0;
896 1.1 pk
897 1.1 pk --sc->sc_rb.rb_td_nbusy;
898 1.1 pk }
899 1.1 pk
900 1.3 pk /* Update ring */
901 1.1 pk sc->sc_rb.rb_tdtail = ri;
902 1.1 pk
903 1.1 pk hme_start(ifp);
904 1.1 pk
905 1.1 pk if (sc->sc_rb.rb_td_nbusy == 0)
906 1.1 pk ifp->if_timer = 0;
907 1.1 pk
908 1.1 pk return (1);
909 1.1 pk }
910 1.1 pk
911 1.1 pk /*
912 1.1 pk * Receive interrupt.
913 1.1 pk */
914 1.1 pk int
915 1.1 pk hme_rint(sc)
916 1.1 pk struct hme_softc *sc;
917 1.1 pk {
918 1.1 pk caddr_t xdr = sc->sc_rb.rb_rxd;
919 1.1 pk unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
920 1.1 pk unsigned int ri, len;
921 1.1 pk u_int32_t flags;
922 1.1 pk
923 1.1 pk ri = sc->sc_rb.rb_rdtail;
924 1.1 pk
925 1.1 pk /*
926 1.1 pk * Process all buffers with valid data.
927 1.1 pk */
928 1.1 pk for (;;) {
929 1.1 pk flags = HME_XD_GETFLAGS(xdr, ri);
930 1.1 pk if (flags & HME_XD_OWN)
931 1.1 pk break;
932 1.1 pk
933 1.4 pk if (flags & HME_XD_OFL) {
934 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
935 1.4 pk sc->sc_dev.dv_xname, ri, flags);
936 1.4 pk } else {
937 1.4 pk len = HME_XD_DECODE_RSIZE(flags);
938 1.4 pk hme_read(sc, ri, len);
939 1.4 pk }
940 1.1 pk
941 1.1 pk /* This buffer can be used by the hardware again */
942 1.1 pk HME_XD_SETFLAGS(xdr, ri,
943 1.1 pk HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
944 1.1 pk
945 1.1 pk if (++ri == nrbuf)
946 1.1 pk ri = 0;
947 1.1 pk }
948 1.1 pk
949 1.1 pk sc->sc_rb.rb_rdtail = ri;
950 1.1 pk
951 1.1 pk return (1);
952 1.1 pk }
953 1.1 pk
954 1.1 pk int
955 1.1 pk hme_eint(sc, status)
956 1.1 pk struct hme_softc *sc;
957 1.1 pk u_int status;
958 1.1 pk {
959 1.1 pk char bits[128];
960 1.1 pk
961 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
962 1.1 pk printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
963 1.1 pk return (1);
964 1.1 pk }
965 1.1 pk
966 1.1 pk printf("%s: status=%s\n", sc->sc_dev.dv_xname,
967 1.1 pk bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
968 1.1 pk return (1);
969 1.1 pk }
970 1.1 pk
971 1.1 pk int
972 1.1 pk hme_intr(v)
973 1.1 pk void *v;
974 1.1 pk {
975 1.1 pk struct hme_softc *sc = (struct hme_softc *)v;
976 1.1 pk bus_space_tag_t t = sc->sc_bustag;
977 1.1 pk bus_space_handle_t seb = sc->sc_seb;
978 1.1 pk u_int32_t status;
979 1.1 pk int r = 0;
980 1.1 pk
981 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
982 1.1 pk
983 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
984 1.1 pk r |= hme_eint(sc, status);
985 1.1 pk
986 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
987 1.1 pk r |= hme_tint(sc);
988 1.1 pk
989 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
990 1.1 pk r |= hme_rint(sc);
991 1.1 pk
992 1.1 pk return (r);
993 1.1 pk }
994 1.1 pk
995 1.1 pk
996 1.1 pk void
997 1.1 pk hme_watchdog(ifp)
998 1.1 pk struct ifnet *ifp;
999 1.1 pk {
1000 1.1 pk struct hme_softc *sc = ifp->if_softc;
1001 1.1 pk
1002 1.1 pk log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1003 1.1 pk ++ifp->if_oerrors;
1004 1.1 pk
1005 1.1 pk hme_reset(sc);
1006 1.4 pk }
1007 1.4 pk
1008 1.4 pk /*
1009 1.4 pk * Initialize the MII Management Interface
1010 1.4 pk */
1011 1.4 pk void
1012 1.4 pk hme_mifinit(sc)
1013 1.4 pk struct hme_softc *sc;
1014 1.4 pk {
1015 1.4 pk bus_space_tag_t t = sc->sc_bustag;
1016 1.4 pk bus_space_handle_t mif = sc->sc_mif;
1017 1.4 pk u_int32_t v;
1018 1.4 pk
1019 1.4 pk /* Configure the MIF in frame mode */
1020 1.4 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1021 1.4 pk v &= ~HME_MIF_CFG_BBMODE;
1022 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1023 1.1 pk }
1024 1.1 pk
1025 1.1 pk /*
1026 1.1 pk * MII interface
1027 1.1 pk */
1028 1.1 pk static int
1029 1.1 pk hme_mii_readreg(self, phy, reg)
1030 1.1 pk struct device *self;
1031 1.1 pk int phy, reg;
1032 1.1 pk {
1033 1.1 pk struct hme_softc *sc = (void *)self;
1034 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1035 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1036 1.1 pk int n;
1037 1.1 pk u_int32_t v;
1038 1.1 pk
1039 1.5 pk /* Select the desired PHY in the MIF configuration register */
1040 1.5 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1041 1.5 pk /* Clear PHY select bit */
1042 1.5 pk v &= ~HME_MIF_CFG_PHY;
1043 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1044 1.5 pk /* Set PHY select bit to get at external device */
1045 1.5 pk v |= HME_MIF_CFG_PHY;
1046 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1047 1.5 pk
1048 1.1 pk /* Construct the frame command */
1049 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1050 1.1 pk HME_MIF_FO_TAMSB |
1051 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1052 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1053 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
1054 1.1 pk
1055 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1056 1.1 pk for (n = 0; n < 100; n++) {
1057 1.2 pk DELAY(1);
1058 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1059 1.1 pk if (v & HME_MIF_FO_TALSB)
1060 1.1 pk return (v & HME_MIF_FO_DATA);
1061 1.1 pk }
1062 1.1 pk
1063 1.1 pk printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1064 1.1 pk return (0);
1065 1.1 pk }
1066 1.1 pk
1067 1.1 pk static void
1068 1.1 pk hme_mii_writereg(self, phy, reg, val)
1069 1.1 pk struct device *self;
1070 1.1 pk int phy, reg, val;
1071 1.1 pk {
1072 1.1 pk struct hme_softc *sc = (void *)self;
1073 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1074 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1075 1.1 pk int n;
1076 1.1 pk u_int32_t v;
1077 1.1 pk
1078 1.5 pk /* Select the desired PHY in the MIF configuration register */
1079 1.5 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1080 1.5 pk /* Clear PHY select bit */
1081 1.5 pk v &= ~HME_MIF_CFG_PHY;
1082 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1083 1.5 pk /* Set PHY select bit to get at external device */
1084 1.5 pk v |= HME_MIF_CFG_PHY;
1085 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1086 1.5 pk
1087 1.1 pk /* Construct the frame command */
1088 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1089 1.1 pk HME_MIF_FO_TAMSB |
1090 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1091 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1092 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
1093 1.1 pk (val & HME_MIF_FO_DATA);
1094 1.1 pk
1095 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1096 1.1 pk for (n = 0; n < 100; n++) {
1097 1.2 pk DELAY(1);
1098 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1099 1.1 pk if (v & HME_MIF_FO_TALSB)
1100 1.1 pk return;
1101 1.1 pk }
1102 1.1 pk
1103 1.2 pk printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1104 1.1 pk }
1105 1.1 pk
1106 1.1 pk static void
1107 1.1 pk hme_mii_statchg(dev)
1108 1.1 pk struct device *dev;
1109 1.1 pk {
1110 1.3 pk struct hme_softc *sc = (void *)dev;
1111 1.5 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1112 1.5 pk int phy = sc->sc_phys[instance];
1113 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1114 1.5 pk bus_space_handle_t mif = sc->sc_mif;
1115 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1116 1.1 pk u_int32_t v;
1117 1.1 pk
1118 1.5 pk #ifdef HMEDEBUG
1119 1.5 pk if (sc->sc_debug)
1120 1.5 pk printf("hme_mii_statchg: status change: phy = %d\n", phy);
1121 1.5 pk #endif
1122 1.1 pk
1123 1.5 pk /* Select the current PHY in the MIF configuration register */
1124 1.5 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1125 1.5 pk v &= ~HME_MIF_CFG_PHY;
1126 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1127 1.5 pk v |= HME_MIF_CFG_PHY;
1128 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1129 1.1 pk
1130 1.5 pk /* Set the MAC Full Duplex bit appropriately */
1131 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1132 1.1 pk if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1133 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
1134 1.1 pk else
1135 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
1136 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1137 1.1 pk
1138 1.5 pk /* If an external transceiver is selected, enable its MII drivers */
1139 1.5 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1140 1.5 pk v &= ~HME_MAC_XIF_MIIENABLE;
1141 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1142 1.5 pk v |= HME_MAC_XIF_MIIENABLE;
1143 1.5 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1144 1.5 pk }
1145 1.5 pk
1146 1.5 pk int
1147 1.5 pk hme_mediachange(ifp)
1148 1.5 pk struct ifnet *ifp;
1149 1.5 pk {
1150 1.5 pk struct hme_softc *sc = ifp->if_softc;
1151 1.5 pk
1152 1.5 pk if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1153 1.5 pk return (EINVAL);
1154 1.5 pk
1155 1.5 pk return (mii_mediachg(&sc->sc_mii));
1156 1.1 pk }
1157 1.1 pk
1158 1.1 pk void
1159 1.1 pk hme_mediastatus(ifp, ifmr)
1160 1.1 pk struct ifnet *ifp;
1161 1.1 pk struct ifmediareq *ifmr;
1162 1.1 pk {
1163 1.1 pk struct hme_softc *sc = ifp->if_softc;
1164 1.1 pk
1165 1.1 pk if ((ifp->if_flags & IFF_UP) == 0)
1166 1.1 pk return;
1167 1.1 pk
1168 1.1 pk mii_pollstat(&sc->sc_mii);
1169 1.1 pk ifmr->ifm_active = sc->sc_mii.mii_media_active;
1170 1.1 pk ifmr->ifm_status = sc->sc_mii.mii_media_status;
1171 1.1 pk }
1172 1.1 pk
1173 1.1 pk /*
1174 1.1 pk * Process an ioctl request.
1175 1.1 pk */
1176 1.1 pk int
1177 1.1 pk hme_ioctl(ifp, cmd, data)
1178 1.1 pk struct ifnet *ifp;
1179 1.1 pk u_long cmd;
1180 1.1 pk caddr_t data;
1181 1.1 pk {
1182 1.1 pk struct hme_softc *sc = ifp->if_softc;
1183 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1184 1.1 pk struct ifreq *ifr = (struct ifreq *)data;
1185 1.1 pk int s, error = 0;
1186 1.1 pk
1187 1.1 pk s = splnet();
1188 1.1 pk
1189 1.1 pk switch (cmd) {
1190 1.1 pk
1191 1.1 pk case SIOCSIFADDR:
1192 1.1 pk ifp->if_flags |= IFF_UP;
1193 1.1 pk
1194 1.1 pk switch (ifa->ifa_addr->sa_family) {
1195 1.1 pk #ifdef INET
1196 1.1 pk case AF_INET:
1197 1.1 pk hme_init(sc);
1198 1.1 pk arp_ifinit(ifp, ifa);
1199 1.1 pk break;
1200 1.1 pk #endif
1201 1.1 pk #ifdef NS
1202 1.1 pk case AF_NS:
1203 1.1 pk {
1204 1.1 pk struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1205 1.1 pk
1206 1.1 pk if (ns_nullhost(*ina))
1207 1.1 pk ina->x_host =
1208 1.1 pk *(union ns_host *)LLADDR(ifp->if_sadl);
1209 1.1 pk else {
1210 1.1 pk bcopy(ina->x_host.c_host,
1211 1.1 pk LLADDR(ifp->if_sadl),
1212 1.1 pk sizeof(sc->sc_enaddr));
1213 1.1 pk }
1214 1.1 pk /* Set new address. */
1215 1.1 pk hme_init(sc);
1216 1.1 pk break;
1217 1.1 pk }
1218 1.1 pk #endif
1219 1.1 pk default:
1220 1.1 pk hme_init(sc);
1221 1.1 pk break;
1222 1.1 pk }
1223 1.1 pk break;
1224 1.1 pk
1225 1.1 pk case SIOCSIFFLAGS:
1226 1.1 pk if ((ifp->if_flags & IFF_UP) == 0 &&
1227 1.1 pk (ifp->if_flags & IFF_RUNNING) != 0) {
1228 1.1 pk /*
1229 1.1 pk * If interface is marked down and it is running, then
1230 1.1 pk * stop it.
1231 1.1 pk */
1232 1.1 pk hme_stop(sc);
1233 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1234 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0 &&
1235 1.1 pk (ifp->if_flags & IFF_RUNNING) == 0) {
1236 1.1 pk /*
1237 1.1 pk * If interface is marked up and it is stopped, then
1238 1.1 pk * start it.
1239 1.1 pk */
1240 1.1 pk hme_init(sc);
1241 1.1 pk } else if ((ifp->if_flags & IFF_UP) != 0) {
1242 1.1 pk /*
1243 1.1 pk * Reset the interface to pick up changes in any other
1244 1.1 pk * flags that affect hardware registers.
1245 1.1 pk */
1246 1.1 pk /*hme_stop(sc);*/
1247 1.1 pk hme_init(sc);
1248 1.1 pk }
1249 1.1 pk #ifdef HMEDEBUG
1250 1.1 pk sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1251 1.1 pk #endif
1252 1.1 pk break;
1253 1.1 pk
1254 1.1 pk case SIOCADDMULTI:
1255 1.1 pk case SIOCDELMULTI:
1256 1.1 pk error = (cmd == SIOCADDMULTI) ?
1257 1.1 pk ether_addmulti(ifr, &sc->sc_ethercom) :
1258 1.1 pk ether_delmulti(ifr, &sc->sc_ethercom);
1259 1.1 pk
1260 1.1 pk if (error == ENETRESET) {
1261 1.1 pk /*
1262 1.1 pk * Multicast list has changed; set the hardware filter
1263 1.1 pk * accordingly.
1264 1.1 pk */
1265 1.1 pk hme_setladrf(sc);
1266 1.1 pk error = 0;
1267 1.1 pk }
1268 1.1 pk break;
1269 1.1 pk
1270 1.1 pk case SIOCGIFMEDIA:
1271 1.1 pk case SIOCSIFMEDIA:
1272 1.1 pk error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1273 1.1 pk break;
1274 1.1 pk
1275 1.1 pk default:
1276 1.1 pk error = EINVAL;
1277 1.1 pk break;
1278 1.1 pk }
1279 1.1 pk
1280 1.1 pk splx(s);
1281 1.1 pk return (error);
1282 1.1 pk }
1283 1.1 pk
1284 1.1 pk void
1285 1.1 pk hme_shutdown(arg)
1286 1.1 pk void *arg;
1287 1.1 pk {
1288 1.1 pk
1289 1.1 pk hme_stop((struct hme_softc *)arg);
1290 1.1 pk }
1291 1.1 pk
1292 1.1 pk /*
1293 1.1 pk * Set up the logical address filter.
1294 1.1 pk */
1295 1.1 pk void
1296 1.1 pk hme_setladrf(sc)
1297 1.1 pk struct hme_softc *sc;
1298 1.1 pk {
1299 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1300 1.1 pk struct ether_multi *enm;
1301 1.1 pk struct ether_multistep step;
1302 1.1 pk struct ethercom *ec = &sc->sc_ethercom;
1303 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1304 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1305 1.1 pk u_char *cp;
1306 1.1 pk u_int32_t crc;
1307 1.1 pk u_int32_t hash[4];
1308 1.1 pk int len;
1309 1.1 pk
1310 1.1 pk /*
1311 1.1 pk * Set up multicast address filter by passing all multicast addresses
1312 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1313 1.1 pk * index into the 64 bit logical address filter. The high order bit
1314 1.1 pk * selects the word, while the rest of the bits select the bit within
1315 1.1 pk * the word.
1316 1.1 pk */
1317 1.1 pk
1318 1.1 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1319 1.1 pk u_int32_t v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1320 1.1 pk v |= HME_MAC_RXCFG_PMISC;
1321 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1322 1.1 pk goto allmulti;
1323 1.1 pk }
1324 1.1 pk
1325 1.1 pk /* Clear hash table */
1326 1.1 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1327 1.1 pk ETHER_FIRST_MULTI(step, ec, enm);
1328 1.1 pk while (enm != NULL) {
1329 1.1 pk if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1330 1.1 pk /*
1331 1.1 pk * We must listen to a range of multicast addresses.
1332 1.1 pk * For now, just accept all multicasts, rather than
1333 1.1 pk * trying to set only those filter bits needed to match
1334 1.1 pk * the range. (At this time, the only use of address
1335 1.1 pk * ranges is for IP multicast routing, for which the
1336 1.1 pk * range is big enough to require all bits set.)
1337 1.1 pk */
1338 1.1 pk goto allmulti;
1339 1.1 pk }
1340 1.1 pk
1341 1.1 pk cp = enm->enm_addrlo;
1342 1.1 pk crc = 0xffffffff;
1343 1.1 pk for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1344 1.1 pk int octet = *cp++;
1345 1.1 pk int i;
1346 1.1 pk
1347 1.1 pk #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1348 1.1 pk for (i = 0; i < 8; i++) {
1349 1.1 pk if ((crc & 1) ^ (octet & 1)) {
1350 1.1 pk crc >>= 1;
1351 1.1 pk crc ^= MC_POLY_LE;
1352 1.1 pk } else {
1353 1.1 pk crc >>= 1;
1354 1.1 pk }
1355 1.1 pk octet >>= 1;
1356 1.1 pk }
1357 1.1 pk }
1358 1.1 pk /* Just want the 6 most significant bits. */
1359 1.1 pk crc >>= 26;
1360 1.1 pk
1361 1.1 pk /* Set the corresponding bit in the filter. */
1362 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1363 1.1 pk
1364 1.1 pk ETHER_NEXT_MULTI(step, enm);
1365 1.1 pk }
1366 1.1 pk
1367 1.1 pk /* Now load the hash table onto the chip */
1368 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1369 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1370 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1371 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1372 1.1 pk
1373 1.1 pk ifp->if_flags &= ~IFF_ALLMULTI;
1374 1.1 pk return;
1375 1.1 pk
1376 1.1 pk allmulti:
1377 1.1 pk ifp->if_flags |= IFF_ALLMULTI;
1378 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, 0xffff);
1379 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, 0xffff);
1380 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, 0xffff);
1381 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, 0xffff);
1382 1.1 pk }
1383 1.1 pk
1384 1.1 pk /*
1385 1.1 pk * Routines for accessing the transmit and receive buffers.
1386 1.1 pk * The various CPU and adapter configurations supported by this
1387 1.1 pk * driver require three different access methods for buffers
1388 1.1 pk * and descriptors:
1389 1.1 pk * (1) contig (contiguous data; no padding),
1390 1.1 pk * (2) gap2 (two bytes of data followed by two bytes of padding),
1391 1.1 pk * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1392 1.1 pk */
1393 1.1 pk
1394 1.1 pk #if 0
1395 1.1 pk /*
1396 1.1 pk * contig: contiguous data with no padding.
1397 1.1 pk *
1398 1.1 pk * Buffers may have any alignment.
1399 1.1 pk */
1400 1.1 pk
1401 1.1 pk void
1402 1.1 pk hme_copytobuf_contig(sc, from, ri, len)
1403 1.1 pk struct hme_softc *sc;
1404 1.1 pk void *from;
1405 1.1 pk int ri, len;
1406 1.1 pk {
1407 1.1 pk volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1408 1.1 pk
1409 1.1 pk /*
1410 1.1 pk * Just call bcopy() to do the work.
1411 1.1 pk */
1412 1.1 pk bcopy(from, buf, len);
1413 1.1 pk }
1414 1.1 pk
1415 1.1 pk void
1416 1.1 pk hme_copyfrombuf_contig(sc, to, boff, len)
1417 1.1 pk struct hme_softc *sc;
1418 1.1 pk void *to;
1419 1.1 pk int boff, len;
1420 1.1 pk {
1421 1.1 pk volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1422 1.1 pk
1423 1.1 pk /*
1424 1.1 pk * Just call bcopy() to do the work.
1425 1.1 pk */
1426 1.1 pk bcopy(buf, to, len);
1427 1.1 pk }
1428 1.1 pk #endif
1429