hme.c revision 1.84 1 1.84 jakllsch /* $NetBSD: hme.c,v 1.84 2009/11/03 22:06:30 jakllsch Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk *
19 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
30 1.1 pk */
31 1.1 pk
32 1.1 pk /*
33 1.1 pk * HME Ethernet module driver.
34 1.1 pk */
35 1.25 lukem
36 1.25 lukem #include <sys/cdefs.h>
37 1.84 jakllsch __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.84 2009/11/03 22:06:30 jakllsch Exp $");
38 1.1 pk
39 1.39 petrov /* #define HMEDEBUG */
40 1.1 pk
41 1.1 pk #include "opt_inet.h"
42 1.1 pk #include "bpfilter.h"
43 1.1 pk #include "rnd.h"
44 1.1 pk
45 1.1 pk #include <sys/param.h>
46 1.1 pk #include <sys/systm.h>
47 1.5 pk #include <sys/kernel.h>
48 1.42 heas #include <sys/mbuf.h>
49 1.1 pk #include <sys/syslog.h>
50 1.1 pk #include <sys/socket.h>
51 1.1 pk #include <sys/device.h>
52 1.1 pk #include <sys/malloc.h>
53 1.1 pk #include <sys/ioctl.h>
54 1.1 pk #include <sys/errno.h>
55 1.1 pk #if NRND > 0
56 1.1 pk #include <sys/rnd.h>
57 1.1 pk #endif
58 1.1 pk
59 1.1 pk #include <net/if.h>
60 1.1 pk #include <net/if_dl.h>
61 1.1 pk #include <net/if_ether.h>
62 1.1 pk #include <net/if_media.h>
63 1.1 pk
64 1.1 pk #ifdef INET
65 1.74 tsutsui #include <net/if_vlanvar.h>
66 1.1 pk #include <netinet/in.h>
67 1.1 pk #include <netinet/if_inarp.h>
68 1.1 pk #include <netinet/in_systm.h>
69 1.1 pk #include <netinet/in_var.h>
70 1.1 pk #include <netinet/ip.h>
71 1.46 heas #include <netinet/tcp.h>
72 1.46 heas #include <netinet/udp.h>
73 1.1 pk #endif
74 1.1 pk
75 1.1 pk
76 1.1 pk #if NBPFILTER > 0
77 1.1 pk #include <net/bpf.h>
78 1.1 pk #include <net/bpfdesc.h>
79 1.1 pk #endif
80 1.1 pk
81 1.1 pk #include <dev/mii/mii.h>
82 1.1 pk #include <dev/mii/miivar.h>
83 1.1 pk
84 1.60 ad #include <sys/bus.h>
85 1.1 pk
86 1.1 pk #include <dev/ic/hmereg.h>
87 1.1 pk #include <dev/ic/hmevar.h>
88 1.1 pk
89 1.81 tsutsui static void hme_start(struct ifnet *);
90 1.81 tsutsui static void hme_stop(struct ifnet *, int);
91 1.81 tsutsui static int hme_ioctl(struct ifnet *, u_long, void *);
92 1.81 tsutsui static void hme_tick(void *);
93 1.81 tsutsui static void hme_watchdog(struct ifnet *);
94 1.81 tsutsui static bool hme_shutdown(device_t, int);
95 1.84 jakllsch static int hme_init(struct ifnet *);
96 1.81 tsutsui static void hme_meminit(struct hme_softc *);
97 1.81 tsutsui static void hme_mifinit(struct hme_softc *);
98 1.82 tsutsui static void hme_reset(struct hme_softc *);
99 1.81 tsutsui static void hme_chipreset(struct hme_softc *);
100 1.81 tsutsui static void hme_setladrf(struct hme_softc *);
101 1.1 pk
102 1.1 pk /* MII methods & callbacks */
103 1.78 cegger static int hme_mii_readreg(device_t, int, int);
104 1.78 cegger static void hme_mii_writereg(device_t, int, int, int);
105 1.78 cegger static void hme_mii_statchg(device_t);
106 1.44 perry
107 1.81 tsutsui static int hme_mediachange(struct ifnet *);
108 1.44 perry
109 1.81 tsutsui static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
110 1.81 tsutsui static int hme_put(struct hme_softc *, int, struct mbuf *);
111 1.81 tsutsui static void hme_read(struct hme_softc *, int, uint32_t);
112 1.81 tsutsui static int hme_eint(struct hme_softc *, u_int);
113 1.81 tsutsui static int hme_rint(struct hme_softc *);
114 1.81 tsutsui static int hme_tint(struct hme_softc *);
115 1.1 pk
116 1.81 tsutsui #if 0
117 1.28 tron /* Default buffer copy routines */
118 1.81 tsutsui static void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
119 1.81 tsutsui static void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
120 1.81 tsutsui #endif
121 1.28 tron
122 1.1 pk void
123 1.71 dsl hme_config(struct hme_softc *sc)
124 1.1 pk {
125 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
126 1.1 pk struct mii_data *mii = &sc->sc_mii;
127 1.5 pk struct mii_softc *child;
128 1.11 pk bus_dma_tag_t dmatag = sc->sc_dmatag;
129 1.1 pk bus_dma_segment_t seg;
130 1.1 pk bus_size_t size;
131 1.28 tron int rseg, error;
132 1.1 pk
133 1.1 pk /*
134 1.1 pk * HME common initialization.
135 1.1 pk *
136 1.1 pk * hme_softc fields that must be initialized by the front-end:
137 1.1 pk *
138 1.1 pk * the bus tag:
139 1.1 pk * sc_bustag
140 1.1 pk *
141 1.37 wiz * the DMA bus tag:
142 1.1 pk * sc_dmatag
143 1.1 pk *
144 1.1 pk * the bus handles:
145 1.1 pk * sc_seb (Shared Ethernet Block registers)
146 1.1 pk * sc_erx (Receiver Unit registers)
147 1.1 pk * sc_etx (Transmitter Unit registers)
148 1.1 pk * sc_mac (MAC registers)
149 1.36 wiz * sc_mif (Management Interface registers)
150 1.1 pk *
151 1.1 pk * the maximum bus burst size:
152 1.1 pk * sc_burst
153 1.1 pk *
154 1.28 tron * (notyet:DMA capable memory for the ring descriptors & packet buffers:
155 1.28 tron * rb_membase, rb_dmabase)
156 1.28 tron *
157 1.1 pk * the local Ethernet address:
158 1.1 pk * sc_enaddr
159 1.1 pk *
160 1.1 pk */
161 1.1 pk
162 1.1 pk /* Make sure the chip is stopped. */
163 1.80 tsutsui hme_chipreset(sc);
164 1.1 pk
165 1.28 tron /*
166 1.28 tron * Allocate descriptors and buffers
167 1.28 tron * XXX - do all this differently.. and more configurably,
168 1.28 tron * eg. use things as `dma_load_mbuf()' on transmit,
169 1.28 tron * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
170 1.38 wiz * all the time) on the receiver side.
171 1.28 tron *
172 1.28 tron * Note: receive buffers must be 64-byte aligned.
173 1.28 tron * Also, apparently, the buffers must extend to a DMA burst
174 1.28 tron * boundary beyond the maximum packet size.
175 1.28 tron */
176 1.28 tron #define _HME_NDESC 128
177 1.28 tron #define _HME_BUFSZ 1600
178 1.28 tron
179 1.28 tron /* Note: the # of descriptors must be a multiple of 16 */
180 1.28 tron sc->sc_rb.rb_ntbuf = _HME_NDESC;
181 1.28 tron sc->sc_rb.rb_nrbuf = _HME_NDESC;
182 1.1 pk
183 1.1 pk /*
184 1.1 pk * Allocate DMA capable memory
185 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
186 1.1 pk * take this into account when calculating the size. Note that
187 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
188 1.28 tron * so we allocate that much regardless of _HME_NDESC.
189 1.1 pk */
190 1.28 tron size = 2048 + /* TX descriptors */
191 1.28 tron 2048 + /* RX descriptors */
192 1.28 tron sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
193 1.46 heas sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
194 1.11 pk
195 1.11 pk /* Allocate DMA buffer */
196 1.28 tron if ((error = bus_dmamem_alloc(dmatag, size,
197 1.28 tron 2048, 0,
198 1.28 tron &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
199 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
200 1.64 cegger error);
201 1.10 mrg return;
202 1.1 pk }
203 1.1 pk
204 1.11 pk /* Map DMA memory in CPU addressable space */
205 1.11 pk if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
206 1.28 tron &sc->sc_rb.rb_membase,
207 1.28 tron BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
208 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
209 1.64 cegger error);
210 1.11 pk bus_dmamap_unload(dmatag, sc->sc_dmamap);
211 1.11 pk bus_dmamem_free(dmatag, &seg, rseg);
212 1.1 pk return;
213 1.1 pk }
214 1.13 mrg
215 1.13 mrg if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
216 1.28 tron BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
217 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
218 1.64 cegger error);
219 1.13 mrg return;
220 1.13 mrg }
221 1.13 mrg
222 1.13 mrg /* Load the buffer */
223 1.13 mrg if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
224 1.17 mrg sc->sc_rb.rb_membase, size, NULL,
225 1.17 mrg BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
226 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
227 1.64 cegger error);
228 1.13 mrg bus_dmamem_free(dmatag, &seg, rseg);
229 1.13 mrg return;
230 1.13 mrg }
231 1.13 mrg sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
232 1.1 pk
233 1.79 tsutsui aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
234 1.22 thorpej ether_sprintf(sc->sc_enaddr));
235 1.2 pk
236 1.1 pk /* Initialize ifnet structure. */
237 1.79 tsutsui strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
238 1.1 pk ifp->if_softc = sc;
239 1.1 pk ifp->if_start = hme_start;
240 1.80 tsutsui ifp->if_stop = hme_stop;
241 1.1 pk ifp->if_ioctl = hme_ioctl;
242 1.84 jakllsch ifp->if_init = hme_init;
243 1.1 pk ifp->if_watchdog = hme_watchdog;
244 1.1 pk ifp->if_flags =
245 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
246 1.41 heas sc->sc_if_flags = ifp->if_flags;
247 1.51 yamt ifp->if_capabilities |=
248 1.51 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
249 1.51 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
250 1.20 thorpej IFQ_SET_READY(&ifp->if_snd);
251 1.1 pk
252 1.1 pk /* Initialize ifmedia structures and MII info */
253 1.1 pk mii->mii_ifp = ifp;
254 1.34 petrov mii->mii_readreg = hme_mii_readreg;
255 1.1 pk mii->mii_writereg = hme_mii_writereg;
256 1.1 pk mii->mii_statchg = hme_mii_statchg;
257 1.1 pk
258 1.61 dyoung sc->sc_ethercom.ec_mii = mii;
259 1.61 dyoung ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
260 1.1 pk
261 1.4 pk hme_mifinit(sc);
262 1.4 pk
263 1.77 jdc /*
264 1.77 jdc * Some HME's have an MII connector, as well as RJ45. Try attaching
265 1.77 jdc * the RJ45 (internal) PHY first, so that the MII PHY is always
266 1.77 jdc * instance 1.
267 1.77 jdc */
268 1.79 tsutsui mii_attach(sc->sc_dev, mii, 0xffffffff,
269 1.77 jdc HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
270 1.79 tsutsui mii_attach(sc->sc_dev, mii, 0xffffffff,
271 1.77 jdc HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
272 1.2 pk
273 1.5 pk child = LIST_FIRST(&mii->mii_phys);
274 1.5 pk if (child == NULL) {
275 1.1 pk /* No PHY attached */
276 1.61 dyoung ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
277 1.61 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
278 1.1 pk } else {
279 1.1 pk /*
280 1.5 pk * Walk along the list of attached MII devices and
281 1.5 pk * establish an `MII instance' to `phy number'
282 1.5 pk * mapping. We'll use this mapping in media change
283 1.5 pk * requests to determine which phy to use to program
284 1.5 pk * the MIF configuration register.
285 1.5 pk */
286 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
287 1.5 pk /*
288 1.5 pk * Note: we support just two PHYs: the built-in
289 1.5 pk * internal device and an external on the MII
290 1.5 pk * connector.
291 1.5 pk */
292 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) {
293 1.79 tsutsui aprint_error_dev(sc->sc_dev,
294 1.79 tsutsui "cannot accommodate MII device %s"
295 1.28 tron " at phy %d, instance %d\n",
296 1.66 xtraeme device_xname(child->mii_dev),
297 1.28 tron child->mii_phy, child->mii_inst);
298 1.5 pk continue;
299 1.5 pk }
300 1.5 pk
301 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy;
302 1.5 pk }
303 1.5 pk
304 1.5 pk /*
305 1.77 jdc * Set the default media to auto negotiation if the phy has
306 1.77 jdc * the auto negotiation capability.
307 1.77 jdc * XXX; What to do otherwise?
308 1.1 pk */
309 1.77 jdc if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
310 1.77 jdc ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
311 1.77 jdc /*
312 1.77 jdc else
313 1.77 jdc ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
314 1.77 jdc */
315 1.1 pk }
316 1.27 tron
317 1.28 tron /* claim 802.1q capability */
318 1.27 tron sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
319 1.1 pk
320 1.1 pk /* Attach the interface. */
321 1.1 pk if_attach(ifp);
322 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
323 1.1 pk
324 1.80 tsutsui if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
325 1.80 tsutsui pmf_class_network_register(sc->sc_dev, ifp);
326 1.80 tsutsui else
327 1.80 tsutsui aprint_error_dev(sc->sc_dev,
328 1.80 tsutsui "couldn't establish power handler\n");
329 1.1 pk
330 1.1 pk #if NRND > 0
331 1.79 tsutsui rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
332 1.1 pk RND_TYPE_NET, 0);
333 1.1 pk #endif
334 1.5 pk
335 1.57 ad callout_init(&sc->sc_tick_ch, 0);
336 1.5 pk }
337 1.5 pk
338 1.5 pk void
339 1.71 dsl hme_tick(void *arg)
340 1.5 pk {
341 1.5 pk struct hme_softc *sc = arg;
342 1.5 pk int s;
343 1.5 pk
344 1.5 pk s = splnet();
345 1.5 pk mii_tick(&sc->sc_mii);
346 1.5 pk splx(s);
347 1.5 pk
348 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
349 1.1 pk }
350 1.1 pk
351 1.1 pk void
352 1.71 dsl hme_reset(struct hme_softc *sc)
353 1.1 pk {
354 1.1 pk int s;
355 1.1 pk
356 1.1 pk s = splnet();
357 1.84 jakllsch (void)hme_init(&sc->sc_ethercom.ec_if);
358 1.1 pk splx(s);
359 1.1 pk }
360 1.1 pk
361 1.1 pk void
362 1.80 tsutsui hme_chipreset(struct hme_softc *sc)
363 1.1 pk {
364 1.1 pk bus_space_tag_t t = sc->sc_bustag;
365 1.1 pk bus_space_handle_t seb = sc->sc_seb;
366 1.1 pk int n;
367 1.1 pk
368 1.33 pk /* Mask all interrupts */
369 1.33 pk bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
370 1.33 pk
371 1.1 pk /* Reset transmitter and receiver */
372 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
373 1.28 tron (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
374 1.1 pk
375 1.1 pk for (n = 0; n < 20; n++) {
376 1.75 tsutsui uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
377 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
378 1.1 pk return;
379 1.1 pk DELAY(20);
380 1.1 pk }
381 1.1 pk
382 1.80 tsutsui printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
383 1.80 tsutsui }
384 1.80 tsutsui
385 1.80 tsutsui void
386 1.80 tsutsui hme_stop(struct ifnet *ifp, int disable)
387 1.80 tsutsui {
388 1.80 tsutsui struct hme_softc *sc;
389 1.80 tsutsui
390 1.80 tsutsui sc = ifp->if_softc;
391 1.80 tsutsui
392 1.80 tsutsui ifp->if_timer = 0;
393 1.80 tsutsui ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
394 1.80 tsutsui
395 1.80 tsutsui callout_stop(&sc->sc_tick_ch);
396 1.80 tsutsui mii_down(&sc->sc_mii);
397 1.80 tsutsui
398 1.80 tsutsui hme_chipreset(sc);
399 1.1 pk }
400 1.1 pk
401 1.1 pk void
402 1.71 dsl hme_meminit(struct hme_softc *sc)
403 1.1 pk {
404 1.28 tron bus_addr_t txbufdma, rxbufdma;
405 1.1 pk bus_addr_t dma;
406 1.56 christos char *p;
407 1.28 tron unsigned int ntbuf, nrbuf, i;
408 1.1 pk struct hme_ring *hr = &sc->sc_rb;
409 1.1 pk
410 1.1 pk p = hr->rb_membase;
411 1.1 pk dma = hr->rb_dmabase;
412 1.1 pk
413 1.28 tron ntbuf = hr->rb_ntbuf;
414 1.28 tron nrbuf = hr->rb_nrbuf;
415 1.28 tron
416 1.1 pk /*
417 1.1 pk * Allocate transmit descriptors
418 1.1 pk */
419 1.1 pk hr->rb_txd = p;
420 1.1 pk hr->rb_txddma = dma;
421 1.28 tron p += ntbuf * HME_XD_SIZE;
422 1.28 tron dma += ntbuf * HME_XD_SIZE;
423 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/
424 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
425 1.56 christos p = (void *)roundup((u_long)p, 2048);
426 1.1 pk
427 1.1 pk /*
428 1.1 pk * Allocate receive descriptors
429 1.1 pk */
430 1.1 pk hr->rb_rxd = p;
431 1.1 pk hr->rb_rxddma = dma;
432 1.28 tron p += nrbuf * HME_XD_SIZE;
433 1.28 tron dma += nrbuf * HME_XD_SIZE;
434 1.4 pk /* Again move forward to the next 2048 byte boundary.*/
435 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
436 1.56 christos p = (void *)roundup((u_long)p, 2048);
437 1.1 pk
438 1.28 tron
439 1.1 pk /*
440 1.28 tron * Allocate transmit buffers
441 1.1 pk */
442 1.28 tron hr->rb_txbuf = p;
443 1.28 tron txbufdma = dma;
444 1.28 tron p += ntbuf * _HME_BUFSZ;
445 1.28 tron dma += ntbuf * _HME_BUFSZ;
446 1.28 tron
447 1.28 tron /*
448 1.28 tron * Allocate receive buffers
449 1.28 tron */
450 1.28 tron hr->rb_rxbuf = p;
451 1.28 tron rxbufdma = dma;
452 1.28 tron p += nrbuf * _HME_BUFSZ;
453 1.28 tron dma += nrbuf * _HME_BUFSZ;
454 1.28 tron
455 1.28 tron /*
456 1.28 tron * Initialize transmit buffer descriptors
457 1.28 tron */
458 1.28 tron for (i = 0; i < ntbuf; i++) {
459 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
460 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
461 1.1 pk }
462 1.1 pk
463 1.1 pk /*
464 1.28 tron * Initialize receive buffer descriptors
465 1.1 pk */
466 1.28 tron for (i = 0; i < nrbuf; i++) {
467 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
468 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
469 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
470 1.1 pk }
471 1.1 pk
472 1.28 tron hr->rb_tdhead = hr->rb_tdtail = 0;
473 1.28 tron hr->rb_td_nbusy = 0;
474 1.28 tron hr->rb_rdtail = 0;
475 1.1 pk }
476 1.1 pk
477 1.1 pk /*
478 1.1 pk * Initialization of interface; set up initialization block
479 1.1 pk * and transmit/receive descriptor rings.
480 1.1 pk */
481 1.61 dyoung int
482 1.84 jakllsch hme_init(struct ifnet *ifp)
483 1.1 pk {
484 1.84 jakllsch struct hme_softc *sc = ifp->if_softc;
485 1.1 pk bus_space_tag_t t = sc->sc_bustag;
486 1.1 pk bus_space_handle_t seb = sc->sc_seb;
487 1.1 pk bus_space_handle_t etx = sc->sc_etx;
488 1.1 pk bus_space_handle_t erx = sc->sc_erx;
489 1.1 pk bus_space_handle_t mac = sc->sc_mac;
490 1.75 tsutsui uint8_t *ea;
491 1.75 tsutsui uint32_t v;
492 1.61 dyoung int rc;
493 1.1 pk
494 1.1 pk /*
495 1.1 pk * Initialization sequence. The numbered steps below correspond
496 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
497 1.1 pk * Channel Engine manual (part of the PCIO manual).
498 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
499 1.1 pk */
500 1.1 pk
501 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
502 1.80 tsutsui hme_stop(ifp, 0);
503 1.1 pk
504 1.4 pk /* Re-initialize the MIF */
505 1.4 pk hme_mifinit(sc);
506 1.4 pk
507 1.1 pk /* Call MI reset function if any */
508 1.1 pk if (sc->sc_hwreset)
509 1.1 pk (*sc->sc_hwreset)(sc);
510 1.1 pk
511 1.1 pk #if 0
512 1.1 pk /* Mask all MIF interrupts, just in case */
513 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
514 1.1 pk #endif
515 1.1 pk
516 1.1 pk /* step 3. Setup data structures in host memory */
517 1.1 pk hme_meminit(sc);
518 1.1 pk
519 1.1 pk /* step 4. TX MAC registers & counters */
520 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
521 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
522 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
523 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
524 1.28 tron bus_space_write_4(t, mac, HME_MACI_TXSIZE,
525 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
526 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
527 1.45 heas sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
528 1.1 pk
529 1.1 pk /* Load station MAC address */
530 1.1 pk ea = sc->sc_enaddr;
531 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
532 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
533 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
534 1.1 pk
535 1.1 pk /*
536 1.1 pk * Init seed for backoff
537 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
538 1.42 heas */
539 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
540 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
541 1.1 pk
542 1.1 pk
543 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
544 1.1 pk
545 1.1 pk
546 1.1 pk /* step 5. RX MAC registers & counters */
547 1.1 pk hme_setladrf(sc);
548 1.1 pk
549 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
550 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
551 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
552 1.1 pk
553 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
554 1.28 tron bus_space_write_4(t, mac, HME_MACI_RXSIZE,
555 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
556 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
557 1.1 pk
558 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
559 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
560 1.28 tron ~(
561 1.28 tron /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
562 1.28 tron HME_SEB_STAT_HOSTTOTX |
563 1.28 tron HME_SEB_STAT_RXTOHOST |
564 1.28 tron HME_SEB_STAT_TXALL |
565 1.28 tron HME_SEB_STAT_TXPERR |
566 1.28 tron HME_SEB_STAT_RCNTEXP |
567 1.77 jdc HME_SEB_STAT_MIFIRQ |
568 1.28 tron HME_SEB_STAT_ALL_ERRORS ));
569 1.1 pk
570 1.1 pk switch (sc->sc_burst) {
571 1.1 pk default:
572 1.1 pk v = 0;
573 1.1 pk break;
574 1.1 pk case 16:
575 1.1 pk v = HME_SEB_CFG_BURST16;
576 1.1 pk break;
577 1.1 pk case 32:
578 1.1 pk v = HME_SEB_CFG_BURST32;
579 1.1 pk break;
580 1.1 pk case 64:
581 1.1 pk v = HME_SEB_CFG_BURST64;
582 1.1 pk break;
583 1.1 pk }
584 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
585 1.1 pk
586 1.1 pk /* step 9. ETX Configuration: use mostly default values */
587 1.1 pk
588 1.1 pk /* Enable DMA */
589 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
590 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
591 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
592 1.1 pk
593 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
594 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
595 1.28 tron
596 1.1 pk
597 1.3 pk /* step 10. ERX Configuration */
598 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
599 1.28 tron
600 1.28 tron /* Encode Receive Descriptor ring size: four possible values */
601 1.28 tron switch (_HME_NDESC /*XXX*/) {
602 1.28 tron case 32:
603 1.28 tron v |= HME_ERX_CFG_RINGSIZE32;
604 1.28 tron break;
605 1.28 tron case 64:
606 1.28 tron v |= HME_ERX_CFG_RINGSIZE64;
607 1.28 tron break;
608 1.28 tron case 128:
609 1.28 tron v |= HME_ERX_CFG_RINGSIZE128;
610 1.28 tron break;
611 1.28 tron case 256:
612 1.28 tron v |= HME_ERX_CFG_RINGSIZE256;
613 1.28 tron break;
614 1.28 tron default:
615 1.28 tron printf("hme: invalid Receive Descriptor ring size\n");
616 1.28 tron break;
617 1.28 tron }
618 1.28 tron
619 1.3 pk /* Enable DMA */
620 1.28 tron v |= HME_ERX_CFG_DMAENABLE;
621 1.46 heas
622 1.46 heas /* set h/w rx checksum start offset (# of half-words) */
623 1.49 heas #ifdef INET
624 1.74 tsutsui v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
625 1.74 tsutsui << HME_ERX_CFG_CSUMSHIFT) &
626 1.46 heas HME_ERX_CFG_CSUMSTART;
627 1.49 heas #endif
628 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
629 1.1 pk
630 1.1 pk /* step 11. XIF Configuration */
631 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
632 1.1 pk v |= HME_MAC_XIF_OE;
633 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
634 1.1 pk
635 1.1 pk /* step 12. RX_MAC Configuration Register */
636 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
637 1.46 heas v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
638 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
639 1.1 pk
640 1.1 pk /* step 13. TX_MAC Configuration Register */
641 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
642 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
643 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
644 1.1 pk
645 1.1 pk /* step 14. Issue Transmit Pending command */
646 1.1 pk
647 1.1 pk /* Call MI initialization function if any */
648 1.1 pk if (sc->sc_hwinit)
649 1.1 pk (*sc->sc_hwinit)(sc);
650 1.29 thorpej
651 1.29 thorpej /* Set the current media. */
652 1.61 dyoung if ((rc = hme_mediachange(ifp)) != 0)
653 1.61 dyoung return rc;
654 1.9 thorpej
655 1.9 thorpej /* Start the one second timer. */
656 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
657 1.1 pk
658 1.1 pk ifp->if_flags |= IFF_RUNNING;
659 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
660 1.41 heas sc->sc_if_flags = ifp->if_flags;
661 1.1 pk ifp->if_timer = 0;
662 1.1 pk hme_start(ifp);
663 1.61 dyoung return 0;
664 1.1 pk }
665 1.1 pk
666 1.28 tron /*
667 1.28 tron * Routine to copy from mbuf chain to transmit buffer in
668 1.28 tron * network buffer memory.
669 1.28 tron * Returns the amount of data copied.
670 1.28 tron */
671 1.28 tron int
672 1.72 dsl hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
673 1.72 dsl /* ri: Ring index */
674 1.28 tron {
675 1.28 tron struct mbuf *n;
676 1.28 tron int len, tlen = 0;
677 1.56 christos char *bp;
678 1.28 tron
679 1.56 christos bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
680 1.28 tron for (; m; m = n) {
681 1.28 tron len = m->m_len;
682 1.28 tron if (len == 0) {
683 1.28 tron MFREE(m, n);
684 1.28 tron continue;
685 1.28 tron }
686 1.56 christos memcpy(bp, mtod(m, void *), len);
687 1.28 tron bp += len;
688 1.28 tron tlen += len;
689 1.28 tron MFREE(m, n);
690 1.28 tron }
691 1.28 tron return (tlen);
692 1.28 tron }
693 1.28 tron
694 1.28 tron /*
695 1.28 tron * Pull data off an interface.
696 1.28 tron * Len is length of data, with local net header stripped.
697 1.28 tron * We copy the data into mbufs. When full cluster sized units are present
698 1.28 tron * we copy into clusters.
699 1.28 tron */
700 1.28 tron struct mbuf *
701 1.75 tsutsui hme_get(struct hme_softc *sc, int ri, uint32_t flags)
702 1.28 tron {
703 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 1.28 tron struct mbuf *m, *m0, *newm;
705 1.56 christos char *bp;
706 1.46 heas int len, totlen;
707 1.76 tsutsui #ifdef INET
708 1.76 tsutsui int csum_flags;
709 1.76 tsutsui #endif
710 1.28 tron
711 1.46 heas totlen = HME_XD_DECODE_RSIZE(flags);
712 1.28 tron MGETHDR(m0, M_DONTWAIT, MT_DATA);
713 1.28 tron if (m0 == 0)
714 1.28 tron return (0);
715 1.28 tron m0->m_pkthdr.rcvif = ifp;
716 1.28 tron m0->m_pkthdr.len = totlen;
717 1.28 tron len = MHLEN;
718 1.28 tron m = m0;
719 1.28 tron
720 1.56 christos bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
721 1.28 tron
722 1.28 tron while (totlen > 0) {
723 1.28 tron if (totlen >= MINCLSIZE) {
724 1.28 tron MCLGET(m, M_DONTWAIT);
725 1.28 tron if ((m->m_flags & M_EXT) == 0)
726 1.28 tron goto bad;
727 1.28 tron len = MCLBYTES;
728 1.28 tron }
729 1.28 tron
730 1.28 tron if (m == m0) {
731 1.56 christos char *newdata = (char *)
732 1.28 tron ALIGN(m->m_data + sizeof(struct ether_header)) -
733 1.28 tron sizeof(struct ether_header);
734 1.28 tron len -= newdata - m->m_data;
735 1.28 tron m->m_data = newdata;
736 1.28 tron }
737 1.28 tron
738 1.28 tron m->m_len = len = min(totlen, len);
739 1.56 christos memcpy(mtod(m, void *), bp, len);
740 1.28 tron bp += len;
741 1.28 tron
742 1.28 tron totlen -= len;
743 1.28 tron if (totlen > 0) {
744 1.28 tron MGET(newm, M_DONTWAIT, MT_DATA);
745 1.28 tron if (newm == 0)
746 1.28 tron goto bad;
747 1.28 tron len = MLEN;
748 1.28 tron m = m->m_next = newm;
749 1.28 tron }
750 1.28 tron }
751 1.28 tron
752 1.49 heas #ifdef INET
753 1.49 heas /* hardware checksum */
754 1.76 tsutsui csum_flags = 0;
755 1.50 rafal if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
756 1.46 heas struct ether_header *eh;
757 1.74 tsutsui struct ether_vlan_header *evh;
758 1.46 heas struct ip *ip;
759 1.46 heas struct udphdr *uh;
760 1.46 heas uint16_t *opts;
761 1.46 heas int32_t hlen, pktlen;
762 1.76 tsutsui uint32_t csum_data;
763 1.46 heas
764 1.74 tsutsui eh = mtod(m0, struct ether_header *);
765 1.74 tsutsui if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
766 1.74 tsutsui ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
767 1.46 heas pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
768 1.74 tsutsui } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
769 1.74 tsutsui evh = (struct ether_vlan_header *)eh;
770 1.74 tsutsui if (ntohs(evh->evl_proto != ETHERTYPE_IP))
771 1.74 tsutsui goto swcsum;
772 1.74 tsutsui ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
773 1.74 tsutsui ETHER_VLAN_ENCAP_LEN);
774 1.74 tsutsui pktlen = m0->m_pkthdr.len -
775 1.74 tsutsui ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
776 1.74 tsutsui } else
777 1.46 heas goto swcsum;
778 1.46 heas
779 1.46 heas /* IPv4 only */
780 1.46 heas if (ip->ip_v != IPVERSION)
781 1.46 heas goto swcsum;
782 1.46 heas
783 1.46 heas hlen = ip->ip_hl << 2;
784 1.48 perry if (hlen < sizeof(struct ip))
785 1.46 heas goto swcsum;
786 1.46 heas
787 1.49 heas /*
788 1.49 heas * bail if too short, has random trailing garbage, truncated,
789 1.49 heas * fragment, or has ethernet pad.
790 1.49 heas */
791 1.76 tsutsui if (ntohs(ip->ip_len) < hlen ||
792 1.76 tsutsui ntohs(ip->ip_len) != pktlen ||
793 1.76 tsutsui (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
794 1.49 heas goto swcsum;
795 1.46 heas
796 1.46 heas switch (ip->ip_p) {
797 1.46 heas case IPPROTO_TCP:
798 1.76 tsutsui if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
799 1.46 heas goto swcsum;
800 1.46 heas if (pktlen < (hlen + sizeof(struct tcphdr)))
801 1.46 heas goto swcsum;
802 1.76 tsutsui csum_flags =
803 1.76 tsutsui M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
804 1.46 heas break;
805 1.46 heas case IPPROTO_UDP:
806 1.76 tsutsui if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
807 1.46 heas goto swcsum;
808 1.46 heas if (pktlen < (hlen + sizeof(struct udphdr)))
809 1.46 heas goto swcsum;
810 1.56 christos uh = (struct udphdr *)((char *)ip + hlen);
811 1.46 heas /* no checksum */
812 1.46 heas if (uh->uh_sum == 0)
813 1.46 heas goto swcsum;
814 1.76 tsutsui csum_flags =
815 1.76 tsutsui M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
816 1.46 heas break;
817 1.46 heas default:
818 1.49 heas goto swcsum;
819 1.46 heas }
820 1.46 heas
821 1.46 heas /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
822 1.76 tsutsui csum_data = ~flags & HME_XD_RXCKSUM;
823 1.46 heas
824 1.74 tsutsui /*
825 1.74 tsutsui * If data offset is different from RX cksum start offset,
826 1.74 tsutsui * we have to deduct them.
827 1.74 tsutsui */
828 1.76 tsutsui hlen = ((char *)ip + hlen) -
829 1.74 tsutsui ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
830 1.76 tsutsui if (hlen > 1) {
831 1.46 heas uint32_t optsum;
832 1.46 heas
833 1.46 heas optsum = 0;
834 1.74 tsutsui opts = (uint16_t *)((char *)eh +
835 1.74 tsutsui ETHER_HDR_LEN + sizeof(struct ip));
836 1.46 heas
837 1.76 tsutsui while (hlen > 1) {
838 1.46 heas optsum += ntohs(*opts++);
839 1.76 tsutsui hlen -= 2;
840 1.46 heas }
841 1.46 heas while (optsum >> 16)
842 1.46 heas optsum = (optsum >> 16) + (optsum & 0xffff);
843 1.46 heas
844 1.73 tsutsui /* Deduct the ip opts sum from the hwsum. */
845 1.76 tsutsui csum_data += (uint16_t)~optsum;
846 1.46 heas
847 1.76 tsutsui while (csum_data >> 16)
848 1.76 tsutsui csum_data =
849 1.76 tsutsui (csum_data >> 16) + (csum_data & 0xffff);
850 1.46 heas }
851 1.76 tsutsui m0->m_pkthdr.csum_data = csum_data;
852 1.76 tsutsui }
853 1.49 heas swcsum:
854 1.76 tsutsui m0->m_pkthdr.csum_flags = csum_flags;
855 1.49 heas #endif
856 1.46 heas
857 1.28 tron return (m0);
858 1.28 tron
859 1.28 tron bad:
860 1.28 tron m_freem(m0);
861 1.28 tron return (0);
862 1.28 tron }
863 1.28 tron
864 1.28 tron /*
865 1.28 tron * Pass a packet to the higher levels.
866 1.28 tron */
867 1.28 tron void
868 1.75 tsutsui hme_read(struct hme_softc *sc, int ix, uint32_t flags)
869 1.28 tron {
870 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
871 1.28 tron struct mbuf *m;
872 1.46 heas int len;
873 1.28 tron
874 1.46 heas len = HME_XD_DECODE_RSIZE(flags);
875 1.28 tron if (len <= sizeof(struct ether_header) ||
876 1.28 tron len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
877 1.28 tron ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
878 1.28 tron ETHERMTU + sizeof(struct ether_header))) {
879 1.28 tron #ifdef HMEDEBUG
880 1.28 tron printf("%s: invalid packet size %d; dropping\n",
881 1.79 tsutsui device_xname(sc->sc_dev), len);
882 1.28 tron #endif
883 1.28 tron ifp->if_ierrors++;
884 1.28 tron return;
885 1.28 tron }
886 1.28 tron
887 1.28 tron /* Pull packet off interface. */
888 1.46 heas m = hme_get(sc, ix, flags);
889 1.28 tron if (m == 0) {
890 1.28 tron ifp->if_ierrors++;
891 1.28 tron return;
892 1.28 tron }
893 1.28 tron
894 1.28 tron ifp->if_ipackets++;
895 1.28 tron
896 1.28 tron #if NBPFILTER > 0
897 1.28 tron /*
898 1.28 tron * Check if there's a BPF listener on this interface.
899 1.28 tron * If so, hand off the raw packet to BPF.
900 1.28 tron */
901 1.28 tron if (ifp->if_bpf)
902 1.28 tron bpf_mtap(ifp->if_bpf, m);
903 1.28 tron #endif
904 1.28 tron
905 1.28 tron /* Pass the packet up. */
906 1.28 tron (*ifp->if_input)(ifp, m);
907 1.28 tron }
908 1.28 tron
909 1.1 pk void
910 1.71 dsl hme_start(struct ifnet *ifp)
911 1.1 pk {
912 1.79 tsutsui struct hme_softc *sc = ifp->if_softc;
913 1.56 christos void *txd = sc->sc_rb.rb_txd;
914 1.1 pk struct mbuf *m;
915 1.46 heas unsigned int txflags;
916 1.80 tsutsui unsigned int ri, len, obusy;
917 1.28 tron unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
918 1.1 pk
919 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
920 1.1 pk return;
921 1.1 pk
922 1.28 tron ri = sc->sc_rb.rb_tdhead;
923 1.80 tsutsui obusy = sc->sc_rb.rb_td_nbusy;
924 1.28 tron
925 1.28 tron for (;;) {
926 1.28 tron IFQ_DEQUEUE(&ifp->if_snd, m);
927 1.28 tron if (m == 0)
928 1.1 pk break;
929 1.1 pk
930 1.1 pk #if NBPFILTER > 0
931 1.1 pk /*
932 1.1 pk * If BPF is listening on this interface, let it see the
933 1.1 pk * packet before we commit it to the wire.
934 1.1 pk */
935 1.1 pk if (ifp->if_bpf)
936 1.1 pk bpf_mtap(ifp->if_bpf, m);
937 1.1 pk #endif
938 1.1 pk
939 1.49 heas #ifdef INET
940 1.46 heas /* collect bits for h/w csum, before hme_put frees the mbuf */
941 1.46 heas if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
942 1.46 heas m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
943 1.46 heas struct ether_header *eh;
944 1.46 heas uint16_t offset, start;
945 1.46 heas
946 1.46 heas eh = mtod(m, struct ether_header *);
947 1.46 heas switch (ntohs(eh->ether_type)) {
948 1.46 heas case ETHERTYPE_IP:
949 1.46 heas start = ETHER_HDR_LEN;
950 1.46 heas break;
951 1.46 heas case ETHERTYPE_VLAN:
952 1.46 heas start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
953 1.46 heas break;
954 1.46 heas default:
955 1.46 heas /* unsupported, drop it */
956 1.46 heas m_free(m);
957 1.46 heas continue;
958 1.46 heas }
959 1.47 thorpej start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
960 1.47 thorpej offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
961 1.47 thorpej + start;
962 1.46 heas txflags = HME_XD_TXCKSUM |
963 1.46 heas (offset << HME_XD_TXCSSTUFFSHIFT) |
964 1.46 heas (start << HME_XD_TXCSSTARTSHIFT);
965 1.46 heas } else
966 1.49 heas #endif
967 1.46 heas txflags = 0;
968 1.46 heas
969 1.28 tron /*
970 1.28 tron * Copy the mbuf chain into the transmit buffer.
971 1.28 tron */
972 1.28 tron len = hme_put(sc, ri, m);
973 1.28 tron
974 1.28 tron /*
975 1.28 tron * Initialize transmit registers and start transmission
976 1.28 tron */
977 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
978 1.28 tron HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
979 1.46 heas HME_XD_ENCODE_TSIZE(len) | txflags);
980 1.28 tron
981 1.28 tron /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
982 1.28 tron bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
983 1.28 tron HME_ETX_TP_DMAWAKEUP);
984 1.28 tron
985 1.28 tron if (++ri == ntbuf)
986 1.28 tron ri = 0;
987 1.28 tron
988 1.28 tron if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
989 1.26 tron ifp->if_flags |= IFF_OACTIVE;
990 1.26 tron break;
991 1.26 tron }
992 1.1 pk }
993 1.1 pk
994 1.80 tsutsui if (obusy != sc->sc_rb.rb_td_nbusy) {
995 1.80 tsutsui sc->sc_rb.rb_tdhead = ri;
996 1.80 tsutsui ifp->if_timer = 5;
997 1.80 tsutsui }
998 1.1 pk }
999 1.1 pk
1000 1.1 pk /*
1001 1.1 pk * Transmit interrupt.
1002 1.1 pk */
1003 1.1 pk int
1004 1.71 dsl hme_tint(struct hme_softc *sc)
1005 1.1 pk {
1006 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1007 1.28 tron bus_space_tag_t t = sc->sc_bustag;
1008 1.28 tron bus_space_handle_t mac = sc->sc_mac;
1009 1.1 pk unsigned int ri, txflags;
1010 1.28 tron
1011 1.28 tron /*
1012 1.28 tron * Unload collision counters
1013 1.28 tron */
1014 1.28 tron ifp->if_collisions +=
1015 1.28 tron bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1016 1.77 jdc bus_space_read_4(t, mac, HME_MACI_FCCNT);
1017 1.77 jdc ifp->if_oerrors +=
1018 1.28 tron bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1019 1.28 tron bus_space_read_4(t, mac, HME_MACI_LTCNT);
1020 1.28 tron
1021 1.28 tron /*
1022 1.28 tron * then clear the hardware counters.
1023 1.28 tron */
1024 1.28 tron bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1025 1.28 tron bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1026 1.28 tron bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1027 1.28 tron bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1028 1.1 pk
1029 1.1 pk /* Fetch current position in the transmit ring */
1030 1.28 tron ri = sc->sc_rb.rb_tdtail;
1031 1.1 pk
1032 1.1 pk for (;;) {
1033 1.28 tron if (sc->sc_rb.rb_td_nbusy <= 0)
1034 1.1 pk break;
1035 1.1 pk
1036 1.15 eeh txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1037 1.1 pk
1038 1.1 pk if (txflags & HME_XD_OWN)
1039 1.1 pk break;
1040 1.1 pk
1041 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
1042 1.28 tron ifp->if_opackets++;
1043 1.26 tron
1044 1.28 tron if (++ri == sc->sc_rb.rb_ntbuf)
1045 1.1 pk ri = 0;
1046 1.1 pk
1047 1.28 tron --sc->sc_rb.rb_td_nbusy;
1048 1.1 pk }
1049 1.1 pk
1050 1.3 pk /* Update ring */
1051 1.28 tron sc->sc_rb.rb_tdtail = ri;
1052 1.1 pk
1053 1.1 pk hme_start(ifp);
1054 1.1 pk
1055 1.28 tron if (sc->sc_rb.rb_td_nbusy == 0)
1056 1.1 pk ifp->if_timer = 0;
1057 1.1 pk
1058 1.1 pk return (1);
1059 1.1 pk }
1060 1.1 pk
1061 1.1 pk /*
1062 1.1 pk * Receive interrupt.
1063 1.1 pk */
1064 1.1 pk int
1065 1.71 dsl hme_rint(struct hme_softc *sc)
1066 1.1 pk {
1067 1.77 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1068 1.77 jdc bus_space_tag_t t = sc->sc_bustag;
1069 1.77 jdc bus_space_handle_t mac = sc->sc_mac;
1070 1.56 christos void *xdr = sc->sc_rb.rb_rxd;
1071 1.28 tron unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1072 1.46 heas unsigned int ri;
1073 1.75 tsutsui uint32_t flags;
1074 1.1 pk
1075 1.28 tron ri = sc->sc_rb.rb_rdtail;
1076 1.1 pk
1077 1.1 pk /*
1078 1.1 pk * Process all buffers with valid data.
1079 1.1 pk */
1080 1.1 pk for (;;) {
1081 1.28 tron flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1082 1.1 pk if (flags & HME_XD_OWN)
1083 1.1 pk break;
1084 1.1 pk
1085 1.4 pk if (flags & HME_XD_OFL) {
1086 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1087 1.79 tsutsui device_xname(sc->sc_dev), ri, flags);
1088 1.46 heas } else
1089 1.46 heas hme_read(sc, ri, flags);
1090 1.1 pk
1091 1.28 tron /* This buffer can be used by the hardware again */
1092 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1093 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1094 1.26 tron
1095 1.28 tron if (++ri == nrbuf)
1096 1.1 pk ri = 0;
1097 1.1 pk }
1098 1.1 pk
1099 1.28 tron sc->sc_rb.rb_rdtail = ri;
1100 1.28 tron
1101 1.77 jdc /* Read error counters ... */
1102 1.77 jdc ifp->if_ierrors +=
1103 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1104 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1105 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1106 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1107 1.77 jdc
1108 1.77 jdc /* ... then clear the hardware counters. */
1109 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1110 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1111 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1112 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1113 1.1 pk return (1);
1114 1.1 pk }
1115 1.1 pk
1116 1.1 pk int
1117 1.71 dsl hme_eint(struct hme_softc *sc, u_int status)
1118 1.1 pk {
1119 1.77 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1120 1.1 pk char bits[128];
1121 1.1 pk
1122 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1123 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1124 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1125 1.75 tsutsui uint32_t cf, st, sm;
1126 1.33 pk cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1127 1.33 pk st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1128 1.33 pk sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1129 1.33 pk printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1130 1.79 tsutsui device_xname(sc->sc_dev), cf, st, sm);
1131 1.1 pk return (1);
1132 1.1 pk }
1133 1.77 jdc
1134 1.77 jdc /* Receive error counters rolled over */
1135 1.77 jdc if (status & HME_SEB_STAT_ACNTEXP)
1136 1.77 jdc ifp->if_ierrors += 0xff;
1137 1.77 jdc if (status & HME_SEB_STAT_CCNTEXP)
1138 1.77 jdc ifp->if_ierrors += 0xff;
1139 1.77 jdc if (status & HME_SEB_STAT_LCNTEXP)
1140 1.77 jdc ifp->if_ierrors += 0xff;
1141 1.77 jdc if (status & HME_SEB_STAT_CVCNTEXP)
1142 1.77 jdc ifp->if_ierrors += 0xff;
1143 1.77 jdc
1144 1.77 jdc /* RXTERR locks up the interface, so do a reset */
1145 1.77 jdc if (status & HME_SEB_STAT_RXTERR)
1146 1.77 jdc hme_reset(sc);
1147 1.77 jdc
1148 1.68 christos snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1149 1.79 tsutsui printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1150 1.68 christos
1151 1.1 pk return (1);
1152 1.1 pk }
1153 1.1 pk
1154 1.1 pk int
1155 1.71 dsl hme_intr(void *v)
1156 1.1 pk {
1157 1.79 tsutsui struct hme_softc *sc = v;
1158 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1159 1.1 pk bus_space_handle_t seb = sc->sc_seb;
1160 1.75 tsutsui uint32_t status;
1161 1.1 pk int r = 0;
1162 1.1 pk
1163 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1164 1.1 pk
1165 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1166 1.1 pk r |= hme_eint(sc, status);
1167 1.1 pk
1168 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1169 1.1 pk r |= hme_tint(sc);
1170 1.1 pk
1171 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1172 1.1 pk r |= hme_rint(sc);
1173 1.1 pk
1174 1.40 abs #if NRND > 0
1175 1.40 abs rnd_add_uint32(&sc->rnd_source, status);
1176 1.40 abs #endif
1177 1.40 abs
1178 1.1 pk return (r);
1179 1.1 pk }
1180 1.1 pk
1181 1.1 pk
1182 1.1 pk void
1183 1.71 dsl hme_watchdog(struct ifnet *ifp)
1184 1.1 pk {
1185 1.1 pk struct hme_softc *sc = ifp->if_softc;
1186 1.1 pk
1187 1.79 tsutsui log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1188 1.1 pk ++ifp->if_oerrors;
1189 1.1 pk
1190 1.1 pk hme_reset(sc);
1191 1.4 pk }
1192 1.4 pk
1193 1.4 pk /*
1194 1.4 pk * Initialize the MII Management Interface
1195 1.4 pk */
1196 1.4 pk void
1197 1.71 dsl hme_mifinit(struct hme_softc *sc)
1198 1.4 pk {
1199 1.4 pk bus_space_tag_t t = sc->sc_bustag;
1200 1.4 pk bus_space_handle_t mif = sc->sc_mif;
1201 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1202 1.33 pk int instance, phy;
1203 1.75 tsutsui uint32_t v;
1204 1.4 pk
1205 1.61 dyoung if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1206 1.61 dyoung instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1207 1.33 pk phy = sc->sc_phys[instance];
1208 1.33 pk } else
1209 1.33 pk /* No media set yet, pick phy arbitrarily.. */
1210 1.33 pk phy = HME_PHYAD_EXTERNAL;
1211 1.33 pk
1212 1.33 pk /* Configure the MIF in frame mode, no poll, current phy select */
1213 1.33 pk v = 0;
1214 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1215 1.33 pk v |= HME_MIF_CFG_PHY;
1216 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1217 1.35 pk
1218 1.35 pk /* If an external transceiver is selected, enable its MII drivers */
1219 1.35 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1220 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1221 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1222 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1223 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1224 1.1 pk }
1225 1.1 pk
1226 1.1 pk /*
1227 1.1 pk * MII interface
1228 1.1 pk */
1229 1.1 pk static int
1230 1.78 cegger hme_mii_readreg(device_t self, int phy, int reg)
1231 1.1 pk {
1232 1.79 tsutsui struct hme_softc *sc = device_private(self);
1233 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1234 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1235 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1236 1.75 tsutsui uint32_t v, xif_cfg, mifi_cfg;
1237 1.1 pk int n;
1238 1.1 pk
1239 1.33 pk /* We can at most have two PHYs */
1240 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1241 1.32 martin return (0);
1242 1.32 martin
1243 1.5 pk /* Select the desired PHY in the MIF configuration register */
1244 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1245 1.5 pk v &= ~HME_MIF_CFG_PHY;
1246 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1247 1.5 pk v |= HME_MIF_CFG_PHY;
1248 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1249 1.5 pk
1250 1.42 heas /* Enable MII drivers on external transceiver */
1251 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1252 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1253 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1254 1.35 pk else
1255 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1256 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1257 1.35 pk
1258 1.33 pk #if 0
1259 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1260 1.33 pk /*
1261 1.33 pk * Check whether a transceiver is connected by testing
1262 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1263 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1264 1.33 pk */
1265 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1266 1.33 pk delay(100);
1267 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1268 1.33 pk if ((v & mif_mdi_bit) == 0)
1269 1.33 pk return (0);
1270 1.33 pk #endif
1271 1.33 pk
1272 1.1 pk /* Construct the frame command */
1273 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1274 1.1 pk HME_MIF_FO_TAMSB |
1275 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1276 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1277 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
1278 1.1 pk
1279 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1280 1.1 pk for (n = 0; n < 100; n++) {
1281 1.2 pk DELAY(1);
1282 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1283 1.33 pk if (v & HME_MIF_FO_TALSB) {
1284 1.33 pk v &= HME_MIF_FO_DATA;
1285 1.33 pk goto out;
1286 1.33 pk }
1287 1.1 pk }
1288 1.1 pk
1289 1.33 pk v = 0;
1290 1.79 tsutsui printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1291 1.33 pk
1292 1.33 pk out:
1293 1.33 pk /* Restore MIFI_CFG register */
1294 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1295 1.35 pk /* Restore XIF register */
1296 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1297 1.33 pk return (v);
1298 1.1 pk }
1299 1.1 pk
1300 1.1 pk static void
1301 1.78 cegger hme_mii_writereg(device_t self, int phy, int reg, int val)
1302 1.1 pk {
1303 1.79 tsutsui struct hme_softc *sc = device_private(self);
1304 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1305 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1306 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1307 1.75 tsutsui uint32_t v, xif_cfg, mifi_cfg;
1308 1.1 pk int n;
1309 1.32 martin
1310 1.33 pk /* We can at most have two PHYs */
1311 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1312 1.32 martin return;
1313 1.1 pk
1314 1.5 pk /* Select the desired PHY in the MIF configuration register */
1315 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1316 1.5 pk v &= ~HME_MIF_CFG_PHY;
1317 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1318 1.5 pk v |= HME_MIF_CFG_PHY;
1319 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1320 1.5 pk
1321 1.42 heas /* Enable MII drivers on external transceiver */
1322 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1323 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1324 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1325 1.35 pk else
1326 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1327 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1328 1.35 pk
1329 1.33 pk #if 0
1330 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1331 1.33 pk /*
1332 1.33 pk * Check whether a transceiver is connected by testing
1333 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1334 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1335 1.33 pk */
1336 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1337 1.33 pk delay(100);
1338 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1339 1.33 pk if ((v & mif_mdi_bit) == 0)
1340 1.33 pk return;
1341 1.33 pk #endif
1342 1.33 pk
1343 1.1 pk /* Construct the frame command */
1344 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1345 1.1 pk HME_MIF_FO_TAMSB |
1346 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1347 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1348 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
1349 1.1 pk (val & HME_MIF_FO_DATA);
1350 1.1 pk
1351 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1352 1.1 pk for (n = 0; n < 100; n++) {
1353 1.2 pk DELAY(1);
1354 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1355 1.1 pk if (v & HME_MIF_FO_TALSB)
1356 1.33 pk goto out;
1357 1.1 pk }
1358 1.1 pk
1359 1.79 tsutsui printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1360 1.33 pk out:
1361 1.33 pk /* Restore MIFI_CFG register */
1362 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1363 1.35 pk /* Restore XIF register */
1364 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1365 1.1 pk }
1366 1.1 pk
1367 1.1 pk static void
1368 1.78 cegger hme_mii_statchg(device_t dev)
1369 1.1 pk {
1370 1.79 tsutsui struct hme_softc *sc = device_private(dev);
1371 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1372 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1373 1.75 tsutsui uint32_t v;
1374 1.1 pk
1375 1.5 pk #ifdef HMEDEBUG
1376 1.5 pk if (sc->sc_debug)
1377 1.33 pk printf("hme_mii_statchg: status change\n");
1378 1.5 pk #endif
1379 1.1 pk
1380 1.5 pk /* Set the MAC Full Duplex bit appropriately */
1381 1.30 martin /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1382 1.30 martin but not otherwise. */
1383 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1384 1.30 martin if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1385 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
1386 1.30 martin sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1387 1.30 martin } else {
1388 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
1389 1.30 martin sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1390 1.30 martin }
1391 1.41 heas sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1392 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1393 1.5 pk }
1394 1.5 pk
1395 1.5 pk int
1396 1.71 dsl hme_mediachange(struct ifnet *ifp)
1397 1.5 pk {
1398 1.5 pk struct hme_softc *sc = ifp->if_softc;
1399 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1400 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1401 1.33 pk bus_space_handle_t mac = sc->sc_mac;
1402 1.33 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1403 1.33 pk int phy = sc->sc_phys[instance];
1404 1.61 dyoung int rc;
1405 1.75 tsutsui uint32_t v;
1406 1.5 pk
1407 1.33 pk #ifdef HMEDEBUG
1408 1.33 pk if (sc->sc_debug)
1409 1.33 pk printf("hme_mediachange: phy = %d\n", phy);
1410 1.33 pk #endif
1411 1.33 pk
1412 1.33 pk /* Select the current PHY in the MIF configuration register */
1413 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1414 1.33 pk v &= ~HME_MIF_CFG_PHY;
1415 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1416 1.33 pk v |= HME_MIF_CFG_PHY;
1417 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1418 1.33 pk
1419 1.33 pk /* If an external transceiver is selected, enable its MII drivers */
1420 1.33 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1421 1.33 pk v &= ~HME_MAC_XIF_MIIENABLE;
1422 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1423 1.33 pk v |= HME_MAC_XIF_MIIENABLE;
1424 1.33 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1425 1.5 pk
1426 1.61 dyoung if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1427 1.61 dyoung return 0;
1428 1.61 dyoung return rc;
1429 1.1 pk }
1430 1.1 pk
1431 1.1 pk /*
1432 1.1 pk * Process an ioctl request.
1433 1.1 pk */
1434 1.1 pk int
1435 1.67 dyoung hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1436 1.1 pk {
1437 1.1 pk struct hme_softc *sc = ifp->if_softc;
1438 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1439 1.1 pk int s, error = 0;
1440 1.1 pk
1441 1.1 pk s = splnet();
1442 1.1 pk
1443 1.1 pk switch (cmd) {
1444 1.1 pk
1445 1.67 dyoung case SIOCINITIFADDR:
1446 1.1 pk switch (ifa->ifa_addr->sa_family) {
1447 1.1 pk #ifdef INET
1448 1.1 pk case AF_INET:
1449 1.41 heas if (ifp->if_flags & IFF_UP)
1450 1.41 heas hme_setladrf(sc);
1451 1.41 heas else {
1452 1.41 heas ifp->if_flags |= IFF_UP;
1453 1.84 jakllsch error = hme_init(ifp);
1454 1.41 heas }
1455 1.1 pk arp_ifinit(ifp, ifa);
1456 1.1 pk break;
1457 1.1 pk #endif
1458 1.1 pk default:
1459 1.41 heas ifp->if_flags |= IFF_UP;
1460 1.84 jakllsch error = hme_init(ifp);
1461 1.1 pk break;
1462 1.1 pk }
1463 1.1 pk break;
1464 1.1 pk
1465 1.1 pk case SIOCSIFFLAGS:
1466 1.45 heas #ifdef HMEDEBUG
1467 1.67 dyoung {
1468 1.67 dyoung struct ifreq *ifr = data;
1469 1.67 dyoung sc->sc_debug =
1470 1.67 dyoung (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1471 1.67 dyoung }
1472 1.45 heas #endif
1473 1.67 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1474 1.67 dyoung break;
1475 1.45 heas
1476 1.67 dyoung switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1477 1.67 dyoung case IFF_RUNNING:
1478 1.1 pk /*
1479 1.1 pk * If interface is marked down and it is running, then
1480 1.1 pk * stop it.
1481 1.1 pk */
1482 1.80 tsutsui hme_stop(ifp, 0);
1483 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1484 1.67 dyoung break;
1485 1.67 dyoung case IFF_UP:
1486 1.1 pk /*
1487 1.1 pk * If interface is marked up and it is stopped, then
1488 1.1 pk * start it.
1489 1.1 pk */
1490 1.84 jakllsch error = hme_init(ifp);
1491 1.67 dyoung break;
1492 1.67 dyoung case IFF_UP|IFF_RUNNING:
1493 1.1 pk /*
1494 1.41 heas * If setting debug or promiscuous mode, do not reset
1495 1.41 heas * the chip; for everything else, call hme_init()
1496 1.41 heas * which will trigger a reset.
1497 1.1 pk */
1498 1.41 heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1499 1.46 heas if (ifp->if_flags != sc->sc_if_flags) {
1500 1.45 heas if ((ifp->if_flags & (~RESETIGN))
1501 1.45 heas == (sc->sc_if_flags & (~RESETIGN)))
1502 1.45 heas hme_setladrf(sc);
1503 1.45 heas else
1504 1.84 jakllsch error = hme_init(ifp);
1505 1.45 heas }
1506 1.41 heas #undef RESETIGN
1507 1.67 dyoung break;
1508 1.67 dyoung case 0:
1509 1.67 dyoung break;
1510 1.1 pk }
1511 1.45 heas
1512 1.45 heas if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1513 1.84 jakllsch error = hme_init(ifp);
1514 1.45 heas
1515 1.1 pk break;
1516 1.1 pk
1517 1.63 dyoung default:
1518 1.63 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1519 1.63 dyoung break;
1520 1.63 dyoung
1521 1.63 dyoung error = 0;
1522 1.63 dyoung
1523 1.63 dyoung if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1524 1.63 dyoung ;
1525 1.63 dyoung else if (ifp->if_flags & IFF_RUNNING) {
1526 1.1 pk /*
1527 1.1 pk * Multicast list has changed; set the hardware filter
1528 1.1 pk * accordingly.
1529 1.1 pk */
1530 1.63 dyoung hme_setladrf(sc);
1531 1.1 pk }
1532 1.1 pk break;
1533 1.1 pk }
1534 1.1 pk
1535 1.41 heas sc->sc_if_flags = ifp->if_flags;
1536 1.1 pk splx(s);
1537 1.1 pk return (error);
1538 1.1 pk }
1539 1.1 pk
1540 1.80 tsutsui bool
1541 1.80 tsutsui hme_shutdown(device_t self, int howto)
1542 1.1 pk {
1543 1.79 tsutsui struct hme_softc *sc;
1544 1.80 tsutsui struct ifnet *ifp;
1545 1.80 tsutsui
1546 1.80 tsutsui sc = device_private(self);
1547 1.80 tsutsui ifp = &sc->sc_ethercom.ec_if;
1548 1.80 tsutsui hme_stop(ifp, 1);
1549 1.28 tron
1550 1.80 tsutsui return true;
1551 1.1 pk }
1552 1.1 pk
1553 1.1 pk /*
1554 1.1 pk * Set up the logical address filter.
1555 1.1 pk */
1556 1.1 pk void
1557 1.71 dsl hme_setladrf(struct hme_softc *sc)
1558 1.1 pk {
1559 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1560 1.1 pk struct ether_multi *enm;
1561 1.1 pk struct ether_multistep step;
1562 1.28 tron struct ethercom *ec = &sc->sc_ethercom;
1563 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1564 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1565 1.83 tsutsui uint32_t v;
1566 1.75 tsutsui uint32_t crc;
1567 1.75 tsutsui uint32_t hash[4];
1568 1.1 pk
1569 1.14 pk /* Clear hash table */
1570 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1571 1.14 pk
1572 1.14 pk /* Get current RX configuration */
1573 1.14 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1574 1.14 pk
1575 1.14 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1576 1.14 pk /* Turn on promiscuous mode; turn off the hash filter */
1577 1.14 pk v |= HME_MAC_RXCFG_PMISC;
1578 1.14 pk v &= ~HME_MAC_RXCFG_HENABLE;
1579 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1580 1.14 pk goto chipit;
1581 1.14 pk }
1582 1.14 pk
1583 1.14 pk /* Turn off promiscuous mode; turn on the hash filter */
1584 1.14 pk v &= ~HME_MAC_RXCFG_PMISC;
1585 1.14 pk v |= HME_MAC_RXCFG_HENABLE;
1586 1.14 pk
1587 1.1 pk /*
1588 1.1 pk * Set up multicast address filter by passing all multicast addresses
1589 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1590 1.1 pk * index into the 64 bit logical address filter. The high order bit
1591 1.1 pk * selects the word, while the rest of the bits select the bit within
1592 1.1 pk * the word.
1593 1.1 pk */
1594 1.1 pk
1595 1.28 tron ETHER_FIRST_MULTI(step, ec, enm);
1596 1.1 pk while (enm != NULL) {
1597 1.70 tsutsui if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1598 1.1 pk /*
1599 1.1 pk * We must listen to a range of multicast addresses.
1600 1.1 pk * For now, just accept all multicasts, rather than
1601 1.1 pk * trying to set only those filter bits needed to match
1602 1.1 pk * the range. (At this time, the only use of address
1603 1.1 pk * ranges is for IP multicast routing, for which the
1604 1.1 pk * range is big enough to require all bits set.)
1605 1.1 pk */
1606 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1607 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1608 1.14 pk goto chipit;
1609 1.1 pk }
1610 1.1 pk
1611 1.83 tsutsui crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1612 1.83 tsutsui
1613 1.1 pk /* Just want the 6 most significant bits. */
1614 1.1 pk crc >>= 26;
1615 1.1 pk
1616 1.1 pk /* Set the corresponding bit in the filter. */
1617 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1618 1.1 pk
1619 1.1 pk ETHER_NEXT_MULTI(step, enm);
1620 1.1 pk }
1621 1.1 pk
1622 1.14 pk ifp->if_flags &= ~IFF_ALLMULTI;
1623 1.14 pk
1624 1.14 pk chipit:
1625 1.14 pk /* Now load the hash table into the chip */
1626 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1627 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1628 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1629 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1630 1.14 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1631 1.1 pk }
1632 1.1 pk
1633 1.28 tron /*
1634 1.28 tron * Routines for accessing the transmit and receive buffers.
1635 1.28 tron * The various CPU and adapter configurations supported by this
1636 1.28 tron * driver require three different access methods for buffers
1637 1.28 tron * and descriptors:
1638 1.28 tron * (1) contig (contiguous data; no padding),
1639 1.28 tron * (2) gap2 (two bytes of data followed by two bytes of padding),
1640 1.28 tron * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1641 1.28 tron */
1642 1.28 tron
1643 1.28 tron #if 0
1644 1.28 tron /*
1645 1.28 tron * contig: contiguous data with no padding.
1646 1.28 tron *
1647 1.28 tron * Buffers may have any alignment.
1648 1.28 tron */
1649 1.28 tron
1650 1.28 tron void
1651 1.72 dsl hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1652 1.26 tron {
1653 1.56 christos volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1654 1.26 tron
1655 1.1 pk /*
1656 1.28 tron * Just call memcpy() to do the work.
1657 1.1 pk */
1658 1.28 tron memcpy(buf, from, len);
1659 1.1 pk }
1660 1.1 pk
1661 1.28 tron void
1662 1.72 dsl hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1663 1.1 pk {
1664 1.56 christos volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1665 1.26 tron
1666 1.28 tron /*
1667 1.28 tron * Just call memcpy() to do the work.
1668 1.28 tron */
1669 1.28 tron memcpy(to, buf, len);
1670 1.1 pk }
1671 1.28 tron #endif
1672