Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.86
      1  1.86     joerg /*	$NetBSD: hme.c,v 1.86 2010/04/05 07:19:34 joerg Exp $	*/
      2   1.1        pk 
      3   1.1        pk /*-
      4   1.1        pk  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5   1.1        pk  * All rights reserved.
      6   1.1        pk  *
      7   1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1        pk  * by Paul Kranenburg.
      9   1.1        pk  *
     10   1.1        pk  * Redistribution and use in source and binary forms, with or without
     11   1.1        pk  * modification, are permitted provided that the following conditions
     12   1.1        pk  * are met:
     13   1.1        pk  * 1. Redistributions of source code must retain the above copyright
     14   1.1        pk  *    notice, this list of conditions and the following disclaimer.
     15   1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        pk  *    documentation and/or other materials provided with the distribution.
     18   1.1        pk  *
     19   1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1        pk  */
     31   1.1        pk 
     32   1.1        pk /*
     33   1.1        pk  * HME Ethernet module driver.
     34   1.1        pk  */
     35  1.25     lukem 
     36  1.25     lukem #include <sys/cdefs.h>
     37  1.86     joerg __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.86 2010/04/05 07:19:34 joerg Exp $");
     38   1.1        pk 
     39  1.39    petrov /* #define HMEDEBUG */
     40   1.1        pk 
     41   1.1        pk #include "opt_inet.h"
     42   1.1        pk #include "rnd.h"
     43   1.1        pk 
     44   1.1        pk #include <sys/param.h>
     45   1.1        pk #include <sys/systm.h>
     46   1.5        pk #include <sys/kernel.h>
     47  1.42      heas #include <sys/mbuf.h>
     48   1.1        pk #include <sys/syslog.h>
     49   1.1        pk #include <sys/socket.h>
     50   1.1        pk #include <sys/device.h>
     51   1.1        pk #include <sys/malloc.h>
     52   1.1        pk #include <sys/ioctl.h>
     53   1.1        pk #include <sys/errno.h>
     54   1.1        pk #if NRND > 0
     55   1.1        pk #include <sys/rnd.h>
     56   1.1        pk #endif
     57   1.1        pk 
     58   1.1        pk #include <net/if.h>
     59   1.1        pk #include <net/if_dl.h>
     60   1.1        pk #include <net/if_ether.h>
     61   1.1        pk #include <net/if_media.h>
     62   1.1        pk 
     63   1.1        pk #ifdef INET
     64  1.74   tsutsui #include <net/if_vlanvar.h>
     65   1.1        pk #include <netinet/in.h>
     66   1.1        pk #include <netinet/if_inarp.h>
     67   1.1        pk #include <netinet/in_systm.h>
     68   1.1        pk #include <netinet/in_var.h>
     69   1.1        pk #include <netinet/ip.h>
     70  1.46      heas #include <netinet/tcp.h>
     71  1.46      heas #include <netinet/udp.h>
     72   1.1        pk #endif
     73   1.1        pk 
     74   1.1        pk 
     75   1.1        pk #include <net/bpf.h>
     76   1.1        pk #include <net/bpfdesc.h>
     77   1.1        pk 
     78   1.1        pk #include <dev/mii/mii.h>
     79   1.1        pk #include <dev/mii/miivar.h>
     80   1.1        pk 
     81  1.60        ad #include <sys/bus.h>
     82   1.1        pk 
     83   1.1        pk #include <dev/ic/hmereg.h>
     84   1.1        pk #include <dev/ic/hmevar.h>
     85   1.1        pk 
     86  1.81   tsutsui static void	hme_start(struct ifnet *);
     87  1.81   tsutsui static void	hme_stop(struct ifnet *, int);
     88  1.81   tsutsui static int	hme_ioctl(struct ifnet *, u_long, void *);
     89  1.81   tsutsui static void	hme_tick(void *);
     90  1.81   tsutsui static void	hme_watchdog(struct ifnet *);
     91  1.81   tsutsui static bool	hme_shutdown(device_t, int);
     92  1.84  jakllsch static int	hme_init(struct ifnet *);
     93  1.81   tsutsui static void	hme_meminit(struct hme_softc *);
     94  1.81   tsutsui static void	hme_mifinit(struct hme_softc *);
     95  1.82   tsutsui static void	hme_reset(struct hme_softc *);
     96  1.81   tsutsui static void	hme_chipreset(struct hme_softc *);
     97  1.81   tsutsui static void	hme_setladrf(struct hme_softc *);
     98   1.1        pk 
     99   1.1        pk /* MII methods & callbacks */
    100  1.78    cegger static int	hme_mii_readreg(device_t, int, int);
    101  1.78    cegger static void	hme_mii_writereg(device_t, int, int, int);
    102  1.78    cegger static void	hme_mii_statchg(device_t);
    103  1.44     perry 
    104  1.81   tsutsui static int	hme_mediachange(struct ifnet *);
    105  1.44     perry 
    106  1.81   tsutsui static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
    107  1.81   tsutsui static int	hme_put(struct hme_softc *, int, struct mbuf *);
    108  1.81   tsutsui static void	hme_read(struct hme_softc *, int, uint32_t);
    109  1.81   tsutsui static int	hme_eint(struct hme_softc *, u_int);
    110  1.81   tsutsui static int	hme_rint(struct hme_softc *);
    111  1.81   tsutsui static int	hme_tint(struct hme_softc *);
    112   1.1        pk 
    113  1.81   tsutsui #if 0
    114  1.28      tron /* Default buffer copy routines */
    115  1.81   tsutsui static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    116  1.81   tsutsui static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    117  1.81   tsutsui #endif
    118  1.28      tron 
    119   1.1        pk void
    120  1.71       dsl hme_config(struct hme_softc *sc)
    121   1.1        pk {
    122   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    123   1.1        pk 	struct mii_data *mii = &sc->sc_mii;
    124   1.5        pk 	struct mii_softc *child;
    125  1.11        pk 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    126   1.1        pk 	bus_dma_segment_t seg;
    127   1.1        pk 	bus_size_t size;
    128  1.28      tron 	int rseg, error;
    129   1.1        pk 
    130   1.1        pk 	/*
    131   1.1        pk 	 * HME common initialization.
    132   1.1        pk 	 *
    133   1.1        pk 	 * hme_softc fields that must be initialized by the front-end:
    134   1.1        pk 	 *
    135   1.1        pk 	 * the bus tag:
    136   1.1        pk 	 *	sc_bustag
    137   1.1        pk 	 *
    138  1.37       wiz 	 * the DMA bus tag:
    139   1.1        pk 	 *	sc_dmatag
    140   1.1        pk 	 *
    141   1.1        pk 	 * the bus handles:
    142   1.1        pk 	 *	sc_seb		(Shared Ethernet Block registers)
    143   1.1        pk 	 *	sc_erx		(Receiver Unit registers)
    144   1.1        pk 	 *	sc_etx		(Transmitter Unit registers)
    145   1.1        pk 	 *	sc_mac		(MAC registers)
    146  1.36       wiz 	 *	sc_mif		(Management Interface registers)
    147   1.1        pk 	 *
    148   1.1        pk 	 * the maximum bus burst size:
    149   1.1        pk 	 *	sc_burst
    150   1.1        pk 	 *
    151  1.28      tron 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    152  1.28      tron 	 *	rb_membase, rb_dmabase)
    153  1.28      tron 	 *
    154   1.1        pk 	 * the local Ethernet address:
    155   1.1        pk 	 *	sc_enaddr
    156   1.1        pk 	 *
    157   1.1        pk 	 */
    158   1.1        pk 
    159   1.1        pk 	/* Make sure the chip is stopped. */
    160  1.80   tsutsui 	hme_chipreset(sc);
    161   1.1        pk 
    162  1.28      tron 	/*
    163  1.28      tron 	 * Allocate descriptors and buffers
    164  1.28      tron 	 * XXX - do all this differently.. and more configurably,
    165  1.28      tron 	 * eg. use things as `dma_load_mbuf()' on transmit,
    166  1.28      tron 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    167  1.38       wiz 	 *     all the time) on the receiver side.
    168  1.28      tron 	 *
    169  1.28      tron 	 * Note: receive buffers must be 64-byte aligned.
    170  1.28      tron 	 * Also, apparently, the buffers must extend to a DMA burst
    171  1.28      tron 	 * boundary beyond the maximum packet size.
    172  1.28      tron 	 */
    173  1.28      tron #define _HME_NDESC	128
    174  1.28      tron #define _HME_BUFSZ	1600
    175  1.28      tron 
    176  1.28      tron 	/* Note: the # of descriptors must be a multiple of 16 */
    177  1.28      tron 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    178  1.28      tron 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    179   1.1        pk 
    180   1.1        pk 	/*
    181   1.1        pk 	 * Allocate DMA capable memory
    182   1.1        pk 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    183   1.1        pk 	 * take this into account when calculating the size. Note that
    184   1.1        pk 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    185  1.28      tron 	 * so we allocate that much regardless of _HME_NDESC.
    186   1.1        pk 	 */
    187  1.28      tron 	size =	2048 +					/* TX descriptors */
    188  1.28      tron 		2048 +					/* RX descriptors */
    189  1.28      tron 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    190  1.46      heas 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    191  1.11        pk 
    192  1.11        pk 	/* Allocate DMA buffer */
    193  1.28      tron 	if ((error = bus_dmamem_alloc(dmatag, size,
    194  1.28      tron 				      2048, 0,
    195  1.28      tron 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    196  1.79   tsutsui 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
    197  1.64    cegger 			error);
    198  1.10       mrg 		return;
    199   1.1        pk 	}
    200   1.1        pk 
    201  1.11        pk 	/* Map DMA memory in CPU addressable space */
    202  1.11        pk 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    203  1.28      tron 				    &sc->sc_rb.rb_membase,
    204  1.28      tron 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    205  1.79   tsutsui 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
    206  1.64    cegger 			error);
    207  1.11        pk 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    208  1.11        pk 		bus_dmamem_free(dmatag, &seg, rseg);
    209   1.1        pk 		return;
    210   1.1        pk 	}
    211  1.13       mrg 
    212  1.13       mrg 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    213  1.28      tron 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    214  1.79   tsutsui 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
    215  1.64    cegger 			error);
    216  1.13       mrg 		return;
    217  1.13       mrg 	}
    218  1.13       mrg 
    219  1.13       mrg 	/* Load the buffer */
    220  1.13       mrg 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    221  1.17       mrg 	    sc->sc_rb.rb_membase, size, NULL,
    222  1.17       mrg 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    223  1.79   tsutsui 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
    224  1.64    cegger 			error);
    225  1.13       mrg 		bus_dmamem_free(dmatag, &seg, rseg);
    226  1.13       mrg 		return;
    227  1.13       mrg 	}
    228  1.13       mrg 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    229   1.1        pk 
    230  1.79   tsutsui 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    231  1.22   thorpej 	    ether_sprintf(sc->sc_enaddr));
    232   1.2        pk 
    233   1.1        pk 	/* Initialize ifnet structure. */
    234  1.79   tsutsui 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    235   1.1        pk 	ifp->if_softc = sc;
    236   1.1        pk 	ifp->if_start = hme_start;
    237  1.80   tsutsui 	ifp->if_stop = hme_stop;
    238   1.1        pk 	ifp->if_ioctl = hme_ioctl;
    239  1.84  jakllsch 	ifp->if_init = hme_init;
    240   1.1        pk 	ifp->if_watchdog = hme_watchdog;
    241   1.1        pk 	ifp->if_flags =
    242   1.1        pk 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    243  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    244  1.51      yamt 	ifp->if_capabilities |=
    245  1.51      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    246  1.51      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    247  1.20   thorpej 	IFQ_SET_READY(&ifp->if_snd);
    248   1.1        pk 
    249   1.1        pk 	/* Initialize ifmedia structures and MII info */
    250   1.1        pk 	mii->mii_ifp = ifp;
    251  1.34    petrov 	mii->mii_readreg = hme_mii_readreg;
    252   1.1        pk 	mii->mii_writereg = hme_mii_writereg;
    253   1.1        pk 	mii->mii_statchg = hme_mii_statchg;
    254   1.1        pk 
    255  1.61    dyoung 	sc->sc_ethercom.ec_mii = mii;
    256  1.61    dyoung 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    257   1.1        pk 
    258   1.4        pk 	hme_mifinit(sc);
    259   1.4        pk 
    260  1.77       jdc 	/*
    261  1.77       jdc 	 * Some HME's have an MII connector, as well as RJ45.  Try attaching
    262  1.77       jdc 	 * the RJ45 (internal) PHY first, so that the MII PHY is always
    263  1.77       jdc 	 * instance 1.
    264  1.77       jdc 	 */
    265  1.79   tsutsui 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    266  1.77       jdc 			HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
    267  1.79   tsutsui 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    268  1.77       jdc 			HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
    269   1.2        pk 
    270   1.5        pk 	child = LIST_FIRST(&mii->mii_phys);
    271   1.5        pk 	if (child == NULL) {
    272   1.1        pk 		/* No PHY attached */
    273  1.61    dyoung 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    274  1.61    dyoung 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    275   1.1        pk 	} else {
    276   1.1        pk 		/*
    277   1.5        pk 		 * Walk along the list of attached MII devices and
    278   1.5        pk 		 * establish an `MII instance' to `phy number'
    279   1.5        pk 		 * mapping. We'll use this mapping in media change
    280   1.5        pk 		 * requests to determine which phy to use to program
    281   1.5        pk 		 * the MIF configuration register.
    282   1.5        pk 		 */
    283   1.5        pk 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    284   1.5        pk 			/*
    285   1.5        pk 			 * Note: we support just two PHYs: the built-in
    286   1.5        pk 			 * internal device and an external on the MII
    287   1.5        pk 			 * connector.
    288   1.5        pk 			 */
    289   1.5        pk 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    290  1.79   tsutsui 				aprint_error_dev(sc->sc_dev,
    291  1.79   tsutsui 				    "cannot accommodate MII device %s"
    292  1.28      tron 				       " at phy %d, instance %d\n",
    293  1.66   xtraeme 				       device_xname(child->mii_dev),
    294  1.28      tron 				       child->mii_phy, child->mii_inst);
    295   1.5        pk 				continue;
    296   1.5        pk 			}
    297   1.5        pk 
    298   1.5        pk 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    299   1.5        pk 		}
    300   1.5        pk 
    301   1.5        pk 		/*
    302  1.77       jdc 		 * Set the default media to auto negotiation if the phy has
    303  1.77       jdc 		 * the auto negotiation capability.
    304  1.77       jdc 		 * XXX; What to do otherwise?
    305   1.1        pk 		 */
    306  1.77       jdc 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
    307  1.77       jdc 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    308  1.77       jdc /*
    309  1.77       jdc 		else
    310  1.77       jdc 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
    311  1.77       jdc */
    312   1.1        pk 	}
    313  1.27      tron 
    314  1.28      tron 	/* claim 802.1q capability */
    315  1.27      tron 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    316   1.1        pk 
    317   1.1        pk 	/* Attach the interface. */
    318   1.1        pk 	if_attach(ifp);
    319   1.1        pk 	ether_ifattach(ifp, sc->sc_enaddr);
    320   1.1        pk 
    321  1.80   tsutsui 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
    322  1.80   tsutsui 		pmf_class_network_register(sc->sc_dev, ifp);
    323  1.80   tsutsui 	else
    324  1.80   tsutsui 		aprint_error_dev(sc->sc_dev,
    325  1.80   tsutsui 		    "couldn't establish power handler\n");
    326   1.1        pk 
    327   1.1        pk #if NRND > 0
    328  1.79   tsutsui 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    329   1.1        pk 			  RND_TYPE_NET, 0);
    330   1.1        pk #endif
    331   1.5        pk 
    332  1.57        ad 	callout_init(&sc->sc_tick_ch, 0);
    333   1.5        pk }
    334   1.5        pk 
    335   1.5        pk void
    336  1.71       dsl hme_tick(void *arg)
    337   1.5        pk {
    338   1.5        pk 	struct hme_softc *sc = arg;
    339   1.5        pk 	int s;
    340   1.5        pk 
    341   1.5        pk 	s = splnet();
    342   1.5        pk 	mii_tick(&sc->sc_mii);
    343   1.5        pk 	splx(s);
    344   1.5        pk 
    345   1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    346   1.1        pk }
    347   1.1        pk 
    348   1.1        pk void
    349  1.71       dsl hme_reset(struct hme_softc *sc)
    350   1.1        pk {
    351   1.1        pk 	int s;
    352   1.1        pk 
    353   1.1        pk 	s = splnet();
    354  1.84  jakllsch 	(void)hme_init(&sc->sc_ethercom.ec_if);
    355   1.1        pk 	splx(s);
    356   1.1        pk }
    357   1.1        pk 
    358   1.1        pk void
    359  1.80   tsutsui hme_chipreset(struct hme_softc *sc)
    360   1.1        pk {
    361   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    362   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    363   1.1        pk 	int n;
    364   1.1        pk 
    365  1.33        pk 	/* Mask all interrupts */
    366  1.33        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    367  1.33        pk 
    368   1.1        pk 	/* Reset transmitter and receiver */
    369   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    370  1.28      tron 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    371   1.1        pk 
    372   1.1        pk 	for (n = 0; n < 20; n++) {
    373  1.75   tsutsui 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    374   1.1        pk 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    375   1.1        pk 			return;
    376   1.1        pk 		DELAY(20);
    377   1.1        pk 	}
    378   1.1        pk 
    379  1.80   tsutsui 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
    380  1.80   tsutsui }
    381  1.80   tsutsui 
    382  1.80   tsutsui void
    383  1.80   tsutsui hme_stop(struct ifnet *ifp, int disable)
    384  1.80   tsutsui {
    385  1.80   tsutsui 	struct hme_softc *sc;
    386  1.80   tsutsui 
    387  1.80   tsutsui 	sc = ifp->if_softc;
    388  1.80   tsutsui 
    389  1.80   tsutsui 	ifp->if_timer = 0;
    390  1.80   tsutsui 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    391  1.80   tsutsui 
    392  1.80   tsutsui 	callout_stop(&sc->sc_tick_ch);
    393  1.80   tsutsui 	mii_down(&sc->sc_mii);
    394  1.80   tsutsui 
    395  1.80   tsutsui 	hme_chipreset(sc);
    396   1.1        pk }
    397   1.1        pk 
    398   1.1        pk void
    399  1.71       dsl hme_meminit(struct hme_softc *sc)
    400   1.1        pk {
    401  1.28      tron 	bus_addr_t txbufdma, rxbufdma;
    402   1.1        pk 	bus_addr_t dma;
    403  1.56  christos 	char *p;
    404  1.28      tron 	unsigned int ntbuf, nrbuf, i;
    405   1.1        pk 	struct hme_ring *hr = &sc->sc_rb;
    406   1.1        pk 
    407   1.1        pk 	p = hr->rb_membase;
    408   1.1        pk 	dma = hr->rb_dmabase;
    409   1.1        pk 
    410  1.28      tron 	ntbuf = hr->rb_ntbuf;
    411  1.28      tron 	nrbuf = hr->rb_nrbuf;
    412  1.28      tron 
    413   1.1        pk 	/*
    414   1.1        pk 	 * Allocate transmit descriptors
    415   1.1        pk 	 */
    416   1.1        pk 	hr->rb_txd = p;
    417   1.1        pk 	hr->rb_txddma = dma;
    418  1.28      tron 	p += ntbuf * HME_XD_SIZE;
    419  1.28      tron 	dma += ntbuf * HME_XD_SIZE;
    420   1.4        pk 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    421   1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    422  1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    423   1.1        pk 
    424   1.1        pk 	/*
    425   1.1        pk 	 * Allocate receive descriptors
    426   1.1        pk 	 */
    427   1.1        pk 	hr->rb_rxd = p;
    428   1.1        pk 	hr->rb_rxddma = dma;
    429  1.28      tron 	p += nrbuf * HME_XD_SIZE;
    430  1.28      tron 	dma += nrbuf * HME_XD_SIZE;
    431   1.4        pk 	/* Again move forward to the next 2048 byte boundary.*/
    432   1.4        pk 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    433  1.56  christos 	p = (void *)roundup((u_long)p, 2048);
    434   1.1        pk 
    435  1.28      tron 
    436   1.1        pk 	/*
    437  1.28      tron 	 * Allocate transmit buffers
    438   1.1        pk 	 */
    439  1.28      tron 	hr->rb_txbuf = p;
    440  1.28      tron 	txbufdma = dma;
    441  1.28      tron 	p += ntbuf * _HME_BUFSZ;
    442  1.28      tron 	dma += ntbuf * _HME_BUFSZ;
    443  1.28      tron 
    444  1.28      tron 	/*
    445  1.28      tron 	 * Allocate receive buffers
    446  1.28      tron 	 */
    447  1.28      tron 	hr->rb_rxbuf = p;
    448  1.28      tron 	rxbufdma = dma;
    449  1.28      tron 	p += nrbuf * _HME_BUFSZ;
    450  1.28      tron 	dma += nrbuf * _HME_BUFSZ;
    451  1.28      tron 
    452  1.28      tron 	/*
    453  1.28      tron 	 * Initialize transmit buffer descriptors
    454  1.28      tron 	 */
    455  1.28      tron 	for (i = 0; i < ntbuf; i++) {
    456  1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    457  1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    458   1.1        pk 	}
    459   1.1        pk 
    460   1.1        pk 	/*
    461  1.28      tron 	 * Initialize receive buffer descriptors
    462   1.1        pk 	 */
    463  1.28      tron 	for (i = 0; i < nrbuf; i++) {
    464  1.28      tron 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    465  1.15       eeh 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    466  1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    467   1.1        pk 	}
    468   1.1        pk 
    469  1.28      tron 	hr->rb_tdhead = hr->rb_tdtail = 0;
    470  1.28      tron 	hr->rb_td_nbusy = 0;
    471  1.28      tron 	hr->rb_rdtail = 0;
    472   1.1        pk }
    473   1.1        pk 
    474   1.1        pk /*
    475   1.1        pk  * Initialization of interface; set up initialization block
    476   1.1        pk  * and transmit/receive descriptor rings.
    477   1.1        pk  */
    478  1.61    dyoung int
    479  1.84  jakllsch hme_init(struct ifnet *ifp)
    480   1.1        pk {
    481  1.84  jakllsch 	struct hme_softc *sc = ifp->if_softc;
    482   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
    483   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
    484   1.1        pk 	bus_space_handle_t etx = sc->sc_etx;
    485   1.1        pk 	bus_space_handle_t erx = sc->sc_erx;
    486   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
    487  1.75   tsutsui 	uint8_t *ea;
    488  1.75   tsutsui 	uint32_t v;
    489  1.61    dyoung 	int rc;
    490   1.1        pk 
    491   1.1        pk 	/*
    492   1.1        pk 	 * Initialization sequence. The numbered steps below correspond
    493   1.1        pk 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    494   1.1        pk 	 * Channel Engine manual (part of the PCIO manual).
    495   1.1        pk 	 * See also the STP2002-STQ document from Sun Microsystems.
    496   1.1        pk 	 */
    497   1.1        pk 
    498   1.1        pk 	/* step 1 & 2. Reset the Ethernet Channel */
    499  1.80   tsutsui 	hme_stop(ifp, 0);
    500   1.1        pk 
    501   1.4        pk 	/* Re-initialize the MIF */
    502   1.4        pk 	hme_mifinit(sc);
    503   1.4        pk 
    504   1.1        pk 	/* Call MI reset function if any */
    505   1.1        pk 	if (sc->sc_hwreset)
    506   1.1        pk 		(*sc->sc_hwreset)(sc);
    507   1.1        pk 
    508   1.1        pk #if 0
    509   1.1        pk 	/* Mask all MIF interrupts, just in case */
    510   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    511   1.1        pk #endif
    512   1.1        pk 
    513   1.1        pk 	/* step 3. Setup data structures in host memory */
    514   1.1        pk 	hme_meminit(sc);
    515   1.1        pk 
    516   1.1        pk 	/* step 4. TX MAC registers & counters */
    517   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    518   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    519   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    520   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    521  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    522  1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    523  1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    524  1.45      heas 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    525   1.1        pk 
    526   1.1        pk 	/* Load station MAC address */
    527   1.1        pk 	ea = sc->sc_enaddr;
    528   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    529   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    530   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    531   1.1        pk 
    532   1.1        pk 	/*
    533   1.1        pk 	 * Init seed for backoff
    534   1.1        pk 	 * (source suggested by manual: low 10 bits of MAC address)
    535  1.42      heas 	 */
    536   1.1        pk 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    537   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    538   1.1        pk 
    539   1.1        pk 
    540   1.1        pk 	/* Note: Accepting power-on default for other MAC registers here.. */
    541   1.1        pk 
    542   1.1        pk 
    543   1.1        pk 	/* step 5. RX MAC registers & counters */
    544   1.1        pk 	hme_setladrf(sc);
    545   1.1        pk 
    546   1.1        pk 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    547   1.1        pk 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    548  1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    549   1.1        pk 
    550   1.1        pk 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    551  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    552  1.28      tron 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    553  1.49      heas 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    554   1.1        pk 
    555   1.1        pk 	/* step 8. Global Configuration & Interrupt Mask */
    556   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    557  1.28      tron 			~(
    558  1.28      tron 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    559  1.28      tron 			  HME_SEB_STAT_HOSTTOTX |
    560  1.28      tron 			  HME_SEB_STAT_RXTOHOST |
    561  1.28      tron 			  HME_SEB_STAT_TXALL |
    562  1.28      tron 			  HME_SEB_STAT_TXPERR |
    563  1.28      tron 			  HME_SEB_STAT_RCNTEXP |
    564  1.77       jdc 			  HME_SEB_STAT_MIFIRQ |
    565  1.28      tron 			  HME_SEB_STAT_ALL_ERRORS ));
    566   1.1        pk 
    567   1.1        pk 	switch (sc->sc_burst) {
    568   1.1        pk 	default:
    569   1.1        pk 		v = 0;
    570   1.1        pk 		break;
    571   1.1        pk 	case 16:
    572   1.1        pk 		v = HME_SEB_CFG_BURST16;
    573   1.1        pk 		break;
    574   1.1        pk 	case 32:
    575   1.1        pk 		v = HME_SEB_CFG_BURST32;
    576   1.1        pk 		break;
    577   1.1        pk 	case 64:
    578   1.1        pk 		v = HME_SEB_CFG_BURST64;
    579   1.1        pk 		break;
    580   1.1        pk 	}
    581   1.1        pk 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    582   1.1        pk 
    583   1.1        pk 	/* step 9. ETX Configuration: use mostly default values */
    584   1.1        pk 
    585   1.1        pk 	/* Enable DMA */
    586   1.2        pk 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    587   1.1        pk 	v |= HME_ETX_CFG_DMAENABLE;
    588   1.2        pk 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    589   1.1        pk 
    590   1.3        pk 	/* Transmit Descriptor ring size: in increments of 16 */
    591  1.28      tron 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    592  1.28      tron 
    593   1.1        pk 
    594   1.3        pk 	/* step 10. ERX Configuration */
    595   1.2        pk 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    596  1.28      tron 
    597  1.28      tron 	/* Encode Receive Descriptor ring size: four possible values */
    598  1.28      tron 	switch (_HME_NDESC /*XXX*/) {
    599  1.28      tron 	case 32:
    600  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE32;
    601  1.28      tron 		break;
    602  1.28      tron 	case 64:
    603  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE64;
    604  1.28      tron 		break;
    605  1.28      tron 	case 128:
    606  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE128;
    607  1.28      tron 		break;
    608  1.28      tron 	case 256:
    609  1.28      tron 		v |= HME_ERX_CFG_RINGSIZE256;
    610  1.28      tron 		break;
    611  1.28      tron 	default:
    612  1.28      tron 		printf("hme: invalid Receive Descriptor ring size\n");
    613  1.28      tron 		break;
    614  1.28      tron 	}
    615  1.28      tron 
    616   1.3        pk 	/* Enable DMA */
    617  1.28      tron 	v |= HME_ERX_CFG_DMAENABLE;
    618  1.46      heas 
    619  1.46      heas 	/* set h/w rx checksum start offset (# of half-words) */
    620  1.49      heas #ifdef INET
    621  1.74   tsutsui 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    622  1.74   tsutsui 		<< HME_ERX_CFG_CSUMSHIFT) &
    623  1.46      heas 		HME_ERX_CFG_CSUMSTART;
    624  1.49      heas #endif
    625   1.2        pk 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    626   1.1        pk 
    627   1.1        pk 	/* step 11. XIF Configuration */
    628   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    629   1.1        pk 	v |= HME_MAC_XIF_OE;
    630   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    631   1.1        pk 
    632   1.1        pk 	/* step 12. RX_MAC Configuration Register */
    633   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    634  1.46      heas 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    635   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    636   1.1        pk 
    637   1.1        pk 	/* step 13. TX_MAC Configuration Register */
    638   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    639   1.2        pk 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    640   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    641   1.1        pk 
    642   1.1        pk 	/* step 14. Issue Transmit Pending command */
    643   1.1        pk 
    644   1.1        pk 	/* Call MI initialization function if any */
    645   1.1        pk 	if (sc->sc_hwinit)
    646   1.1        pk 		(*sc->sc_hwinit)(sc);
    647  1.29   thorpej 
    648  1.29   thorpej 	/* Set the current media. */
    649  1.61    dyoung 	if ((rc = hme_mediachange(ifp)) != 0)
    650  1.61    dyoung 		return rc;
    651   1.9   thorpej 
    652   1.9   thorpej 	/* Start the one second timer. */
    653   1.9   thorpej 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    654   1.1        pk 
    655   1.1        pk 	ifp->if_flags |= IFF_RUNNING;
    656   1.1        pk 	ifp->if_flags &= ~IFF_OACTIVE;
    657  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
    658   1.1        pk 	ifp->if_timer = 0;
    659   1.1        pk 	hme_start(ifp);
    660  1.61    dyoung 	return 0;
    661   1.1        pk }
    662   1.1        pk 
    663  1.28      tron /*
    664  1.28      tron  * Routine to copy from mbuf chain to transmit buffer in
    665  1.28      tron  * network buffer memory.
    666  1.28      tron  * Returns the amount of data copied.
    667  1.28      tron  */
    668  1.28      tron int
    669  1.72       dsl hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    670  1.72       dsl 	/* ri:			 Ring index */
    671  1.28      tron {
    672  1.28      tron 	struct mbuf *n;
    673  1.28      tron 	int len, tlen = 0;
    674  1.56  christos 	char *bp;
    675  1.28      tron 
    676  1.56  christos 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    677  1.28      tron 	for (; m; m = n) {
    678  1.28      tron 		len = m->m_len;
    679  1.28      tron 		if (len == 0) {
    680  1.28      tron 			MFREE(m, n);
    681  1.28      tron 			continue;
    682  1.28      tron 		}
    683  1.56  christos 		memcpy(bp, mtod(m, void *), len);
    684  1.28      tron 		bp += len;
    685  1.28      tron 		tlen += len;
    686  1.28      tron 		MFREE(m, n);
    687  1.28      tron 	}
    688  1.28      tron 	return (tlen);
    689  1.28      tron }
    690  1.28      tron 
    691  1.28      tron /*
    692  1.28      tron  * Pull data off an interface.
    693  1.28      tron  * Len is length of data, with local net header stripped.
    694  1.28      tron  * We copy the data into mbufs.  When full cluster sized units are present
    695  1.28      tron  * we copy into clusters.
    696  1.28      tron  */
    697  1.28      tron struct mbuf *
    698  1.75   tsutsui hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    699  1.28      tron {
    700  1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    701  1.28      tron 	struct mbuf *m, *m0, *newm;
    702  1.56  christos 	char *bp;
    703  1.46      heas 	int len, totlen;
    704  1.76   tsutsui #ifdef INET
    705  1.76   tsutsui 	int csum_flags;
    706  1.76   tsutsui #endif
    707  1.28      tron 
    708  1.46      heas 	totlen = HME_XD_DECODE_RSIZE(flags);
    709  1.28      tron 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    710  1.28      tron 	if (m0 == 0)
    711  1.28      tron 		return (0);
    712  1.28      tron 	m0->m_pkthdr.rcvif = ifp;
    713  1.28      tron 	m0->m_pkthdr.len = totlen;
    714  1.28      tron 	len = MHLEN;
    715  1.28      tron 	m = m0;
    716  1.28      tron 
    717  1.56  christos 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    718  1.28      tron 
    719  1.28      tron 	while (totlen > 0) {
    720  1.28      tron 		if (totlen >= MINCLSIZE) {
    721  1.28      tron 			MCLGET(m, M_DONTWAIT);
    722  1.28      tron 			if ((m->m_flags & M_EXT) == 0)
    723  1.28      tron 				goto bad;
    724  1.28      tron 			len = MCLBYTES;
    725  1.28      tron 		}
    726  1.28      tron 
    727  1.28      tron 		if (m == m0) {
    728  1.56  christos 			char *newdata = (char *)
    729  1.28      tron 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    730  1.28      tron 			    sizeof(struct ether_header);
    731  1.28      tron 			len -= newdata - m->m_data;
    732  1.28      tron 			m->m_data = newdata;
    733  1.28      tron 		}
    734  1.28      tron 
    735  1.28      tron 		m->m_len = len = min(totlen, len);
    736  1.56  christos 		memcpy(mtod(m, void *), bp, len);
    737  1.28      tron 		bp += len;
    738  1.28      tron 
    739  1.28      tron 		totlen -= len;
    740  1.28      tron 		if (totlen > 0) {
    741  1.28      tron 			MGET(newm, M_DONTWAIT, MT_DATA);
    742  1.28      tron 			if (newm == 0)
    743  1.28      tron 				goto bad;
    744  1.28      tron 			len = MLEN;
    745  1.28      tron 			m = m->m_next = newm;
    746  1.28      tron 		}
    747  1.28      tron 	}
    748  1.28      tron 
    749  1.49      heas #ifdef INET
    750  1.49      heas 	/* hardware checksum */
    751  1.76   tsutsui 	csum_flags = 0;
    752  1.50     rafal 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    753  1.46      heas 		struct ether_header *eh;
    754  1.74   tsutsui 		struct ether_vlan_header *evh;
    755  1.46      heas 		struct ip *ip;
    756  1.46      heas 		struct udphdr *uh;
    757  1.46      heas 		uint16_t *opts;
    758  1.46      heas 		int32_t hlen, pktlen;
    759  1.76   tsutsui 		uint32_t csum_data;
    760  1.46      heas 
    761  1.74   tsutsui 		eh = mtod(m0, struct ether_header *);
    762  1.74   tsutsui 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    763  1.74   tsutsui 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    764  1.46      heas 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    765  1.74   tsutsui 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    766  1.74   tsutsui 			evh = (struct ether_vlan_header *)eh;
    767  1.74   tsutsui 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
    768  1.74   tsutsui 				goto swcsum;
    769  1.74   tsutsui 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    770  1.74   tsutsui 			    ETHER_VLAN_ENCAP_LEN);
    771  1.74   tsutsui 			pktlen = m0->m_pkthdr.len -
    772  1.74   tsutsui 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    773  1.74   tsutsui 		} else
    774  1.46      heas 			goto swcsum;
    775  1.46      heas 
    776  1.46      heas 		/* IPv4 only */
    777  1.46      heas 		if (ip->ip_v != IPVERSION)
    778  1.46      heas 			goto swcsum;
    779  1.46      heas 
    780  1.46      heas 		hlen = ip->ip_hl << 2;
    781  1.48     perry 		if (hlen < sizeof(struct ip))
    782  1.46      heas 			goto swcsum;
    783  1.46      heas 
    784  1.49      heas 		/*
    785  1.49      heas 		 * bail if too short, has random trailing garbage, truncated,
    786  1.49      heas 		 * fragment, or has ethernet pad.
    787  1.49      heas 		 */
    788  1.76   tsutsui 		if (ntohs(ip->ip_len) < hlen ||
    789  1.76   tsutsui 		    ntohs(ip->ip_len) != pktlen ||
    790  1.76   tsutsui 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    791  1.49      heas 			goto swcsum;
    792  1.46      heas 
    793  1.46      heas 		switch (ip->ip_p) {
    794  1.46      heas 		case IPPROTO_TCP:
    795  1.76   tsutsui 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    796  1.46      heas 				goto swcsum;
    797  1.46      heas 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    798  1.46      heas 				goto swcsum;
    799  1.76   tsutsui 			csum_flags =
    800  1.76   tsutsui 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    801  1.46      heas 			break;
    802  1.46      heas 		case IPPROTO_UDP:
    803  1.76   tsutsui 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    804  1.46      heas 				goto swcsum;
    805  1.46      heas 			if (pktlen < (hlen + sizeof(struct udphdr)))
    806  1.46      heas 				goto swcsum;
    807  1.56  christos 			uh = (struct udphdr *)((char *)ip + hlen);
    808  1.46      heas 			/* no checksum */
    809  1.46      heas 			if (uh->uh_sum == 0)
    810  1.46      heas 				goto swcsum;
    811  1.76   tsutsui 			csum_flags =
    812  1.76   tsutsui 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    813  1.46      heas 			break;
    814  1.46      heas 		default:
    815  1.49      heas 			goto swcsum;
    816  1.46      heas 		}
    817  1.46      heas 
    818  1.46      heas 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    819  1.76   tsutsui 		csum_data = ~flags & HME_XD_RXCKSUM;
    820  1.46      heas 
    821  1.74   tsutsui 		/*
    822  1.74   tsutsui 		 * If data offset is different from RX cksum start offset,
    823  1.74   tsutsui 		 * we have to deduct them.
    824  1.74   tsutsui 		 */
    825  1.76   tsutsui 		hlen = ((char *)ip + hlen) -
    826  1.74   tsutsui 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    827  1.76   tsutsui 		if (hlen > 1) {
    828  1.46      heas 			uint32_t optsum;
    829  1.46      heas 
    830  1.46      heas 			optsum = 0;
    831  1.74   tsutsui 			opts = (uint16_t *)((char *)eh +
    832  1.74   tsutsui 			    ETHER_HDR_LEN + sizeof(struct ip));
    833  1.46      heas 
    834  1.76   tsutsui 			while (hlen > 1) {
    835  1.46      heas 				optsum += ntohs(*opts++);
    836  1.76   tsutsui 				hlen -= 2;
    837  1.46      heas 			}
    838  1.46      heas 			while (optsum >> 16)
    839  1.46      heas 				optsum = (optsum >> 16) + (optsum & 0xffff);
    840  1.46      heas 
    841  1.73   tsutsui 			/* Deduct the ip opts sum from the hwsum. */
    842  1.76   tsutsui 			csum_data += (uint16_t)~optsum;
    843  1.46      heas 
    844  1.76   tsutsui 			while (csum_data >> 16)
    845  1.76   tsutsui 				csum_data =
    846  1.76   tsutsui 				    (csum_data >> 16) + (csum_data & 0xffff);
    847  1.46      heas 		}
    848  1.76   tsutsui 		m0->m_pkthdr.csum_data = csum_data;
    849  1.76   tsutsui 	}
    850  1.49      heas swcsum:
    851  1.76   tsutsui 	m0->m_pkthdr.csum_flags = csum_flags;
    852  1.49      heas #endif
    853  1.46      heas 
    854  1.28      tron 	return (m0);
    855  1.28      tron 
    856  1.28      tron bad:
    857  1.28      tron 	m_freem(m0);
    858  1.28      tron 	return (0);
    859  1.28      tron }
    860  1.28      tron 
    861  1.28      tron /*
    862  1.28      tron  * Pass a packet to the higher levels.
    863  1.28      tron  */
    864  1.28      tron void
    865  1.75   tsutsui hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    866  1.28      tron {
    867  1.28      tron 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    868  1.28      tron 	struct mbuf *m;
    869  1.46      heas 	int len;
    870  1.28      tron 
    871  1.46      heas 	len = HME_XD_DECODE_RSIZE(flags);
    872  1.28      tron 	if (len <= sizeof(struct ether_header) ||
    873  1.28      tron 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    874  1.28      tron 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    875  1.28      tron 	    ETHERMTU + sizeof(struct ether_header))) {
    876  1.28      tron #ifdef HMEDEBUG
    877  1.28      tron 		printf("%s: invalid packet size %d; dropping\n",
    878  1.79   tsutsui 		    device_xname(sc->sc_dev), len);
    879  1.28      tron #endif
    880  1.28      tron 		ifp->if_ierrors++;
    881  1.28      tron 		return;
    882  1.28      tron 	}
    883  1.28      tron 
    884  1.28      tron 	/* Pull packet off interface. */
    885  1.46      heas 	m = hme_get(sc, ix, flags);
    886  1.28      tron 	if (m == 0) {
    887  1.28      tron 		ifp->if_ierrors++;
    888  1.28      tron 		return;
    889  1.28      tron 	}
    890  1.28      tron 
    891  1.28      tron 	ifp->if_ipackets++;
    892  1.28      tron 
    893  1.28      tron 	/*
    894  1.28      tron 	 * Check if there's a BPF listener on this interface.
    895  1.28      tron 	 * If so, hand off the raw packet to BPF.
    896  1.28      tron 	 */
    897  1.86     joerg 	bpf_mtap(ifp, m);
    898  1.28      tron 
    899  1.28      tron 	/* Pass the packet up. */
    900  1.28      tron 	(*ifp->if_input)(ifp, m);
    901  1.28      tron }
    902  1.28      tron 
    903   1.1        pk void
    904  1.71       dsl hme_start(struct ifnet *ifp)
    905   1.1        pk {
    906  1.79   tsutsui 	struct hme_softc *sc = ifp->if_softc;
    907  1.56  christos 	void *txd = sc->sc_rb.rb_txd;
    908   1.1        pk 	struct mbuf *m;
    909  1.46      heas 	unsigned int txflags;
    910  1.80   tsutsui 	unsigned int ri, len, obusy;
    911  1.28      tron 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    912   1.1        pk 
    913   1.1        pk 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    914   1.1        pk 		return;
    915   1.1        pk 
    916  1.28      tron 	ri = sc->sc_rb.rb_tdhead;
    917  1.80   tsutsui 	obusy = sc->sc_rb.rb_td_nbusy;
    918  1.28      tron 
    919  1.28      tron 	for (;;) {
    920  1.28      tron 		IFQ_DEQUEUE(&ifp->if_snd, m);
    921  1.28      tron 		if (m == 0)
    922   1.1        pk 			break;
    923   1.1        pk 
    924   1.1        pk 		/*
    925   1.1        pk 		 * If BPF is listening on this interface, let it see the
    926   1.1        pk 		 * packet before we commit it to the wire.
    927   1.1        pk 		 */
    928  1.86     joerg 		bpf_mtap(ifp, m);
    929   1.1        pk 
    930  1.49      heas #ifdef INET
    931  1.46      heas 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    932  1.46      heas 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    933  1.46      heas 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    934  1.46      heas 			struct ether_header *eh;
    935  1.46      heas 			uint16_t offset, start;
    936  1.46      heas 
    937  1.46      heas 			eh = mtod(m, struct ether_header *);
    938  1.46      heas 			switch (ntohs(eh->ether_type)) {
    939  1.46      heas 			case ETHERTYPE_IP:
    940  1.46      heas 				start = ETHER_HDR_LEN;
    941  1.46      heas 				break;
    942  1.46      heas 			case ETHERTYPE_VLAN:
    943  1.46      heas 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    944  1.46      heas 				break;
    945  1.46      heas 			default:
    946  1.46      heas 				/* unsupported, drop it */
    947  1.46      heas 				m_free(m);
    948  1.46      heas 				continue;
    949  1.46      heas 			}
    950  1.47   thorpej 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    951  1.47   thorpej 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    952  1.47   thorpej 			    + start;
    953  1.46      heas 			txflags = HME_XD_TXCKSUM |
    954  1.46      heas 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    955  1.46      heas 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    956  1.46      heas 		} else
    957  1.49      heas #endif
    958  1.46      heas 			txflags = 0;
    959  1.46      heas 
    960  1.28      tron 		/*
    961  1.28      tron 		 * Copy the mbuf chain into the transmit buffer.
    962  1.28      tron 		 */
    963  1.28      tron 		len = hme_put(sc, ri, m);
    964  1.28      tron 
    965  1.28      tron 		/*
    966  1.28      tron 		 * Initialize transmit registers and start transmission
    967  1.28      tron 		 */
    968  1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    969  1.28      tron 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    970  1.46      heas 			HME_XD_ENCODE_TSIZE(len) | txflags);
    971  1.28      tron 
    972  1.28      tron 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    973  1.28      tron 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    974  1.28      tron 				  HME_ETX_TP_DMAWAKEUP);
    975  1.28      tron 
    976  1.28      tron 		if (++ri == ntbuf)
    977  1.28      tron 			ri = 0;
    978  1.28      tron 
    979  1.28      tron 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    980  1.26      tron 			ifp->if_flags |= IFF_OACTIVE;
    981  1.26      tron 			break;
    982  1.26      tron 		}
    983   1.1        pk 	}
    984   1.1        pk 
    985  1.80   tsutsui 	if (obusy != sc->sc_rb.rb_td_nbusy) {
    986  1.80   tsutsui 		sc->sc_rb.rb_tdhead = ri;
    987  1.80   tsutsui 		ifp->if_timer = 5;
    988  1.80   tsutsui 	}
    989   1.1        pk }
    990   1.1        pk 
    991   1.1        pk /*
    992   1.1        pk  * Transmit interrupt.
    993   1.1        pk  */
    994   1.1        pk int
    995  1.71       dsl hme_tint(struct hme_softc *sc)
    996   1.1        pk {
    997   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    998  1.28      tron 	bus_space_tag_t t = sc->sc_bustag;
    999  1.28      tron 	bus_space_handle_t mac = sc->sc_mac;
   1000   1.1        pk 	unsigned int ri, txflags;
   1001  1.28      tron 
   1002  1.28      tron 	/*
   1003  1.28      tron 	 * Unload collision counters
   1004  1.28      tron 	 */
   1005  1.28      tron 	ifp->if_collisions +=
   1006  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
   1007  1.77       jdc 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
   1008  1.77       jdc 	ifp->if_oerrors +=
   1009  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
   1010  1.28      tron 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
   1011  1.28      tron 
   1012  1.28      tron 	/*
   1013  1.28      tron 	 * then clear the hardware counters.
   1014  1.28      tron 	 */
   1015  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1016  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1017  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1018  1.28      tron 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1019   1.1        pk 
   1020   1.1        pk 	/* Fetch current position in the transmit ring */
   1021  1.28      tron 	ri = sc->sc_rb.rb_tdtail;
   1022   1.1        pk 
   1023   1.1        pk 	for (;;) {
   1024  1.28      tron 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1025   1.1        pk 			break;
   1026   1.1        pk 
   1027  1.15       eeh 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1028   1.1        pk 
   1029   1.1        pk 		if (txflags & HME_XD_OWN)
   1030   1.1        pk 			break;
   1031   1.1        pk 
   1032   1.1        pk 		ifp->if_flags &= ~IFF_OACTIVE;
   1033  1.28      tron 		ifp->if_opackets++;
   1034  1.26      tron 
   1035  1.28      tron 		if (++ri == sc->sc_rb.rb_ntbuf)
   1036   1.1        pk 			ri = 0;
   1037   1.1        pk 
   1038  1.28      tron 		--sc->sc_rb.rb_td_nbusy;
   1039   1.1        pk 	}
   1040   1.1        pk 
   1041   1.3        pk 	/* Update ring */
   1042  1.28      tron 	sc->sc_rb.rb_tdtail = ri;
   1043   1.1        pk 
   1044   1.1        pk 	hme_start(ifp);
   1045   1.1        pk 
   1046  1.28      tron 	if (sc->sc_rb.rb_td_nbusy == 0)
   1047   1.1        pk 		ifp->if_timer = 0;
   1048   1.1        pk 
   1049   1.1        pk 	return (1);
   1050   1.1        pk }
   1051   1.1        pk 
   1052   1.1        pk /*
   1053   1.1        pk  * Receive interrupt.
   1054   1.1        pk  */
   1055   1.1        pk int
   1056  1.71       dsl hme_rint(struct hme_softc *sc)
   1057   1.1        pk {
   1058  1.77       jdc 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1059  1.77       jdc 	bus_space_tag_t t = sc->sc_bustag;
   1060  1.77       jdc 	bus_space_handle_t mac = sc->sc_mac;
   1061  1.56  christos 	void *xdr = sc->sc_rb.rb_rxd;
   1062  1.28      tron 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1063  1.46      heas 	unsigned int ri;
   1064  1.75   tsutsui 	uint32_t flags;
   1065   1.1        pk 
   1066  1.28      tron 	ri = sc->sc_rb.rb_rdtail;
   1067   1.1        pk 
   1068   1.1        pk 	/*
   1069   1.1        pk 	 * Process all buffers with valid data.
   1070   1.1        pk 	 */
   1071   1.1        pk 	for (;;) {
   1072  1.28      tron 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1073   1.1        pk 		if (flags & HME_XD_OWN)
   1074   1.1        pk 			break;
   1075   1.1        pk 
   1076   1.4        pk 		if (flags & HME_XD_OFL) {
   1077   1.4        pk 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1078  1.79   tsutsui 					device_xname(sc->sc_dev), ri, flags);
   1079  1.46      heas 		} else
   1080  1.46      heas 			hme_read(sc, ri, flags);
   1081   1.1        pk 
   1082  1.28      tron 		/* This buffer can be used by the hardware again */
   1083  1.28      tron 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1084  1.28      tron 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1085  1.26      tron 
   1086  1.28      tron 		if (++ri == nrbuf)
   1087   1.1        pk 			ri = 0;
   1088   1.1        pk 	}
   1089   1.1        pk 
   1090  1.28      tron 	sc->sc_rb.rb_rdtail = ri;
   1091  1.28      tron 
   1092  1.77       jdc 	/* Read error counters ... */
   1093  1.77       jdc 	ifp->if_ierrors +=
   1094  1.77       jdc 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
   1095  1.77       jdc 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
   1096  1.77       jdc 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
   1097  1.77       jdc 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
   1098  1.77       jdc 
   1099  1.77       jdc 	/* ... then clear the hardware counters. */
   1100  1.77       jdc 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
   1101  1.77       jdc 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
   1102  1.77       jdc 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
   1103  1.77       jdc 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
   1104   1.1        pk 	return (1);
   1105   1.1        pk }
   1106   1.1        pk 
   1107   1.1        pk int
   1108  1.71       dsl hme_eint(struct hme_softc *sc, u_int status)
   1109   1.1        pk {
   1110  1.77       jdc 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1111   1.1        pk 	char bits[128];
   1112   1.1        pk 
   1113   1.1        pk 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1114  1.33        pk 		bus_space_tag_t t = sc->sc_bustag;
   1115  1.33        pk 		bus_space_handle_t mif = sc->sc_mif;
   1116  1.75   tsutsui 		uint32_t cf, st, sm;
   1117  1.33        pk 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1118  1.33        pk 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1119  1.33        pk 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1120  1.33        pk 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1121  1.79   tsutsui 			device_xname(sc->sc_dev), cf, st, sm);
   1122   1.1        pk 		return (1);
   1123   1.1        pk 	}
   1124  1.77       jdc 
   1125  1.77       jdc 	/* Receive error counters rolled over */
   1126  1.77       jdc 	if (status & HME_SEB_STAT_ACNTEXP)
   1127  1.77       jdc 		ifp->if_ierrors += 0xff;
   1128  1.77       jdc 	if (status & HME_SEB_STAT_CCNTEXP)
   1129  1.77       jdc 		ifp->if_ierrors += 0xff;
   1130  1.77       jdc 	if (status & HME_SEB_STAT_LCNTEXP)
   1131  1.77       jdc 		ifp->if_ierrors += 0xff;
   1132  1.77       jdc 	if (status & HME_SEB_STAT_CVCNTEXP)
   1133  1.77       jdc 		ifp->if_ierrors += 0xff;
   1134  1.77       jdc 
   1135  1.77       jdc 	/* RXTERR locks up the interface, so do a reset */
   1136  1.77       jdc 	if (status & HME_SEB_STAT_RXTERR)
   1137  1.77       jdc 		hme_reset(sc);
   1138  1.77       jdc 
   1139  1.68  christos 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1140  1.79   tsutsui 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   1141  1.68  christos 
   1142   1.1        pk 	return (1);
   1143   1.1        pk }
   1144   1.1        pk 
   1145   1.1        pk int
   1146  1.71       dsl hme_intr(void *v)
   1147   1.1        pk {
   1148  1.79   tsutsui 	struct hme_softc *sc = v;
   1149   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1150   1.1        pk 	bus_space_handle_t seb = sc->sc_seb;
   1151  1.75   tsutsui 	uint32_t status;
   1152   1.1        pk 	int r = 0;
   1153   1.1        pk 
   1154   1.1        pk 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1155   1.1        pk 
   1156   1.1        pk 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1157   1.1        pk 		r |= hme_eint(sc, status);
   1158   1.1        pk 
   1159   1.1        pk 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1160   1.1        pk 		r |= hme_tint(sc);
   1161   1.1        pk 
   1162   1.1        pk 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1163   1.1        pk 		r |= hme_rint(sc);
   1164   1.1        pk 
   1165  1.40       abs #if NRND > 0
   1166  1.40       abs 	rnd_add_uint32(&sc->rnd_source, status);
   1167  1.40       abs #endif
   1168  1.40       abs 
   1169   1.1        pk 	return (r);
   1170   1.1        pk }
   1171   1.1        pk 
   1172   1.1        pk 
   1173   1.1        pk void
   1174  1.71       dsl hme_watchdog(struct ifnet *ifp)
   1175   1.1        pk {
   1176   1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1177   1.1        pk 
   1178  1.79   tsutsui 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1179   1.1        pk 	++ifp->if_oerrors;
   1180   1.1        pk 
   1181   1.1        pk 	hme_reset(sc);
   1182   1.4        pk }
   1183   1.4        pk 
   1184   1.4        pk /*
   1185   1.4        pk  * Initialize the MII Management Interface
   1186   1.4        pk  */
   1187   1.4        pk void
   1188  1.71       dsl hme_mifinit(struct hme_softc *sc)
   1189   1.4        pk {
   1190   1.4        pk 	bus_space_tag_t t = sc->sc_bustag;
   1191   1.4        pk 	bus_space_handle_t mif = sc->sc_mif;
   1192  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1193  1.33        pk 	int instance, phy;
   1194  1.75   tsutsui 	uint32_t v;
   1195   1.4        pk 
   1196  1.61    dyoung 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1197  1.61    dyoung 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1198  1.33        pk 		phy = sc->sc_phys[instance];
   1199  1.33        pk 	} else
   1200  1.33        pk 		/* No media set yet, pick phy arbitrarily.. */
   1201  1.33        pk 		phy = HME_PHYAD_EXTERNAL;
   1202  1.33        pk 
   1203  1.33        pk 	/* Configure the MIF in frame mode, no poll, current phy select */
   1204  1.33        pk 	v = 0;
   1205  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1206  1.33        pk 		v |= HME_MIF_CFG_PHY;
   1207   1.4        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1208  1.35        pk 
   1209  1.35        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1210  1.35        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1211  1.35        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1212  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1213  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1214  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1215   1.1        pk }
   1216   1.1        pk 
   1217   1.1        pk /*
   1218   1.1        pk  * MII interface
   1219   1.1        pk  */
   1220   1.1        pk static int
   1221  1.78    cegger hme_mii_readreg(device_t self, int phy, int reg)
   1222   1.1        pk {
   1223  1.79   tsutsui 	struct hme_softc *sc = device_private(self);
   1224   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1225   1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1226  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1227  1.75   tsutsui 	uint32_t v, xif_cfg, mifi_cfg;
   1228   1.1        pk 	int n;
   1229   1.1        pk 
   1230  1.33        pk 	/* We can at most have two PHYs */
   1231  1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1232  1.32    martin 		return (0);
   1233  1.32    martin 
   1234   1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1235  1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1236   1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1237   1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1238   1.5        pk 		v |= HME_MIF_CFG_PHY;
   1239   1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1240   1.5        pk 
   1241  1.42      heas 	/* Enable MII drivers on external transceiver */
   1242  1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1243  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1244  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1245  1.35        pk 	else
   1246  1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1247  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1248  1.35        pk 
   1249  1.33        pk #if 0
   1250  1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1251  1.33        pk 	/*
   1252  1.33        pk 	 * Check whether a transceiver is connected by testing
   1253  1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1254  1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1255  1.33        pk 	 */
   1256  1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1257  1.33        pk 	delay(100);
   1258  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1259  1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1260  1.33        pk 		return (0);
   1261  1.33        pk #endif
   1262  1.33        pk 
   1263   1.1        pk 	/* Construct the frame command */
   1264   1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1265   1.1        pk 	    HME_MIF_FO_TAMSB |
   1266   1.1        pk 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1267   1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1268   1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1269   1.1        pk 
   1270   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1271   1.1        pk 	for (n = 0; n < 100; n++) {
   1272   1.2        pk 		DELAY(1);
   1273   1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1274  1.33        pk 		if (v & HME_MIF_FO_TALSB) {
   1275  1.33        pk 			v &= HME_MIF_FO_DATA;
   1276  1.33        pk 			goto out;
   1277  1.33        pk 		}
   1278   1.1        pk 	}
   1279   1.1        pk 
   1280  1.33        pk 	v = 0;
   1281  1.79   tsutsui 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   1282  1.33        pk 
   1283  1.33        pk out:
   1284  1.33        pk 	/* Restore MIFI_CFG register */
   1285  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1286  1.35        pk 	/* Restore XIF register */
   1287  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1288  1.33        pk 	return (v);
   1289   1.1        pk }
   1290   1.1        pk 
   1291   1.1        pk static void
   1292  1.78    cegger hme_mii_writereg(device_t self, int phy, int reg, int val)
   1293   1.1        pk {
   1294  1.79   tsutsui 	struct hme_softc *sc = device_private(self);
   1295   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1296   1.1        pk 	bus_space_handle_t mif = sc->sc_mif;
   1297  1.35        pk 	bus_space_handle_t mac = sc->sc_mac;
   1298  1.75   tsutsui 	uint32_t v, xif_cfg, mifi_cfg;
   1299   1.1        pk 	int n;
   1300  1.32    martin 
   1301  1.33        pk 	/* We can at most have two PHYs */
   1302  1.33        pk 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1303  1.32    martin 		return;
   1304   1.1        pk 
   1305   1.5        pk 	/* Select the desired PHY in the MIF configuration register */
   1306  1.33        pk 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1307   1.5        pk 	v &= ~HME_MIF_CFG_PHY;
   1308   1.5        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1309   1.5        pk 		v |= HME_MIF_CFG_PHY;
   1310   1.5        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1311   1.5        pk 
   1312  1.42      heas 	/* Enable MII drivers on external transceiver */
   1313  1.35        pk 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1314  1.35        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1315  1.35        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1316  1.35        pk 	else
   1317  1.35        pk 		v &= ~HME_MAC_XIF_MIIENABLE;
   1318  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1319  1.35        pk 
   1320  1.33        pk #if 0
   1321  1.33        pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1322  1.33        pk 	/*
   1323  1.33        pk 	 * Check whether a transceiver is connected by testing
   1324  1.33        pk 	 * the MIF configuration register's MDI_X bits. Note that
   1325  1.33        pk 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1326  1.33        pk 	 */
   1327  1.33        pk 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1328  1.33        pk 	delay(100);
   1329  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1330  1.33        pk 	if ((v & mif_mdi_bit) == 0)
   1331  1.33        pk 		return;
   1332  1.33        pk #endif
   1333  1.33        pk 
   1334   1.1        pk 	/* Construct the frame command */
   1335   1.1        pk 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1336   1.1        pk 	    HME_MIF_FO_TAMSB				|
   1337   1.1        pk 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1338   1.1        pk 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1339   1.1        pk 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1340   1.1        pk 	    (val & HME_MIF_FO_DATA);
   1341   1.1        pk 
   1342   1.1        pk 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1343   1.1        pk 	for (n = 0; n < 100; n++) {
   1344   1.2        pk 		DELAY(1);
   1345   1.1        pk 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1346   1.1        pk 		if (v & HME_MIF_FO_TALSB)
   1347  1.33        pk 			goto out;
   1348   1.1        pk 	}
   1349   1.1        pk 
   1350  1.79   tsutsui 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   1351  1.33        pk out:
   1352  1.33        pk 	/* Restore MIFI_CFG register */
   1353  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1354  1.35        pk 	/* Restore XIF register */
   1355  1.35        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1356   1.1        pk }
   1357   1.1        pk 
   1358   1.1        pk static void
   1359  1.78    cegger hme_mii_statchg(device_t dev)
   1360   1.1        pk {
   1361  1.79   tsutsui 	struct hme_softc *sc = device_private(dev);
   1362   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1363   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1364  1.75   tsutsui 	uint32_t v;
   1365   1.1        pk 
   1366   1.5        pk #ifdef HMEDEBUG
   1367   1.5        pk 	if (sc->sc_debug)
   1368  1.33        pk 		printf("hme_mii_statchg: status change\n");
   1369   1.5        pk #endif
   1370   1.1        pk 
   1371   1.5        pk 	/* Set the MAC Full Duplex bit appropriately */
   1372  1.30    martin 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1373  1.30    martin 	   but not otherwise. */
   1374   1.1        pk 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1375  1.30    martin 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1376   1.1        pk 		v |= HME_MAC_TXCFG_FULLDPLX;
   1377  1.30    martin 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1378  1.30    martin 	} else {
   1379   1.1        pk 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1380  1.30    martin 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1381  1.30    martin 	}
   1382  1.41      heas 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1383   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1384   1.5        pk }
   1385   1.5        pk 
   1386   1.5        pk int
   1387  1.71       dsl hme_mediachange(struct ifnet *ifp)
   1388   1.5        pk {
   1389   1.5        pk 	struct hme_softc *sc = ifp->if_softc;
   1390  1.33        pk 	bus_space_tag_t t = sc->sc_bustag;
   1391  1.33        pk 	bus_space_handle_t mif = sc->sc_mif;
   1392  1.33        pk 	bus_space_handle_t mac = sc->sc_mac;
   1393  1.33        pk 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1394  1.33        pk 	int phy = sc->sc_phys[instance];
   1395  1.61    dyoung 	int rc;
   1396  1.75   tsutsui 	uint32_t v;
   1397   1.5        pk 
   1398  1.33        pk #ifdef HMEDEBUG
   1399  1.33        pk 	if (sc->sc_debug)
   1400  1.33        pk 		printf("hme_mediachange: phy = %d\n", phy);
   1401  1.33        pk #endif
   1402  1.33        pk 
   1403  1.33        pk 	/* Select the current PHY in the MIF configuration register */
   1404  1.33        pk 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1405  1.33        pk 	v &= ~HME_MIF_CFG_PHY;
   1406  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1407  1.33        pk 		v |= HME_MIF_CFG_PHY;
   1408  1.33        pk 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1409  1.33        pk 
   1410  1.33        pk 	/* If an external transceiver is selected, enable its MII drivers */
   1411  1.33        pk 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1412  1.33        pk 	v &= ~HME_MAC_XIF_MIIENABLE;
   1413  1.33        pk 	if (phy == HME_PHYAD_EXTERNAL)
   1414  1.33        pk 		v |= HME_MAC_XIF_MIIENABLE;
   1415  1.33        pk 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1416   1.5        pk 
   1417  1.61    dyoung 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1418  1.61    dyoung 		return 0;
   1419  1.61    dyoung 	return rc;
   1420   1.1        pk }
   1421   1.1        pk 
   1422   1.1        pk /*
   1423   1.1        pk  * Process an ioctl request.
   1424   1.1        pk  */
   1425   1.1        pk int
   1426  1.67    dyoung hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1427   1.1        pk {
   1428   1.1        pk 	struct hme_softc *sc = ifp->if_softc;
   1429   1.1        pk 	struct ifaddr *ifa = (struct ifaddr *)data;
   1430   1.1        pk 	int s, error = 0;
   1431   1.1        pk 
   1432   1.1        pk 	s = splnet();
   1433   1.1        pk 
   1434   1.1        pk 	switch (cmd) {
   1435   1.1        pk 
   1436  1.67    dyoung 	case SIOCINITIFADDR:
   1437   1.1        pk 		switch (ifa->ifa_addr->sa_family) {
   1438   1.1        pk #ifdef INET
   1439   1.1        pk 		case AF_INET:
   1440  1.41      heas 			if (ifp->if_flags & IFF_UP)
   1441  1.41      heas 				hme_setladrf(sc);
   1442  1.41      heas 			else {
   1443  1.41      heas 				ifp->if_flags |= IFF_UP;
   1444  1.84  jakllsch 				error = hme_init(ifp);
   1445  1.41      heas 			}
   1446   1.1        pk 			arp_ifinit(ifp, ifa);
   1447   1.1        pk 			break;
   1448   1.1        pk #endif
   1449   1.1        pk 		default:
   1450  1.41      heas 			ifp->if_flags |= IFF_UP;
   1451  1.84  jakllsch 			error = hme_init(ifp);
   1452   1.1        pk 			break;
   1453   1.1        pk 		}
   1454   1.1        pk 		break;
   1455   1.1        pk 
   1456   1.1        pk 	case SIOCSIFFLAGS:
   1457  1.45      heas #ifdef HMEDEBUG
   1458  1.67    dyoung 		{
   1459  1.67    dyoung 			struct ifreq *ifr = data;
   1460  1.67    dyoung 			sc->sc_debug =
   1461  1.67    dyoung 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1462  1.67    dyoung 		}
   1463  1.45      heas #endif
   1464  1.67    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1465  1.67    dyoung 			break;
   1466  1.45      heas 
   1467  1.67    dyoung 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1468  1.67    dyoung 		case IFF_RUNNING:
   1469   1.1        pk 			/*
   1470   1.1        pk 			 * If interface is marked down and it is running, then
   1471   1.1        pk 			 * stop it.
   1472   1.1        pk 			 */
   1473  1.80   tsutsui 			hme_stop(ifp, 0);
   1474   1.1        pk 			ifp->if_flags &= ~IFF_RUNNING;
   1475  1.67    dyoung 			break;
   1476  1.67    dyoung 		case IFF_UP:
   1477   1.1        pk 			/*
   1478   1.1        pk 			 * If interface is marked up and it is stopped, then
   1479   1.1        pk 			 * start it.
   1480   1.1        pk 			 */
   1481  1.84  jakllsch 			error = hme_init(ifp);
   1482  1.67    dyoung 			break;
   1483  1.67    dyoung 		case IFF_UP|IFF_RUNNING:
   1484   1.1        pk 			/*
   1485  1.41      heas 			 * If setting debug or promiscuous mode, do not reset
   1486  1.41      heas 			 * the chip; for everything else, call hme_init()
   1487  1.41      heas 			 * which will trigger a reset.
   1488   1.1        pk 			 */
   1489  1.41      heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1490  1.46      heas 			if (ifp->if_flags != sc->sc_if_flags) {
   1491  1.45      heas 				if ((ifp->if_flags & (~RESETIGN))
   1492  1.45      heas 				    == (sc->sc_if_flags & (~RESETIGN)))
   1493  1.45      heas 					hme_setladrf(sc);
   1494  1.45      heas 				else
   1495  1.84  jakllsch 					error = hme_init(ifp);
   1496  1.45      heas 			}
   1497  1.41      heas #undef RESETIGN
   1498  1.67    dyoung 			break;
   1499  1.67    dyoung 		case 0:
   1500  1.67    dyoung 			break;
   1501   1.1        pk 		}
   1502  1.45      heas 
   1503  1.45      heas 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1504  1.84  jakllsch 			error = hme_init(ifp);
   1505  1.45      heas 
   1506   1.1        pk 		break;
   1507   1.1        pk 
   1508  1.63    dyoung 	default:
   1509  1.63    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1510  1.63    dyoung 			break;
   1511  1.63    dyoung 
   1512  1.63    dyoung 		error = 0;
   1513  1.63    dyoung 
   1514  1.63    dyoung 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1515  1.63    dyoung 			;
   1516  1.63    dyoung 		else if (ifp->if_flags & IFF_RUNNING) {
   1517   1.1        pk 			/*
   1518   1.1        pk 			 * Multicast list has changed; set the hardware filter
   1519   1.1        pk 			 * accordingly.
   1520   1.1        pk 			 */
   1521  1.63    dyoung 			hme_setladrf(sc);
   1522   1.1        pk 		}
   1523   1.1        pk 		break;
   1524   1.1        pk 	}
   1525   1.1        pk 
   1526  1.41      heas 	sc->sc_if_flags = ifp->if_flags;
   1527   1.1        pk 	splx(s);
   1528   1.1        pk 	return (error);
   1529   1.1        pk }
   1530   1.1        pk 
   1531  1.80   tsutsui bool
   1532  1.80   tsutsui hme_shutdown(device_t self, int howto)
   1533   1.1        pk {
   1534  1.79   tsutsui 	struct hme_softc *sc;
   1535  1.80   tsutsui 	struct ifnet *ifp;
   1536  1.80   tsutsui 
   1537  1.80   tsutsui 	sc = device_private(self);
   1538  1.80   tsutsui 	ifp = &sc->sc_ethercom.ec_if;
   1539  1.80   tsutsui 	hme_stop(ifp, 1);
   1540  1.28      tron 
   1541  1.80   tsutsui 	return true;
   1542   1.1        pk }
   1543   1.1        pk 
   1544   1.1        pk /*
   1545   1.1        pk  * Set up the logical address filter.
   1546   1.1        pk  */
   1547   1.1        pk void
   1548  1.71       dsl hme_setladrf(struct hme_softc *sc)
   1549   1.1        pk {
   1550   1.1        pk 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1551   1.1        pk 	struct ether_multi *enm;
   1552   1.1        pk 	struct ether_multistep step;
   1553  1.28      tron 	struct ethercom *ec = &sc->sc_ethercom;
   1554   1.1        pk 	bus_space_tag_t t = sc->sc_bustag;
   1555   1.1        pk 	bus_space_handle_t mac = sc->sc_mac;
   1556  1.83   tsutsui 	uint32_t v;
   1557  1.75   tsutsui 	uint32_t crc;
   1558  1.75   tsutsui 	uint32_t hash[4];
   1559   1.1        pk 
   1560  1.14        pk 	/* Clear hash table */
   1561  1.14        pk 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1562  1.14        pk 
   1563  1.14        pk 	/* Get current RX configuration */
   1564  1.14        pk 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1565  1.14        pk 
   1566  1.14        pk 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1567  1.14        pk 		/* Turn on promiscuous mode; turn off the hash filter */
   1568  1.14        pk 		v |= HME_MAC_RXCFG_PMISC;
   1569  1.14        pk 		v &= ~HME_MAC_RXCFG_HENABLE;
   1570  1.14        pk 		ifp->if_flags |= IFF_ALLMULTI;
   1571  1.14        pk 		goto chipit;
   1572  1.14        pk 	}
   1573  1.14        pk 
   1574  1.14        pk 	/* Turn off promiscuous mode; turn on the hash filter */
   1575  1.14        pk 	v &= ~HME_MAC_RXCFG_PMISC;
   1576  1.14        pk 	v |= HME_MAC_RXCFG_HENABLE;
   1577  1.14        pk 
   1578   1.1        pk 	/*
   1579   1.1        pk 	 * Set up multicast address filter by passing all multicast addresses
   1580   1.1        pk 	 * through a crc generator, and then using the high order 6 bits as an
   1581   1.1        pk 	 * index into the 64 bit logical address filter.  The high order bit
   1582   1.1        pk 	 * selects the word, while the rest of the bits select the bit within
   1583   1.1        pk 	 * the word.
   1584   1.1        pk 	 */
   1585   1.1        pk 
   1586  1.28      tron 	ETHER_FIRST_MULTI(step, ec, enm);
   1587   1.1        pk 	while (enm != NULL) {
   1588  1.70   tsutsui 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1589   1.1        pk 			/*
   1590   1.1        pk 			 * We must listen to a range of multicast addresses.
   1591   1.1        pk 			 * For now, just accept all multicasts, rather than
   1592   1.1        pk 			 * trying to set only those filter bits needed to match
   1593   1.1        pk 			 * the range.  (At this time, the only use of address
   1594   1.1        pk 			 * ranges is for IP multicast routing, for which the
   1595   1.1        pk 			 * range is big enough to require all bits set.)
   1596   1.1        pk 			 */
   1597  1.14        pk 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1598  1.14        pk 			ifp->if_flags |= IFF_ALLMULTI;
   1599  1.14        pk 			goto chipit;
   1600   1.1        pk 		}
   1601   1.1        pk 
   1602  1.83   tsutsui 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1603  1.83   tsutsui 
   1604   1.1        pk 		/* Just want the 6 most significant bits. */
   1605   1.1        pk 		crc >>= 26;
   1606   1.1        pk 
   1607   1.1        pk 		/* Set the corresponding bit in the filter. */
   1608   1.1        pk 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1609   1.1        pk 
   1610   1.1        pk 		ETHER_NEXT_MULTI(step, enm);
   1611   1.1        pk 	}
   1612   1.1        pk 
   1613  1.14        pk 	ifp->if_flags &= ~IFF_ALLMULTI;
   1614  1.14        pk 
   1615  1.14        pk chipit:
   1616  1.14        pk 	/* Now load the hash table into the chip */
   1617   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1618   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1619   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1620   1.1        pk 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1621  1.14        pk 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1622   1.1        pk }
   1623   1.1        pk 
   1624  1.28      tron /*
   1625  1.28      tron  * Routines for accessing the transmit and receive buffers.
   1626  1.28      tron  * The various CPU and adapter configurations supported by this
   1627  1.28      tron  * driver require three different access methods for buffers
   1628  1.28      tron  * and descriptors:
   1629  1.28      tron  *	(1) contig (contiguous data; no padding),
   1630  1.28      tron  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1631  1.28      tron  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1632  1.28      tron  */
   1633  1.28      tron 
   1634  1.28      tron #if 0
   1635  1.28      tron /*
   1636  1.28      tron  * contig: contiguous data with no padding.
   1637  1.28      tron  *
   1638  1.28      tron  * Buffers may have any alignment.
   1639  1.28      tron  */
   1640  1.28      tron 
   1641  1.28      tron void
   1642  1.72       dsl hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1643  1.26      tron {
   1644  1.56  christos 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1645  1.26      tron 
   1646   1.1        pk 	/*
   1647  1.28      tron 	 * Just call memcpy() to do the work.
   1648   1.1        pk 	 */
   1649  1.28      tron 	memcpy(buf, from, len);
   1650   1.1        pk }
   1651   1.1        pk 
   1652  1.28      tron void
   1653  1.72       dsl hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1654   1.1        pk {
   1655  1.56  christos 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1656  1.26      tron 
   1657  1.28      tron 	/*
   1658  1.28      tron 	 * Just call memcpy() to do the work.
   1659  1.28      tron 	 */
   1660  1.28      tron 	memcpy(to, buf, len);
   1661   1.1        pk }
   1662  1.28      tron #endif
   1663