hme.c revision 1.93 1 1.93 ozaki /* $NetBSD: hme.c,v 1.93 2016/06/10 13:27:13 ozaki-r Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.1 pk * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 pk * All rights reserved.
6 1.1 pk *
7 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
8 1.1 pk * by Paul Kranenburg.
9 1.1 pk *
10 1.1 pk * Redistribution and use in source and binary forms, with or without
11 1.1 pk * modification, are permitted provided that the following conditions
12 1.1 pk * are met:
13 1.1 pk * 1. Redistributions of source code must retain the above copyright
14 1.1 pk * notice, this list of conditions and the following disclaimer.
15 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 pk * notice, this list of conditions and the following disclaimer in the
17 1.1 pk * documentation and/or other materials provided with the distribution.
18 1.1 pk *
19 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
30 1.1 pk */
31 1.1 pk
32 1.1 pk /*
33 1.1 pk * HME Ethernet module driver.
34 1.1 pk */
35 1.25 lukem
36 1.25 lukem #include <sys/cdefs.h>
37 1.93 ozaki __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.93 2016/06/10 13:27:13 ozaki-r Exp $");
38 1.1 pk
39 1.39 petrov /* #define HMEDEBUG */
40 1.1 pk
41 1.1 pk #include "opt_inet.h"
42 1.1 pk
43 1.1 pk #include <sys/param.h>
44 1.1 pk #include <sys/systm.h>
45 1.5 pk #include <sys/kernel.h>
46 1.42 heas #include <sys/mbuf.h>
47 1.1 pk #include <sys/syslog.h>
48 1.1 pk #include <sys/socket.h>
49 1.1 pk #include <sys/device.h>
50 1.1 pk #include <sys/malloc.h>
51 1.1 pk #include <sys/ioctl.h>
52 1.1 pk #include <sys/errno.h>
53 1.91 riastrad #include <sys/rndsource.h>
54 1.1 pk
55 1.1 pk #include <net/if.h>
56 1.1 pk #include <net/if_dl.h>
57 1.1 pk #include <net/if_ether.h>
58 1.1 pk #include <net/if_media.h>
59 1.1 pk
60 1.1 pk #ifdef INET
61 1.74 tsutsui #include <net/if_vlanvar.h>
62 1.1 pk #include <netinet/in.h>
63 1.1 pk #include <netinet/if_inarp.h>
64 1.1 pk #include <netinet/in_systm.h>
65 1.1 pk #include <netinet/in_var.h>
66 1.1 pk #include <netinet/ip.h>
67 1.46 heas #include <netinet/tcp.h>
68 1.46 heas #include <netinet/udp.h>
69 1.1 pk #endif
70 1.1 pk
71 1.1 pk
72 1.1 pk #include <net/bpf.h>
73 1.1 pk #include <net/bpfdesc.h>
74 1.1 pk
75 1.1 pk #include <dev/mii/mii.h>
76 1.1 pk #include <dev/mii/miivar.h>
77 1.1 pk
78 1.60 ad #include <sys/bus.h>
79 1.1 pk
80 1.1 pk #include <dev/ic/hmereg.h>
81 1.1 pk #include <dev/ic/hmevar.h>
82 1.1 pk
83 1.81 tsutsui static void hme_start(struct ifnet *);
84 1.81 tsutsui static void hme_stop(struct ifnet *, int);
85 1.81 tsutsui static int hme_ioctl(struct ifnet *, u_long, void *);
86 1.81 tsutsui static void hme_tick(void *);
87 1.81 tsutsui static void hme_watchdog(struct ifnet *);
88 1.81 tsutsui static bool hme_shutdown(device_t, int);
89 1.84 jakllsch static int hme_init(struct ifnet *);
90 1.81 tsutsui static void hme_meminit(struct hme_softc *);
91 1.81 tsutsui static void hme_mifinit(struct hme_softc *);
92 1.82 tsutsui static void hme_reset(struct hme_softc *);
93 1.81 tsutsui static void hme_chipreset(struct hme_softc *);
94 1.81 tsutsui static void hme_setladrf(struct hme_softc *);
95 1.1 pk
96 1.1 pk /* MII methods & callbacks */
97 1.78 cegger static int hme_mii_readreg(device_t, int, int);
98 1.78 cegger static void hme_mii_writereg(device_t, int, int, int);
99 1.89 matt static void hme_mii_statchg(struct ifnet *);
100 1.44 perry
101 1.81 tsutsui static int hme_mediachange(struct ifnet *);
102 1.44 perry
103 1.81 tsutsui static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
104 1.81 tsutsui static int hme_put(struct hme_softc *, int, struct mbuf *);
105 1.81 tsutsui static void hme_read(struct hme_softc *, int, uint32_t);
106 1.81 tsutsui static int hme_eint(struct hme_softc *, u_int);
107 1.81 tsutsui static int hme_rint(struct hme_softc *);
108 1.81 tsutsui static int hme_tint(struct hme_softc *);
109 1.1 pk
110 1.81 tsutsui #if 0
111 1.28 tron /* Default buffer copy routines */
112 1.81 tsutsui static void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
113 1.81 tsutsui static void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
114 1.81 tsutsui #endif
115 1.28 tron
116 1.1 pk void
117 1.71 dsl hme_config(struct hme_softc *sc)
118 1.1 pk {
119 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
120 1.1 pk struct mii_data *mii = &sc->sc_mii;
121 1.5 pk struct mii_softc *child;
122 1.11 pk bus_dma_tag_t dmatag = sc->sc_dmatag;
123 1.1 pk bus_dma_segment_t seg;
124 1.1 pk bus_size_t size;
125 1.28 tron int rseg, error;
126 1.1 pk
127 1.1 pk /*
128 1.1 pk * HME common initialization.
129 1.1 pk *
130 1.1 pk * hme_softc fields that must be initialized by the front-end:
131 1.1 pk *
132 1.1 pk * the bus tag:
133 1.1 pk * sc_bustag
134 1.1 pk *
135 1.37 wiz * the DMA bus tag:
136 1.1 pk * sc_dmatag
137 1.1 pk *
138 1.1 pk * the bus handles:
139 1.1 pk * sc_seb (Shared Ethernet Block registers)
140 1.1 pk * sc_erx (Receiver Unit registers)
141 1.1 pk * sc_etx (Transmitter Unit registers)
142 1.1 pk * sc_mac (MAC registers)
143 1.36 wiz * sc_mif (Management Interface registers)
144 1.1 pk *
145 1.1 pk * the maximum bus burst size:
146 1.1 pk * sc_burst
147 1.1 pk *
148 1.28 tron * (notyet:DMA capable memory for the ring descriptors & packet buffers:
149 1.28 tron * rb_membase, rb_dmabase)
150 1.28 tron *
151 1.1 pk * the local Ethernet address:
152 1.1 pk * sc_enaddr
153 1.1 pk *
154 1.1 pk */
155 1.1 pk
156 1.1 pk /* Make sure the chip is stopped. */
157 1.80 tsutsui hme_chipreset(sc);
158 1.1 pk
159 1.28 tron /*
160 1.28 tron * Allocate descriptors and buffers
161 1.28 tron * XXX - do all this differently.. and more configurably,
162 1.28 tron * eg. use things as `dma_load_mbuf()' on transmit,
163 1.28 tron * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
164 1.38 wiz * all the time) on the receiver side.
165 1.28 tron *
166 1.28 tron * Note: receive buffers must be 64-byte aligned.
167 1.28 tron * Also, apparently, the buffers must extend to a DMA burst
168 1.28 tron * boundary beyond the maximum packet size.
169 1.28 tron */
170 1.28 tron #define _HME_NDESC 128
171 1.28 tron #define _HME_BUFSZ 1600
172 1.28 tron
173 1.28 tron /* Note: the # of descriptors must be a multiple of 16 */
174 1.28 tron sc->sc_rb.rb_ntbuf = _HME_NDESC;
175 1.28 tron sc->sc_rb.rb_nrbuf = _HME_NDESC;
176 1.1 pk
177 1.1 pk /*
178 1.1 pk * Allocate DMA capable memory
179 1.1 pk * Buffer descriptors must be aligned on a 2048 byte boundary;
180 1.1 pk * take this into account when calculating the size. Note that
181 1.1 pk * the maximum number of descriptors (256) occupies 2048 bytes,
182 1.28 tron * so we allocate that much regardless of _HME_NDESC.
183 1.1 pk */
184 1.28 tron size = 2048 + /* TX descriptors */
185 1.28 tron 2048 + /* RX descriptors */
186 1.28 tron sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
187 1.46 heas sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
188 1.11 pk
189 1.11 pk /* Allocate DMA buffer */
190 1.28 tron if ((error = bus_dmamem_alloc(dmatag, size,
191 1.28 tron 2048, 0,
192 1.28 tron &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
193 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
194 1.64 cegger error);
195 1.10 mrg return;
196 1.1 pk }
197 1.1 pk
198 1.11 pk /* Map DMA memory in CPU addressable space */
199 1.11 pk if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
200 1.28 tron &sc->sc_rb.rb_membase,
201 1.28 tron BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
202 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
203 1.64 cegger error);
204 1.11 pk bus_dmamap_unload(dmatag, sc->sc_dmamap);
205 1.11 pk bus_dmamem_free(dmatag, &seg, rseg);
206 1.1 pk return;
207 1.1 pk }
208 1.13 mrg
209 1.13 mrg if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
210 1.28 tron BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
211 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
212 1.64 cegger error);
213 1.13 mrg return;
214 1.13 mrg }
215 1.13 mrg
216 1.13 mrg /* Load the buffer */
217 1.13 mrg if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
218 1.17 mrg sc->sc_rb.rb_membase, size, NULL,
219 1.17 mrg BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
220 1.79 tsutsui aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
221 1.64 cegger error);
222 1.13 mrg bus_dmamem_free(dmatag, &seg, rseg);
223 1.13 mrg return;
224 1.13 mrg }
225 1.13 mrg sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
226 1.1 pk
227 1.79 tsutsui aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
228 1.22 thorpej ether_sprintf(sc->sc_enaddr));
229 1.2 pk
230 1.1 pk /* Initialize ifnet structure. */
231 1.79 tsutsui strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
232 1.1 pk ifp->if_softc = sc;
233 1.1 pk ifp->if_start = hme_start;
234 1.80 tsutsui ifp->if_stop = hme_stop;
235 1.1 pk ifp->if_ioctl = hme_ioctl;
236 1.84 jakllsch ifp->if_init = hme_init;
237 1.1 pk ifp->if_watchdog = hme_watchdog;
238 1.1 pk ifp->if_flags =
239 1.1 pk IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
240 1.41 heas sc->sc_if_flags = ifp->if_flags;
241 1.51 yamt ifp->if_capabilities |=
242 1.51 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
243 1.51 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
244 1.20 thorpej IFQ_SET_READY(&ifp->if_snd);
245 1.1 pk
246 1.1 pk /* Initialize ifmedia structures and MII info */
247 1.1 pk mii->mii_ifp = ifp;
248 1.34 petrov mii->mii_readreg = hme_mii_readreg;
249 1.1 pk mii->mii_writereg = hme_mii_writereg;
250 1.1 pk mii->mii_statchg = hme_mii_statchg;
251 1.1 pk
252 1.61 dyoung sc->sc_ethercom.ec_mii = mii;
253 1.61 dyoung ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
254 1.1 pk
255 1.4 pk hme_mifinit(sc);
256 1.4 pk
257 1.79 tsutsui mii_attach(sc->sc_dev, mii, 0xffffffff,
258 1.88 jdc MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
259 1.2 pk
260 1.5 pk child = LIST_FIRST(&mii->mii_phys);
261 1.5 pk if (child == NULL) {
262 1.1 pk /* No PHY attached */
263 1.61 dyoung ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
264 1.61 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
265 1.1 pk } else {
266 1.1 pk /*
267 1.5 pk * Walk along the list of attached MII devices and
268 1.5 pk * establish an `MII instance' to `phy number'
269 1.5 pk * mapping. We'll use this mapping in media change
270 1.5 pk * requests to determine which phy to use to program
271 1.5 pk * the MIF configuration register.
272 1.5 pk */
273 1.5 pk for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
274 1.5 pk /*
275 1.5 pk * Note: we support just two PHYs: the built-in
276 1.5 pk * internal device and an external on the MII
277 1.5 pk * connector.
278 1.5 pk */
279 1.5 pk if (child->mii_phy > 1 || child->mii_inst > 1) {
280 1.79 tsutsui aprint_error_dev(sc->sc_dev,
281 1.79 tsutsui "cannot accommodate MII device %s"
282 1.28 tron " at phy %d, instance %d\n",
283 1.66 xtraeme device_xname(child->mii_dev),
284 1.28 tron child->mii_phy, child->mii_inst);
285 1.5 pk continue;
286 1.5 pk }
287 1.5 pk
288 1.5 pk sc->sc_phys[child->mii_inst] = child->mii_phy;
289 1.5 pk }
290 1.5 pk
291 1.5 pk /*
292 1.77 jdc * Set the default media to auto negotiation if the phy has
293 1.77 jdc * the auto negotiation capability.
294 1.77 jdc * XXX; What to do otherwise?
295 1.1 pk */
296 1.77 jdc if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
297 1.77 jdc ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
298 1.77 jdc /*
299 1.77 jdc else
300 1.77 jdc ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
301 1.77 jdc */
302 1.1 pk }
303 1.27 tron
304 1.28 tron /* claim 802.1q capability */
305 1.27 tron sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
306 1.1 pk
307 1.1 pk /* Attach the interface. */
308 1.1 pk if_attach(ifp);
309 1.1 pk ether_ifattach(ifp, sc->sc_enaddr);
310 1.1 pk
311 1.80 tsutsui if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
312 1.80 tsutsui pmf_class_network_register(sc->sc_dev, ifp);
313 1.80 tsutsui else
314 1.80 tsutsui aprint_error_dev(sc->sc_dev,
315 1.80 tsutsui "couldn't establish power handler\n");
316 1.1 pk
317 1.79 tsutsui rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
318 1.90 tls RND_TYPE_NET, RND_FLAG_DEFAULT);
319 1.5 pk
320 1.57 ad callout_init(&sc->sc_tick_ch, 0);
321 1.5 pk }
322 1.5 pk
323 1.5 pk void
324 1.71 dsl hme_tick(void *arg)
325 1.5 pk {
326 1.5 pk struct hme_softc *sc = arg;
327 1.5 pk int s;
328 1.5 pk
329 1.5 pk s = splnet();
330 1.5 pk mii_tick(&sc->sc_mii);
331 1.5 pk splx(s);
332 1.5 pk
333 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
334 1.1 pk }
335 1.1 pk
336 1.1 pk void
337 1.71 dsl hme_reset(struct hme_softc *sc)
338 1.1 pk {
339 1.1 pk int s;
340 1.1 pk
341 1.1 pk s = splnet();
342 1.84 jakllsch (void)hme_init(&sc->sc_ethercom.ec_if);
343 1.1 pk splx(s);
344 1.1 pk }
345 1.1 pk
346 1.1 pk void
347 1.80 tsutsui hme_chipreset(struct hme_softc *sc)
348 1.1 pk {
349 1.1 pk bus_space_tag_t t = sc->sc_bustag;
350 1.1 pk bus_space_handle_t seb = sc->sc_seb;
351 1.1 pk int n;
352 1.1 pk
353 1.33 pk /* Mask all interrupts */
354 1.33 pk bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
355 1.33 pk
356 1.1 pk /* Reset transmitter and receiver */
357 1.1 pk bus_space_write_4(t, seb, HME_SEBI_RESET,
358 1.28 tron (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
359 1.1 pk
360 1.1 pk for (n = 0; n < 20; n++) {
361 1.75 tsutsui uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
362 1.1 pk if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
363 1.1 pk return;
364 1.1 pk DELAY(20);
365 1.1 pk }
366 1.1 pk
367 1.80 tsutsui printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
368 1.80 tsutsui }
369 1.80 tsutsui
370 1.80 tsutsui void
371 1.80 tsutsui hme_stop(struct ifnet *ifp, int disable)
372 1.80 tsutsui {
373 1.80 tsutsui struct hme_softc *sc;
374 1.80 tsutsui
375 1.80 tsutsui sc = ifp->if_softc;
376 1.80 tsutsui
377 1.80 tsutsui ifp->if_timer = 0;
378 1.80 tsutsui ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
379 1.80 tsutsui
380 1.80 tsutsui callout_stop(&sc->sc_tick_ch);
381 1.80 tsutsui mii_down(&sc->sc_mii);
382 1.80 tsutsui
383 1.80 tsutsui hme_chipreset(sc);
384 1.1 pk }
385 1.1 pk
386 1.1 pk void
387 1.71 dsl hme_meminit(struct hme_softc *sc)
388 1.1 pk {
389 1.28 tron bus_addr_t txbufdma, rxbufdma;
390 1.1 pk bus_addr_t dma;
391 1.56 christos char *p;
392 1.28 tron unsigned int ntbuf, nrbuf, i;
393 1.1 pk struct hme_ring *hr = &sc->sc_rb;
394 1.1 pk
395 1.1 pk p = hr->rb_membase;
396 1.1 pk dma = hr->rb_dmabase;
397 1.1 pk
398 1.28 tron ntbuf = hr->rb_ntbuf;
399 1.28 tron nrbuf = hr->rb_nrbuf;
400 1.28 tron
401 1.1 pk /*
402 1.1 pk * Allocate transmit descriptors
403 1.1 pk */
404 1.1 pk hr->rb_txd = p;
405 1.1 pk hr->rb_txddma = dma;
406 1.28 tron p += ntbuf * HME_XD_SIZE;
407 1.28 tron dma += ntbuf * HME_XD_SIZE;
408 1.4 pk /* We have reserved descriptor space until the next 2048 byte boundary.*/
409 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
410 1.56 christos p = (void *)roundup((u_long)p, 2048);
411 1.1 pk
412 1.1 pk /*
413 1.1 pk * Allocate receive descriptors
414 1.1 pk */
415 1.1 pk hr->rb_rxd = p;
416 1.1 pk hr->rb_rxddma = dma;
417 1.28 tron p += nrbuf * HME_XD_SIZE;
418 1.28 tron dma += nrbuf * HME_XD_SIZE;
419 1.4 pk /* Again move forward to the next 2048 byte boundary.*/
420 1.4 pk dma = (bus_addr_t)roundup((u_long)dma, 2048);
421 1.56 christos p = (void *)roundup((u_long)p, 2048);
422 1.1 pk
423 1.28 tron
424 1.1 pk /*
425 1.28 tron * Allocate transmit buffers
426 1.1 pk */
427 1.28 tron hr->rb_txbuf = p;
428 1.28 tron txbufdma = dma;
429 1.28 tron p += ntbuf * _HME_BUFSZ;
430 1.28 tron dma += ntbuf * _HME_BUFSZ;
431 1.28 tron
432 1.28 tron /*
433 1.28 tron * Allocate receive buffers
434 1.28 tron */
435 1.28 tron hr->rb_rxbuf = p;
436 1.28 tron rxbufdma = dma;
437 1.28 tron p += nrbuf * _HME_BUFSZ;
438 1.28 tron dma += nrbuf * _HME_BUFSZ;
439 1.28 tron
440 1.28 tron /*
441 1.28 tron * Initialize transmit buffer descriptors
442 1.28 tron */
443 1.28 tron for (i = 0; i < ntbuf; i++) {
444 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
445 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
446 1.1 pk }
447 1.1 pk
448 1.1 pk /*
449 1.28 tron * Initialize receive buffer descriptors
450 1.1 pk */
451 1.28 tron for (i = 0; i < nrbuf; i++) {
452 1.28 tron HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
453 1.15 eeh HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
454 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
455 1.1 pk }
456 1.1 pk
457 1.28 tron hr->rb_tdhead = hr->rb_tdtail = 0;
458 1.28 tron hr->rb_td_nbusy = 0;
459 1.28 tron hr->rb_rdtail = 0;
460 1.1 pk }
461 1.1 pk
462 1.1 pk /*
463 1.1 pk * Initialization of interface; set up initialization block
464 1.1 pk * and transmit/receive descriptor rings.
465 1.1 pk */
466 1.61 dyoung int
467 1.84 jakllsch hme_init(struct ifnet *ifp)
468 1.1 pk {
469 1.84 jakllsch struct hme_softc *sc = ifp->if_softc;
470 1.1 pk bus_space_tag_t t = sc->sc_bustag;
471 1.1 pk bus_space_handle_t seb = sc->sc_seb;
472 1.1 pk bus_space_handle_t etx = sc->sc_etx;
473 1.1 pk bus_space_handle_t erx = sc->sc_erx;
474 1.1 pk bus_space_handle_t mac = sc->sc_mac;
475 1.75 tsutsui uint8_t *ea;
476 1.75 tsutsui uint32_t v;
477 1.61 dyoung int rc;
478 1.1 pk
479 1.1 pk /*
480 1.1 pk * Initialization sequence. The numbered steps below correspond
481 1.1 pk * to the sequence outlined in section 6.3.5.1 in the Ethernet
482 1.1 pk * Channel Engine manual (part of the PCIO manual).
483 1.1 pk * See also the STP2002-STQ document from Sun Microsystems.
484 1.1 pk */
485 1.1 pk
486 1.1 pk /* step 1 & 2. Reset the Ethernet Channel */
487 1.80 tsutsui hme_stop(ifp, 0);
488 1.1 pk
489 1.4 pk /* Re-initialize the MIF */
490 1.4 pk hme_mifinit(sc);
491 1.4 pk
492 1.1 pk /* Call MI reset function if any */
493 1.1 pk if (sc->sc_hwreset)
494 1.1 pk (*sc->sc_hwreset)(sc);
495 1.1 pk
496 1.1 pk #if 0
497 1.1 pk /* Mask all MIF interrupts, just in case */
498 1.1 pk bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
499 1.1 pk #endif
500 1.1 pk
501 1.1 pk /* step 3. Setup data structures in host memory */
502 1.1 pk hme_meminit(sc);
503 1.1 pk
504 1.1 pk /* step 4. TX MAC registers & counters */
505 1.1 pk bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
506 1.1 pk bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
507 1.1 pk bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
508 1.1 pk bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
509 1.28 tron bus_space_write_4(t, mac, HME_MACI_TXSIZE,
510 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
511 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
512 1.45 heas sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
513 1.1 pk
514 1.1 pk /* Load station MAC address */
515 1.1 pk ea = sc->sc_enaddr;
516 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
517 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
518 1.1 pk bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
519 1.1 pk
520 1.1 pk /*
521 1.1 pk * Init seed for backoff
522 1.1 pk * (source suggested by manual: low 10 bits of MAC address)
523 1.42 heas */
524 1.1 pk v = ((ea[4] << 8) | ea[5]) & 0x3fff;
525 1.1 pk bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
526 1.1 pk
527 1.1 pk
528 1.1 pk /* Note: Accepting power-on default for other MAC registers here.. */
529 1.1 pk
530 1.1 pk
531 1.1 pk /* step 5. RX MAC registers & counters */
532 1.1 pk hme_setladrf(sc);
533 1.1 pk
534 1.1 pk /* step 6 & 7. Program Descriptor Ring Base Addresses */
535 1.1 pk bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
536 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
537 1.1 pk
538 1.1 pk bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
539 1.28 tron bus_space_write_4(t, mac, HME_MACI_RXSIZE,
540 1.28 tron (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
541 1.49 heas ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
542 1.1 pk
543 1.1 pk /* step 8. Global Configuration & Interrupt Mask */
544 1.1 pk bus_space_write_4(t, seb, HME_SEBI_IMASK,
545 1.28 tron ~(
546 1.28 tron /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
547 1.28 tron HME_SEB_STAT_HOSTTOTX |
548 1.28 tron HME_SEB_STAT_RXTOHOST |
549 1.28 tron HME_SEB_STAT_TXALL |
550 1.28 tron HME_SEB_STAT_TXPERR |
551 1.28 tron HME_SEB_STAT_RCNTEXP |
552 1.77 jdc HME_SEB_STAT_MIFIRQ |
553 1.28 tron HME_SEB_STAT_ALL_ERRORS ));
554 1.1 pk
555 1.1 pk switch (sc->sc_burst) {
556 1.1 pk default:
557 1.1 pk v = 0;
558 1.1 pk break;
559 1.1 pk case 16:
560 1.1 pk v = HME_SEB_CFG_BURST16;
561 1.1 pk break;
562 1.1 pk case 32:
563 1.1 pk v = HME_SEB_CFG_BURST32;
564 1.1 pk break;
565 1.1 pk case 64:
566 1.1 pk v = HME_SEB_CFG_BURST64;
567 1.1 pk break;
568 1.1 pk }
569 1.1 pk bus_space_write_4(t, seb, HME_SEBI_CFG, v);
570 1.1 pk
571 1.1 pk /* step 9. ETX Configuration: use mostly default values */
572 1.1 pk
573 1.1 pk /* Enable DMA */
574 1.2 pk v = bus_space_read_4(t, etx, HME_ETXI_CFG);
575 1.1 pk v |= HME_ETX_CFG_DMAENABLE;
576 1.2 pk bus_space_write_4(t, etx, HME_ETXI_CFG, v);
577 1.1 pk
578 1.3 pk /* Transmit Descriptor ring size: in increments of 16 */
579 1.28 tron bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
580 1.28 tron
581 1.1 pk
582 1.3 pk /* step 10. ERX Configuration */
583 1.2 pk v = bus_space_read_4(t, erx, HME_ERXI_CFG);
584 1.28 tron
585 1.28 tron /* Encode Receive Descriptor ring size: four possible values */
586 1.28 tron switch (_HME_NDESC /*XXX*/) {
587 1.28 tron case 32:
588 1.28 tron v |= HME_ERX_CFG_RINGSIZE32;
589 1.28 tron break;
590 1.28 tron case 64:
591 1.28 tron v |= HME_ERX_CFG_RINGSIZE64;
592 1.28 tron break;
593 1.28 tron case 128:
594 1.28 tron v |= HME_ERX_CFG_RINGSIZE128;
595 1.28 tron break;
596 1.28 tron case 256:
597 1.28 tron v |= HME_ERX_CFG_RINGSIZE256;
598 1.28 tron break;
599 1.28 tron default:
600 1.28 tron printf("hme: invalid Receive Descriptor ring size\n");
601 1.28 tron break;
602 1.28 tron }
603 1.28 tron
604 1.3 pk /* Enable DMA */
605 1.28 tron v |= HME_ERX_CFG_DMAENABLE;
606 1.46 heas
607 1.46 heas /* set h/w rx checksum start offset (# of half-words) */
608 1.49 heas #ifdef INET
609 1.74 tsutsui v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
610 1.74 tsutsui << HME_ERX_CFG_CSUMSHIFT) &
611 1.46 heas HME_ERX_CFG_CSUMSTART;
612 1.49 heas #endif
613 1.2 pk bus_space_write_4(t, erx, HME_ERXI_CFG, v);
614 1.1 pk
615 1.1 pk /* step 11. XIF Configuration */
616 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
617 1.1 pk v |= HME_MAC_XIF_OE;
618 1.1 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
619 1.1 pk
620 1.1 pk /* step 12. RX_MAC Configuration Register */
621 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
622 1.46 heas v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
623 1.1 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
624 1.1 pk
625 1.1 pk /* step 13. TX_MAC Configuration Register */
626 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
627 1.2 pk v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
628 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
629 1.1 pk
630 1.1 pk /* step 14. Issue Transmit Pending command */
631 1.1 pk
632 1.1 pk /* Call MI initialization function if any */
633 1.1 pk if (sc->sc_hwinit)
634 1.1 pk (*sc->sc_hwinit)(sc);
635 1.29 thorpej
636 1.29 thorpej /* Set the current media. */
637 1.61 dyoung if ((rc = hme_mediachange(ifp)) != 0)
638 1.61 dyoung return rc;
639 1.9 thorpej
640 1.9 thorpej /* Start the one second timer. */
641 1.9 thorpej callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
642 1.1 pk
643 1.1 pk ifp->if_flags |= IFF_RUNNING;
644 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
645 1.41 heas sc->sc_if_flags = ifp->if_flags;
646 1.1 pk ifp->if_timer = 0;
647 1.1 pk hme_start(ifp);
648 1.61 dyoung return 0;
649 1.1 pk }
650 1.1 pk
651 1.28 tron /*
652 1.28 tron * Routine to copy from mbuf chain to transmit buffer in
653 1.28 tron * network buffer memory.
654 1.28 tron * Returns the amount of data copied.
655 1.28 tron */
656 1.28 tron int
657 1.72 dsl hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
658 1.72 dsl /* ri: Ring index */
659 1.28 tron {
660 1.28 tron struct mbuf *n;
661 1.28 tron int len, tlen = 0;
662 1.56 christos char *bp;
663 1.28 tron
664 1.56 christos bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
665 1.28 tron for (; m; m = n) {
666 1.28 tron len = m->m_len;
667 1.28 tron if (len == 0) {
668 1.28 tron MFREE(m, n);
669 1.28 tron continue;
670 1.28 tron }
671 1.56 christos memcpy(bp, mtod(m, void *), len);
672 1.28 tron bp += len;
673 1.28 tron tlen += len;
674 1.28 tron MFREE(m, n);
675 1.28 tron }
676 1.28 tron return (tlen);
677 1.28 tron }
678 1.28 tron
679 1.28 tron /*
680 1.28 tron * Pull data off an interface.
681 1.28 tron * Len is length of data, with local net header stripped.
682 1.28 tron * We copy the data into mbufs. When full cluster sized units are present
683 1.28 tron * we copy into clusters.
684 1.28 tron */
685 1.28 tron struct mbuf *
686 1.75 tsutsui hme_get(struct hme_softc *sc, int ri, uint32_t flags)
687 1.28 tron {
688 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
689 1.28 tron struct mbuf *m, *m0, *newm;
690 1.56 christos char *bp;
691 1.46 heas int len, totlen;
692 1.76 tsutsui #ifdef INET
693 1.76 tsutsui int csum_flags;
694 1.76 tsutsui #endif
695 1.28 tron
696 1.46 heas totlen = HME_XD_DECODE_RSIZE(flags);
697 1.28 tron MGETHDR(m0, M_DONTWAIT, MT_DATA);
698 1.28 tron if (m0 == 0)
699 1.28 tron return (0);
700 1.93 ozaki m_set_rcvif(m0, ifp);
701 1.28 tron m0->m_pkthdr.len = totlen;
702 1.28 tron len = MHLEN;
703 1.28 tron m = m0;
704 1.28 tron
705 1.56 christos bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
706 1.28 tron
707 1.28 tron while (totlen > 0) {
708 1.28 tron if (totlen >= MINCLSIZE) {
709 1.28 tron MCLGET(m, M_DONTWAIT);
710 1.28 tron if ((m->m_flags & M_EXT) == 0)
711 1.28 tron goto bad;
712 1.28 tron len = MCLBYTES;
713 1.28 tron }
714 1.28 tron
715 1.28 tron if (m == m0) {
716 1.56 christos char *newdata = (char *)
717 1.28 tron ALIGN(m->m_data + sizeof(struct ether_header)) -
718 1.28 tron sizeof(struct ether_header);
719 1.28 tron len -= newdata - m->m_data;
720 1.28 tron m->m_data = newdata;
721 1.28 tron }
722 1.28 tron
723 1.28 tron m->m_len = len = min(totlen, len);
724 1.56 christos memcpy(mtod(m, void *), bp, len);
725 1.28 tron bp += len;
726 1.28 tron
727 1.28 tron totlen -= len;
728 1.28 tron if (totlen > 0) {
729 1.28 tron MGET(newm, M_DONTWAIT, MT_DATA);
730 1.28 tron if (newm == 0)
731 1.28 tron goto bad;
732 1.28 tron len = MLEN;
733 1.28 tron m = m->m_next = newm;
734 1.28 tron }
735 1.28 tron }
736 1.28 tron
737 1.49 heas #ifdef INET
738 1.49 heas /* hardware checksum */
739 1.76 tsutsui csum_flags = 0;
740 1.50 rafal if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
741 1.46 heas struct ether_header *eh;
742 1.74 tsutsui struct ether_vlan_header *evh;
743 1.46 heas struct ip *ip;
744 1.46 heas struct udphdr *uh;
745 1.46 heas uint16_t *opts;
746 1.46 heas int32_t hlen, pktlen;
747 1.76 tsutsui uint32_t csum_data;
748 1.46 heas
749 1.74 tsutsui eh = mtod(m0, struct ether_header *);
750 1.74 tsutsui if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
751 1.74 tsutsui ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
752 1.46 heas pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
753 1.74 tsutsui } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
754 1.74 tsutsui evh = (struct ether_vlan_header *)eh;
755 1.74 tsutsui if (ntohs(evh->evl_proto != ETHERTYPE_IP))
756 1.74 tsutsui goto swcsum;
757 1.74 tsutsui ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
758 1.74 tsutsui ETHER_VLAN_ENCAP_LEN);
759 1.74 tsutsui pktlen = m0->m_pkthdr.len -
760 1.74 tsutsui ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
761 1.74 tsutsui } else
762 1.46 heas goto swcsum;
763 1.46 heas
764 1.46 heas /* IPv4 only */
765 1.46 heas if (ip->ip_v != IPVERSION)
766 1.46 heas goto swcsum;
767 1.46 heas
768 1.46 heas hlen = ip->ip_hl << 2;
769 1.48 perry if (hlen < sizeof(struct ip))
770 1.46 heas goto swcsum;
771 1.46 heas
772 1.49 heas /*
773 1.49 heas * bail if too short, has random trailing garbage, truncated,
774 1.49 heas * fragment, or has ethernet pad.
775 1.49 heas */
776 1.76 tsutsui if (ntohs(ip->ip_len) < hlen ||
777 1.76 tsutsui ntohs(ip->ip_len) != pktlen ||
778 1.76 tsutsui (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
779 1.49 heas goto swcsum;
780 1.46 heas
781 1.46 heas switch (ip->ip_p) {
782 1.46 heas case IPPROTO_TCP:
783 1.76 tsutsui if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
784 1.46 heas goto swcsum;
785 1.46 heas if (pktlen < (hlen + sizeof(struct tcphdr)))
786 1.46 heas goto swcsum;
787 1.76 tsutsui csum_flags =
788 1.76 tsutsui M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
789 1.46 heas break;
790 1.46 heas case IPPROTO_UDP:
791 1.76 tsutsui if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
792 1.46 heas goto swcsum;
793 1.46 heas if (pktlen < (hlen + sizeof(struct udphdr)))
794 1.46 heas goto swcsum;
795 1.56 christos uh = (struct udphdr *)((char *)ip + hlen);
796 1.46 heas /* no checksum */
797 1.46 heas if (uh->uh_sum == 0)
798 1.46 heas goto swcsum;
799 1.76 tsutsui csum_flags =
800 1.76 tsutsui M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
801 1.46 heas break;
802 1.46 heas default:
803 1.49 heas goto swcsum;
804 1.46 heas }
805 1.46 heas
806 1.46 heas /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
807 1.76 tsutsui csum_data = ~flags & HME_XD_RXCKSUM;
808 1.46 heas
809 1.74 tsutsui /*
810 1.74 tsutsui * If data offset is different from RX cksum start offset,
811 1.74 tsutsui * we have to deduct them.
812 1.74 tsutsui */
813 1.76 tsutsui hlen = ((char *)ip + hlen) -
814 1.74 tsutsui ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
815 1.76 tsutsui if (hlen > 1) {
816 1.46 heas uint32_t optsum;
817 1.46 heas
818 1.46 heas optsum = 0;
819 1.74 tsutsui opts = (uint16_t *)((char *)eh +
820 1.74 tsutsui ETHER_HDR_LEN + sizeof(struct ip));
821 1.46 heas
822 1.76 tsutsui while (hlen > 1) {
823 1.46 heas optsum += ntohs(*opts++);
824 1.76 tsutsui hlen -= 2;
825 1.46 heas }
826 1.46 heas while (optsum >> 16)
827 1.46 heas optsum = (optsum >> 16) + (optsum & 0xffff);
828 1.46 heas
829 1.73 tsutsui /* Deduct the ip opts sum from the hwsum. */
830 1.76 tsutsui csum_data += (uint16_t)~optsum;
831 1.46 heas
832 1.76 tsutsui while (csum_data >> 16)
833 1.76 tsutsui csum_data =
834 1.76 tsutsui (csum_data >> 16) + (csum_data & 0xffff);
835 1.46 heas }
836 1.76 tsutsui m0->m_pkthdr.csum_data = csum_data;
837 1.76 tsutsui }
838 1.49 heas swcsum:
839 1.76 tsutsui m0->m_pkthdr.csum_flags = csum_flags;
840 1.49 heas #endif
841 1.46 heas
842 1.28 tron return (m0);
843 1.28 tron
844 1.28 tron bad:
845 1.28 tron m_freem(m0);
846 1.28 tron return (0);
847 1.28 tron }
848 1.28 tron
849 1.28 tron /*
850 1.28 tron * Pass a packet to the higher levels.
851 1.28 tron */
852 1.28 tron void
853 1.75 tsutsui hme_read(struct hme_softc *sc, int ix, uint32_t flags)
854 1.28 tron {
855 1.28 tron struct ifnet *ifp = &sc->sc_ethercom.ec_if;
856 1.28 tron struct mbuf *m;
857 1.46 heas int len;
858 1.28 tron
859 1.46 heas len = HME_XD_DECODE_RSIZE(flags);
860 1.28 tron if (len <= sizeof(struct ether_header) ||
861 1.28 tron len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
862 1.28 tron ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
863 1.28 tron ETHERMTU + sizeof(struct ether_header))) {
864 1.28 tron #ifdef HMEDEBUG
865 1.28 tron printf("%s: invalid packet size %d; dropping\n",
866 1.79 tsutsui device_xname(sc->sc_dev), len);
867 1.28 tron #endif
868 1.28 tron ifp->if_ierrors++;
869 1.28 tron return;
870 1.28 tron }
871 1.28 tron
872 1.28 tron /* Pull packet off interface. */
873 1.46 heas m = hme_get(sc, ix, flags);
874 1.28 tron if (m == 0) {
875 1.28 tron ifp->if_ierrors++;
876 1.28 tron return;
877 1.28 tron }
878 1.28 tron
879 1.28 tron ifp->if_ipackets++;
880 1.28 tron
881 1.28 tron /*
882 1.28 tron * Check if there's a BPF listener on this interface.
883 1.28 tron * If so, hand off the raw packet to BPF.
884 1.28 tron */
885 1.86 joerg bpf_mtap(ifp, m);
886 1.28 tron
887 1.28 tron /* Pass the packet up. */
888 1.92 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
889 1.28 tron }
890 1.28 tron
891 1.1 pk void
892 1.71 dsl hme_start(struct ifnet *ifp)
893 1.1 pk {
894 1.79 tsutsui struct hme_softc *sc = ifp->if_softc;
895 1.56 christos void *txd = sc->sc_rb.rb_txd;
896 1.1 pk struct mbuf *m;
897 1.46 heas unsigned int txflags;
898 1.80 tsutsui unsigned int ri, len, obusy;
899 1.28 tron unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
900 1.1 pk
901 1.1 pk if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
902 1.1 pk return;
903 1.1 pk
904 1.28 tron ri = sc->sc_rb.rb_tdhead;
905 1.80 tsutsui obusy = sc->sc_rb.rb_td_nbusy;
906 1.28 tron
907 1.28 tron for (;;) {
908 1.28 tron IFQ_DEQUEUE(&ifp->if_snd, m);
909 1.28 tron if (m == 0)
910 1.1 pk break;
911 1.1 pk
912 1.1 pk /*
913 1.1 pk * If BPF is listening on this interface, let it see the
914 1.1 pk * packet before we commit it to the wire.
915 1.1 pk */
916 1.86 joerg bpf_mtap(ifp, m);
917 1.1 pk
918 1.49 heas #ifdef INET
919 1.46 heas /* collect bits for h/w csum, before hme_put frees the mbuf */
920 1.46 heas if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
921 1.46 heas m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
922 1.46 heas struct ether_header *eh;
923 1.46 heas uint16_t offset, start;
924 1.46 heas
925 1.46 heas eh = mtod(m, struct ether_header *);
926 1.46 heas switch (ntohs(eh->ether_type)) {
927 1.46 heas case ETHERTYPE_IP:
928 1.46 heas start = ETHER_HDR_LEN;
929 1.46 heas break;
930 1.46 heas case ETHERTYPE_VLAN:
931 1.46 heas start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
932 1.46 heas break;
933 1.46 heas default:
934 1.46 heas /* unsupported, drop it */
935 1.46 heas m_free(m);
936 1.46 heas continue;
937 1.46 heas }
938 1.47 thorpej start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
939 1.47 thorpej offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
940 1.47 thorpej + start;
941 1.46 heas txflags = HME_XD_TXCKSUM |
942 1.46 heas (offset << HME_XD_TXCSSTUFFSHIFT) |
943 1.46 heas (start << HME_XD_TXCSSTARTSHIFT);
944 1.46 heas } else
945 1.49 heas #endif
946 1.46 heas txflags = 0;
947 1.46 heas
948 1.28 tron /*
949 1.28 tron * Copy the mbuf chain into the transmit buffer.
950 1.28 tron */
951 1.28 tron len = hme_put(sc, ri, m);
952 1.28 tron
953 1.28 tron /*
954 1.28 tron * Initialize transmit registers and start transmission
955 1.28 tron */
956 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
957 1.28 tron HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
958 1.46 heas HME_XD_ENCODE_TSIZE(len) | txflags);
959 1.28 tron
960 1.28 tron /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
961 1.28 tron bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
962 1.28 tron HME_ETX_TP_DMAWAKEUP);
963 1.28 tron
964 1.28 tron if (++ri == ntbuf)
965 1.28 tron ri = 0;
966 1.28 tron
967 1.28 tron if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
968 1.26 tron ifp->if_flags |= IFF_OACTIVE;
969 1.26 tron break;
970 1.26 tron }
971 1.1 pk }
972 1.1 pk
973 1.80 tsutsui if (obusy != sc->sc_rb.rb_td_nbusy) {
974 1.80 tsutsui sc->sc_rb.rb_tdhead = ri;
975 1.80 tsutsui ifp->if_timer = 5;
976 1.80 tsutsui }
977 1.1 pk }
978 1.1 pk
979 1.1 pk /*
980 1.1 pk * Transmit interrupt.
981 1.1 pk */
982 1.1 pk int
983 1.71 dsl hme_tint(struct hme_softc *sc)
984 1.1 pk {
985 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
986 1.28 tron bus_space_tag_t t = sc->sc_bustag;
987 1.28 tron bus_space_handle_t mac = sc->sc_mac;
988 1.1 pk unsigned int ri, txflags;
989 1.28 tron
990 1.28 tron /*
991 1.28 tron * Unload collision counters
992 1.28 tron */
993 1.28 tron ifp->if_collisions +=
994 1.28 tron bus_space_read_4(t, mac, HME_MACI_NCCNT) +
995 1.77 jdc bus_space_read_4(t, mac, HME_MACI_FCCNT);
996 1.77 jdc ifp->if_oerrors +=
997 1.28 tron bus_space_read_4(t, mac, HME_MACI_EXCNT) +
998 1.28 tron bus_space_read_4(t, mac, HME_MACI_LTCNT);
999 1.28 tron
1000 1.28 tron /*
1001 1.28 tron * then clear the hardware counters.
1002 1.28 tron */
1003 1.28 tron bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1004 1.28 tron bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1005 1.28 tron bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1006 1.28 tron bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1007 1.1 pk
1008 1.1 pk /* Fetch current position in the transmit ring */
1009 1.28 tron ri = sc->sc_rb.rb_tdtail;
1010 1.1 pk
1011 1.1 pk for (;;) {
1012 1.28 tron if (sc->sc_rb.rb_td_nbusy <= 0)
1013 1.1 pk break;
1014 1.1 pk
1015 1.15 eeh txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1016 1.1 pk
1017 1.1 pk if (txflags & HME_XD_OWN)
1018 1.1 pk break;
1019 1.1 pk
1020 1.1 pk ifp->if_flags &= ~IFF_OACTIVE;
1021 1.28 tron ifp->if_opackets++;
1022 1.26 tron
1023 1.28 tron if (++ri == sc->sc_rb.rb_ntbuf)
1024 1.1 pk ri = 0;
1025 1.1 pk
1026 1.28 tron --sc->sc_rb.rb_td_nbusy;
1027 1.1 pk }
1028 1.1 pk
1029 1.3 pk /* Update ring */
1030 1.28 tron sc->sc_rb.rb_tdtail = ri;
1031 1.1 pk
1032 1.1 pk hme_start(ifp);
1033 1.1 pk
1034 1.28 tron if (sc->sc_rb.rb_td_nbusy == 0)
1035 1.1 pk ifp->if_timer = 0;
1036 1.1 pk
1037 1.1 pk return (1);
1038 1.1 pk }
1039 1.1 pk
1040 1.1 pk /*
1041 1.1 pk * Receive interrupt.
1042 1.1 pk */
1043 1.1 pk int
1044 1.71 dsl hme_rint(struct hme_softc *sc)
1045 1.1 pk {
1046 1.77 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1047 1.77 jdc bus_space_tag_t t = sc->sc_bustag;
1048 1.77 jdc bus_space_handle_t mac = sc->sc_mac;
1049 1.56 christos void *xdr = sc->sc_rb.rb_rxd;
1050 1.28 tron unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1051 1.46 heas unsigned int ri;
1052 1.75 tsutsui uint32_t flags;
1053 1.1 pk
1054 1.28 tron ri = sc->sc_rb.rb_rdtail;
1055 1.1 pk
1056 1.1 pk /*
1057 1.1 pk * Process all buffers with valid data.
1058 1.1 pk */
1059 1.1 pk for (;;) {
1060 1.28 tron flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1061 1.1 pk if (flags & HME_XD_OWN)
1062 1.1 pk break;
1063 1.1 pk
1064 1.4 pk if (flags & HME_XD_OFL) {
1065 1.4 pk printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1066 1.79 tsutsui device_xname(sc->sc_dev), ri, flags);
1067 1.46 heas } else
1068 1.46 heas hme_read(sc, ri, flags);
1069 1.1 pk
1070 1.28 tron /* This buffer can be used by the hardware again */
1071 1.28 tron HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1072 1.28 tron HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1073 1.26 tron
1074 1.28 tron if (++ri == nrbuf)
1075 1.1 pk ri = 0;
1076 1.1 pk }
1077 1.1 pk
1078 1.28 tron sc->sc_rb.rb_rdtail = ri;
1079 1.28 tron
1080 1.77 jdc /* Read error counters ... */
1081 1.77 jdc ifp->if_ierrors +=
1082 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1083 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1084 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1085 1.77 jdc bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1086 1.77 jdc
1087 1.77 jdc /* ... then clear the hardware counters. */
1088 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1089 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1090 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1091 1.77 jdc bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1092 1.1 pk return (1);
1093 1.1 pk }
1094 1.1 pk
1095 1.1 pk int
1096 1.71 dsl hme_eint(struct hme_softc *sc, u_int status)
1097 1.1 pk {
1098 1.77 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1099 1.1 pk char bits[128];
1100 1.1 pk
1101 1.1 pk if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1102 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1103 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1104 1.75 tsutsui uint32_t cf, st, sm;
1105 1.33 pk cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1106 1.33 pk st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1107 1.33 pk sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1108 1.33 pk printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1109 1.79 tsutsui device_xname(sc->sc_dev), cf, st, sm);
1110 1.1 pk return (1);
1111 1.1 pk }
1112 1.77 jdc
1113 1.77 jdc /* Receive error counters rolled over */
1114 1.77 jdc if (status & HME_SEB_STAT_ACNTEXP)
1115 1.77 jdc ifp->if_ierrors += 0xff;
1116 1.77 jdc if (status & HME_SEB_STAT_CCNTEXP)
1117 1.77 jdc ifp->if_ierrors += 0xff;
1118 1.77 jdc if (status & HME_SEB_STAT_LCNTEXP)
1119 1.77 jdc ifp->if_ierrors += 0xff;
1120 1.77 jdc if (status & HME_SEB_STAT_CVCNTEXP)
1121 1.77 jdc ifp->if_ierrors += 0xff;
1122 1.77 jdc
1123 1.77 jdc /* RXTERR locks up the interface, so do a reset */
1124 1.77 jdc if (status & HME_SEB_STAT_RXTERR)
1125 1.77 jdc hme_reset(sc);
1126 1.77 jdc
1127 1.68 christos snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1128 1.79 tsutsui printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1129 1.68 christos
1130 1.1 pk return (1);
1131 1.1 pk }
1132 1.1 pk
1133 1.1 pk int
1134 1.71 dsl hme_intr(void *v)
1135 1.1 pk {
1136 1.79 tsutsui struct hme_softc *sc = v;
1137 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1138 1.1 pk bus_space_handle_t seb = sc->sc_seb;
1139 1.75 tsutsui uint32_t status;
1140 1.1 pk int r = 0;
1141 1.1 pk
1142 1.1 pk status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1143 1.1 pk
1144 1.1 pk if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1145 1.1 pk r |= hme_eint(sc, status);
1146 1.1 pk
1147 1.1 pk if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1148 1.1 pk r |= hme_tint(sc);
1149 1.1 pk
1150 1.1 pk if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1151 1.1 pk r |= hme_rint(sc);
1152 1.1 pk
1153 1.40 abs rnd_add_uint32(&sc->rnd_source, status);
1154 1.40 abs
1155 1.1 pk return (r);
1156 1.1 pk }
1157 1.1 pk
1158 1.1 pk
1159 1.1 pk void
1160 1.71 dsl hme_watchdog(struct ifnet *ifp)
1161 1.1 pk {
1162 1.1 pk struct hme_softc *sc = ifp->if_softc;
1163 1.1 pk
1164 1.79 tsutsui log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1165 1.1 pk ++ifp->if_oerrors;
1166 1.1 pk
1167 1.1 pk hme_reset(sc);
1168 1.4 pk }
1169 1.4 pk
1170 1.4 pk /*
1171 1.4 pk * Initialize the MII Management Interface
1172 1.4 pk */
1173 1.4 pk void
1174 1.71 dsl hme_mifinit(struct hme_softc *sc)
1175 1.4 pk {
1176 1.4 pk bus_space_tag_t t = sc->sc_bustag;
1177 1.4 pk bus_space_handle_t mif = sc->sc_mif;
1178 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1179 1.33 pk int instance, phy;
1180 1.75 tsutsui uint32_t v;
1181 1.4 pk
1182 1.61 dyoung if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1183 1.61 dyoung instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1184 1.33 pk phy = sc->sc_phys[instance];
1185 1.33 pk } else
1186 1.33 pk /* No media set yet, pick phy arbitrarily.. */
1187 1.33 pk phy = HME_PHYAD_EXTERNAL;
1188 1.33 pk
1189 1.33 pk /* Configure the MIF in frame mode, no poll, current phy select */
1190 1.33 pk v = 0;
1191 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1192 1.33 pk v |= HME_MIF_CFG_PHY;
1193 1.4 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1194 1.35 pk
1195 1.35 pk /* If an external transceiver is selected, enable its MII drivers */
1196 1.35 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1197 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1198 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1199 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1200 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1201 1.1 pk }
1202 1.1 pk
1203 1.1 pk /*
1204 1.1 pk * MII interface
1205 1.1 pk */
1206 1.1 pk static int
1207 1.78 cegger hme_mii_readreg(device_t self, int phy, int reg)
1208 1.1 pk {
1209 1.79 tsutsui struct hme_softc *sc = device_private(self);
1210 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1211 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1212 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1213 1.75 tsutsui uint32_t v, xif_cfg, mifi_cfg;
1214 1.1 pk int n;
1215 1.1 pk
1216 1.33 pk /* We can at most have two PHYs */
1217 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1218 1.32 martin return (0);
1219 1.32 martin
1220 1.5 pk /* Select the desired PHY in the MIF configuration register */
1221 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1222 1.5 pk v &= ~HME_MIF_CFG_PHY;
1223 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1224 1.5 pk v |= HME_MIF_CFG_PHY;
1225 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1226 1.5 pk
1227 1.42 heas /* Enable MII drivers on external transceiver */
1228 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1229 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1230 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1231 1.35 pk else
1232 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1233 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1234 1.35 pk
1235 1.33 pk #if 0
1236 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1237 1.33 pk /*
1238 1.33 pk * Check whether a transceiver is connected by testing
1239 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1240 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1241 1.33 pk */
1242 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1243 1.33 pk delay(100);
1244 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1245 1.33 pk if ((v & mif_mdi_bit) == 0)
1246 1.33 pk return (0);
1247 1.33 pk #endif
1248 1.33 pk
1249 1.1 pk /* Construct the frame command */
1250 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1251 1.1 pk HME_MIF_FO_TAMSB |
1252 1.1 pk (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1253 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1254 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT);
1255 1.1 pk
1256 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1257 1.1 pk for (n = 0; n < 100; n++) {
1258 1.2 pk DELAY(1);
1259 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1260 1.33 pk if (v & HME_MIF_FO_TALSB) {
1261 1.33 pk v &= HME_MIF_FO_DATA;
1262 1.33 pk goto out;
1263 1.33 pk }
1264 1.1 pk }
1265 1.1 pk
1266 1.33 pk v = 0;
1267 1.79 tsutsui printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1268 1.33 pk
1269 1.33 pk out:
1270 1.33 pk /* Restore MIFI_CFG register */
1271 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1272 1.35 pk /* Restore XIF register */
1273 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1274 1.33 pk return (v);
1275 1.1 pk }
1276 1.1 pk
1277 1.1 pk static void
1278 1.78 cegger hme_mii_writereg(device_t self, int phy, int reg, int val)
1279 1.1 pk {
1280 1.79 tsutsui struct hme_softc *sc = device_private(self);
1281 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1282 1.1 pk bus_space_handle_t mif = sc->sc_mif;
1283 1.35 pk bus_space_handle_t mac = sc->sc_mac;
1284 1.75 tsutsui uint32_t v, xif_cfg, mifi_cfg;
1285 1.1 pk int n;
1286 1.32 martin
1287 1.33 pk /* We can at most have two PHYs */
1288 1.33 pk if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1289 1.32 martin return;
1290 1.1 pk
1291 1.5 pk /* Select the desired PHY in the MIF configuration register */
1292 1.33 pk v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1293 1.5 pk v &= ~HME_MIF_CFG_PHY;
1294 1.5 pk if (phy == HME_PHYAD_EXTERNAL)
1295 1.5 pk v |= HME_MIF_CFG_PHY;
1296 1.5 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1297 1.5 pk
1298 1.42 heas /* Enable MII drivers on external transceiver */
1299 1.35 pk v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1300 1.35 pk if (phy == HME_PHYAD_EXTERNAL)
1301 1.35 pk v |= HME_MAC_XIF_MIIENABLE;
1302 1.35 pk else
1303 1.35 pk v &= ~HME_MAC_XIF_MIIENABLE;
1304 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1305 1.35 pk
1306 1.33 pk #if 0
1307 1.33 pk /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1308 1.33 pk /*
1309 1.33 pk * Check whether a transceiver is connected by testing
1310 1.33 pk * the MIF configuration register's MDI_X bits. Note that
1311 1.33 pk * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1312 1.33 pk */
1313 1.33 pk mif_mdi_bit = 1 << (8 + (1 - phy));
1314 1.33 pk delay(100);
1315 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1316 1.33 pk if ((v & mif_mdi_bit) == 0)
1317 1.33 pk return;
1318 1.33 pk #endif
1319 1.33 pk
1320 1.1 pk /* Construct the frame command */
1321 1.1 pk v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1322 1.1 pk HME_MIF_FO_TAMSB |
1323 1.1 pk (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1324 1.1 pk (phy << HME_MIF_FO_PHYAD_SHIFT) |
1325 1.1 pk (reg << HME_MIF_FO_REGAD_SHIFT) |
1326 1.1 pk (val & HME_MIF_FO_DATA);
1327 1.1 pk
1328 1.1 pk bus_space_write_4(t, mif, HME_MIFI_FO, v);
1329 1.1 pk for (n = 0; n < 100; n++) {
1330 1.2 pk DELAY(1);
1331 1.1 pk v = bus_space_read_4(t, mif, HME_MIFI_FO);
1332 1.1 pk if (v & HME_MIF_FO_TALSB)
1333 1.33 pk goto out;
1334 1.1 pk }
1335 1.1 pk
1336 1.79 tsutsui printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1337 1.33 pk out:
1338 1.33 pk /* Restore MIFI_CFG register */
1339 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1340 1.35 pk /* Restore XIF register */
1341 1.35 pk bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1342 1.1 pk }
1343 1.1 pk
1344 1.1 pk static void
1345 1.89 matt hme_mii_statchg(struct ifnet *ifp)
1346 1.1 pk {
1347 1.89 matt struct hme_softc *sc = ifp->if_softc;
1348 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1349 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1350 1.75 tsutsui uint32_t v;
1351 1.1 pk
1352 1.5 pk #ifdef HMEDEBUG
1353 1.5 pk if (sc->sc_debug)
1354 1.33 pk printf("hme_mii_statchg: status change\n");
1355 1.5 pk #endif
1356 1.1 pk
1357 1.5 pk /* Set the MAC Full Duplex bit appropriately */
1358 1.30 martin /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1359 1.30 martin but not otherwise. */
1360 1.1 pk v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1361 1.30 martin if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1362 1.1 pk v |= HME_MAC_TXCFG_FULLDPLX;
1363 1.30 martin sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1364 1.30 martin } else {
1365 1.1 pk v &= ~HME_MAC_TXCFG_FULLDPLX;
1366 1.30 martin sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1367 1.30 martin }
1368 1.41 heas sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1369 1.1 pk bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1370 1.5 pk }
1371 1.5 pk
1372 1.5 pk int
1373 1.71 dsl hme_mediachange(struct ifnet *ifp)
1374 1.5 pk {
1375 1.5 pk struct hme_softc *sc = ifp->if_softc;
1376 1.33 pk bus_space_tag_t t = sc->sc_bustag;
1377 1.33 pk bus_space_handle_t mif = sc->sc_mif;
1378 1.33 pk bus_space_handle_t mac = sc->sc_mac;
1379 1.33 pk int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1380 1.33 pk int phy = sc->sc_phys[instance];
1381 1.61 dyoung int rc;
1382 1.75 tsutsui uint32_t v;
1383 1.5 pk
1384 1.33 pk #ifdef HMEDEBUG
1385 1.33 pk if (sc->sc_debug)
1386 1.33 pk printf("hme_mediachange: phy = %d\n", phy);
1387 1.33 pk #endif
1388 1.33 pk
1389 1.33 pk /* Select the current PHY in the MIF configuration register */
1390 1.33 pk v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1391 1.33 pk v &= ~HME_MIF_CFG_PHY;
1392 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1393 1.33 pk v |= HME_MIF_CFG_PHY;
1394 1.33 pk bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1395 1.33 pk
1396 1.33 pk /* If an external transceiver is selected, enable its MII drivers */
1397 1.33 pk v = bus_space_read_4(t, mac, HME_MACI_XIF);
1398 1.33 pk v &= ~HME_MAC_XIF_MIIENABLE;
1399 1.33 pk if (phy == HME_PHYAD_EXTERNAL)
1400 1.33 pk v |= HME_MAC_XIF_MIIENABLE;
1401 1.33 pk bus_space_write_4(t, mac, HME_MACI_XIF, v);
1402 1.5 pk
1403 1.61 dyoung if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1404 1.61 dyoung return 0;
1405 1.61 dyoung return rc;
1406 1.1 pk }
1407 1.1 pk
1408 1.1 pk /*
1409 1.1 pk * Process an ioctl request.
1410 1.1 pk */
1411 1.1 pk int
1412 1.67 dyoung hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1413 1.1 pk {
1414 1.1 pk struct hme_softc *sc = ifp->if_softc;
1415 1.1 pk struct ifaddr *ifa = (struct ifaddr *)data;
1416 1.1 pk int s, error = 0;
1417 1.1 pk
1418 1.1 pk s = splnet();
1419 1.1 pk
1420 1.1 pk switch (cmd) {
1421 1.1 pk
1422 1.67 dyoung case SIOCINITIFADDR:
1423 1.1 pk switch (ifa->ifa_addr->sa_family) {
1424 1.1 pk #ifdef INET
1425 1.1 pk case AF_INET:
1426 1.41 heas if (ifp->if_flags & IFF_UP)
1427 1.41 heas hme_setladrf(sc);
1428 1.41 heas else {
1429 1.41 heas ifp->if_flags |= IFF_UP;
1430 1.84 jakllsch error = hme_init(ifp);
1431 1.41 heas }
1432 1.1 pk arp_ifinit(ifp, ifa);
1433 1.1 pk break;
1434 1.1 pk #endif
1435 1.1 pk default:
1436 1.41 heas ifp->if_flags |= IFF_UP;
1437 1.84 jakllsch error = hme_init(ifp);
1438 1.1 pk break;
1439 1.1 pk }
1440 1.1 pk break;
1441 1.1 pk
1442 1.1 pk case SIOCSIFFLAGS:
1443 1.45 heas #ifdef HMEDEBUG
1444 1.67 dyoung {
1445 1.67 dyoung struct ifreq *ifr = data;
1446 1.67 dyoung sc->sc_debug =
1447 1.67 dyoung (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1448 1.67 dyoung }
1449 1.45 heas #endif
1450 1.67 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1451 1.67 dyoung break;
1452 1.45 heas
1453 1.67 dyoung switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1454 1.67 dyoung case IFF_RUNNING:
1455 1.1 pk /*
1456 1.1 pk * If interface is marked down and it is running, then
1457 1.1 pk * stop it.
1458 1.1 pk */
1459 1.80 tsutsui hme_stop(ifp, 0);
1460 1.1 pk ifp->if_flags &= ~IFF_RUNNING;
1461 1.67 dyoung break;
1462 1.67 dyoung case IFF_UP:
1463 1.1 pk /*
1464 1.1 pk * If interface is marked up and it is stopped, then
1465 1.1 pk * start it.
1466 1.1 pk */
1467 1.84 jakllsch error = hme_init(ifp);
1468 1.67 dyoung break;
1469 1.67 dyoung case IFF_UP|IFF_RUNNING:
1470 1.1 pk /*
1471 1.41 heas * If setting debug or promiscuous mode, do not reset
1472 1.41 heas * the chip; for everything else, call hme_init()
1473 1.41 heas * which will trigger a reset.
1474 1.1 pk */
1475 1.41 heas #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1476 1.46 heas if (ifp->if_flags != sc->sc_if_flags) {
1477 1.45 heas if ((ifp->if_flags & (~RESETIGN))
1478 1.45 heas == (sc->sc_if_flags & (~RESETIGN)))
1479 1.45 heas hme_setladrf(sc);
1480 1.45 heas else
1481 1.84 jakllsch error = hme_init(ifp);
1482 1.45 heas }
1483 1.41 heas #undef RESETIGN
1484 1.67 dyoung break;
1485 1.67 dyoung case 0:
1486 1.67 dyoung break;
1487 1.1 pk }
1488 1.45 heas
1489 1.45 heas if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1490 1.84 jakllsch error = hme_init(ifp);
1491 1.45 heas
1492 1.1 pk break;
1493 1.1 pk
1494 1.63 dyoung default:
1495 1.63 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1496 1.63 dyoung break;
1497 1.63 dyoung
1498 1.63 dyoung error = 0;
1499 1.63 dyoung
1500 1.63 dyoung if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1501 1.63 dyoung ;
1502 1.63 dyoung else if (ifp->if_flags & IFF_RUNNING) {
1503 1.1 pk /*
1504 1.1 pk * Multicast list has changed; set the hardware filter
1505 1.1 pk * accordingly.
1506 1.1 pk */
1507 1.63 dyoung hme_setladrf(sc);
1508 1.1 pk }
1509 1.1 pk break;
1510 1.1 pk }
1511 1.1 pk
1512 1.41 heas sc->sc_if_flags = ifp->if_flags;
1513 1.1 pk splx(s);
1514 1.1 pk return (error);
1515 1.1 pk }
1516 1.1 pk
1517 1.80 tsutsui bool
1518 1.80 tsutsui hme_shutdown(device_t self, int howto)
1519 1.1 pk {
1520 1.79 tsutsui struct hme_softc *sc;
1521 1.80 tsutsui struct ifnet *ifp;
1522 1.80 tsutsui
1523 1.80 tsutsui sc = device_private(self);
1524 1.80 tsutsui ifp = &sc->sc_ethercom.ec_if;
1525 1.80 tsutsui hme_stop(ifp, 1);
1526 1.28 tron
1527 1.80 tsutsui return true;
1528 1.1 pk }
1529 1.1 pk
1530 1.1 pk /*
1531 1.1 pk * Set up the logical address filter.
1532 1.1 pk */
1533 1.1 pk void
1534 1.71 dsl hme_setladrf(struct hme_softc *sc)
1535 1.1 pk {
1536 1.1 pk struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1537 1.1 pk struct ether_multi *enm;
1538 1.1 pk struct ether_multistep step;
1539 1.28 tron struct ethercom *ec = &sc->sc_ethercom;
1540 1.1 pk bus_space_tag_t t = sc->sc_bustag;
1541 1.1 pk bus_space_handle_t mac = sc->sc_mac;
1542 1.83 tsutsui uint32_t v;
1543 1.75 tsutsui uint32_t crc;
1544 1.75 tsutsui uint32_t hash[4];
1545 1.1 pk
1546 1.14 pk /* Clear hash table */
1547 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0;
1548 1.14 pk
1549 1.14 pk /* Get current RX configuration */
1550 1.14 pk v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1551 1.14 pk
1552 1.14 pk if ((ifp->if_flags & IFF_PROMISC) != 0) {
1553 1.14 pk /* Turn on promiscuous mode; turn off the hash filter */
1554 1.14 pk v |= HME_MAC_RXCFG_PMISC;
1555 1.14 pk v &= ~HME_MAC_RXCFG_HENABLE;
1556 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1557 1.14 pk goto chipit;
1558 1.14 pk }
1559 1.14 pk
1560 1.14 pk /* Turn off promiscuous mode; turn on the hash filter */
1561 1.14 pk v &= ~HME_MAC_RXCFG_PMISC;
1562 1.14 pk v |= HME_MAC_RXCFG_HENABLE;
1563 1.14 pk
1564 1.1 pk /*
1565 1.1 pk * Set up multicast address filter by passing all multicast addresses
1566 1.1 pk * through a crc generator, and then using the high order 6 bits as an
1567 1.1 pk * index into the 64 bit logical address filter. The high order bit
1568 1.1 pk * selects the word, while the rest of the bits select the bit within
1569 1.1 pk * the word.
1570 1.1 pk */
1571 1.1 pk
1572 1.28 tron ETHER_FIRST_MULTI(step, ec, enm);
1573 1.1 pk while (enm != NULL) {
1574 1.70 tsutsui if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1575 1.1 pk /*
1576 1.1 pk * We must listen to a range of multicast addresses.
1577 1.1 pk * For now, just accept all multicasts, rather than
1578 1.1 pk * trying to set only those filter bits needed to match
1579 1.1 pk * the range. (At this time, the only use of address
1580 1.1 pk * ranges is for IP multicast routing, for which the
1581 1.1 pk * range is big enough to require all bits set.)
1582 1.1 pk */
1583 1.14 pk hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1584 1.14 pk ifp->if_flags |= IFF_ALLMULTI;
1585 1.14 pk goto chipit;
1586 1.1 pk }
1587 1.1 pk
1588 1.83 tsutsui crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1589 1.83 tsutsui
1590 1.1 pk /* Just want the 6 most significant bits. */
1591 1.1 pk crc >>= 26;
1592 1.1 pk
1593 1.1 pk /* Set the corresponding bit in the filter. */
1594 1.1 pk hash[crc >> 4] |= 1 << (crc & 0xf);
1595 1.1 pk
1596 1.1 pk ETHER_NEXT_MULTI(step, enm);
1597 1.1 pk }
1598 1.1 pk
1599 1.14 pk ifp->if_flags &= ~IFF_ALLMULTI;
1600 1.14 pk
1601 1.14 pk chipit:
1602 1.14 pk /* Now load the hash table into the chip */
1603 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1604 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1605 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1606 1.1 pk bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1607 1.14 pk bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1608 1.1 pk }
1609 1.1 pk
1610 1.28 tron /*
1611 1.28 tron * Routines for accessing the transmit and receive buffers.
1612 1.28 tron * The various CPU and adapter configurations supported by this
1613 1.28 tron * driver require three different access methods for buffers
1614 1.28 tron * and descriptors:
1615 1.28 tron * (1) contig (contiguous data; no padding),
1616 1.28 tron * (2) gap2 (two bytes of data followed by two bytes of padding),
1617 1.28 tron * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1618 1.28 tron */
1619 1.28 tron
1620 1.28 tron #if 0
1621 1.28 tron /*
1622 1.28 tron * contig: contiguous data with no padding.
1623 1.28 tron *
1624 1.28 tron * Buffers may have any alignment.
1625 1.28 tron */
1626 1.28 tron
1627 1.28 tron void
1628 1.72 dsl hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1629 1.26 tron {
1630 1.56 christos volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1631 1.26 tron
1632 1.1 pk /*
1633 1.28 tron * Just call memcpy() to do the work.
1634 1.1 pk */
1635 1.28 tron memcpy(buf, from, len);
1636 1.1 pk }
1637 1.1 pk
1638 1.28 tron void
1639 1.72 dsl hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1640 1.1 pk {
1641 1.56 christos volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1642 1.26 tron
1643 1.28 tron /*
1644 1.28 tron * Just call memcpy() to do the work.
1645 1.28 tron */
1646 1.28 tron memcpy(to, buf, len);
1647 1.1 pk }
1648 1.28 tron #endif
1649