hme.c revision 1.1.4.1 1 /* $NetBSD: hme.c,v 1.1.4.1 2000/11/20 11:40:34 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * HME Ethernet module driver.
41 */
42
43 #define HMEDEBUG
44
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48 #include "rnd.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/syslog.h>
55 #include <sys/socket.h>
56 #include <sys/device.h>
57 #include <sys/malloc.h>
58 #include <sys/ioctl.h>
59 #include <sys/errno.h>
60 #if NRND > 0
61 #include <sys/rnd.h>
62 #endif
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_ether.h>
67 #include <net/if_media.h>
68
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/if_inarp.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/in_var.h>
74 #include <netinet/ip.h>
75 #endif
76
77 #ifdef NS
78 #include <netns/ns.h>
79 #include <netns/ns_if.h>
80 #endif
81
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #include <net/bpfdesc.h>
85 #endif
86
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89
90 #include <machine/bus.h>
91
92 #include <dev/ic/hmereg.h>
93 #include <dev/ic/hmevar.h>
94
95 void hme_start __P((struct ifnet *));
96 void hme_stop __P((struct hme_softc *));
97 int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
98 void hme_tick __P((void *));
99 void hme_watchdog __P((struct ifnet *));
100 void hme_shutdown __P((void *));
101 void hme_init __P((struct hme_softc *));
102 void hme_meminit __P((struct hme_softc *));
103 void hme_mifinit __P((struct hme_softc *));
104 void hme_reset __P((struct hme_softc *));
105 void hme_setladrf __P((struct hme_softc *));
106
107 /* MII methods & callbacks */
108 static int hme_mii_readreg __P((struct device *, int, int));
109 static void hme_mii_writereg __P((struct device *, int, int, int));
110 static void hme_mii_statchg __P((struct device *));
111
112 int hme_mediachange __P((struct ifnet *));
113 void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
114
115 struct mbuf *hme_get __P((struct hme_softc *, int, int));
116 int hme_put __P((struct hme_softc *, int, struct mbuf *));
117 void hme_read __P((struct hme_softc *, int, int));
118 int hme_eint __P((struct hme_softc *, u_int));
119 int hme_rint __P((struct hme_softc *));
120 int hme_tint __P((struct hme_softc *));
121
122 static int ether_cmp __P((u_char *, u_char *));
123
124 /* Default buffer copy routines */
125 void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
126 void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
127 void hme_zerobuf_contig __P((struct hme_softc *, int, int));
128
129
130 void
131 hme_config(sc)
132 struct hme_softc *sc;
133 {
134 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 struct mii_data *mii = &sc->sc_mii;
136 struct mii_softc *child;
137 bus_dma_tag_t dmatag = sc->sc_dmatag;
138 bus_dma_segment_t seg;
139 bus_size_t size;
140 int rseg, error;
141
142 /*
143 * HME common initialization.
144 *
145 * hme_softc fields that must be initialized by the front-end:
146 *
147 * the bus tag:
148 * sc_bustag
149 *
150 * the dma bus tag:
151 * sc_dmatag
152 *
153 * the bus handles:
154 * sc_seb (Shared Ethernet Block registers)
155 * sc_erx (Receiver Unit registers)
156 * sc_etx (Transmitter Unit registers)
157 * sc_mac (MAC registers)
158 * sc_mif (Managment Interface registers)
159 *
160 * the maximum bus burst size:
161 * sc_burst
162 *
163 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
164 * rb_membase, rb_dmabase)
165 *
166 * the local Ethernet address:
167 * sc_enaddr
168 *
169 */
170
171 /* Make sure the chip is stopped. */
172 hme_stop(sc);
173
174
175 /*
176 * Allocate descriptors and buffers
177 * XXX - do all this differently.. and more configurably,
178 * eg. use things as `dma_load_mbuf()' on transmit,
179 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
180 * all the time) on the reveiver side.
181 *
182 * Note: receive buffers must be 64-byte aligned.
183 * Also, apparently, the buffers must extend to a DMA burst
184 * boundary beyond the maximum packet size.
185 */
186 #define _HME_NDESC 32
187 #define _HME_BUFSZ 1600
188
189 /* Note: the # of descriptors must be a multiple of 16 */
190 sc->sc_rb.rb_ntbuf = _HME_NDESC;
191 sc->sc_rb.rb_nrbuf = _HME_NDESC;
192
193 /*
194 * Allocate DMA capable memory
195 * Buffer descriptors must be aligned on a 2048 byte boundary;
196 * take this into account when calculating the size. Note that
197 * the maximum number of descriptors (256) occupies 2048 bytes,
198 * so we allocate that much regardless of _HME_NDESC.
199 */
200 size = 2048 + /* TX descriptors */
201 2048 + /* RX descriptors */
202 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
203 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
204
205 /* Allocate DMA buffer */
206 if ((error = bus_dmamem_alloc(dmatag, size,
207 2048, 0,
208 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
209 printf("%s: DMA buffer alloc error %d\n",
210 sc->sc_dev.dv_xname, error);
211 return;
212 }
213
214 /* Map DMA memory in CPU addressable space */
215 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
216 &sc->sc_rb.rb_membase,
217 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
218 printf("%s: DMA buffer map error %d\n",
219 sc->sc_dev.dv_xname, error);
220 bus_dmamap_unload(dmatag, sc->sc_dmamap);
221 bus_dmamem_free(dmatag, &seg, rseg);
222 return;
223 }
224
225 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
226 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
227 printf("%s: DMA map create error %d\n",
228 sc->sc_dev.dv_xname, error);
229 return;
230 }
231
232 /* Load the buffer */
233 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
234 sc->sc_rb.rb_membase, size, NULL,
235 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
236 printf("%s: DMA buffer map load error %d\n",
237 sc->sc_dev.dv_xname, error);
238 bus_dmamem_free(dmatag, &seg, rseg);
239 return;
240 }
241 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
242
243 printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
244
245 /* Initialize ifnet structure. */
246 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
247 ifp->if_softc = sc;
248 ifp->if_start = hme_start;
249 ifp->if_ioctl = hme_ioctl;
250 ifp->if_watchdog = hme_watchdog;
251 ifp->if_flags =
252 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
253
254 /* Initialize ifmedia structures and MII info */
255 mii->mii_ifp = ifp;
256 mii->mii_readreg = hme_mii_readreg;
257 mii->mii_writereg = hme_mii_writereg;
258 mii->mii_statchg = hme_mii_statchg;
259
260 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
261
262 hme_mifinit(sc);
263
264 mii_attach(&sc->sc_dev, mii, 0xffffffff,
265 MII_PHY_ANY, MII_OFFSET_ANY, 0);
266
267 child = LIST_FIRST(&mii->mii_phys);
268 if (child == NULL) {
269 /* No PHY attached */
270 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
271 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
272 } else {
273 /*
274 * Walk along the list of attached MII devices and
275 * establish an `MII instance' to `phy number'
276 * mapping. We'll use this mapping in media change
277 * requests to determine which phy to use to program
278 * the MIF configuration register.
279 */
280 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
281 /*
282 * Note: we support just two PHYs: the built-in
283 * internal device and an external on the MII
284 * connector.
285 */
286 if (child->mii_phy > 1 || child->mii_inst > 1) {
287 printf("%s: cannot accomodate MII device %s"
288 " at phy %d, instance %d\n",
289 sc->sc_dev.dv_xname,
290 child->mii_dev.dv_xname,
291 child->mii_phy, child->mii_inst);
292 continue;
293 }
294
295 sc->sc_phys[child->mii_inst] = child->mii_phy;
296 }
297
298 /*
299 * XXX - we can really do the following ONLY if the
300 * phy indeed has the auto negotiation capability!!
301 */
302 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
303 }
304
305 /* Attach the interface. */
306 if_attach(ifp);
307 ether_ifattach(ifp, sc->sc_enaddr);
308
309 #if NBPFILTER > 0
310 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
311 #endif
312
313 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
314 if (sc->sc_sh == NULL)
315 panic("hme_config: can't establish shutdownhook");
316
317 #if 0
318 printf("%s: %d receive buffers, %d transmit buffers\n",
319 sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
320 sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
321 M_WAITOK);
322 sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
323 M_WAITOK);
324 #endif
325
326 #if NRND > 0
327 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
328 RND_TYPE_NET, 0);
329 #endif
330
331 callout_init(&sc->sc_tick_ch);
332 }
333
334 void
335 hme_tick(arg)
336 void *arg;
337 {
338 struct hme_softc *sc = arg;
339 int s;
340
341 s = splnet();
342 mii_tick(&sc->sc_mii);
343 splx(s);
344
345 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
346 }
347
348 void
349 hme_reset(sc)
350 struct hme_softc *sc;
351 {
352 int s;
353
354 s = splnet();
355 hme_init(sc);
356 splx(s);
357 }
358
359 void
360 hme_stop(sc)
361 struct hme_softc *sc;
362 {
363 bus_space_tag_t t = sc->sc_bustag;
364 bus_space_handle_t seb = sc->sc_seb;
365 int n;
366
367 callout_stop(&sc->sc_tick_ch);
368 mii_down(&sc->sc_mii);
369
370 /* Reset transmitter and receiver */
371 bus_space_write_4(t, seb, HME_SEBI_RESET,
372 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
373
374 for (n = 0; n < 20; n++) {
375 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
376 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
377 return;
378 DELAY(20);
379 }
380
381 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
382 }
383
384 void
385 hme_meminit(sc)
386 struct hme_softc *sc;
387 {
388 bus_addr_t txbufdma, rxbufdma;
389 bus_addr_t dma;
390 caddr_t p;
391 unsigned int ntbuf, nrbuf, i;
392 struct hme_ring *hr = &sc->sc_rb;
393
394 p = hr->rb_membase;
395 dma = hr->rb_dmabase;
396
397 ntbuf = hr->rb_ntbuf;
398 nrbuf = hr->rb_nrbuf;
399
400 /*
401 * Allocate transmit descriptors
402 */
403 hr->rb_txd = p;
404 hr->rb_txddma = dma;
405 p += ntbuf * HME_XD_SIZE;
406 dma += ntbuf * HME_XD_SIZE;
407 /* We have reserved descriptor space until the next 2048 byte boundary.*/
408 dma = (bus_addr_t)roundup((u_long)dma, 2048);
409 p = (caddr_t)roundup((u_long)p, 2048);
410
411 /*
412 * Allocate receive descriptors
413 */
414 hr->rb_rxd = p;
415 hr->rb_rxddma = dma;
416 p += nrbuf * HME_XD_SIZE;
417 dma += nrbuf * HME_XD_SIZE;
418 /* Again move forward to the next 2048 byte boundary.*/
419 dma = (bus_addr_t)roundup((u_long)dma, 2048);
420 p = (caddr_t)roundup((u_long)p, 2048);
421
422
423 /*
424 * Allocate transmit buffers
425 */
426 hr->rb_txbuf = p;
427 txbufdma = dma;
428 p += ntbuf * _HME_BUFSZ;
429 dma += ntbuf * _HME_BUFSZ;
430
431 /*
432 * Allocate receive buffers
433 */
434 hr->rb_rxbuf = p;
435 rxbufdma = dma;
436 p += nrbuf * _HME_BUFSZ;
437 dma += nrbuf * _HME_BUFSZ;
438
439 /*
440 * Initialize transmit buffer descriptors
441 */
442 for (i = 0; i < ntbuf; i++) {
443 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
444 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
445 }
446
447 /*
448 * Initialize receive buffer descriptors
449 */
450 for (i = 0; i < nrbuf; i++) {
451 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
452 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
453 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
454 }
455
456 hr->rb_tdhead = hr->rb_tdtail = 0;
457 hr->rb_td_nbusy = 0;
458 hr->rb_rdtail = 0;
459 }
460
461 /*
462 * Initialization of interface; set up initialization block
463 * and transmit/receive descriptor rings.
464 */
465 void
466 hme_init(sc)
467 struct hme_softc *sc;
468 {
469 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 bus_space_tag_t t = sc->sc_bustag;
471 bus_space_handle_t seb = sc->sc_seb;
472 bus_space_handle_t etx = sc->sc_etx;
473 bus_space_handle_t erx = sc->sc_erx;
474 bus_space_handle_t mac = sc->sc_mac;
475 bus_space_handle_t mif = sc->sc_mif;
476 u_int8_t *ea;
477 u_int32_t v;
478
479 /*
480 * Initialization sequence. The numbered steps below correspond
481 * to the sequence outlined in section 6.3.5.1 in the Ethernet
482 * Channel Engine manual (part of the PCIO manual).
483 * See also the STP2002-STQ document from Sun Microsystems.
484 */
485
486 /* step 1 & 2. Reset the Ethernet Channel */
487 hme_stop(sc);
488
489 /* Re-initialize the MIF */
490 hme_mifinit(sc);
491
492 /* Call MI reset function if any */
493 if (sc->sc_hwreset)
494 (*sc->sc_hwreset)(sc);
495
496 #if 0
497 /* Mask all MIF interrupts, just in case */
498 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
499 #endif
500
501 /* step 3. Setup data structures in host memory */
502 hme_meminit(sc);
503
504 /* step 4. TX MAC registers & counters */
505 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
506 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
507 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
508 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
509
510 /* Load station MAC address */
511 ea = sc->sc_enaddr;
512 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
513 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
514 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
515
516 /*
517 * Init seed for backoff
518 * (source suggested by manual: low 10 bits of MAC address)
519 */
520 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
521 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
522
523
524 /* Note: Accepting power-on default for other MAC registers here.. */
525
526
527 /* step 5. RX MAC registers & counters */
528 hme_setladrf(sc);
529
530 /* step 6 & 7. Program Descriptor Ring Base Addresses */
531 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
532 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
533
534 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
535
536
537 /* step 8. Global Configuration & Interrupt Mask */
538 bus_space_write_4(t, seb, HME_SEBI_IMASK,
539 ~(
540 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
541 HME_SEB_STAT_HOSTTOTX |
542 HME_SEB_STAT_RXTOHOST |
543 HME_SEB_STAT_TXALL |
544 HME_SEB_STAT_TXPERR |
545 HME_SEB_STAT_RCNTEXP |
546 HME_SEB_STAT_ALL_ERRORS ));
547
548 switch (sc->sc_burst) {
549 default:
550 v = 0;
551 break;
552 case 16:
553 v = HME_SEB_CFG_BURST16;
554 break;
555 case 32:
556 v = HME_SEB_CFG_BURST32;
557 break;
558 case 64:
559 v = HME_SEB_CFG_BURST64;
560 break;
561 }
562 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
563
564 /* step 9. ETX Configuration: use mostly default values */
565
566 /* Enable DMA */
567 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
568 v |= HME_ETX_CFG_DMAENABLE;
569 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
570
571 /* Transmit Descriptor ring size: in increments of 16 */
572 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
573
574
575 /* step 10. ERX Configuration */
576 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
577
578 /* Encode Receive Descriptor ring size: four possible values */
579 switch (_HME_NDESC /*XXX*/) {
580 case 32:
581 v |= HME_ERX_CFG_RINGSIZE32;
582 break;
583 case 64:
584 v |= HME_ERX_CFG_RINGSIZE64;
585 break;
586 case 128:
587 v |= HME_ERX_CFG_RINGSIZE128;
588 break;
589 case 256:
590 v |= HME_ERX_CFG_RINGSIZE256;
591 break;
592 default:
593 printf("hme: invalid Receive Descriptor ring size\n");
594 break;
595 }
596
597 /* Enable DMA */
598 v |= HME_ERX_CFG_DMAENABLE;
599 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
600
601 /* step 11. XIF Configuration */
602 v = bus_space_read_4(t, mac, HME_MACI_XIF);
603 v |= HME_MAC_XIF_OE;
604 /* If an external transceiver is connected, enable its MII drivers */
605 if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
606 v |= HME_MAC_XIF_MIIENABLE;
607 bus_space_write_4(t, mac, HME_MACI_XIF, v);
608
609
610 /* step 12. RX_MAC Configuration Register */
611 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
612 v |= HME_MAC_RXCFG_ENABLE;
613 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
614
615 /* step 13. TX_MAC Configuration Register */
616 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
617 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
618 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
619
620 /* step 14. Issue Transmit Pending command */
621
622 /* Call MI initialization function if any */
623 if (sc->sc_hwinit)
624 (*sc->sc_hwinit)(sc);
625
626 /* Start the one second timer. */
627 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
628
629 ifp->if_flags |= IFF_RUNNING;
630 ifp->if_flags &= ~IFF_OACTIVE;
631 ifp->if_timer = 0;
632 hme_start(ifp);
633 }
634
635 /*
636 * Compare two Ether/802 addresses for equality, inlined and unrolled for
637 * speed.
638 */
639 static __inline__ int
640 ether_cmp(a, b)
641 u_char *a, *b;
642 {
643
644 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
645 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
646 return (0);
647 return (1);
648 }
649
650
651 /*
652 * Routine to copy from mbuf chain to transmit buffer in
653 * network buffer memory.
654 * Returns the amount of data copied.
655 */
656 int
657 hme_put(sc, ri, m)
658 struct hme_softc *sc;
659 int ri; /* Ring index */
660 struct mbuf *m;
661 {
662 struct mbuf *n;
663 int len, tlen = 0;
664 caddr_t bp;
665
666 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
667 for (; m; m = n) {
668 len = m->m_len;
669 if (len == 0) {
670 MFREE(m, n);
671 continue;
672 }
673 bcopy(mtod(m, caddr_t), bp, len);
674 bp += len;
675 tlen += len;
676 MFREE(m, n);
677 }
678 return (tlen);
679 }
680
681 /*
682 * Pull data off an interface.
683 * Len is length of data, with local net header stripped.
684 * We copy the data into mbufs. When full cluster sized units are present
685 * we copy into clusters.
686 */
687 struct mbuf *
688 hme_get(sc, ri, totlen)
689 struct hme_softc *sc;
690 int ri, totlen;
691 {
692 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
693 struct mbuf *m, *m0, *newm;
694 caddr_t bp;
695 int len;
696
697 MGETHDR(m0, M_DONTWAIT, MT_DATA);
698 if (m0 == 0)
699 return (0);
700 m0->m_pkthdr.rcvif = ifp;
701 m0->m_pkthdr.len = totlen;
702 len = MHLEN;
703 m = m0;
704
705 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
706
707 while (totlen > 0) {
708 if (totlen >= MINCLSIZE) {
709 MCLGET(m, M_DONTWAIT);
710 if ((m->m_flags & M_EXT) == 0)
711 goto bad;
712 len = MCLBYTES;
713 }
714
715 if (m == m0) {
716 caddr_t newdata = (caddr_t)
717 ALIGN(m->m_data + sizeof(struct ether_header)) -
718 sizeof(struct ether_header);
719 len -= newdata - m->m_data;
720 m->m_data = newdata;
721 }
722
723 m->m_len = len = min(totlen, len);
724 bcopy(bp, mtod(m, caddr_t), len);
725 bp += len;
726
727 totlen -= len;
728 if (totlen > 0) {
729 MGET(newm, M_DONTWAIT, MT_DATA);
730 if (newm == 0)
731 goto bad;
732 len = MLEN;
733 m = m->m_next = newm;
734 }
735 }
736
737 return (m0);
738
739 bad:
740 m_freem(m0);
741 return (0);
742 }
743
744 /*
745 * Pass a packet to the higher levels.
746 */
747 void
748 hme_read(sc, ix, len)
749 struct hme_softc *sc;
750 int ix, len;
751 {
752 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
753 struct mbuf *m;
754
755 if (len <= sizeof(struct ether_header) ||
756 len > ETHERMTU + sizeof(struct ether_header)) {
757 #ifdef HMEDEBUG
758 printf("%s: invalid packet size %d; dropping\n",
759 sc->sc_dev.dv_xname, len);
760 #endif
761 ifp->if_ierrors++;
762 return;
763 }
764
765 /* Pull packet off interface. */
766 m = hme_get(sc, ix, len);
767 if (m == 0) {
768 ifp->if_ierrors++;
769 return;
770 }
771
772 ifp->if_ipackets++;
773
774 #if NBPFILTER > 0
775 /*
776 * Check if there's a BPF listener on this interface.
777 * If so, hand off the raw packet to BPF.
778 */
779 if (ifp->if_bpf)
780 bpf_mtap(ifp->if_bpf, m);
781 #endif
782
783 /* Pass the packet up. */
784 (*ifp->if_input)(ifp, m);
785 }
786
787 void
788 hme_start(ifp)
789 struct ifnet *ifp;
790 {
791 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
792 caddr_t txd = sc->sc_rb.rb_txd;
793 struct mbuf *m;
794 unsigned int ri, len;
795 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
796
797 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
798 return;
799
800 ri = sc->sc_rb.rb_tdhead;
801
802 for (;;) {
803 IF_DEQUEUE(&ifp->if_snd, m);
804 if (m == 0)
805 break;
806
807 #if NBPFILTER > 0
808 /*
809 * If BPF is listening on this interface, let it see the
810 * packet before we commit it to the wire.
811 */
812 if (ifp->if_bpf)
813 bpf_mtap(ifp->if_bpf, m);
814 #endif
815
816 /*
817 * Copy the mbuf chain into the transmit buffer.
818 */
819 len = hme_put(sc, ri, m);
820
821 /*
822 * Initialize transmit registers and start transmission
823 */
824 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
825 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
826 HME_XD_ENCODE_TSIZE(len));
827
828 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
829 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
830 HME_ETX_TP_DMAWAKEUP);
831
832 if (++ri == ntbuf)
833 ri = 0;
834
835 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
836 ifp->if_flags |= IFF_OACTIVE;
837 break;
838 }
839 }
840
841 sc->sc_rb.rb_tdhead = ri;
842 }
843
844 /*
845 * Transmit interrupt.
846 */
847 int
848 hme_tint(sc)
849 struct hme_softc *sc;
850 {
851 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
852 bus_space_tag_t t = sc->sc_bustag;
853 bus_space_handle_t mac = sc->sc_mac;
854 unsigned int ri, txflags;
855
856 /*
857 * Unload collision counters
858 */
859 ifp->if_collisions +=
860 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
861 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
862 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
863 bus_space_read_4(t, mac, HME_MACI_LTCNT);
864
865 /*
866 * then clear the hardware counters.
867 */
868 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
869 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
870 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
871 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
872
873 /* Fetch current position in the transmit ring */
874 ri = sc->sc_rb.rb_tdtail;
875
876 for (;;) {
877 if (sc->sc_rb.rb_td_nbusy <= 0)
878 break;
879
880 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
881
882 if (txflags & HME_XD_OWN)
883 break;
884
885 ifp->if_flags &= ~IFF_OACTIVE;
886 ifp->if_opackets++;
887
888 if (++ri == sc->sc_rb.rb_ntbuf)
889 ri = 0;
890
891 --sc->sc_rb.rb_td_nbusy;
892 }
893
894 /* Update ring */
895 sc->sc_rb.rb_tdtail = ri;
896
897 hme_start(ifp);
898
899 if (sc->sc_rb.rb_td_nbusy == 0)
900 ifp->if_timer = 0;
901
902 return (1);
903 }
904
905 /*
906 * Receive interrupt.
907 */
908 int
909 hme_rint(sc)
910 struct hme_softc *sc;
911 {
912 caddr_t xdr = sc->sc_rb.rb_rxd;
913 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
914 unsigned int ri, len;
915 u_int32_t flags;
916
917 ri = sc->sc_rb.rb_rdtail;
918
919 /*
920 * Process all buffers with valid data.
921 */
922 for (;;) {
923 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
924 if (flags & HME_XD_OWN)
925 break;
926
927 if (flags & HME_XD_OFL) {
928 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
929 sc->sc_dev.dv_xname, ri, flags);
930 } else {
931 len = HME_XD_DECODE_RSIZE(flags);
932 hme_read(sc, ri, len);
933 }
934
935 /* This buffer can be used by the hardware again */
936 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
937 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
938
939 if (++ri == nrbuf)
940 ri = 0;
941 }
942
943 sc->sc_rb.rb_rdtail = ri;
944
945 return (1);
946 }
947
948 int
949 hme_eint(sc, status)
950 struct hme_softc *sc;
951 u_int status;
952 {
953 char bits[128];
954
955 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
956 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
957 return (1);
958 }
959
960 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
961 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
962 return (1);
963 }
964
965 int
966 hme_intr(v)
967 void *v;
968 {
969 struct hme_softc *sc = (struct hme_softc *)v;
970 bus_space_tag_t t = sc->sc_bustag;
971 bus_space_handle_t seb = sc->sc_seb;
972 u_int32_t status;
973 int r = 0;
974
975 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
976
977 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
978 r |= hme_eint(sc, status);
979
980 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
981 r |= hme_tint(sc);
982
983 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
984 r |= hme_rint(sc);
985
986 return (r);
987 }
988
989
990 void
991 hme_watchdog(ifp)
992 struct ifnet *ifp;
993 {
994 struct hme_softc *sc = ifp->if_softc;
995
996 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
997 ++ifp->if_oerrors;
998
999 hme_reset(sc);
1000 }
1001
1002 /*
1003 * Initialize the MII Management Interface
1004 */
1005 void
1006 hme_mifinit(sc)
1007 struct hme_softc *sc;
1008 {
1009 bus_space_tag_t t = sc->sc_bustag;
1010 bus_space_handle_t mif = sc->sc_mif;
1011 u_int32_t v;
1012
1013 /* Configure the MIF in frame mode */
1014 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1015 v &= ~HME_MIF_CFG_BBMODE;
1016 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1017 }
1018
1019 /*
1020 * MII interface
1021 */
1022 static int
1023 hme_mii_readreg(self, phy, reg)
1024 struct device *self;
1025 int phy, reg;
1026 {
1027 struct hme_softc *sc = (void *)self;
1028 bus_space_tag_t t = sc->sc_bustag;
1029 bus_space_handle_t mif = sc->sc_mif;
1030 int n;
1031 u_int32_t v;
1032
1033 /* Select the desired PHY in the MIF configuration register */
1034 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1035 /* Clear PHY select bit */
1036 v &= ~HME_MIF_CFG_PHY;
1037 if (phy == HME_PHYAD_EXTERNAL)
1038 /* Set PHY select bit to get at external device */
1039 v |= HME_MIF_CFG_PHY;
1040 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1041
1042 /* Construct the frame command */
1043 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1044 HME_MIF_FO_TAMSB |
1045 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1046 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1047 (reg << HME_MIF_FO_REGAD_SHIFT);
1048
1049 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1050 for (n = 0; n < 100; n++) {
1051 DELAY(1);
1052 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1053 if (v & HME_MIF_FO_TALSB)
1054 return (v & HME_MIF_FO_DATA);
1055 }
1056
1057 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1058 return (0);
1059 }
1060
1061 static void
1062 hme_mii_writereg(self, phy, reg, val)
1063 struct device *self;
1064 int phy, reg, val;
1065 {
1066 struct hme_softc *sc = (void *)self;
1067 bus_space_tag_t t = sc->sc_bustag;
1068 bus_space_handle_t mif = sc->sc_mif;
1069 int n;
1070 u_int32_t v;
1071
1072 /* Select the desired PHY in the MIF configuration register */
1073 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1074 /* Clear PHY select bit */
1075 v &= ~HME_MIF_CFG_PHY;
1076 if (phy == HME_PHYAD_EXTERNAL)
1077 /* Set PHY select bit to get at external device */
1078 v |= HME_MIF_CFG_PHY;
1079 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1080
1081 /* Construct the frame command */
1082 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1083 HME_MIF_FO_TAMSB |
1084 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1085 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1086 (reg << HME_MIF_FO_REGAD_SHIFT) |
1087 (val & HME_MIF_FO_DATA);
1088
1089 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1090 for (n = 0; n < 100; n++) {
1091 DELAY(1);
1092 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1093 if (v & HME_MIF_FO_TALSB)
1094 return;
1095 }
1096
1097 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1098 }
1099
1100 static void
1101 hme_mii_statchg(dev)
1102 struct device *dev;
1103 {
1104 struct hme_softc *sc = (void *)dev;
1105 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1106 int phy = sc->sc_phys[instance];
1107 bus_space_tag_t t = sc->sc_bustag;
1108 bus_space_handle_t mif = sc->sc_mif;
1109 bus_space_handle_t mac = sc->sc_mac;
1110 u_int32_t v;
1111
1112 #ifdef HMEDEBUG
1113 if (sc->sc_debug)
1114 printf("hme_mii_statchg: status change: phy = %d\n", phy);
1115 #endif
1116
1117 /* Select the current PHY in the MIF configuration register */
1118 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1119 v &= ~HME_MIF_CFG_PHY;
1120 if (phy == HME_PHYAD_EXTERNAL)
1121 v |= HME_MIF_CFG_PHY;
1122 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1123
1124 /* Set the MAC Full Duplex bit appropriately */
1125 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1126 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1127 v |= HME_MAC_TXCFG_FULLDPLX;
1128 else
1129 v &= ~HME_MAC_TXCFG_FULLDPLX;
1130 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1131
1132 /* If an external transceiver is selected, enable its MII drivers */
1133 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1134 v &= ~HME_MAC_XIF_MIIENABLE;
1135 if (phy == HME_PHYAD_EXTERNAL)
1136 v |= HME_MAC_XIF_MIIENABLE;
1137 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1138 }
1139
1140 int
1141 hme_mediachange(ifp)
1142 struct ifnet *ifp;
1143 {
1144 struct hme_softc *sc = ifp->if_softc;
1145
1146 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1147 return (EINVAL);
1148
1149 return (mii_mediachg(&sc->sc_mii));
1150 }
1151
1152 void
1153 hme_mediastatus(ifp, ifmr)
1154 struct ifnet *ifp;
1155 struct ifmediareq *ifmr;
1156 {
1157 struct hme_softc *sc = ifp->if_softc;
1158
1159 if ((ifp->if_flags & IFF_UP) == 0)
1160 return;
1161
1162 mii_pollstat(&sc->sc_mii);
1163 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1164 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1165 }
1166
1167 /*
1168 * Process an ioctl request.
1169 */
1170 int
1171 hme_ioctl(ifp, cmd, data)
1172 struct ifnet *ifp;
1173 u_long cmd;
1174 caddr_t data;
1175 {
1176 struct hme_softc *sc = ifp->if_softc;
1177 struct ifaddr *ifa = (struct ifaddr *)data;
1178 struct ifreq *ifr = (struct ifreq *)data;
1179 int s, error = 0;
1180
1181 s = splnet();
1182
1183 switch (cmd) {
1184
1185 case SIOCSIFADDR:
1186 ifp->if_flags |= IFF_UP;
1187
1188 switch (ifa->ifa_addr->sa_family) {
1189 #ifdef INET
1190 case AF_INET:
1191 hme_init(sc);
1192 arp_ifinit(ifp, ifa);
1193 break;
1194 #endif
1195 #ifdef NS
1196 case AF_NS:
1197 {
1198 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1199
1200 if (ns_nullhost(*ina))
1201 ina->x_host =
1202 *(union ns_host *)LLADDR(ifp->if_sadl);
1203 else {
1204 bcopy(ina->x_host.c_host,
1205 LLADDR(ifp->if_sadl),
1206 sizeof(sc->sc_enaddr));
1207 }
1208 /* Set new address. */
1209 hme_init(sc);
1210 break;
1211 }
1212 #endif
1213 default:
1214 hme_init(sc);
1215 break;
1216 }
1217 break;
1218
1219 case SIOCSIFFLAGS:
1220 if ((ifp->if_flags & IFF_UP) == 0 &&
1221 (ifp->if_flags & IFF_RUNNING) != 0) {
1222 /*
1223 * If interface is marked down and it is running, then
1224 * stop it.
1225 */
1226 hme_stop(sc);
1227 ifp->if_flags &= ~IFF_RUNNING;
1228 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1229 (ifp->if_flags & IFF_RUNNING) == 0) {
1230 /*
1231 * If interface is marked up and it is stopped, then
1232 * start it.
1233 */
1234 hme_init(sc);
1235 } else if ((ifp->if_flags & IFF_UP) != 0) {
1236 /*
1237 * Reset the interface to pick up changes in any other
1238 * flags that affect hardware registers.
1239 */
1240 /*hme_stop(sc);*/
1241 hme_init(sc);
1242 }
1243 #ifdef HMEDEBUG
1244 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1245 #endif
1246 break;
1247
1248 case SIOCADDMULTI:
1249 case SIOCDELMULTI:
1250 error = (cmd == SIOCADDMULTI) ?
1251 ether_addmulti(ifr, &sc->sc_ethercom) :
1252 ether_delmulti(ifr, &sc->sc_ethercom);
1253
1254 if (error == ENETRESET) {
1255 /*
1256 * Multicast list has changed; set the hardware filter
1257 * accordingly.
1258 */
1259 hme_setladrf(sc);
1260 error = 0;
1261 }
1262 break;
1263
1264 case SIOCGIFMEDIA:
1265 case SIOCSIFMEDIA:
1266 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1267 break;
1268
1269 default:
1270 error = EINVAL;
1271 break;
1272 }
1273
1274 splx(s);
1275 return (error);
1276 }
1277
1278 void
1279 hme_shutdown(arg)
1280 void *arg;
1281 {
1282
1283 hme_stop((struct hme_softc *)arg);
1284 }
1285
1286 /*
1287 * Set up the logical address filter.
1288 */
1289 void
1290 hme_setladrf(sc)
1291 struct hme_softc *sc;
1292 {
1293 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1294 struct ether_multi *enm;
1295 struct ether_multistep step;
1296 struct ethercom *ec = &sc->sc_ethercom;
1297 bus_space_tag_t t = sc->sc_bustag;
1298 bus_space_handle_t mac = sc->sc_mac;
1299 u_char *cp;
1300 u_int32_t crc;
1301 u_int32_t hash[4];
1302 u_int32_t v;
1303 int len;
1304
1305 /* Clear hash table */
1306 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1307
1308 /* Get current RX configuration */
1309 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1310
1311 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1312 /* Turn on promiscuous mode; turn off the hash filter */
1313 v |= HME_MAC_RXCFG_PMISC;
1314 v &= ~HME_MAC_RXCFG_HENABLE;
1315 ifp->if_flags |= IFF_ALLMULTI;
1316 goto chipit;
1317 }
1318
1319 /* Turn off promiscuous mode; turn on the hash filter */
1320 v &= ~HME_MAC_RXCFG_PMISC;
1321 v |= HME_MAC_RXCFG_HENABLE;
1322
1323 /*
1324 * Set up multicast address filter by passing all multicast addresses
1325 * through a crc generator, and then using the high order 6 bits as an
1326 * index into the 64 bit logical address filter. The high order bit
1327 * selects the word, while the rest of the bits select the bit within
1328 * the word.
1329 */
1330
1331 ETHER_FIRST_MULTI(step, ec, enm);
1332 while (enm != NULL) {
1333 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1334 /*
1335 * We must listen to a range of multicast addresses.
1336 * For now, just accept all multicasts, rather than
1337 * trying to set only those filter bits needed to match
1338 * the range. (At this time, the only use of address
1339 * ranges is for IP multicast routing, for which the
1340 * range is big enough to require all bits set.)
1341 */
1342 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1343 ifp->if_flags |= IFF_ALLMULTI;
1344 goto chipit;
1345 }
1346
1347 cp = enm->enm_addrlo;
1348 crc = 0xffffffff;
1349 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1350 int octet = *cp++;
1351 int i;
1352
1353 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1354 for (i = 0; i < 8; i++) {
1355 if ((crc & 1) ^ (octet & 1)) {
1356 crc >>= 1;
1357 crc ^= MC_POLY_LE;
1358 } else {
1359 crc >>= 1;
1360 }
1361 octet >>= 1;
1362 }
1363 }
1364 /* Just want the 6 most significant bits. */
1365 crc >>= 26;
1366
1367 /* Set the corresponding bit in the filter. */
1368 hash[crc >> 4] |= 1 << (crc & 0xf);
1369
1370 ETHER_NEXT_MULTI(step, enm);
1371 }
1372
1373 ifp->if_flags &= ~IFF_ALLMULTI;
1374
1375 chipit:
1376 /* Now load the hash table into the chip */
1377 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1378 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1379 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1380 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1381 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1382 }
1383
1384 /*
1385 * Routines for accessing the transmit and receive buffers.
1386 * The various CPU and adapter configurations supported by this
1387 * driver require three different access methods for buffers
1388 * and descriptors:
1389 * (1) contig (contiguous data; no padding),
1390 * (2) gap2 (two bytes of data followed by two bytes of padding),
1391 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1392 */
1393
1394 #if 0
1395 /*
1396 * contig: contiguous data with no padding.
1397 *
1398 * Buffers may have any alignment.
1399 */
1400
1401 void
1402 hme_copytobuf_contig(sc, from, ri, len)
1403 struct hme_softc *sc;
1404 void *from;
1405 int ri, len;
1406 {
1407 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1408
1409 /*
1410 * Just call bcopy() to do the work.
1411 */
1412 bcopy(from, buf, len);
1413 }
1414
1415 void
1416 hme_copyfrombuf_contig(sc, to, boff, len)
1417 struct hme_softc *sc;
1418 void *to;
1419 int boff, len;
1420 {
1421 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1422
1423 /*
1424 * Just call bcopy() to do the work.
1425 */
1426 bcopy(buf, to, len);
1427 }
1428 #endif
1429