Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.102
      1 /*	$NetBSD: hme.c,v 1.102 2019/02/05 06:17:02 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * HME Ethernet module driver.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.102 2019/02/05 06:17:02 msaitoh Exp $");
     38 
     39 /* #define HMEDEBUG */
     40 
     41 #include "opt_inet.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/kernel.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/syslog.h>
     48 #include <sys/socket.h>
     49 #include <sys/device.h>
     50 #include <sys/malloc.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/errno.h>
     53 #include <sys/rndsource.h>
     54 
     55 #include <net/if.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_ether.h>
     58 #include <net/if_media.h>
     59 #include <net/bpf.h>
     60 
     61 #ifdef INET
     62 #include <net/if_vlanvar.h>
     63 #include <netinet/in.h>
     64 #include <netinet/if_inarp.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 #include <netinet/tcp.h>
     69 #include <netinet/udp.h>
     70 #endif
     71 
     72 #include <dev/mii/mii.h>
     73 #include <dev/mii/miivar.h>
     74 
     75 #include <sys/bus.h>
     76 
     77 #include <dev/ic/hmereg.h>
     78 #include <dev/ic/hmevar.h>
     79 
     80 static void	hme_start(struct ifnet *);
     81 static void	hme_stop(struct ifnet *, int);
     82 static int	hme_ioctl(struct ifnet *, u_long, void *);
     83 static void	hme_tick(void *);
     84 static void	hme_watchdog(struct ifnet *);
     85 static bool	hme_shutdown(device_t, int);
     86 static int	hme_init(struct ifnet *);
     87 static void	hme_meminit(struct hme_softc *);
     88 static void	hme_mifinit(struct hme_softc *);
     89 static void	hme_reset(struct hme_softc *);
     90 static void	hme_chipreset(struct hme_softc *);
     91 static void	hme_setladrf(struct hme_softc *);
     92 
     93 /* MII methods & callbacks */
     94 static int	hme_mii_readreg(device_t, int, int, uint16_t *);
     95 static int	hme_mii_writereg(device_t, int, int, uint16_t);
     96 static void	hme_mii_statchg(struct ifnet *);
     97 
     98 static int	hme_mediachange(struct ifnet *);
     99 
    100 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
    101 static int	hme_put(struct hme_softc *, int, struct mbuf *);
    102 static void	hme_read(struct hme_softc *, int, uint32_t);
    103 static int	hme_eint(struct hme_softc *, u_int);
    104 static int	hme_rint(struct hme_softc *);
    105 static int	hme_tint(struct hme_softc *);
    106 
    107 #if 0
    108 /* Default buffer copy routines */
    109 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    110 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    111 #endif
    112 
    113 void
    114 hme_config(struct hme_softc *sc)
    115 {
    116 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    117 	struct mii_data *mii = &sc->sc_mii;
    118 	struct mii_softc *child;
    119 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    120 	bus_dma_segment_t seg;
    121 	bus_size_t size;
    122 	int rseg, error;
    123 
    124 	/*
    125 	 * HME common initialization.
    126 	 *
    127 	 * hme_softc fields that must be initialized by the front-end:
    128 	 *
    129 	 * the bus tag:
    130 	 *	sc_bustag
    131 	 *
    132 	 * the DMA bus tag:
    133 	 *	sc_dmatag
    134 	 *
    135 	 * the bus handles:
    136 	 *	sc_seb		(Shared Ethernet Block registers)
    137 	 *	sc_erx		(Receiver Unit registers)
    138 	 *	sc_etx		(Transmitter Unit registers)
    139 	 *	sc_mac		(MAC registers)
    140 	 *	sc_mif		(Management Interface registers)
    141 	 *
    142 	 * the maximum bus burst size:
    143 	 *	sc_burst
    144 	 *
    145 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    146 	 *	rb_membase, rb_dmabase)
    147 	 *
    148 	 * the local Ethernet address:
    149 	 *	sc_enaddr
    150 	 *
    151 	 */
    152 
    153 	/* Make sure the chip is stopped. */
    154 	hme_chipreset(sc);
    155 
    156 	/*
    157 	 * Allocate descriptors and buffers
    158 	 * XXX - do all this differently.. and more configurably,
    159 	 * eg. use things as `dma_load_mbuf()' on transmit,
    160 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    161 	 *     all the time) on the receiver side.
    162 	 *
    163 	 * Note: receive buffers must be 64-byte aligned.
    164 	 * Also, apparently, the buffers must extend to a DMA burst
    165 	 * boundary beyond the maximum packet size.
    166 	 */
    167 #define _HME_NDESC	128
    168 #define _HME_BUFSZ	1600
    169 
    170 	/* Note: the # of descriptors must be a multiple of 16 */
    171 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    172 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    173 
    174 	/*
    175 	 * Allocate DMA capable memory
    176 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    177 	 * take this into account when calculating the size. Note that
    178 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    179 	 * so we allocate that much regardless of _HME_NDESC.
    180 	 */
    181 	size =	2048 +					/* TX descriptors */
    182 		2048 +					/* RX descriptors */
    183 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    184 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    185 
    186 	/* Allocate DMA buffer */
    187 	if ((error = bus_dmamem_alloc(dmatag, size,
    188 				      2048, 0,
    189 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    190 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
    191 			error);
    192 		return;
    193 	}
    194 
    195 	/* Map DMA memory in CPU addressable space */
    196 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    197 				    &sc->sc_rb.rb_membase,
    198 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    199 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
    200 			error);
    201 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    202 		bus_dmamem_free(dmatag, &seg, rseg);
    203 		return;
    204 	}
    205 
    206 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    207 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    208 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
    209 			error);
    210 		return;
    211 	}
    212 
    213 	/* Load the buffer */
    214 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    215 	    sc->sc_rb.rb_membase, size, NULL,
    216 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    217 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
    218 			error);
    219 		bus_dmamem_free(dmatag, &seg, rseg);
    220 		return;
    221 	}
    222 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    223 
    224 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    225 	    ether_sprintf(sc->sc_enaddr));
    226 
    227 	/* Initialize ifnet structure. */
    228 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    229 	ifp->if_softc = sc;
    230 	ifp->if_start = hme_start;
    231 	ifp->if_stop = hme_stop;
    232 	ifp->if_ioctl = hme_ioctl;
    233 	ifp->if_init = hme_init;
    234 	ifp->if_watchdog = hme_watchdog;
    235 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    236 	sc->sc_if_flags = ifp->if_flags;
    237 	ifp->if_capabilities |=
    238 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    239 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    240 	IFQ_SET_READY(&ifp->if_snd);
    241 
    242 	/* Initialize ifmedia structures and MII info */
    243 	mii->mii_ifp = ifp;
    244 	mii->mii_readreg = hme_mii_readreg;
    245 	mii->mii_writereg = hme_mii_writereg;
    246 	mii->mii_statchg = hme_mii_statchg;
    247 
    248 	sc->sc_ethercom.ec_mii = mii;
    249 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    250 
    251 	hme_mifinit(sc);
    252 
    253 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    254 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    255 
    256 	child = LIST_FIRST(&mii->mii_phys);
    257 	if (child == NULL) {
    258 		/* No PHY attached */
    259 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    260 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    261 	} else {
    262 		/*
    263 		 * Walk along the list of attached MII devices and
    264 		 * establish an `MII instance' to `phy number'
    265 		 * mapping. We'll use this mapping in media change
    266 		 * requests to determine which phy to use to program
    267 		 * the MIF configuration register.
    268 		 */
    269 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    270 			/*
    271 			 * Note: we support just two PHYs: the built-in
    272 			 * internal device and an external on the MII
    273 			 * connector.
    274 			 */
    275 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    276 				aprint_error_dev(sc->sc_dev,
    277 				    "cannot accommodate MII device %s"
    278 				       " at phy %d, instance %d\n",
    279 				       device_xname(child->mii_dev),
    280 				       child->mii_phy, child->mii_inst);
    281 				continue;
    282 			}
    283 
    284 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    285 		}
    286 
    287 		/*
    288 		 * Set the default media to auto negotiation if the phy has
    289 		 * the auto negotiation capability.
    290 		 * XXX; What to do otherwise?
    291 		 */
    292 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
    293 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    294 /*
    295 		else
    296 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
    297 */
    298 	}
    299 
    300 	/* claim 802.1q capability */
    301 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    302 
    303 	/* Attach the interface. */
    304 	if_attach(ifp);
    305 	if_deferred_start_init(ifp, NULL);
    306 	ether_ifattach(ifp, sc->sc_enaddr);
    307 
    308 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
    309 		pmf_class_network_register(sc->sc_dev, ifp);
    310 	else
    311 		aprint_error_dev(sc->sc_dev,
    312 		    "couldn't establish power handler\n");
    313 
    314 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    315 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
    316 
    317 	callout_init(&sc->sc_tick_ch, 0);
    318 }
    319 
    320 void
    321 hme_tick(void *arg)
    322 {
    323 	struct hme_softc *sc = arg;
    324 	int s;
    325 
    326 	s = splnet();
    327 	mii_tick(&sc->sc_mii);
    328 	splx(s);
    329 
    330 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    331 }
    332 
    333 void
    334 hme_reset(struct hme_softc *sc)
    335 {
    336 	int s;
    337 
    338 	s = splnet();
    339 	(void)hme_init(&sc->sc_ethercom.ec_if);
    340 	splx(s);
    341 }
    342 
    343 void
    344 hme_chipreset(struct hme_softc *sc)
    345 {
    346 	bus_space_tag_t t = sc->sc_bustag;
    347 	bus_space_handle_t seb = sc->sc_seb;
    348 	int n;
    349 
    350 	/* Mask all interrupts */
    351 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    352 
    353 	/* Reset transmitter and receiver */
    354 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    355 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    356 
    357 	for (n = 0; n < 20; n++) {
    358 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    359 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    360 			return;
    361 		DELAY(20);
    362 	}
    363 
    364 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
    365 }
    366 
    367 void
    368 hme_stop(struct ifnet *ifp, int disable)
    369 {
    370 	struct hme_softc *sc;
    371 
    372 	sc = ifp->if_softc;
    373 
    374 	ifp->if_timer = 0;
    375 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    376 
    377 	callout_stop(&sc->sc_tick_ch);
    378 	mii_down(&sc->sc_mii);
    379 
    380 	hme_chipreset(sc);
    381 }
    382 
    383 void
    384 hme_meminit(struct hme_softc *sc)
    385 {
    386 	bus_addr_t txbufdma, rxbufdma;
    387 	bus_addr_t dma;
    388 	char *p;
    389 	unsigned int ntbuf, nrbuf, i;
    390 	struct hme_ring *hr = &sc->sc_rb;
    391 
    392 	p = hr->rb_membase;
    393 	dma = hr->rb_dmabase;
    394 
    395 	ntbuf = hr->rb_ntbuf;
    396 	nrbuf = hr->rb_nrbuf;
    397 
    398 	/*
    399 	 * Allocate transmit descriptors
    400 	 */
    401 	hr->rb_txd = p;
    402 	hr->rb_txddma = dma;
    403 	p += ntbuf * HME_XD_SIZE;
    404 	dma += ntbuf * HME_XD_SIZE;
    405 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    406 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    407 	p = (void *)roundup((u_long)p, 2048);
    408 
    409 	/*
    410 	 * Allocate receive descriptors
    411 	 */
    412 	hr->rb_rxd = p;
    413 	hr->rb_rxddma = dma;
    414 	p += nrbuf * HME_XD_SIZE;
    415 	dma += nrbuf * HME_XD_SIZE;
    416 	/* Again move forward to the next 2048 byte boundary.*/
    417 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    418 	p = (void *)roundup((u_long)p, 2048);
    419 
    420 
    421 	/*
    422 	 * Allocate transmit buffers
    423 	 */
    424 	hr->rb_txbuf = p;
    425 	txbufdma = dma;
    426 	p += ntbuf * _HME_BUFSZ;
    427 	dma += ntbuf * _HME_BUFSZ;
    428 
    429 	/*
    430 	 * Allocate receive buffers
    431 	 */
    432 	hr->rb_rxbuf = p;
    433 	rxbufdma = dma;
    434 	p += nrbuf * _HME_BUFSZ;
    435 	dma += nrbuf * _HME_BUFSZ;
    436 
    437 	/*
    438 	 * Initialize transmit buffer descriptors
    439 	 */
    440 	for (i = 0; i < ntbuf; i++) {
    441 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    442 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    443 	}
    444 
    445 	/*
    446 	 * Initialize receive buffer descriptors
    447 	 */
    448 	for (i = 0; i < nrbuf; i++) {
    449 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    450 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    451 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    452 	}
    453 
    454 	hr->rb_tdhead = hr->rb_tdtail = 0;
    455 	hr->rb_td_nbusy = 0;
    456 	hr->rb_rdtail = 0;
    457 }
    458 
    459 /*
    460  * Initialization of interface; set up initialization block
    461  * and transmit/receive descriptor rings.
    462  */
    463 int
    464 hme_init(struct ifnet *ifp)
    465 {
    466 	struct hme_softc *sc = ifp->if_softc;
    467 	bus_space_tag_t t = sc->sc_bustag;
    468 	bus_space_handle_t seb = sc->sc_seb;
    469 	bus_space_handle_t etx = sc->sc_etx;
    470 	bus_space_handle_t erx = sc->sc_erx;
    471 	bus_space_handle_t mac = sc->sc_mac;
    472 	uint8_t *ea;
    473 	uint32_t v;
    474 	int rc;
    475 
    476 	/*
    477 	 * Initialization sequence. The numbered steps below correspond
    478 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    479 	 * Channel Engine manual (part of the PCIO manual).
    480 	 * See also the STP2002-STQ document from Sun Microsystems.
    481 	 */
    482 
    483 	/* step 1 & 2. Reset the Ethernet Channel */
    484 	hme_stop(ifp, 0);
    485 
    486 	/* Re-initialize the MIF */
    487 	hme_mifinit(sc);
    488 
    489 	/* Call MI reset function if any */
    490 	if (sc->sc_hwreset)
    491 		(*sc->sc_hwreset)(sc);
    492 
    493 #if 0
    494 	/* Mask all MIF interrupts, just in case */
    495 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    496 #endif
    497 
    498 	/* step 3. Setup data structures in host memory */
    499 	hme_meminit(sc);
    500 
    501 	/* step 4. TX MAC registers & counters */
    502 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    503 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    504 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    505 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    506 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    507 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    508 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    509 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    510 
    511 	/* Load station MAC address */
    512 	ea = sc->sc_enaddr;
    513 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    514 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    515 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    516 
    517 	/*
    518 	 * Init seed for backoff
    519 	 * (source suggested by manual: low 10 bits of MAC address)
    520 	 */
    521 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    522 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    523 
    524 
    525 	/* Note: Accepting power-on default for other MAC registers here.. */
    526 
    527 
    528 	/* step 5. RX MAC registers & counters */
    529 	hme_setladrf(sc);
    530 
    531 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    532 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    533 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    534 
    535 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    536 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    537 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    538 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    539 
    540 	/* step 8. Global Configuration & Interrupt Mask */
    541 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    542 			~(
    543 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    544 			  HME_SEB_STAT_HOSTTOTX |
    545 			  HME_SEB_STAT_RXTOHOST |
    546 			  HME_SEB_STAT_TXALL |
    547 			  HME_SEB_STAT_TXPERR |
    548 			  HME_SEB_STAT_RCNTEXP |
    549 			  HME_SEB_STAT_MIFIRQ |
    550 			  HME_SEB_STAT_ALL_ERRORS ));
    551 
    552 	switch (sc->sc_burst) {
    553 	default:
    554 		v = 0;
    555 		break;
    556 	case 16:
    557 		v = HME_SEB_CFG_BURST16;
    558 		break;
    559 	case 32:
    560 		v = HME_SEB_CFG_BURST32;
    561 		break;
    562 	case 64:
    563 		v = HME_SEB_CFG_BURST64;
    564 		break;
    565 	}
    566 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    567 
    568 	/* step 9. ETX Configuration: use mostly default values */
    569 
    570 	/* Enable DMA */
    571 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    572 	v |= HME_ETX_CFG_DMAENABLE;
    573 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    574 
    575 	/* Transmit Descriptor ring size: in increments of 16 */
    576 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    577 
    578 
    579 	/* step 10. ERX Configuration */
    580 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    581 
    582 	/* Encode Receive Descriptor ring size: four possible values */
    583 	switch (_HME_NDESC /*XXX*/) {
    584 	case 32:
    585 		v |= HME_ERX_CFG_RINGSIZE32;
    586 		break;
    587 	case 64:
    588 		v |= HME_ERX_CFG_RINGSIZE64;
    589 		break;
    590 	case 128:
    591 		v |= HME_ERX_CFG_RINGSIZE128;
    592 		break;
    593 	case 256:
    594 		v |= HME_ERX_CFG_RINGSIZE256;
    595 		break;
    596 	default:
    597 		printf("hme: invalid Receive Descriptor ring size\n");
    598 		break;
    599 	}
    600 
    601 	/* Enable DMA */
    602 	v |= HME_ERX_CFG_DMAENABLE;
    603 
    604 	/* set h/w rx checksum start offset (# of half-words) */
    605 #ifdef INET
    606 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    607 		<< HME_ERX_CFG_CSUMSHIFT) &
    608 		HME_ERX_CFG_CSUMSTART;
    609 #endif
    610 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    611 
    612 	/* step 11. XIF Configuration */
    613 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    614 	v |= HME_MAC_XIF_OE;
    615 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    616 
    617 	/* step 12. RX_MAC Configuration Register */
    618 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    619 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    620 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    621 
    622 	/* step 13. TX_MAC Configuration Register */
    623 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    624 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    625 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    626 
    627 	/* step 14. Issue Transmit Pending command */
    628 
    629 	/* Call MI initialization function if any */
    630 	if (sc->sc_hwinit)
    631 		(*sc->sc_hwinit)(sc);
    632 
    633 	/* Set the current media. */
    634 	if ((rc = hme_mediachange(ifp)) != 0)
    635 		return rc;
    636 
    637 	/* Start the one second timer. */
    638 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    639 
    640 	ifp->if_flags |= IFF_RUNNING;
    641 	ifp->if_flags &= ~IFF_OACTIVE;
    642 	sc->sc_if_flags = ifp->if_flags;
    643 	ifp->if_timer = 0;
    644 	hme_start(ifp);
    645 	return 0;
    646 }
    647 
    648 /*
    649  * Routine to copy from mbuf chain to transmit buffer in
    650  * network buffer memory.
    651  * Returns the amount of data copied.
    652  */
    653 int
    654 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    655 	/* ri:			 Ring index */
    656 {
    657 	struct mbuf *n;
    658 	int len, tlen = 0;
    659 	char *bp;
    660 
    661 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    662 	for (; m; m = n) {
    663 		len = m->m_len;
    664 		if (len == 0) {
    665 			n = m_free(m);
    666 			continue;
    667 		}
    668 		memcpy(bp, mtod(m, void *), len);
    669 		bp += len;
    670 		tlen += len;
    671 		n = m_free(m);
    672 	}
    673 	return (tlen);
    674 }
    675 
    676 /*
    677  * Pull data off an interface.
    678  * Len is length of data, with local net header stripped.
    679  * We copy the data into mbufs.  When full cluster sized units are present
    680  * we copy into clusters.
    681  */
    682 struct mbuf *
    683 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    684 {
    685 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    686 	struct mbuf *m, *m0, *newm;
    687 	char *bp;
    688 	int len, totlen;
    689 #ifdef INET
    690 	int csum_flags;
    691 #endif
    692 
    693 	totlen = HME_XD_DECODE_RSIZE(flags);
    694 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    695 	if (m0 == 0)
    696 		return (0);
    697 	m_set_rcvif(m0, ifp);
    698 	m0->m_pkthdr.len = totlen;
    699 	len = MHLEN;
    700 	m = m0;
    701 
    702 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    703 
    704 	while (totlen > 0) {
    705 		if (totlen >= MINCLSIZE) {
    706 			MCLGET(m, M_DONTWAIT);
    707 			if ((m->m_flags & M_EXT) == 0)
    708 				goto bad;
    709 			len = MCLBYTES;
    710 		}
    711 
    712 		if (m == m0) {
    713 			char *newdata = (char *)
    714 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    715 			    sizeof(struct ether_header);
    716 			len -= newdata - m->m_data;
    717 			m->m_data = newdata;
    718 		}
    719 
    720 		m->m_len = len = uimin(totlen, len);
    721 		memcpy(mtod(m, void *), bp, len);
    722 		bp += len;
    723 
    724 		totlen -= len;
    725 		if (totlen > 0) {
    726 			MGET(newm, M_DONTWAIT, MT_DATA);
    727 			if (newm == 0)
    728 				goto bad;
    729 			len = MLEN;
    730 			m = m->m_next = newm;
    731 		}
    732 	}
    733 
    734 #ifdef INET
    735 	/* hardware checksum */
    736 	csum_flags = 0;
    737 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    738 		struct ether_header *eh;
    739 		struct ether_vlan_header *evh;
    740 		struct ip *ip;
    741 		struct udphdr *uh;
    742 		uint16_t *opts;
    743 		int32_t hlen, pktlen;
    744 		uint32_t csum_data;
    745 
    746 		eh = mtod(m0, struct ether_header *);
    747 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    748 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    749 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    750 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    751 			evh = (struct ether_vlan_header *)eh;
    752 			if (ntohs(evh->evl_proto) != ETHERTYPE_IP)
    753 				goto swcsum;
    754 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    755 			    ETHER_VLAN_ENCAP_LEN);
    756 			pktlen = m0->m_pkthdr.len -
    757 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    758 		} else
    759 			goto swcsum;
    760 
    761 		/* IPv4 only */
    762 		if (ip->ip_v != IPVERSION)
    763 			goto swcsum;
    764 
    765 		hlen = ip->ip_hl << 2;
    766 		if (hlen < sizeof(struct ip))
    767 			goto swcsum;
    768 
    769 		/*
    770 		 * bail if too short, has random trailing garbage, truncated,
    771 		 * fragment, or has ethernet pad.
    772 		 */
    773 		if (ntohs(ip->ip_len) < hlen ||
    774 		    ntohs(ip->ip_len) != pktlen ||
    775 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    776 			goto swcsum;
    777 
    778 		switch (ip->ip_p) {
    779 		case IPPROTO_TCP:
    780 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    781 				goto swcsum;
    782 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    783 				goto swcsum;
    784 			csum_flags =
    785 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    786 			break;
    787 		case IPPROTO_UDP:
    788 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    789 				goto swcsum;
    790 			if (pktlen < (hlen + sizeof(struct udphdr)))
    791 				goto swcsum;
    792 			uh = (struct udphdr *)((char *)ip + hlen);
    793 			/* no checksum */
    794 			if (uh->uh_sum == 0)
    795 				goto swcsum;
    796 			csum_flags =
    797 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    798 			break;
    799 		default:
    800 			goto swcsum;
    801 		}
    802 
    803 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    804 		csum_data = ~flags & HME_XD_RXCKSUM;
    805 
    806 		/*
    807 		 * If data offset is different from RX cksum start offset,
    808 		 * we have to deduct them.
    809 		 */
    810 		hlen = ((char *)ip + hlen) -
    811 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    812 		if (hlen > 1) {
    813 			uint32_t optsum;
    814 
    815 			optsum = 0;
    816 			opts = (uint16_t *)((char *)eh +
    817 			    ETHER_HDR_LEN + sizeof(struct ip));
    818 
    819 			while (hlen > 1) {
    820 				optsum += ntohs(*opts++);
    821 				hlen -= 2;
    822 			}
    823 			while (optsum >> 16)
    824 				optsum = (optsum >> 16) + (optsum & 0xffff);
    825 
    826 			/* Deduct the ip opts sum from the hwsum. */
    827 			csum_data += (uint16_t)~optsum;
    828 
    829 			while (csum_data >> 16)
    830 				csum_data =
    831 				    (csum_data >> 16) + (csum_data & 0xffff);
    832 		}
    833 		m0->m_pkthdr.csum_data = csum_data;
    834 	}
    835 swcsum:
    836 	m0->m_pkthdr.csum_flags = csum_flags;
    837 #endif
    838 
    839 	return (m0);
    840 
    841 bad:
    842 	m_freem(m0);
    843 	return (0);
    844 }
    845 
    846 /*
    847  * Pass a packet to the higher levels.
    848  */
    849 void
    850 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    851 {
    852 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    853 	struct mbuf *m;
    854 	int len;
    855 
    856 	len = HME_XD_DECODE_RSIZE(flags);
    857 	if (len <= sizeof(struct ether_header) ||
    858 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    859 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    860 	    ETHERMTU + sizeof(struct ether_header))) {
    861 #ifdef HMEDEBUG
    862 		printf("%s: invalid packet size %d; dropping\n",
    863 		    device_xname(sc->sc_dev), len);
    864 #endif
    865 		ifp->if_ierrors++;
    866 		return;
    867 	}
    868 
    869 	/* Pull packet off interface. */
    870 	m = hme_get(sc, ix, flags);
    871 	if (m == 0) {
    872 		ifp->if_ierrors++;
    873 		return;
    874 	}
    875 
    876 	/* Pass the packet up. */
    877 	if_percpuq_enqueue(ifp->if_percpuq, m);
    878 }
    879 
    880 void
    881 hme_start(struct ifnet *ifp)
    882 {
    883 	struct hme_softc *sc = ifp->if_softc;
    884 	void *txd = sc->sc_rb.rb_txd;
    885 	struct mbuf *m;
    886 	unsigned int txflags;
    887 	unsigned int ri, len, obusy;
    888 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    889 
    890 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    891 		return;
    892 
    893 	ri = sc->sc_rb.rb_tdhead;
    894 	obusy = sc->sc_rb.rb_td_nbusy;
    895 
    896 	for (;;) {
    897 		IFQ_DEQUEUE(&ifp->if_snd, m);
    898 		if (m == 0)
    899 			break;
    900 
    901 		/*
    902 		 * If BPF is listening on this interface, let it see the
    903 		 * packet before we commit it to the wire.
    904 		 */
    905 		bpf_mtap(ifp, m, BPF_D_OUT);
    906 
    907 #ifdef INET
    908 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    909 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    910 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    911 			struct ether_header *eh;
    912 			uint16_t offset, start;
    913 
    914 			eh = mtod(m, struct ether_header *);
    915 			switch (ntohs(eh->ether_type)) {
    916 			case ETHERTYPE_IP:
    917 				start = ETHER_HDR_LEN;
    918 				break;
    919 			case ETHERTYPE_VLAN:
    920 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    921 				break;
    922 			default:
    923 				/* unsupported, drop it */
    924 				m_free(m);
    925 				continue;
    926 			}
    927 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    928 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    929 			    + start;
    930 			txflags = HME_XD_TXCKSUM |
    931 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    932 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    933 		} else
    934 #endif
    935 			txflags = 0;
    936 
    937 		/*
    938 		 * Copy the mbuf chain into the transmit buffer.
    939 		 */
    940 		len = hme_put(sc, ri, m);
    941 
    942 		/*
    943 		 * Initialize transmit registers and start transmission
    944 		 */
    945 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    946 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    947 			HME_XD_ENCODE_TSIZE(len) | txflags);
    948 
    949 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    950 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    951 				  HME_ETX_TP_DMAWAKEUP);
    952 
    953 		if (++ri == ntbuf)
    954 			ri = 0;
    955 
    956 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    957 			ifp->if_flags |= IFF_OACTIVE;
    958 			break;
    959 		}
    960 	}
    961 
    962 	if (obusy != sc->sc_rb.rb_td_nbusy) {
    963 		sc->sc_rb.rb_tdhead = ri;
    964 		ifp->if_timer = 5;
    965 	}
    966 }
    967 
    968 /*
    969  * Transmit interrupt.
    970  */
    971 int
    972 hme_tint(struct hme_softc *sc)
    973 {
    974 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    975 	bus_space_tag_t t = sc->sc_bustag;
    976 	bus_space_handle_t mac = sc->sc_mac;
    977 	unsigned int ri, txflags;
    978 
    979 	/*
    980 	 * Unload collision counters
    981 	 */
    982 	ifp->if_collisions +=
    983 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    984 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
    985 	ifp->if_oerrors +=
    986 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    987 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    988 
    989 	/*
    990 	 * then clear the hardware counters.
    991 	 */
    992 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    993 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    994 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    995 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    996 
    997 	/* Fetch current position in the transmit ring */
    998 	ri = sc->sc_rb.rb_tdtail;
    999 
   1000 	for (;;) {
   1001 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1002 			break;
   1003 
   1004 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1005 
   1006 		if (txflags & HME_XD_OWN)
   1007 			break;
   1008 
   1009 		ifp->if_flags &= ~IFF_OACTIVE;
   1010 		ifp->if_opackets++;
   1011 
   1012 		if (++ri == sc->sc_rb.rb_ntbuf)
   1013 			ri = 0;
   1014 
   1015 		--sc->sc_rb.rb_td_nbusy;
   1016 	}
   1017 
   1018 	/* Update ring */
   1019 	sc->sc_rb.rb_tdtail = ri;
   1020 
   1021 	if_schedule_deferred_start(ifp);
   1022 
   1023 	if (sc->sc_rb.rb_td_nbusy == 0)
   1024 		ifp->if_timer = 0;
   1025 
   1026 	return (1);
   1027 }
   1028 
   1029 /*
   1030  * Receive interrupt.
   1031  */
   1032 int
   1033 hme_rint(struct hme_softc *sc)
   1034 {
   1035 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1036 	bus_space_tag_t t = sc->sc_bustag;
   1037 	bus_space_handle_t mac = sc->sc_mac;
   1038 	void *xdr = sc->sc_rb.rb_rxd;
   1039 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1040 	unsigned int ri;
   1041 	uint32_t flags;
   1042 
   1043 	ri = sc->sc_rb.rb_rdtail;
   1044 
   1045 	/*
   1046 	 * Process all buffers with valid data.
   1047 	 */
   1048 	for (;;) {
   1049 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1050 		if (flags & HME_XD_OWN)
   1051 			break;
   1052 
   1053 		if (flags & HME_XD_OFL) {
   1054 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1055 					device_xname(sc->sc_dev), ri, flags);
   1056 		} else
   1057 			hme_read(sc, ri, flags);
   1058 
   1059 		/* This buffer can be used by the hardware again */
   1060 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1061 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1062 
   1063 		if (++ri == nrbuf)
   1064 			ri = 0;
   1065 	}
   1066 
   1067 	sc->sc_rb.rb_rdtail = ri;
   1068 
   1069 	/* Read error counters ... */
   1070 	ifp->if_ierrors +=
   1071 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
   1072 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
   1073 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
   1074 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
   1075 
   1076 	/* ... then clear the hardware counters. */
   1077 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
   1078 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
   1079 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
   1080 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
   1081 	return (1);
   1082 }
   1083 
   1084 int
   1085 hme_eint(struct hme_softc *sc, u_int status)
   1086 {
   1087 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1088 	char bits[128];
   1089 
   1090 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1091 		bus_space_tag_t t = sc->sc_bustag;
   1092 		bus_space_handle_t mif = sc->sc_mif;
   1093 		uint32_t cf, st, sm;
   1094 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1095 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1096 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1097 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1098 			device_xname(sc->sc_dev), cf, st, sm);
   1099 		return (1);
   1100 	}
   1101 
   1102 	/* Receive error counters rolled over */
   1103 	if (status & HME_SEB_STAT_ACNTEXP)
   1104 		ifp->if_ierrors += 0xff;
   1105 	if (status & HME_SEB_STAT_CCNTEXP)
   1106 		ifp->if_ierrors += 0xff;
   1107 	if (status & HME_SEB_STAT_LCNTEXP)
   1108 		ifp->if_ierrors += 0xff;
   1109 	if (status & HME_SEB_STAT_CVCNTEXP)
   1110 		ifp->if_ierrors += 0xff;
   1111 
   1112 	/* RXTERR locks up the interface, so do a reset */
   1113 	if (status & HME_SEB_STAT_RXTERR)
   1114 		hme_reset(sc);
   1115 
   1116 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1117 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   1118 
   1119 	return (1);
   1120 }
   1121 
   1122 int
   1123 hme_intr(void *v)
   1124 {
   1125 	struct hme_softc *sc = v;
   1126 	bus_space_tag_t t = sc->sc_bustag;
   1127 	bus_space_handle_t seb = sc->sc_seb;
   1128 	uint32_t status;
   1129 	int r = 0;
   1130 
   1131 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1132 
   1133 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1134 		r |= hme_eint(sc, status);
   1135 
   1136 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1137 		r |= hme_tint(sc);
   1138 
   1139 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1140 		r |= hme_rint(sc);
   1141 
   1142 	rnd_add_uint32(&sc->rnd_source, status);
   1143 
   1144 	return (r);
   1145 }
   1146 
   1147 
   1148 void
   1149 hme_watchdog(struct ifnet *ifp)
   1150 {
   1151 	struct hme_softc *sc = ifp->if_softc;
   1152 
   1153 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1154 	++ifp->if_oerrors;
   1155 
   1156 	hme_reset(sc);
   1157 }
   1158 
   1159 /*
   1160  * Initialize the MII Management Interface
   1161  */
   1162 void
   1163 hme_mifinit(struct hme_softc *sc)
   1164 {
   1165 	bus_space_tag_t t = sc->sc_bustag;
   1166 	bus_space_handle_t mif = sc->sc_mif;
   1167 	bus_space_handle_t mac = sc->sc_mac;
   1168 	int instance, phy;
   1169 	uint32_t v;
   1170 
   1171 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1172 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1173 		phy = sc->sc_phys[instance];
   1174 	} else
   1175 		/* No media set yet, pick phy arbitrarily.. */
   1176 		phy = HME_PHYAD_EXTERNAL;
   1177 
   1178 	/* Configure the MIF in frame mode, no poll, current phy select */
   1179 	v = 0;
   1180 	if (phy == HME_PHYAD_EXTERNAL)
   1181 		v |= HME_MIF_CFG_PHY;
   1182 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1183 
   1184 	/* If an external transceiver is selected, enable its MII drivers */
   1185 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1186 	v &= ~HME_MAC_XIF_MIIENABLE;
   1187 	if (phy == HME_PHYAD_EXTERNAL)
   1188 		v |= HME_MAC_XIF_MIIENABLE;
   1189 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1190 }
   1191 
   1192 /*
   1193  * MII interface
   1194  */
   1195 static int
   1196 hme_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1197 {
   1198 	struct hme_softc *sc = device_private(self);
   1199 	bus_space_tag_t t = sc->sc_bustag;
   1200 	bus_space_handle_t mif = sc->sc_mif;
   1201 	bus_space_handle_t mac = sc->sc_mac;
   1202 	uint32_t v, xif_cfg, mifi_cfg;
   1203 	int n, rv;
   1204 
   1205 	/* We can at most have two PHYs */
   1206 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1207 		return -1;
   1208 
   1209 	/* Select the desired PHY in the MIF configuration register */
   1210 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1211 	v &= ~HME_MIF_CFG_PHY;
   1212 	if (phy == HME_PHYAD_EXTERNAL)
   1213 		v |= HME_MIF_CFG_PHY;
   1214 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1215 
   1216 	/* Enable MII drivers on external transceiver */
   1217 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1218 	if (phy == HME_PHYAD_EXTERNAL)
   1219 		v |= HME_MAC_XIF_MIIENABLE;
   1220 	else
   1221 		v &= ~HME_MAC_XIF_MIIENABLE;
   1222 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1223 
   1224 #if 0
   1225 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1226 	/*
   1227 	 * Check whether a transceiver is connected by testing
   1228 	 * the MIF configuration register's MDI_X bits. Note that
   1229 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1230 	 */
   1231 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1232 	delay(100);
   1233 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1234 	if ((v & mif_mdi_bit) == 0) {
   1235 		rv = -1;
   1236 		goto out;
   1237 	}
   1238 #endif
   1239 
   1240 	/* Construct the frame command */
   1241 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1242 	    HME_MIF_FO_TAMSB |
   1243 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1244 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1245 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1246 
   1247 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1248 	for (n = 0; n < 100; n++) {
   1249 		DELAY(1);
   1250 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1251 		if (v & HME_MIF_FO_TALSB) {
   1252 			*val = v & HME_MIF_FO_DATA;
   1253 			rv = 0;
   1254 			goto out;
   1255 		}
   1256 	}
   1257 
   1258 	rv = ETIMEDOUT;
   1259 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   1260 
   1261 out:
   1262 	/* Restore MIFI_CFG register */
   1263 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1264 	/* Restore XIF register */
   1265 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1266 	return rv;
   1267 }
   1268 
   1269 static int
   1270 hme_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1271 {
   1272 	struct hme_softc *sc = device_private(self);
   1273 	bus_space_tag_t t = sc->sc_bustag;
   1274 	bus_space_handle_t mif = sc->sc_mif;
   1275 	bus_space_handle_t mac = sc->sc_mac;
   1276 	uint32_t v, xif_cfg, mifi_cfg;
   1277 	int n, rv;
   1278 
   1279 	/* We can at most have two PHYs */
   1280 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1281 		return -1;
   1282 
   1283 	/* Select the desired PHY in the MIF configuration register */
   1284 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1285 	v &= ~HME_MIF_CFG_PHY;
   1286 	if (phy == HME_PHYAD_EXTERNAL)
   1287 		v |= HME_MIF_CFG_PHY;
   1288 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1289 
   1290 	/* Enable MII drivers on external transceiver */
   1291 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1292 	if (phy == HME_PHYAD_EXTERNAL)
   1293 		v |= HME_MAC_XIF_MIIENABLE;
   1294 	else
   1295 		v &= ~HME_MAC_XIF_MIIENABLE;
   1296 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1297 
   1298 #if 0
   1299 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1300 	/*
   1301 	 * Check whether a transceiver is connected by testing
   1302 	 * the MIF configuration register's MDI_X bits. Note that
   1303 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1304 	 */
   1305 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1306 	delay(100);
   1307 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1308 	if ((v & mif_mdi_bit) == 0) {
   1309 		rv = -1;
   1310 		goto out;
   1311 	}
   1312 #endif
   1313 
   1314 	/* Construct the frame command */
   1315 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1316 	    HME_MIF_FO_TAMSB				|
   1317 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1318 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1319 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1320 	    (val & HME_MIF_FO_DATA);
   1321 
   1322 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1323 	for (n = 0; n < 100; n++) {
   1324 		DELAY(1);
   1325 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1326 		if (v & HME_MIF_FO_TALSB) {
   1327 			rv = 0;
   1328 			goto out;
   1329 		}
   1330 	}
   1331 
   1332 	rv = ETIMEDOUT;
   1333 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   1334 out:
   1335 	/* Restore MIFI_CFG register */
   1336 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1337 	/* Restore XIF register */
   1338 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1339 
   1340 	return rv;
   1341 }
   1342 
   1343 static void
   1344 hme_mii_statchg(struct ifnet *ifp)
   1345 {
   1346 	struct hme_softc *sc = ifp->if_softc;
   1347 	bus_space_tag_t t = sc->sc_bustag;
   1348 	bus_space_handle_t mac = sc->sc_mac;
   1349 	uint32_t v;
   1350 
   1351 #ifdef HMEDEBUG
   1352 	if (sc->sc_debug)
   1353 		printf("hme_mii_statchg: status change\n");
   1354 #endif
   1355 
   1356 	/* Set the MAC Full Duplex bit appropriately */
   1357 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1358 	   but not otherwise. */
   1359 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1360 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1361 		v |= HME_MAC_TXCFG_FULLDPLX;
   1362 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1363 	} else {
   1364 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1365 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1366 	}
   1367 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1368 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1369 }
   1370 
   1371 int
   1372 hme_mediachange(struct ifnet *ifp)
   1373 {
   1374 	struct hme_softc *sc = ifp->if_softc;
   1375 	bus_space_tag_t t = sc->sc_bustag;
   1376 	bus_space_handle_t mif = sc->sc_mif;
   1377 	bus_space_handle_t mac = sc->sc_mac;
   1378 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1379 	int phy = sc->sc_phys[instance];
   1380 	int rc;
   1381 	uint32_t v;
   1382 
   1383 #ifdef HMEDEBUG
   1384 	if (sc->sc_debug)
   1385 		printf("hme_mediachange: phy = %d\n", phy);
   1386 #endif
   1387 
   1388 	/* Select the current PHY in the MIF configuration register */
   1389 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1390 	v &= ~HME_MIF_CFG_PHY;
   1391 	if (phy == HME_PHYAD_EXTERNAL)
   1392 		v |= HME_MIF_CFG_PHY;
   1393 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1394 
   1395 	/* If an external transceiver is selected, enable its MII drivers */
   1396 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1397 	v &= ~HME_MAC_XIF_MIIENABLE;
   1398 	if (phy == HME_PHYAD_EXTERNAL)
   1399 		v |= HME_MAC_XIF_MIIENABLE;
   1400 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1401 
   1402 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1403 		return 0;
   1404 	return rc;
   1405 }
   1406 
   1407 /*
   1408  * Process an ioctl request.
   1409  */
   1410 int
   1411 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1412 {
   1413 	struct hme_softc *sc = ifp->if_softc;
   1414 	struct ifaddr *ifa = (struct ifaddr *)data;
   1415 	int s, error = 0;
   1416 
   1417 	s = splnet();
   1418 
   1419 	switch (cmd) {
   1420 
   1421 	case SIOCINITIFADDR:
   1422 		switch (ifa->ifa_addr->sa_family) {
   1423 #ifdef INET
   1424 		case AF_INET:
   1425 			if (ifp->if_flags & IFF_UP)
   1426 				hme_setladrf(sc);
   1427 			else {
   1428 				ifp->if_flags |= IFF_UP;
   1429 				error = hme_init(ifp);
   1430 			}
   1431 			arp_ifinit(ifp, ifa);
   1432 			break;
   1433 #endif
   1434 		default:
   1435 			ifp->if_flags |= IFF_UP;
   1436 			error = hme_init(ifp);
   1437 			break;
   1438 		}
   1439 		break;
   1440 
   1441 	case SIOCSIFFLAGS:
   1442 #ifdef HMEDEBUG
   1443 		{
   1444 			struct ifreq *ifr = data;
   1445 			sc->sc_debug =
   1446 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1447 		}
   1448 #endif
   1449 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1450 			break;
   1451 
   1452 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1453 		case IFF_RUNNING:
   1454 			/*
   1455 			 * If interface is marked down and it is running, then
   1456 			 * stop it.
   1457 			 */
   1458 			hme_stop(ifp, 0);
   1459 			ifp->if_flags &= ~IFF_RUNNING;
   1460 			break;
   1461 		case IFF_UP:
   1462 			/*
   1463 			 * If interface is marked up and it is stopped, then
   1464 			 * start it.
   1465 			 */
   1466 			error = hme_init(ifp);
   1467 			break;
   1468 		case IFF_UP|IFF_RUNNING:
   1469 			/*
   1470 			 * If setting debug or promiscuous mode, do not reset
   1471 			 * the chip; for everything else, call hme_init()
   1472 			 * which will trigger a reset.
   1473 			 */
   1474 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1475 			if (ifp->if_flags != sc->sc_if_flags) {
   1476 				if ((ifp->if_flags & (~RESETIGN))
   1477 				    == (sc->sc_if_flags & (~RESETIGN)))
   1478 					hme_setladrf(sc);
   1479 				else
   1480 					error = hme_init(ifp);
   1481 			}
   1482 #undef RESETIGN
   1483 			break;
   1484 		case 0:
   1485 			break;
   1486 		}
   1487 
   1488 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1489 			error = hme_init(ifp);
   1490 
   1491 		break;
   1492 
   1493 	default:
   1494 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1495 			break;
   1496 
   1497 		error = 0;
   1498 
   1499 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1500 			;
   1501 		else if (ifp->if_flags & IFF_RUNNING) {
   1502 			/*
   1503 			 * Multicast list has changed; set the hardware filter
   1504 			 * accordingly.
   1505 			 */
   1506 			hme_setladrf(sc);
   1507 		}
   1508 		break;
   1509 	}
   1510 
   1511 	sc->sc_if_flags = ifp->if_flags;
   1512 	splx(s);
   1513 	return (error);
   1514 }
   1515 
   1516 bool
   1517 hme_shutdown(device_t self, int howto)
   1518 {
   1519 	struct hme_softc *sc;
   1520 	struct ifnet *ifp;
   1521 
   1522 	sc = device_private(self);
   1523 	ifp = &sc->sc_ethercom.ec_if;
   1524 	hme_stop(ifp, 1);
   1525 
   1526 	return true;
   1527 }
   1528 
   1529 /*
   1530  * Set up the logical address filter.
   1531  */
   1532 void
   1533 hme_setladrf(struct hme_softc *sc)
   1534 {
   1535 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1536 	struct ether_multi *enm;
   1537 	struct ether_multistep step;
   1538 	struct ethercom *ec = &sc->sc_ethercom;
   1539 	bus_space_tag_t t = sc->sc_bustag;
   1540 	bus_space_handle_t mac = sc->sc_mac;
   1541 	uint32_t v;
   1542 	uint32_t crc;
   1543 	uint32_t hash[4];
   1544 
   1545 	/* Clear hash table */
   1546 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1547 
   1548 	/* Get current RX configuration */
   1549 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1550 
   1551 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1552 		/* Turn on promiscuous mode; turn off the hash filter */
   1553 		v |= HME_MAC_RXCFG_PMISC;
   1554 		v &= ~HME_MAC_RXCFG_HENABLE;
   1555 		ifp->if_flags |= IFF_ALLMULTI;
   1556 		goto chipit;
   1557 	}
   1558 
   1559 	/* Turn off promiscuous mode; turn on the hash filter */
   1560 	v &= ~HME_MAC_RXCFG_PMISC;
   1561 	v |= HME_MAC_RXCFG_HENABLE;
   1562 
   1563 	/*
   1564 	 * Set up multicast address filter by passing all multicast addresses
   1565 	 * through a crc generator, and then using the high order 6 bits as an
   1566 	 * index into the 64 bit logical address filter.  The high order bit
   1567 	 * selects the word, while the rest of the bits select the bit within
   1568 	 * the word.
   1569 	 */
   1570 
   1571 	ETHER_FIRST_MULTI(step, ec, enm);
   1572 	while (enm != NULL) {
   1573 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1574 			/*
   1575 			 * We must listen to a range of multicast addresses.
   1576 			 * For now, just accept all multicasts, rather than
   1577 			 * trying to set only those filter bits needed to match
   1578 			 * the range.  (At this time, the only use of address
   1579 			 * ranges is for IP multicast routing, for which the
   1580 			 * range is big enough to require all bits set.)
   1581 			 */
   1582 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1583 			ifp->if_flags |= IFF_ALLMULTI;
   1584 			goto chipit;
   1585 		}
   1586 
   1587 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1588 
   1589 		/* Just want the 6 most significant bits. */
   1590 		crc >>= 26;
   1591 
   1592 		/* Set the corresponding bit in the filter. */
   1593 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1594 
   1595 		ETHER_NEXT_MULTI(step, enm);
   1596 	}
   1597 
   1598 	ifp->if_flags &= ~IFF_ALLMULTI;
   1599 
   1600 chipit:
   1601 	/* Now load the hash table into the chip */
   1602 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1603 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1604 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1605 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1606 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1607 }
   1608 
   1609 /*
   1610  * Routines for accessing the transmit and receive buffers.
   1611  * The various CPU and adapter configurations supported by this
   1612  * driver require three different access methods for buffers
   1613  * and descriptors:
   1614  *	(1) contig (contiguous data; no padding),
   1615  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1616  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1617  */
   1618 
   1619 #if 0
   1620 /*
   1621  * contig: contiguous data with no padding.
   1622  *
   1623  * Buffers may have any alignment.
   1624  */
   1625 
   1626 void
   1627 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1628 {
   1629 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1630 
   1631 	/*
   1632 	 * Just call memcpy() to do the work.
   1633 	 */
   1634 	memcpy(buf, from, len);
   1635 }
   1636 
   1637 void
   1638 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1639 {
   1640 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1641 
   1642 	/*
   1643 	 * Just call memcpy() to do the work.
   1644 	 */
   1645 	memcpy(to, buf, len);
   1646 }
   1647 #endif
   1648