hme.c revision 1.103 1 /* $NetBSD: hme.c,v 1.103 2019/05/23 10:51:39 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * HME Ethernet module driver.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.103 2019/05/23 10:51:39 msaitoh Exp $");
38
39 /* #define HMEDEBUG */
40
41 #include "opt_inet.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/syslog.h>
48 #include <sys/socket.h>
49 #include <sys/device.h>
50 #include <sys/malloc.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/rndsource.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 #include <net/bpf.h>
60
61 #ifdef INET
62 #include <net/if_vlanvar.h>
63 #include <netinet/in.h>
64 #include <netinet/if_inarp.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74
75 #include <sys/bus.h>
76
77 #include <dev/ic/hmereg.h>
78 #include <dev/ic/hmevar.h>
79
80 static void hme_start(struct ifnet *);
81 static void hme_stop(struct ifnet *, int);
82 static int hme_ioctl(struct ifnet *, u_long, void *);
83 static void hme_tick(void *);
84 static void hme_watchdog(struct ifnet *);
85 static bool hme_shutdown(device_t, int);
86 static int hme_init(struct ifnet *);
87 static void hme_meminit(struct hme_softc *);
88 static void hme_mifinit(struct hme_softc *);
89 static void hme_reset(struct hme_softc *);
90 static void hme_chipreset(struct hme_softc *);
91 static void hme_setladrf(struct hme_softc *);
92
93 /* MII methods & callbacks */
94 static int hme_mii_readreg(device_t, int, int, uint16_t *);
95 static int hme_mii_writereg(device_t, int, int, uint16_t);
96 static void hme_mii_statchg(struct ifnet *);
97
98 static int hme_mediachange(struct ifnet *);
99
100 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
101 static int hme_put(struct hme_softc *, int, struct mbuf *);
102 static void hme_read(struct hme_softc *, int, uint32_t);
103 static int hme_eint(struct hme_softc *, u_int);
104 static int hme_rint(struct hme_softc *);
105 static int hme_tint(struct hme_softc *);
106
107 #if 0
108 /* Default buffer copy routines */
109 static void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
110 static void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
111 #endif
112
113 void
114 hme_config(struct hme_softc *sc)
115 {
116 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
117 struct mii_data *mii = &sc->sc_mii;
118 struct mii_softc *child;
119 bus_dma_tag_t dmatag = sc->sc_dmatag;
120 bus_dma_segment_t seg;
121 bus_size_t size;
122 int rseg, error;
123
124 /*
125 * HME common initialization.
126 *
127 * hme_softc fields that must be initialized by the front-end:
128 *
129 * the bus tag:
130 * sc_bustag
131 *
132 * the DMA bus tag:
133 * sc_dmatag
134 *
135 * the bus handles:
136 * sc_seb (Shared Ethernet Block registers)
137 * sc_erx (Receiver Unit registers)
138 * sc_etx (Transmitter Unit registers)
139 * sc_mac (MAC registers)
140 * sc_mif (Management Interface registers)
141 *
142 * the maximum bus burst size:
143 * sc_burst
144 *
145 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
146 * rb_membase, rb_dmabase)
147 *
148 * the local Ethernet address:
149 * sc_enaddr
150 *
151 */
152
153 /* Make sure the chip is stopped. */
154 hme_chipreset(sc);
155
156 /*
157 * Allocate descriptors and buffers
158 * XXX - do all this differently.. and more configurably,
159 * eg. use things as `dma_load_mbuf()' on transmit,
160 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
161 * all the time) on the receiver side.
162 *
163 * Note: receive buffers must be 64-byte aligned.
164 * Also, apparently, the buffers must extend to a DMA burst
165 * boundary beyond the maximum packet size.
166 */
167 #define _HME_NDESC 128
168 #define _HME_BUFSZ 1600
169
170 /* Note: the # of descriptors must be a multiple of 16 */
171 sc->sc_rb.rb_ntbuf = _HME_NDESC;
172 sc->sc_rb.rb_nrbuf = _HME_NDESC;
173
174 /*
175 * Allocate DMA capable memory
176 * Buffer descriptors must be aligned on a 2048 byte boundary;
177 * take this into account when calculating the size. Note that
178 * the maximum number of descriptors (256) occupies 2048 bytes,
179 * so we allocate that much regardless of _HME_NDESC.
180 */
181 size = 2048 + /* TX descriptors */
182 2048 + /* RX descriptors */
183 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
184 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
185
186 /* Allocate DMA buffer */
187 if ((error = bus_dmamem_alloc(dmatag, size,
188 2048, 0,
189 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
190 aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
191 error);
192 return;
193 }
194
195 /* Map DMA memory in CPU addressable space */
196 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
197 &sc->sc_rb.rb_membase,
198 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
199 aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
200 error);
201 bus_dmamap_unload(dmatag, sc->sc_dmamap);
202 bus_dmamem_free(dmatag, &seg, rseg);
203 return;
204 }
205
206 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
207 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
208 aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
209 error);
210 return;
211 }
212
213 /* Load the buffer */
214 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
215 sc->sc_rb.rb_membase, size, NULL,
216 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
217 aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
218 error);
219 bus_dmamem_free(dmatag, &seg, rseg);
220 return;
221 }
222 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
223
224 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
225 ether_sprintf(sc->sc_enaddr));
226
227 /* Initialize ifnet structure. */
228 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
229 ifp->if_softc = sc;
230 ifp->if_start = hme_start;
231 ifp->if_stop = hme_stop;
232 ifp->if_ioctl = hme_ioctl;
233 ifp->if_init = hme_init;
234 ifp->if_watchdog = hme_watchdog;
235 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
236 sc->sc_if_flags = ifp->if_flags;
237 ifp->if_capabilities |=
238 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
239 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
240 IFQ_SET_READY(&ifp->if_snd);
241
242 /* Initialize ifmedia structures and MII info */
243 mii->mii_ifp = ifp;
244 mii->mii_readreg = hme_mii_readreg;
245 mii->mii_writereg = hme_mii_writereg;
246 mii->mii_statchg = hme_mii_statchg;
247
248 sc->sc_ethercom.ec_mii = mii;
249 ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
250
251 hme_mifinit(sc);
252
253 mii_attach(sc->sc_dev, mii, 0xffffffff,
254 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
255
256 child = LIST_FIRST(&mii->mii_phys);
257 if (child == NULL) {
258 /* No PHY attached */
259 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
260 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
261 } else {
262 /*
263 * Walk along the list of attached MII devices and
264 * establish an `MII instance' to `phy number'
265 * mapping. We'll use this mapping in media change
266 * requests to determine which phy to use to program
267 * the MIF configuration register.
268 */
269 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
270 /*
271 * Note: we support just two PHYs: the built-in
272 * internal device and an external on the MII
273 * connector.
274 */
275 if (child->mii_phy > 1 || child->mii_inst > 1) {
276 aprint_error_dev(sc->sc_dev,
277 "cannot accommodate MII device %s"
278 " at phy %d, instance %d\n",
279 device_xname(child->mii_dev),
280 child->mii_phy, child->mii_inst);
281 continue;
282 }
283
284 sc->sc_phys[child->mii_inst] = child->mii_phy;
285 }
286
287 /*
288 * Set the default media to auto negotiation if the phy has
289 * the auto negotiation capability.
290 * XXX; What to do otherwise?
291 */
292 if (ifmedia_match(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0))
293 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
294 /*
295 else
296 ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
297 */
298 }
299
300 /* claim 802.1q capability */
301 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
302
303 /* Attach the interface. */
304 if_attach(ifp);
305 if_deferred_start_init(ifp, NULL);
306 ether_ifattach(ifp, sc->sc_enaddr);
307
308 if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
309 pmf_class_network_register(sc->sc_dev, ifp);
310 else
311 aprint_error_dev(sc->sc_dev,
312 "couldn't establish power handler\n");
313
314 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
315 RND_TYPE_NET, RND_FLAG_DEFAULT);
316
317 callout_init(&sc->sc_tick_ch, 0);
318 }
319
320 void
321 hme_tick(void *arg)
322 {
323 struct hme_softc *sc = arg;
324 int s;
325
326 s = splnet();
327 mii_tick(&sc->sc_mii);
328 splx(s);
329
330 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
331 }
332
333 void
334 hme_reset(struct hme_softc *sc)
335 {
336 int s;
337
338 s = splnet();
339 (void)hme_init(&sc->sc_ethercom.ec_if);
340 splx(s);
341 }
342
343 void
344 hme_chipreset(struct hme_softc *sc)
345 {
346 bus_space_tag_t t = sc->sc_bustag;
347 bus_space_handle_t seb = sc->sc_seb;
348 int n;
349
350 /* Mask all interrupts */
351 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
352
353 /* Reset transmitter and receiver */
354 bus_space_write_4(t, seb, HME_SEBI_RESET,
355 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
356
357 for (n = 0; n < 20; n++) {
358 uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
359 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
360 return;
361 DELAY(20);
362 }
363
364 printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
365 }
366
367 void
368 hme_stop(struct ifnet *ifp, int disable)
369 {
370 struct hme_softc *sc;
371
372 sc = ifp->if_softc;
373
374 ifp->if_timer = 0;
375 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
376
377 callout_stop(&sc->sc_tick_ch);
378 mii_down(&sc->sc_mii);
379
380 hme_chipreset(sc);
381 }
382
383 void
384 hme_meminit(struct hme_softc *sc)
385 {
386 bus_addr_t txbufdma, rxbufdma;
387 bus_addr_t dma;
388 char *p;
389 unsigned int ntbuf, nrbuf, i;
390 struct hme_ring *hr = &sc->sc_rb;
391
392 p = hr->rb_membase;
393 dma = hr->rb_dmabase;
394
395 ntbuf = hr->rb_ntbuf;
396 nrbuf = hr->rb_nrbuf;
397
398 /*
399 * Allocate transmit descriptors
400 */
401 hr->rb_txd = p;
402 hr->rb_txddma = dma;
403 p += ntbuf * HME_XD_SIZE;
404 dma += ntbuf * HME_XD_SIZE;
405 /* We have reserved descriptor space until the next 2048 byte boundary.*/
406 dma = (bus_addr_t)roundup((u_long)dma, 2048);
407 p = (void *)roundup((u_long)p, 2048);
408
409 /*
410 * Allocate receive descriptors
411 */
412 hr->rb_rxd = p;
413 hr->rb_rxddma = dma;
414 p += nrbuf * HME_XD_SIZE;
415 dma += nrbuf * HME_XD_SIZE;
416 /* Again move forward to the next 2048 byte boundary.*/
417 dma = (bus_addr_t)roundup((u_long)dma, 2048);
418 p = (void *)roundup((u_long)p, 2048);
419
420
421 /*
422 * Allocate transmit buffers
423 */
424 hr->rb_txbuf = p;
425 txbufdma = dma;
426 p += ntbuf * _HME_BUFSZ;
427 dma += ntbuf * _HME_BUFSZ;
428
429 /*
430 * Allocate receive buffers
431 */
432 hr->rb_rxbuf = p;
433 rxbufdma = dma;
434 p += nrbuf * _HME_BUFSZ;
435 dma += nrbuf * _HME_BUFSZ;
436
437 /*
438 * Initialize transmit buffer descriptors
439 */
440 for (i = 0; i < ntbuf; i++) {
441 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
442 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
443 }
444
445 /*
446 * Initialize receive buffer descriptors
447 */
448 for (i = 0; i < nrbuf; i++) {
449 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
450 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
451 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
452 }
453
454 hr->rb_tdhead = hr->rb_tdtail = 0;
455 hr->rb_td_nbusy = 0;
456 hr->rb_rdtail = 0;
457 }
458
459 /*
460 * Initialization of interface; set up initialization block
461 * and transmit/receive descriptor rings.
462 */
463 int
464 hme_init(struct ifnet *ifp)
465 {
466 struct hme_softc *sc = ifp->if_softc;
467 bus_space_tag_t t = sc->sc_bustag;
468 bus_space_handle_t seb = sc->sc_seb;
469 bus_space_handle_t etx = sc->sc_etx;
470 bus_space_handle_t erx = sc->sc_erx;
471 bus_space_handle_t mac = sc->sc_mac;
472 uint8_t *ea;
473 uint32_t v;
474 int rc;
475
476 /*
477 * Initialization sequence. The numbered steps below correspond
478 * to the sequence outlined in section 6.3.5.1 in the Ethernet
479 * Channel Engine manual (part of the PCIO manual).
480 * See also the STP2002-STQ document from Sun Microsystems.
481 */
482
483 /* step 1 & 2. Reset the Ethernet Channel */
484 hme_stop(ifp, 0);
485
486 /* Re-initialize the MIF */
487 hme_mifinit(sc);
488
489 /* Call MI reset function if any */
490 if (sc->sc_hwreset)
491 (*sc->sc_hwreset)(sc);
492
493 #if 0
494 /* Mask all MIF interrupts, just in case */
495 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
496 #endif
497
498 /* step 3. Setup data structures in host memory */
499 hme_meminit(sc);
500
501 /* step 4. TX MAC registers & counters */
502 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
503 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
504 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
505 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
506 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
507 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
508 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
509 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
510
511 /* Load station MAC address */
512 ea = sc->sc_enaddr;
513 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
514 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
515 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
516
517 /*
518 * Init seed for backoff
519 * (source suggested by manual: low 10 bits of MAC address)
520 */
521 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
522 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
523
524
525 /* Note: Accepting power-on default for other MAC registers here.. */
526
527
528 /* step 5. RX MAC registers & counters */
529 hme_setladrf(sc);
530
531 /* step 6 & 7. Program Descriptor Ring Base Addresses */
532 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
533 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
534
535 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
536 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
537 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
538 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
539
540 /* step 8. Global Configuration & Interrupt Mask */
541 bus_space_write_4(t, seb, HME_SEBI_IMASK,
542 ~(
543 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
544 HME_SEB_STAT_HOSTTOTX |
545 HME_SEB_STAT_RXTOHOST |
546 HME_SEB_STAT_TXALL |
547 HME_SEB_STAT_TXPERR |
548 HME_SEB_STAT_RCNTEXP |
549 HME_SEB_STAT_MIFIRQ |
550 HME_SEB_STAT_ALL_ERRORS ));
551
552 switch (sc->sc_burst) {
553 default:
554 v = 0;
555 break;
556 case 16:
557 v = HME_SEB_CFG_BURST16;
558 break;
559 case 32:
560 v = HME_SEB_CFG_BURST32;
561 break;
562 case 64:
563 v = HME_SEB_CFG_BURST64;
564 break;
565 }
566 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
567
568 /* step 9. ETX Configuration: use mostly default values */
569
570 /* Enable DMA */
571 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
572 v |= HME_ETX_CFG_DMAENABLE;
573 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
574
575 /* Transmit Descriptor ring size: in increments of 16 */
576 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
577
578
579 /* step 10. ERX Configuration */
580 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
581
582 /* Encode Receive Descriptor ring size: four possible values */
583 switch (_HME_NDESC /*XXX*/) {
584 case 32:
585 v |= HME_ERX_CFG_RINGSIZE32;
586 break;
587 case 64:
588 v |= HME_ERX_CFG_RINGSIZE64;
589 break;
590 case 128:
591 v |= HME_ERX_CFG_RINGSIZE128;
592 break;
593 case 256:
594 v |= HME_ERX_CFG_RINGSIZE256;
595 break;
596 default:
597 printf("hme: invalid Receive Descriptor ring size\n");
598 break;
599 }
600
601 /* Enable DMA */
602 v |= HME_ERX_CFG_DMAENABLE;
603
604 /* set h/w rx checksum start offset (# of half-words) */
605 #ifdef INET
606 v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
607 << HME_ERX_CFG_CSUMSHIFT) &
608 HME_ERX_CFG_CSUMSTART;
609 #endif
610 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
611
612 /* step 11. XIF Configuration */
613 v = bus_space_read_4(t, mac, HME_MACI_XIF);
614 v |= HME_MAC_XIF_OE;
615 bus_space_write_4(t, mac, HME_MACI_XIF, v);
616
617 /* step 12. RX_MAC Configuration Register */
618 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
619 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
620 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
621
622 /* step 13. TX_MAC Configuration Register */
623 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
624 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
625 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
626
627 /* step 14. Issue Transmit Pending command */
628
629 /* Call MI initialization function if any */
630 if (sc->sc_hwinit)
631 (*sc->sc_hwinit)(sc);
632
633 /* Set the current media. */
634 if ((rc = hme_mediachange(ifp)) != 0)
635 return rc;
636
637 /* Start the one second timer. */
638 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
639
640 ifp->if_flags |= IFF_RUNNING;
641 ifp->if_flags &= ~IFF_OACTIVE;
642 sc->sc_if_flags = ifp->if_flags;
643 ifp->if_timer = 0;
644 hme_start(ifp);
645 return 0;
646 }
647
648 /*
649 * Routine to copy from mbuf chain to transmit buffer in
650 * network buffer memory.
651 * Returns the amount of data copied.
652 */
653 int
654 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
655 /* ri: Ring index */
656 {
657 struct mbuf *n;
658 int len, tlen = 0;
659 char *bp;
660
661 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
662 for (; m; m = n) {
663 len = m->m_len;
664 if (len == 0) {
665 n = m_free(m);
666 continue;
667 }
668 memcpy(bp, mtod(m, void *), len);
669 bp += len;
670 tlen += len;
671 n = m_free(m);
672 }
673 return (tlen);
674 }
675
676 /*
677 * Pull data off an interface.
678 * Len is length of data, with local net header stripped.
679 * We copy the data into mbufs. When full cluster sized units are present
680 * we copy into clusters.
681 */
682 struct mbuf *
683 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
684 {
685 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
686 struct mbuf *m, *m0, *newm;
687 char *bp;
688 int len, totlen;
689 #ifdef INET
690 int csum_flags;
691 #endif
692
693 totlen = HME_XD_DECODE_RSIZE(flags);
694 MGETHDR(m0, M_DONTWAIT, MT_DATA);
695 if (m0 == 0)
696 return (0);
697 m_set_rcvif(m0, ifp);
698 m0->m_pkthdr.len = totlen;
699 len = MHLEN;
700 m = m0;
701
702 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
703
704 while (totlen > 0) {
705 if (totlen >= MINCLSIZE) {
706 MCLGET(m, M_DONTWAIT);
707 if ((m->m_flags & M_EXT) == 0)
708 goto bad;
709 len = MCLBYTES;
710 }
711
712 if (m == m0) {
713 char *newdata = (char *)
714 ALIGN(m->m_data + sizeof(struct ether_header)) -
715 sizeof(struct ether_header);
716 len -= newdata - m->m_data;
717 m->m_data = newdata;
718 }
719
720 m->m_len = len = uimin(totlen, len);
721 memcpy(mtod(m, void *), bp, len);
722 bp += len;
723
724 totlen -= len;
725 if (totlen > 0) {
726 MGET(newm, M_DONTWAIT, MT_DATA);
727 if (newm == 0)
728 goto bad;
729 len = MLEN;
730 m = m->m_next = newm;
731 }
732 }
733
734 #ifdef INET
735 /* hardware checksum */
736 csum_flags = 0;
737 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
738 struct ether_header *eh;
739 struct ether_vlan_header *evh;
740 struct ip *ip;
741 struct udphdr *uh;
742 uint16_t *opts;
743 int32_t hlen, pktlen;
744 uint32_t csum_data;
745
746 eh = mtod(m0, struct ether_header *);
747 if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
748 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
749 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
750 } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
751 evh = (struct ether_vlan_header *)eh;
752 if (ntohs(evh->evl_proto) != ETHERTYPE_IP)
753 goto swcsum;
754 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
755 ETHER_VLAN_ENCAP_LEN);
756 pktlen = m0->m_pkthdr.len -
757 ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
758 } else
759 goto swcsum;
760
761 /* IPv4 only */
762 if (ip->ip_v != IPVERSION)
763 goto swcsum;
764
765 hlen = ip->ip_hl << 2;
766 if (hlen < sizeof(struct ip))
767 goto swcsum;
768
769 /*
770 * bail if too short, has random trailing garbage, truncated,
771 * fragment, or has ethernet pad.
772 */
773 if (ntohs(ip->ip_len) < hlen ||
774 ntohs(ip->ip_len) != pktlen ||
775 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
776 goto swcsum;
777
778 switch (ip->ip_p) {
779 case IPPROTO_TCP:
780 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
781 goto swcsum;
782 if (pktlen < (hlen + sizeof(struct tcphdr)))
783 goto swcsum;
784 csum_flags =
785 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
786 break;
787 case IPPROTO_UDP:
788 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
789 goto swcsum;
790 if (pktlen < (hlen + sizeof(struct udphdr)))
791 goto swcsum;
792 uh = (struct udphdr *)((char *)ip + hlen);
793 /* no checksum */
794 if (uh->uh_sum == 0)
795 goto swcsum;
796 csum_flags =
797 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
798 break;
799 default:
800 goto swcsum;
801 }
802
803 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
804 csum_data = ~flags & HME_XD_RXCKSUM;
805
806 /*
807 * If data offset is different from RX cksum start offset,
808 * we have to deduct them.
809 */
810 hlen = ((char *)ip + hlen) -
811 ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
812 if (hlen > 1) {
813 uint32_t optsum;
814
815 optsum = 0;
816 opts = (uint16_t *)((char *)eh +
817 ETHER_HDR_LEN + sizeof(struct ip));
818
819 while (hlen > 1) {
820 optsum += ntohs(*opts++);
821 hlen -= 2;
822 }
823 while (optsum >> 16)
824 optsum = (optsum >> 16) + (optsum & 0xffff);
825
826 /* Deduct the ip opts sum from the hwsum. */
827 csum_data += (uint16_t)~optsum;
828
829 while (csum_data >> 16)
830 csum_data =
831 (csum_data >> 16) + (csum_data & 0xffff);
832 }
833 m0->m_pkthdr.csum_data = csum_data;
834 }
835 swcsum:
836 m0->m_pkthdr.csum_flags = csum_flags;
837 #endif
838
839 return (m0);
840
841 bad:
842 m_freem(m0);
843 return (0);
844 }
845
846 /*
847 * Pass a packet to the higher levels.
848 */
849 void
850 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
851 {
852 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
853 struct mbuf *m;
854 int len;
855
856 len = HME_XD_DECODE_RSIZE(flags);
857 if (len <= sizeof(struct ether_header) ||
858 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
859 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
860 ETHERMTU + sizeof(struct ether_header))) {
861 #ifdef HMEDEBUG
862 printf("%s: invalid packet size %d; dropping\n",
863 device_xname(sc->sc_dev), len);
864 #endif
865 ifp->if_ierrors++;
866 return;
867 }
868
869 /* Pull packet off interface. */
870 m = hme_get(sc, ix, flags);
871 if (m == 0) {
872 ifp->if_ierrors++;
873 return;
874 }
875
876 /* Pass the packet up. */
877 if_percpuq_enqueue(ifp->if_percpuq, m);
878 }
879
880 void
881 hme_start(struct ifnet *ifp)
882 {
883 struct hme_softc *sc = ifp->if_softc;
884 void *txd = sc->sc_rb.rb_txd;
885 struct mbuf *m;
886 unsigned int txflags;
887 unsigned int ri, len, obusy;
888 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
889
890 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
891 return;
892
893 ri = sc->sc_rb.rb_tdhead;
894 obusy = sc->sc_rb.rb_td_nbusy;
895
896 for (;;) {
897 IFQ_DEQUEUE(&ifp->if_snd, m);
898 if (m == 0)
899 break;
900
901 /*
902 * If BPF is listening on this interface, let it see the
903 * packet before we commit it to the wire.
904 */
905 bpf_mtap(ifp, m, BPF_D_OUT);
906
907 #ifdef INET
908 /* collect bits for h/w csum, before hme_put frees the mbuf */
909 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
910 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
911 struct ether_header *eh;
912 uint16_t offset, start;
913
914 eh = mtod(m, struct ether_header *);
915 switch (ntohs(eh->ether_type)) {
916 case ETHERTYPE_IP:
917 start = ETHER_HDR_LEN;
918 break;
919 case ETHERTYPE_VLAN:
920 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
921 break;
922 default:
923 /* unsupported, drop it */
924 m_free(m);
925 continue;
926 }
927 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
928 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
929 + start;
930 txflags = HME_XD_TXCKSUM |
931 (offset << HME_XD_TXCSSTUFFSHIFT) |
932 (start << HME_XD_TXCSSTARTSHIFT);
933 } else
934 #endif
935 txflags = 0;
936
937 /*
938 * Copy the mbuf chain into the transmit buffer.
939 */
940 len = hme_put(sc, ri, m);
941
942 /*
943 * Initialize transmit registers and start transmission
944 */
945 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
946 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
947 HME_XD_ENCODE_TSIZE(len) | txflags);
948
949 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
950 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
951 HME_ETX_TP_DMAWAKEUP);
952
953 if (++ri == ntbuf)
954 ri = 0;
955
956 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
957 ifp->if_flags |= IFF_OACTIVE;
958 break;
959 }
960 }
961
962 if (obusy != sc->sc_rb.rb_td_nbusy) {
963 sc->sc_rb.rb_tdhead = ri;
964 ifp->if_timer = 5;
965 }
966 }
967
968 /*
969 * Transmit interrupt.
970 */
971 int
972 hme_tint(struct hme_softc *sc)
973 {
974 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
975 bus_space_tag_t t = sc->sc_bustag;
976 bus_space_handle_t mac = sc->sc_mac;
977 unsigned int ri, txflags;
978
979 /*
980 * Unload collision counters
981 */
982 ifp->if_collisions +=
983 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
984 bus_space_read_4(t, mac, HME_MACI_FCCNT);
985 ifp->if_oerrors +=
986 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
987 bus_space_read_4(t, mac, HME_MACI_LTCNT);
988
989 /*
990 * then clear the hardware counters.
991 */
992 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
993 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
994 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
995 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
996
997 /* Fetch current position in the transmit ring */
998 ri = sc->sc_rb.rb_tdtail;
999
1000 for (;;) {
1001 if (sc->sc_rb.rb_td_nbusy <= 0)
1002 break;
1003
1004 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1005
1006 if (txflags & HME_XD_OWN)
1007 break;
1008
1009 ifp->if_flags &= ~IFF_OACTIVE;
1010 ifp->if_opackets++;
1011
1012 if (++ri == sc->sc_rb.rb_ntbuf)
1013 ri = 0;
1014
1015 --sc->sc_rb.rb_td_nbusy;
1016 }
1017
1018 /* Update ring */
1019 sc->sc_rb.rb_tdtail = ri;
1020
1021 if_schedule_deferred_start(ifp);
1022
1023 if (sc->sc_rb.rb_td_nbusy == 0)
1024 ifp->if_timer = 0;
1025
1026 return (1);
1027 }
1028
1029 /*
1030 * Receive interrupt.
1031 */
1032 int
1033 hme_rint(struct hme_softc *sc)
1034 {
1035 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1036 bus_space_tag_t t = sc->sc_bustag;
1037 bus_space_handle_t mac = sc->sc_mac;
1038 void *xdr = sc->sc_rb.rb_rxd;
1039 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1040 unsigned int ri;
1041 uint32_t flags;
1042
1043 ri = sc->sc_rb.rb_rdtail;
1044
1045 /*
1046 * Process all buffers with valid data.
1047 */
1048 for (;;) {
1049 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1050 if (flags & HME_XD_OWN)
1051 break;
1052
1053 if (flags & HME_XD_OFL) {
1054 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1055 device_xname(sc->sc_dev), ri, flags);
1056 } else
1057 hme_read(sc, ri, flags);
1058
1059 /* This buffer can be used by the hardware again */
1060 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1061 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1062
1063 if (++ri == nrbuf)
1064 ri = 0;
1065 }
1066
1067 sc->sc_rb.rb_rdtail = ri;
1068
1069 /* Read error counters ... */
1070 ifp->if_ierrors +=
1071 bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1072 bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1073 bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1074 bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1075
1076 /* ... then clear the hardware counters. */
1077 bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1078 bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1079 bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1080 bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1081 return (1);
1082 }
1083
1084 int
1085 hme_eint(struct hme_softc *sc, u_int status)
1086 {
1087 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1088 char bits[128];
1089
1090 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1091 bus_space_tag_t t = sc->sc_bustag;
1092 bus_space_handle_t mif = sc->sc_mif;
1093 uint32_t cf, st, sm;
1094 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1095 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1096 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1097 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1098 device_xname(sc->sc_dev), cf, st, sm);
1099 return (1);
1100 }
1101
1102 /* Receive error counters rolled over */
1103 if (status & HME_SEB_STAT_ACNTEXP)
1104 ifp->if_ierrors += 0xff;
1105 if (status & HME_SEB_STAT_CCNTEXP)
1106 ifp->if_ierrors += 0xff;
1107 if (status & HME_SEB_STAT_LCNTEXP)
1108 ifp->if_ierrors += 0xff;
1109 if (status & HME_SEB_STAT_CVCNTEXP)
1110 ifp->if_ierrors += 0xff;
1111
1112 /* RXTERR locks up the interface, so do a reset */
1113 if (status & HME_SEB_STAT_RXTERR)
1114 hme_reset(sc);
1115
1116 snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1117 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1118
1119 return (1);
1120 }
1121
1122 int
1123 hme_intr(void *v)
1124 {
1125 struct hme_softc *sc = v;
1126 bus_space_tag_t t = sc->sc_bustag;
1127 bus_space_handle_t seb = sc->sc_seb;
1128 uint32_t status;
1129 int r = 0;
1130
1131 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1132
1133 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1134 r |= hme_eint(sc, status);
1135
1136 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1137 r |= hme_tint(sc);
1138
1139 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1140 r |= hme_rint(sc);
1141
1142 rnd_add_uint32(&sc->rnd_source, status);
1143
1144 return (r);
1145 }
1146
1147
1148 void
1149 hme_watchdog(struct ifnet *ifp)
1150 {
1151 struct hme_softc *sc = ifp->if_softc;
1152
1153 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1154 ++ifp->if_oerrors;
1155
1156 hme_reset(sc);
1157 }
1158
1159 /*
1160 * Initialize the MII Management Interface
1161 */
1162 void
1163 hme_mifinit(struct hme_softc *sc)
1164 {
1165 bus_space_tag_t t = sc->sc_bustag;
1166 bus_space_handle_t mif = sc->sc_mif;
1167 bus_space_handle_t mac = sc->sc_mac;
1168 int instance, phy;
1169 uint32_t v;
1170
1171 if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1172 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1173 phy = sc->sc_phys[instance];
1174 } else
1175 /* No media set yet, pick phy arbitrarily.. */
1176 phy = HME_PHYAD_EXTERNAL;
1177
1178 /* Configure the MIF in frame mode, no poll, current phy select */
1179 v = 0;
1180 if (phy == HME_PHYAD_EXTERNAL)
1181 v |= HME_MIF_CFG_PHY;
1182 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1183
1184 /* If an external transceiver is selected, enable its MII drivers */
1185 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1186 v &= ~HME_MAC_XIF_MIIENABLE;
1187 if (phy == HME_PHYAD_EXTERNAL)
1188 v |= HME_MAC_XIF_MIIENABLE;
1189 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1190 }
1191
1192 /*
1193 * MII interface
1194 */
1195 static int
1196 hme_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1197 {
1198 struct hme_softc *sc = device_private(self);
1199 bus_space_tag_t t = sc->sc_bustag;
1200 bus_space_handle_t mif = sc->sc_mif;
1201 bus_space_handle_t mac = sc->sc_mac;
1202 uint32_t v, xif_cfg, mifi_cfg;
1203 int n, rv;
1204
1205 /* We can at most have two PHYs */
1206 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1207 return -1;
1208
1209 /* Select the desired PHY in the MIF configuration register */
1210 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1211 v &= ~HME_MIF_CFG_PHY;
1212 if (phy == HME_PHYAD_EXTERNAL)
1213 v |= HME_MIF_CFG_PHY;
1214 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1215
1216 /* Enable MII drivers on external transceiver */
1217 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1218 if (phy == HME_PHYAD_EXTERNAL)
1219 v |= HME_MAC_XIF_MIIENABLE;
1220 else
1221 v &= ~HME_MAC_XIF_MIIENABLE;
1222 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1223
1224 #if 0
1225 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1226 /*
1227 * Check whether a transceiver is connected by testing
1228 * the MIF configuration register's MDI_X bits. Note that
1229 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1230 */
1231 mif_mdi_bit = 1 << (8 + (1 - phy));
1232 delay(100);
1233 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1234 if ((v & mif_mdi_bit) == 0) {
1235 rv = -1;
1236 goto out;
1237 }
1238 #endif
1239
1240 /* Construct the frame command */
1241 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1242 HME_MIF_FO_TAMSB |
1243 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1244 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1245 (reg << HME_MIF_FO_REGAD_SHIFT);
1246
1247 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1248 for (n = 0; n < 100; n++) {
1249 DELAY(1);
1250 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1251 if (v & HME_MIF_FO_TALSB) {
1252 *val = v & HME_MIF_FO_DATA;
1253 rv = 0;
1254 goto out;
1255 }
1256 }
1257
1258 rv = ETIMEDOUT;
1259 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1260
1261 out:
1262 /* Restore MIFI_CFG register */
1263 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1264 /* Restore XIF register */
1265 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1266 return rv;
1267 }
1268
1269 static int
1270 hme_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1271 {
1272 struct hme_softc *sc = device_private(self);
1273 bus_space_tag_t t = sc->sc_bustag;
1274 bus_space_handle_t mif = sc->sc_mif;
1275 bus_space_handle_t mac = sc->sc_mac;
1276 uint32_t v, xif_cfg, mifi_cfg;
1277 int n, rv;
1278
1279 /* We can at most have two PHYs */
1280 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1281 return -1;
1282
1283 /* Select the desired PHY in the MIF configuration register */
1284 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1285 v &= ~HME_MIF_CFG_PHY;
1286 if (phy == HME_PHYAD_EXTERNAL)
1287 v |= HME_MIF_CFG_PHY;
1288 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1289
1290 /* Enable MII drivers on external transceiver */
1291 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1292 if (phy == HME_PHYAD_EXTERNAL)
1293 v |= HME_MAC_XIF_MIIENABLE;
1294 else
1295 v &= ~HME_MAC_XIF_MIIENABLE;
1296 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1297
1298 #if 0
1299 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1300 /*
1301 * Check whether a transceiver is connected by testing
1302 * the MIF configuration register's MDI_X bits. Note that
1303 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1304 */
1305 mif_mdi_bit = 1 << (8 + (1 - phy));
1306 delay(100);
1307 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1308 if ((v & mif_mdi_bit) == 0) {
1309 rv = -1;
1310 goto out;
1311 }
1312 #endif
1313
1314 /* Construct the frame command */
1315 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1316 HME_MIF_FO_TAMSB |
1317 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1318 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1319 (reg << HME_MIF_FO_REGAD_SHIFT) |
1320 (val & HME_MIF_FO_DATA);
1321
1322 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1323 for (n = 0; n < 100; n++) {
1324 DELAY(1);
1325 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1326 if (v & HME_MIF_FO_TALSB) {
1327 rv = 0;
1328 goto out;
1329 }
1330 }
1331
1332 rv = ETIMEDOUT;
1333 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1334 out:
1335 /* Restore MIFI_CFG register */
1336 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1337 /* Restore XIF register */
1338 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1339
1340 return rv;
1341 }
1342
1343 static void
1344 hme_mii_statchg(struct ifnet *ifp)
1345 {
1346 struct hme_softc *sc = ifp->if_softc;
1347 bus_space_tag_t t = sc->sc_bustag;
1348 bus_space_handle_t mac = sc->sc_mac;
1349 uint32_t v;
1350
1351 #ifdef HMEDEBUG
1352 if (sc->sc_debug)
1353 printf("hme_mii_statchg: status change\n");
1354 #endif
1355
1356 /* Set the MAC Full Duplex bit appropriately */
1357 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1358 but not otherwise. */
1359 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1360 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1361 v |= HME_MAC_TXCFG_FULLDPLX;
1362 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1363 } else {
1364 v &= ~HME_MAC_TXCFG_FULLDPLX;
1365 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1366 }
1367 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1368 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1369 }
1370
1371 int
1372 hme_mediachange(struct ifnet *ifp)
1373 {
1374 struct hme_softc *sc = ifp->if_softc;
1375 bus_space_tag_t t = sc->sc_bustag;
1376 bus_space_handle_t mif = sc->sc_mif;
1377 bus_space_handle_t mac = sc->sc_mac;
1378 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1379 int phy = sc->sc_phys[instance];
1380 int rc;
1381 uint32_t v;
1382
1383 #ifdef HMEDEBUG
1384 if (sc->sc_debug)
1385 printf("hme_mediachange: phy = %d\n", phy);
1386 #endif
1387
1388 /* Select the current PHY in the MIF configuration register */
1389 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1390 v &= ~HME_MIF_CFG_PHY;
1391 if (phy == HME_PHYAD_EXTERNAL)
1392 v |= HME_MIF_CFG_PHY;
1393 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1394
1395 /* If an external transceiver is selected, enable its MII drivers */
1396 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1397 v &= ~HME_MAC_XIF_MIIENABLE;
1398 if (phy == HME_PHYAD_EXTERNAL)
1399 v |= HME_MAC_XIF_MIIENABLE;
1400 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1401
1402 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1403 return 0;
1404 return rc;
1405 }
1406
1407 /*
1408 * Process an ioctl request.
1409 */
1410 int
1411 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1412 {
1413 struct hme_softc *sc = ifp->if_softc;
1414 struct ifaddr *ifa = (struct ifaddr *)data;
1415 int s, error = 0;
1416
1417 s = splnet();
1418
1419 switch (cmd) {
1420
1421 case SIOCINITIFADDR:
1422 switch (ifa->ifa_addr->sa_family) {
1423 #ifdef INET
1424 case AF_INET:
1425 if (ifp->if_flags & IFF_UP)
1426 hme_setladrf(sc);
1427 else {
1428 ifp->if_flags |= IFF_UP;
1429 error = hme_init(ifp);
1430 }
1431 arp_ifinit(ifp, ifa);
1432 break;
1433 #endif
1434 default:
1435 ifp->if_flags |= IFF_UP;
1436 error = hme_init(ifp);
1437 break;
1438 }
1439 break;
1440
1441 case SIOCSIFFLAGS:
1442 #ifdef HMEDEBUG
1443 {
1444 struct ifreq *ifr = data;
1445 sc->sc_debug =
1446 (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1447 }
1448 #endif
1449 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1450 break;
1451
1452 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1453 case IFF_RUNNING:
1454 /*
1455 * If interface is marked down and it is running, then
1456 * stop it.
1457 */
1458 hme_stop(ifp, 0);
1459 ifp->if_flags &= ~IFF_RUNNING;
1460 break;
1461 case IFF_UP:
1462 /*
1463 * If interface is marked up and it is stopped, then
1464 * start it.
1465 */
1466 error = hme_init(ifp);
1467 break;
1468 case IFF_UP | IFF_RUNNING:
1469 /*
1470 * If setting debug or promiscuous mode, do not reset
1471 * the chip; for everything else, call hme_init()
1472 * which will trigger a reset.
1473 */
1474 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1475 if (ifp->if_flags != sc->sc_if_flags) {
1476 if ((ifp->if_flags & (~RESETIGN))
1477 == (sc->sc_if_flags & (~RESETIGN)))
1478 hme_setladrf(sc);
1479 else
1480 error = hme_init(ifp);
1481 }
1482 #undef RESETIGN
1483 break;
1484 case 0:
1485 break;
1486 }
1487
1488 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1489 error = hme_init(ifp);
1490
1491 break;
1492
1493 default:
1494 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1495 break;
1496
1497 error = 0;
1498
1499 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1500 ;
1501 else if (ifp->if_flags & IFF_RUNNING) {
1502 /*
1503 * Multicast list has changed; set the hardware filter
1504 * accordingly.
1505 */
1506 hme_setladrf(sc);
1507 }
1508 break;
1509 }
1510
1511 sc->sc_if_flags = ifp->if_flags;
1512 splx(s);
1513 return (error);
1514 }
1515
1516 bool
1517 hme_shutdown(device_t self, int howto)
1518 {
1519 struct hme_softc *sc;
1520 struct ifnet *ifp;
1521
1522 sc = device_private(self);
1523 ifp = &sc->sc_ethercom.ec_if;
1524 hme_stop(ifp, 1);
1525
1526 return true;
1527 }
1528
1529 /*
1530 * Set up the logical address filter.
1531 */
1532 void
1533 hme_setladrf(struct hme_softc *sc)
1534 {
1535 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1536 struct ether_multi *enm;
1537 struct ether_multistep step;
1538 struct ethercom *ec = &sc->sc_ethercom;
1539 bus_space_tag_t t = sc->sc_bustag;
1540 bus_space_handle_t mac = sc->sc_mac;
1541 uint32_t v;
1542 uint32_t crc;
1543 uint32_t hash[4];
1544
1545 /* Clear hash table */
1546 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1547
1548 /* Get current RX configuration */
1549 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1550
1551 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1552 /* Turn on promiscuous mode; turn off the hash filter */
1553 v |= HME_MAC_RXCFG_PMISC;
1554 v &= ~HME_MAC_RXCFG_HENABLE;
1555 ifp->if_flags |= IFF_ALLMULTI;
1556 goto chipit;
1557 }
1558
1559 /* Turn off promiscuous mode; turn on the hash filter */
1560 v &= ~HME_MAC_RXCFG_PMISC;
1561 v |= HME_MAC_RXCFG_HENABLE;
1562
1563 /*
1564 * Set up multicast address filter by passing all multicast addresses
1565 * through a crc generator, and then using the high order 6 bits as an
1566 * index into the 64 bit logical address filter. The high order bit
1567 * selects the word, while the rest of the bits select the bit within
1568 * the word.
1569 */
1570
1571 ETHER_FIRST_MULTI(step, ec, enm);
1572 while (enm != NULL) {
1573 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1574 /*
1575 * We must listen to a range of multicast addresses.
1576 * For now, just accept all multicasts, rather than
1577 * trying to set only those filter bits needed to match
1578 * the range. (At this time, the only use of address
1579 * ranges is for IP multicast routing, for which the
1580 * range is big enough to require all bits set.)
1581 */
1582 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1583 ifp->if_flags |= IFF_ALLMULTI;
1584 goto chipit;
1585 }
1586
1587 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1588
1589 /* Just want the 6 most significant bits. */
1590 crc >>= 26;
1591
1592 /* Set the corresponding bit in the filter. */
1593 hash[crc >> 4] |= 1 << (crc & 0xf);
1594
1595 ETHER_NEXT_MULTI(step, enm);
1596 }
1597
1598 ifp->if_flags &= ~IFF_ALLMULTI;
1599
1600 chipit:
1601 /* Now load the hash table into the chip */
1602 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1603 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1604 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1605 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1606 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1607 }
1608
1609 /*
1610 * Routines for accessing the transmit and receive buffers.
1611 * The various CPU and adapter configurations supported by this
1612 * driver require three different access methods for buffers
1613 * and descriptors:
1614 * (1) contig (contiguous data; no padding),
1615 * (2) gap2 (two bytes of data followed by two bytes of padding),
1616 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1617 */
1618
1619 #if 0
1620 /*
1621 * contig: contiguous data with no padding.
1622 *
1623 * Buffers may have any alignment.
1624 */
1625
1626 void
1627 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1628 {
1629 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1630
1631 /*
1632 * Just call memcpy() to do the work.
1633 */
1634 memcpy(buf, from, len);
1635 }
1636
1637 void
1638 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1639 {
1640 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1641
1642 /*
1643 * Just call memcpy() to do the work.
1644 */
1645 memcpy(to, buf, len);
1646 }
1647 #endif
1648