hme.c revision 1.13 1 /* $NetBSD: hme.c,v 1.13 2000/05/18 14:00:46 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * HME Ethernet module driver.
41 */
42
43 #define HMEDEBUG
44
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48 #include "rnd.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/syslog.h>
55 #include <sys/socket.h>
56 #include <sys/device.h>
57 #include <sys/malloc.h>
58 #include <sys/ioctl.h>
59 #include <sys/errno.h>
60 #if NRND > 0
61 #include <sys/rnd.h>
62 #endif
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_ether.h>
67 #include <net/if_media.h>
68
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/if_inarp.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/in_var.h>
74 #include <netinet/ip.h>
75 #endif
76
77 #ifdef NS
78 #include <netns/ns.h>
79 #include <netns/ns_if.h>
80 #endif
81
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #include <net/bpfdesc.h>
85 #endif
86
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89
90 #include <machine/bus.h>
91
92 #include <dev/ic/hmereg.h>
93 #include <dev/ic/hmevar.h>
94
95 void hme_start __P((struct ifnet *));
96 void hme_stop __P((struct hme_softc *));
97 int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
98 void hme_tick __P((void *));
99 void hme_watchdog __P((struct ifnet *));
100 void hme_shutdown __P((void *));
101 void hme_init __P((struct hme_softc *));
102 void hme_meminit __P((struct hme_softc *));
103 void hme_mifinit __P((struct hme_softc *));
104 void hme_reset __P((struct hme_softc *));
105 void hme_setladrf __P((struct hme_softc *));
106
107 /* MII methods & callbacks */
108 static int hme_mii_readreg __P((struct device *, int, int));
109 static void hme_mii_writereg __P((struct device *, int, int, int));
110 static void hme_mii_statchg __P((struct device *));
111
112 int hme_mediachange __P((struct ifnet *));
113 void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
114
115 struct mbuf *hme_get __P((struct hme_softc *, int, int));
116 int hme_put __P((struct hme_softc *, int, struct mbuf *));
117 void hme_read __P((struct hme_softc *, int, int));
118 int hme_eint __P((struct hme_softc *, u_int));
119 int hme_rint __P((struct hme_softc *));
120 int hme_tint __P((struct hme_softc *));
121
122 static int ether_cmp __P((u_char *, u_char *));
123
124 /* Default buffer copy routines */
125 void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
126 void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
127 void hme_zerobuf_contig __P((struct hme_softc *, int, int));
128
129
130 void
131 hme_config(sc)
132 struct hme_softc *sc;
133 {
134 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 struct mii_data *mii = &sc->sc_mii;
136 struct mii_softc *child;
137 bus_dma_tag_t dmatag = sc->sc_dmatag;
138 bus_dma_segment_t seg;
139 bus_size_t size;
140 int rseg, error;
141
142 /*
143 * HME common initialization.
144 *
145 * hme_softc fields that must be initialized by the front-end:
146 *
147 * the bus tag:
148 * sc_bustag
149 *
150 * the dma bus tag:
151 * sc_dmatag
152 *
153 * the bus handles:
154 * sc_seb (Shared Ethernet Block registers)
155 * sc_erx (Receiver Unit registers)
156 * sc_etx (Transmitter Unit registers)
157 * sc_mac (MAC registers)
158 * sc_mif (Managment Interface registers)
159 *
160 * the maximum bus burst size:
161 * sc_burst
162 *
163 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
164 * rb_membase, rb_dmabase)
165 *
166 * the local Ethernet address:
167 * sc_enaddr
168 *
169 */
170
171 /* Make sure the chip is stopped. */
172 hme_stop(sc);
173
174
175 /*
176 * Allocate descriptors and buffers
177 * XXX - do all this differently.. and more configurably,
178 * eg. use things as `dma_load_mbuf()' on transmit,
179 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
180 * all the time) on the reveiver side.
181 *
182 * Note: receive buffers must be 64-byte aligned.
183 * Also, apparently, the buffers must extend to a DMA burst
184 * boundary beyond the maximum packet size.
185 */
186 #define _HME_NDESC 32
187 #define _HME_BUFSZ 1600
188
189 /* Note: the # of descriptors must be a multiple of 16 */
190 sc->sc_rb.rb_ntbuf = _HME_NDESC;
191 sc->sc_rb.rb_nrbuf = _HME_NDESC;
192
193 /*
194 * Allocate DMA capable memory
195 * Buffer descriptors must be aligned on a 2048 byte boundary;
196 * take this into account when calculating the size. Note that
197 * the maximum number of descriptors (256) occupies 2048 bytes,
198 * so we allocate that much regardless of _HME_NDESC.
199 */
200 size = 2048 + /* TX descriptors */
201 2048 + /* RX descriptors */
202 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
203 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
204
205 /* Allocate DMA buffer */
206 if ((error = bus_dmamem_alloc(dmatag, size,
207 2048, 0,
208 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
209 printf("%s: DMA buffer alloc error %d\n",
210 sc->sc_dev.dv_xname, error);
211 return;
212 }
213
214 /* Map DMA memory in CPU addressable space */
215 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
216 &sc->sc_rb.rb_membase,
217 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
218 printf("%s: DMA buffer map error %d\n",
219 sc->sc_dev.dv_xname, error);
220 bus_dmamap_unload(dmatag, sc->sc_dmamap);
221 bus_dmamem_free(dmatag, &seg, rseg);
222 return;
223 }
224
225 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
226 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
227 printf("%s: DMA map create error %d\n",
228 sc->sc_dev.dv_xname, error);
229 return;
230 }
231
232 /* Load the buffer */
233 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
234 sc->sc_rb.rb_membase, size, NULL, BUS_DMA_NOWAIT)) != 0) {
235 printf("%s: DMA buffer map load error %d\n",
236 sc->sc_dev.dv_xname, error);
237 bus_dmamem_free(dmatag, &seg, rseg);
238 return;
239 }
240 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
241
242 printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
243
244 /* Initialize ifnet structure. */
245 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
246 ifp->if_softc = sc;
247 ifp->if_start = hme_start;
248 ifp->if_ioctl = hme_ioctl;
249 ifp->if_watchdog = hme_watchdog;
250 ifp->if_flags =
251 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
252
253 /* Initialize ifmedia structures and MII info */
254 mii->mii_ifp = ifp;
255 mii->mii_readreg = hme_mii_readreg;
256 mii->mii_writereg = hme_mii_writereg;
257 mii->mii_statchg = hme_mii_statchg;
258
259 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
260
261 hme_mifinit(sc);
262
263 mii_attach(&sc->sc_dev, mii, 0xffffffff,
264 MII_PHY_ANY, MII_OFFSET_ANY, 0);
265
266 child = LIST_FIRST(&mii->mii_phys);
267 if (child == NULL) {
268 /* No PHY attached */
269 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
270 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
271 } else {
272 /*
273 * Walk along the list of attached MII devices and
274 * establish an `MII instance' to `phy number'
275 * mapping. We'll use this mapping in media change
276 * requests to determine which phy to use to program
277 * the MIF configuration register.
278 */
279 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
280 /*
281 * Note: we support just two PHYs: the built-in
282 * internal device and an external on the MII
283 * connector.
284 */
285 if (child->mii_phy > 1 || child->mii_inst > 1) {
286 printf("%s: cannot accomodate MII device %s"
287 " at phy %d, instance %d\n",
288 sc->sc_dev.dv_xname,
289 child->mii_dev.dv_xname,
290 child->mii_phy, child->mii_inst);
291 continue;
292 }
293
294 sc->sc_phys[child->mii_inst] = child->mii_phy;
295 }
296
297 /*
298 * XXX - we can really do the following ONLY if the
299 * phy indeed has the auto negotiation capability!!
300 */
301 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
302 }
303
304 /* Attach the interface. */
305 if_attach(ifp);
306 ether_ifattach(ifp, sc->sc_enaddr);
307
308 #if NBPFILTER > 0
309 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
310 #endif
311
312 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
313 if (sc->sc_sh == NULL)
314 panic("hme_config: can't establish shutdownhook");
315
316 #if 0
317 printf("%s: %d receive buffers, %d transmit buffers\n",
318 sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
319 sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
320 M_WAITOK);
321 sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
322 M_WAITOK);
323 #endif
324
325 #if NRND > 0
326 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
327 RND_TYPE_NET, 0);
328 #endif
329
330 callout_init(&sc->sc_tick_ch);
331 }
332
333 void
334 hme_tick(arg)
335 void *arg;
336 {
337 struct hme_softc *sc = arg;
338 int s;
339
340 s = splnet();
341 mii_tick(&sc->sc_mii);
342 splx(s);
343
344 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
345 }
346
347 void
348 hme_reset(sc)
349 struct hme_softc *sc;
350 {
351 int s;
352
353 s = splnet();
354 hme_init(sc);
355 splx(s);
356 }
357
358 void
359 hme_stop(sc)
360 struct hme_softc *sc;
361 {
362 bus_space_tag_t t = sc->sc_bustag;
363 bus_space_handle_t seb = sc->sc_seb;
364 int n;
365
366 callout_stop(&sc->sc_tick_ch);
367 mii_down(&sc->sc_mii);
368
369 /* Reset transmitter and receiver */
370 bus_space_write_4(t, seb, HME_SEBI_RESET,
371 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
372
373 for (n = 0; n < 20; n++) {
374 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
375 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
376 return;
377 DELAY(20);
378 }
379
380 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
381 }
382
383 void
384 hme_meminit(sc)
385 struct hme_softc *sc;
386 {
387 bus_addr_t txbufdma, rxbufdma;
388 bus_addr_t dma;
389 caddr_t p;
390 unsigned int ntbuf, nrbuf, i;
391 struct hme_ring *hr = &sc->sc_rb;
392
393 p = hr->rb_membase;
394 dma = hr->rb_dmabase;
395
396 ntbuf = hr->rb_ntbuf;
397 nrbuf = hr->rb_nrbuf;
398
399 /*
400 * Allocate transmit descriptors
401 */
402 hr->rb_txd = p;
403 hr->rb_txddma = dma;
404 p += ntbuf * HME_XD_SIZE;
405 dma += ntbuf * HME_XD_SIZE;
406 /* We have reserved descriptor space until the next 2048 byte boundary.*/
407 dma = (bus_addr_t)roundup((u_long)dma, 2048);
408 p = (caddr_t)roundup((u_long)p, 2048);
409
410 /*
411 * Allocate receive descriptors
412 */
413 hr->rb_rxd = p;
414 hr->rb_rxddma = dma;
415 p += nrbuf * HME_XD_SIZE;
416 dma += nrbuf * HME_XD_SIZE;
417 /* Again move forward to the next 2048 byte boundary.*/
418 dma = (bus_addr_t)roundup((u_long)dma, 2048);
419 p = (caddr_t)roundup((u_long)p, 2048);
420
421
422 /*
423 * Allocate transmit buffers
424 */
425 hr->rb_txbuf = p;
426 txbufdma = dma;
427 p += ntbuf * _HME_BUFSZ;
428 dma += ntbuf * _HME_BUFSZ;
429
430 /*
431 * Allocate receive buffers
432 */
433 hr->rb_rxbuf = p;
434 rxbufdma = dma;
435 p += nrbuf * _HME_BUFSZ;
436 dma += nrbuf * _HME_BUFSZ;
437
438 /*
439 * Initialize transmit buffer descriptors
440 */
441 for (i = 0; i < ntbuf; i++) {
442 HME_XD_SETADDR(hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
443 HME_XD_SETFLAGS(hr->rb_txd, i, 0);
444 }
445
446 /*
447 * Initialize receive buffer descriptors
448 */
449 for (i = 0; i < nrbuf; i++) {
450 HME_XD_SETADDR(hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
451 HME_XD_SETFLAGS(hr->rb_rxd, i,
452 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
453 }
454
455 hr->rb_tdhead = hr->rb_tdtail = 0;
456 hr->rb_td_nbusy = 0;
457 hr->rb_rdtail = 0;
458 }
459
460 /*
461 * Initialization of interface; set up initialization block
462 * and transmit/receive descriptor rings.
463 */
464 void
465 hme_init(sc)
466 struct hme_softc *sc;
467 {
468 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
469 bus_space_tag_t t = sc->sc_bustag;
470 bus_space_handle_t seb = sc->sc_seb;
471 bus_space_handle_t etx = sc->sc_etx;
472 bus_space_handle_t erx = sc->sc_erx;
473 bus_space_handle_t mac = sc->sc_mac;
474 bus_space_handle_t mif = sc->sc_mif;
475 u_int8_t *ea;
476 u_int32_t v;
477
478 /*
479 * Initialization sequence. The numbered steps below correspond
480 * to the sequence outlined in section 6.3.5.1 in the Ethernet
481 * Channel Engine manual (part of the PCIO manual).
482 * See also the STP2002-STQ document from Sun Microsystems.
483 */
484
485 /* step 1 & 2. Reset the Ethernet Channel */
486 hme_stop(sc);
487
488 /* Re-initialize the MIF */
489 hme_mifinit(sc);
490
491 /* Call MI reset function if any */
492 if (sc->sc_hwreset)
493 (*sc->sc_hwreset)(sc);
494
495 #if 0
496 /* Mask all MIF interrupts, just in case */
497 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
498 #endif
499
500 /* step 3. Setup data structures in host memory */
501 hme_meminit(sc);
502
503 /* step 4. TX MAC registers & counters */
504 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
505 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
506 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
507 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
508
509 /* Load station MAC address */
510 ea = sc->sc_enaddr;
511 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
512 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
513 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
514
515 /*
516 * Init seed for backoff
517 * (source suggested by manual: low 10 bits of MAC address)
518 */
519 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
520 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
521
522
523 /* Note: Accepting power-on default for other MAC registers here.. */
524
525
526 /* step 5. RX MAC registers & counters */
527 hme_setladrf(sc);
528
529 /* step 6 & 7. Program Descriptor Ring Base Addresses */
530 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
531 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
532
533 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
534
535
536 /* step 8. Global Configuration & Interrupt Mask */
537 bus_space_write_4(t, seb, HME_SEBI_IMASK,
538 ~(
539 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
540 HME_SEB_STAT_HOSTTOTX |
541 HME_SEB_STAT_RXTOHOST |
542 HME_SEB_STAT_TXALL |
543 HME_SEB_STAT_TXPERR |
544 HME_SEB_STAT_RCNTEXP |
545 HME_SEB_STAT_ALL_ERRORS ));
546
547 switch (sc->sc_burst) {
548 default:
549 v = 0;
550 break;
551 case 16:
552 v = HME_SEB_CFG_BURST16;
553 break;
554 case 32:
555 v = HME_SEB_CFG_BURST32;
556 break;
557 case 64:
558 v = HME_SEB_CFG_BURST64;
559 break;
560 }
561 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
562
563 /* step 9. ETX Configuration: use mostly default values */
564
565 /* Enable DMA */
566 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
567 v |= HME_ETX_CFG_DMAENABLE;
568 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
569
570 /* Transmit Descriptor ring size: in increments of 16 */
571 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
572
573
574 /* step 10. ERX Configuration */
575 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
576
577 /* Encode Receive Descriptor ring size: four possible values */
578 switch (_HME_NDESC /*XXX*/) {
579 case 32:
580 v |= HME_ERX_CFG_RINGSIZE32;
581 break;
582 case 64:
583 v |= HME_ERX_CFG_RINGSIZE64;
584 break;
585 case 128:
586 v |= HME_ERX_CFG_RINGSIZE128;
587 break;
588 case 256:
589 v |= HME_ERX_CFG_RINGSIZE256;
590 break;
591 default:
592 printf("hme: invalid Receive Descriptor ring size\n");
593 break;
594 }
595
596 /* Enable DMA */
597 v |= HME_ERX_CFG_DMAENABLE;
598 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
599
600 /* step 11. XIF Configuration */
601 v = bus_space_read_4(t, mac, HME_MACI_XIF);
602 v |= HME_MAC_XIF_OE;
603 /* If an external transceiver is connected, enable its MII drivers */
604 if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
605 v |= HME_MAC_XIF_MIIENABLE;
606 bus_space_write_4(t, mac, HME_MACI_XIF, v);
607
608
609 /* step 12. RX_MAC Configuration Register */
610 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
611 v |= HME_MAC_RXCFG_ENABLE;
612 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
613
614 /* step 13. TX_MAC Configuration Register */
615 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
616 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
617 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
618
619 /* step 14. Issue Transmit Pending command */
620
621 /* Call MI initialization function if any */
622 if (sc->sc_hwinit)
623 (*sc->sc_hwinit)(sc);
624
625 /* Start the one second timer. */
626 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
627
628 ifp->if_flags |= IFF_RUNNING;
629 ifp->if_flags &= ~IFF_OACTIVE;
630 ifp->if_timer = 0;
631 hme_start(ifp);
632 }
633
634 /*
635 * Compare two Ether/802 addresses for equality, inlined and unrolled for
636 * speed.
637 */
638 static __inline__ int
639 ether_cmp(a, b)
640 u_char *a, *b;
641 {
642
643 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
644 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
645 return (0);
646 return (1);
647 }
648
649
650 /*
651 * Routine to copy from mbuf chain to transmit buffer in
652 * network buffer memory.
653 * Returns the amount of data copied.
654 */
655 int
656 hme_put(sc, ri, m)
657 struct hme_softc *sc;
658 int ri; /* Ring index */
659 struct mbuf *m;
660 {
661 struct mbuf *n;
662 int len, tlen = 0;
663 caddr_t bp;
664
665 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
666 for (; m; m = n) {
667 len = m->m_len;
668 if (len == 0) {
669 MFREE(m, n);
670 continue;
671 }
672 bcopy(mtod(m, caddr_t), bp, len);
673 bp += len;
674 tlen += len;
675 MFREE(m, n);
676 }
677 return (tlen);
678 }
679
680 /*
681 * Pull data off an interface.
682 * Len is length of data, with local net header stripped.
683 * We copy the data into mbufs. When full cluster sized units are present
684 * we copy into clusters.
685 */
686 struct mbuf *
687 hme_get(sc, ri, totlen)
688 struct hme_softc *sc;
689 int ri, totlen;
690 {
691 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
692 struct mbuf *m, *m0, *newm;
693 caddr_t bp;
694 int len;
695
696 MGETHDR(m0, M_DONTWAIT, MT_DATA);
697 if (m0 == 0)
698 return (0);
699 m0->m_pkthdr.rcvif = ifp;
700 m0->m_pkthdr.len = totlen;
701 len = MHLEN;
702 m = m0;
703
704 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
705
706 while (totlen > 0) {
707 if (totlen >= MINCLSIZE) {
708 MCLGET(m, M_DONTWAIT);
709 if ((m->m_flags & M_EXT) == 0)
710 goto bad;
711 len = MCLBYTES;
712 }
713
714 if (m == m0) {
715 caddr_t newdata = (caddr_t)
716 ALIGN(m->m_data + sizeof(struct ether_header)) -
717 sizeof(struct ether_header);
718 len -= newdata - m->m_data;
719 m->m_data = newdata;
720 }
721
722 m->m_len = len = min(totlen, len);
723 bcopy(bp, mtod(m, caddr_t), len);
724 bp += len;
725
726 totlen -= len;
727 if (totlen > 0) {
728 MGET(newm, M_DONTWAIT, MT_DATA);
729 if (newm == 0)
730 goto bad;
731 len = MLEN;
732 m = m->m_next = newm;
733 }
734 }
735
736 return (m0);
737
738 bad:
739 m_freem(m0);
740 return (0);
741 }
742
743 /*
744 * Pass a packet to the higher levels.
745 */
746 void
747 hme_read(sc, ix, len)
748 struct hme_softc *sc;
749 int ix, len;
750 {
751 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
752 struct mbuf *m;
753
754 if (len <= sizeof(struct ether_header) ||
755 len > ETHERMTU + sizeof(struct ether_header)) {
756 #ifdef HMEDEBUG
757 printf("%s: invalid packet size %d; dropping\n",
758 sc->sc_dev.dv_xname, len);
759 #endif
760 ifp->if_ierrors++;
761 return;
762 }
763
764 /* Pull packet off interface. */
765 m = hme_get(sc, ix, len);
766 if (m == 0) {
767 ifp->if_ierrors++;
768 return;
769 }
770
771 ifp->if_ipackets++;
772
773 #if NBPFILTER > 0
774 /*
775 * Check if there's a BPF listener on this interface.
776 * If so, hand off the raw packet to BPF.
777 */
778 if (ifp->if_bpf) {
779 struct ether_header *eh;
780
781 bpf_mtap(ifp->if_bpf, m);
782
783 /*
784 * Note that the interface cannot be in promiscuous mode if
785 * there are no BPF listeners. And if we are in promiscuous
786 * mode, we have to check if this packet is really ours.
787 */
788
789 /* We assume that the header fit entirely in one mbuf. */
790 eh = mtod(m, struct ether_header *);
791
792 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
793 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
794 ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) {
795 m_freem(m);
796 return;
797 }
798 }
799 #endif
800
801 /* Pass the packet up. */
802 (*ifp->if_input)(ifp, m);
803 }
804
805 void
806 hme_start(ifp)
807 struct ifnet *ifp;
808 {
809 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
810 caddr_t txd = sc->sc_rb.rb_txd;
811 struct mbuf *m;
812 unsigned int ri, len;
813 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
814
815 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
816 return;
817
818 ri = sc->sc_rb.rb_tdhead;
819
820 for (;;) {
821 IF_DEQUEUE(&ifp->if_snd, m);
822 if (m == 0)
823 break;
824
825 #if NBPFILTER > 0
826 /*
827 * If BPF is listening on this interface, let it see the
828 * packet before we commit it to the wire.
829 */
830 if (ifp->if_bpf)
831 bpf_mtap(ifp->if_bpf, m);
832 #endif
833
834 /*
835 * Copy the mbuf chain into the transmit buffer.
836 */
837 len = hme_put(sc, ri, m);
838
839 /*
840 * Initialize transmit registers and start transmission
841 */
842 HME_XD_SETFLAGS(txd, ri,
843 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
844 HME_XD_ENCODE_TSIZE(len));
845
846 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
847 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
848 HME_ETX_TP_DMAWAKEUP);
849
850 if (++ri == ntbuf)
851 ri = 0;
852
853 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
854 ifp->if_flags |= IFF_OACTIVE;
855 break;
856 }
857 }
858
859 sc->sc_rb.rb_tdhead = ri;
860 }
861
862 /*
863 * Transmit interrupt.
864 */
865 int
866 hme_tint(sc)
867 struct hme_softc *sc;
868 {
869 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
870 bus_space_tag_t t = sc->sc_bustag;
871 bus_space_handle_t mac = sc->sc_mac;
872 unsigned int ri, txflags;
873
874 /*
875 * Unload collision counters
876 */
877 ifp->if_collisions +=
878 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
879 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
880 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
881 bus_space_read_4(t, mac, HME_MACI_LTCNT);
882
883 /*
884 * then clear the hardware counters.
885 */
886 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
887 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
888 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
889 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
890
891 /* Fetch current position in the transmit ring */
892 ri = sc->sc_rb.rb_tdtail;
893
894 for (;;) {
895 if (sc->sc_rb.rb_td_nbusy <= 0)
896 break;
897
898 txflags = HME_XD_GETFLAGS(sc->sc_rb.rb_txd, ri);
899
900 if (txflags & HME_XD_OWN)
901 break;
902
903 ifp->if_flags &= ~IFF_OACTIVE;
904 ifp->if_opackets++;
905
906 if (++ri == sc->sc_rb.rb_ntbuf)
907 ri = 0;
908
909 --sc->sc_rb.rb_td_nbusy;
910 }
911
912 /* Update ring */
913 sc->sc_rb.rb_tdtail = ri;
914
915 hme_start(ifp);
916
917 if (sc->sc_rb.rb_td_nbusy == 0)
918 ifp->if_timer = 0;
919
920 return (1);
921 }
922
923 /*
924 * Receive interrupt.
925 */
926 int
927 hme_rint(sc)
928 struct hme_softc *sc;
929 {
930 caddr_t xdr = sc->sc_rb.rb_rxd;
931 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
932 unsigned int ri, len;
933 u_int32_t flags;
934
935 ri = sc->sc_rb.rb_rdtail;
936
937 /*
938 * Process all buffers with valid data.
939 */
940 for (;;) {
941 flags = HME_XD_GETFLAGS(xdr, ri);
942 if (flags & HME_XD_OWN)
943 break;
944
945 if (flags & HME_XD_OFL) {
946 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
947 sc->sc_dev.dv_xname, ri, flags);
948 } else {
949 len = HME_XD_DECODE_RSIZE(flags);
950 hme_read(sc, ri, len);
951 }
952
953 /* This buffer can be used by the hardware again */
954 HME_XD_SETFLAGS(xdr, ri,
955 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
956
957 if (++ri == nrbuf)
958 ri = 0;
959 }
960
961 sc->sc_rb.rb_rdtail = ri;
962
963 return (1);
964 }
965
966 int
967 hme_eint(sc, status)
968 struct hme_softc *sc;
969 u_int status;
970 {
971 char bits[128];
972
973 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
974 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
975 return (1);
976 }
977
978 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
979 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
980 return (1);
981 }
982
983 int
984 hme_intr(v)
985 void *v;
986 {
987 struct hme_softc *sc = (struct hme_softc *)v;
988 bus_space_tag_t t = sc->sc_bustag;
989 bus_space_handle_t seb = sc->sc_seb;
990 u_int32_t status;
991 int r = 0;
992
993 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
994
995 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
996 r |= hme_eint(sc, status);
997
998 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
999 r |= hme_tint(sc);
1000
1001 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1002 r |= hme_rint(sc);
1003
1004 return (r);
1005 }
1006
1007
1008 void
1009 hme_watchdog(ifp)
1010 struct ifnet *ifp;
1011 {
1012 struct hme_softc *sc = ifp->if_softc;
1013
1014 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1015 ++ifp->if_oerrors;
1016
1017 hme_reset(sc);
1018 }
1019
1020 /*
1021 * Initialize the MII Management Interface
1022 */
1023 void
1024 hme_mifinit(sc)
1025 struct hme_softc *sc;
1026 {
1027 bus_space_tag_t t = sc->sc_bustag;
1028 bus_space_handle_t mif = sc->sc_mif;
1029 u_int32_t v;
1030
1031 /* Configure the MIF in frame mode */
1032 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1033 v &= ~HME_MIF_CFG_BBMODE;
1034 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1035 }
1036
1037 /*
1038 * MII interface
1039 */
1040 static int
1041 hme_mii_readreg(self, phy, reg)
1042 struct device *self;
1043 int phy, reg;
1044 {
1045 struct hme_softc *sc = (void *)self;
1046 bus_space_tag_t t = sc->sc_bustag;
1047 bus_space_handle_t mif = sc->sc_mif;
1048 int n;
1049 u_int32_t v;
1050
1051 /* Select the desired PHY in the MIF configuration register */
1052 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1053 /* Clear PHY select bit */
1054 v &= ~HME_MIF_CFG_PHY;
1055 if (phy == HME_PHYAD_EXTERNAL)
1056 /* Set PHY select bit to get at external device */
1057 v |= HME_MIF_CFG_PHY;
1058 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1059
1060 /* Construct the frame command */
1061 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1062 HME_MIF_FO_TAMSB |
1063 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1064 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1065 (reg << HME_MIF_FO_REGAD_SHIFT);
1066
1067 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1068 for (n = 0; n < 100; n++) {
1069 DELAY(1);
1070 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1071 if (v & HME_MIF_FO_TALSB)
1072 return (v & HME_MIF_FO_DATA);
1073 }
1074
1075 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1076 return (0);
1077 }
1078
1079 static void
1080 hme_mii_writereg(self, phy, reg, val)
1081 struct device *self;
1082 int phy, reg, val;
1083 {
1084 struct hme_softc *sc = (void *)self;
1085 bus_space_tag_t t = sc->sc_bustag;
1086 bus_space_handle_t mif = sc->sc_mif;
1087 int n;
1088 u_int32_t v;
1089
1090 /* Select the desired PHY in the MIF configuration register */
1091 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1092 /* Clear PHY select bit */
1093 v &= ~HME_MIF_CFG_PHY;
1094 if (phy == HME_PHYAD_EXTERNAL)
1095 /* Set PHY select bit to get at external device */
1096 v |= HME_MIF_CFG_PHY;
1097 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1098
1099 /* Construct the frame command */
1100 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1101 HME_MIF_FO_TAMSB |
1102 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1103 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1104 (reg << HME_MIF_FO_REGAD_SHIFT) |
1105 (val & HME_MIF_FO_DATA);
1106
1107 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1108 for (n = 0; n < 100; n++) {
1109 DELAY(1);
1110 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1111 if (v & HME_MIF_FO_TALSB)
1112 return;
1113 }
1114
1115 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1116 }
1117
1118 static void
1119 hme_mii_statchg(dev)
1120 struct device *dev;
1121 {
1122 struct hme_softc *sc = (void *)dev;
1123 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1124 int phy = sc->sc_phys[instance];
1125 bus_space_tag_t t = sc->sc_bustag;
1126 bus_space_handle_t mif = sc->sc_mif;
1127 bus_space_handle_t mac = sc->sc_mac;
1128 u_int32_t v;
1129
1130 #ifdef HMEDEBUG
1131 if (sc->sc_debug)
1132 printf("hme_mii_statchg: status change: phy = %d\n", phy);
1133 #endif
1134
1135 /* Select the current PHY in the MIF configuration register */
1136 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1137 v &= ~HME_MIF_CFG_PHY;
1138 if (phy == HME_PHYAD_EXTERNAL)
1139 v |= HME_MIF_CFG_PHY;
1140 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1141
1142 /* Set the MAC Full Duplex bit appropriately */
1143 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1144 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1145 v |= HME_MAC_TXCFG_FULLDPLX;
1146 else
1147 v &= ~HME_MAC_TXCFG_FULLDPLX;
1148 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1149
1150 /* If an external transceiver is selected, enable its MII drivers */
1151 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1152 v &= ~HME_MAC_XIF_MIIENABLE;
1153 if (phy == HME_PHYAD_EXTERNAL)
1154 v |= HME_MAC_XIF_MIIENABLE;
1155 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1156 }
1157
1158 int
1159 hme_mediachange(ifp)
1160 struct ifnet *ifp;
1161 {
1162 struct hme_softc *sc = ifp->if_softc;
1163
1164 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1165 return (EINVAL);
1166
1167 return (mii_mediachg(&sc->sc_mii));
1168 }
1169
1170 void
1171 hme_mediastatus(ifp, ifmr)
1172 struct ifnet *ifp;
1173 struct ifmediareq *ifmr;
1174 {
1175 struct hme_softc *sc = ifp->if_softc;
1176
1177 if ((ifp->if_flags & IFF_UP) == 0)
1178 return;
1179
1180 mii_pollstat(&sc->sc_mii);
1181 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1182 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1183 }
1184
1185 /*
1186 * Process an ioctl request.
1187 */
1188 int
1189 hme_ioctl(ifp, cmd, data)
1190 struct ifnet *ifp;
1191 u_long cmd;
1192 caddr_t data;
1193 {
1194 struct hme_softc *sc = ifp->if_softc;
1195 struct ifaddr *ifa = (struct ifaddr *)data;
1196 struct ifreq *ifr = (struct ifreq *)data;
1197 int s, error = 0;
1198
1199 s = splnet();
1200
1201 switch (cmd) {
1202
1203 case SIOCSIFADDR:
1204 ifp->if_flags |= IFF_UP;
1205
1206 switch (ifa->ifa_addr->sa_family) {
1207 #ifdef INET
1208 case AF_INET:
1209 hme_init(sc);
1210 arp_ifinit(ifp, ifa);
1211 break;
1212 #endif
1213 #ifdef NS
1214 case AF_NS:
1215 {
1216 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1217
1218 if (ns_nullhost(*ina))
1219 ina->x_host =
1220 *(union ns_host *)LLADDR(ifp->if_sadl);
1221 else {
1222 bcopy(ina->x_host.c_host,
1223 LLADDR(ifp->if_sadl),
1224 sizeof(sc->sc_enaddr));
1225 }
1226 /* Set new address. */
1227 hme_init(sc);
1228 break;
1229 }
1230 #endif
1231 default:
1232 hme_init(sc);
1233 break;
1234 }
1235 break;
1236
1237 case SIOCSIFFLAGS:
1238 if ((ifp->if_flags & IFF_UP) == 0 &&
1239 (ifp->if_flags & IFF_RUNNING) != 0) {
1240 /*
1241 * If interface is marked down and it is running, then
1242 * stop it.
1243 */
1244 hme_stop(sc);
1245 ifp->if_flags &= ~IFF_RUNNING;
1246 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1247 (ifp->if_flags & IFF_RUNNING) == 0) {
1248 /*
1249 * If interface is marked up and it is stopped, then
1250 * start it.
1251 */
1252 hme_init(sc);
1253 } else if ((ifp->if_flags & IFF_UP) != 0) {
1254 /*
1255 * Reset the interface to pick up changes in any other
1256 * flags that affect hardware registers.
1257 */
1258 /*hme_stop(sc);*/
1259 hme_init(sc);
1260 }
1261 #ifdef HMEDEBUG
1262 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1263 #endif
1264 break;
1265
1266 case SIOCADDMULTI:
1267 case SIOCDELMULTI:
1268 error = (cmd == SIOCADDMULTI) ?
1269 ether_addmulti(ifr, &sc->sc_ethercom) :
1270 ether_delmulti(ifr, &sc->sc_ethercom);
1271
1272 if (error == ENETRESET) {
1273 /*
1274 * Multicast list has changed; set the hardware filter
1275 * accordingly.
1276 */
1277 hme_setladrf(sc);
1278 error = 0;
1279 }
1280 break;
1281
1282 case SIOCGIFMEDIA:
1283 case SIOCSIFMEDIA:
1284 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1285 break;
1286
1287 default:
1288 error = EINVAL;
1289 break;
1290 }
1291
1292 splx(s);
1293 return (error);
1294 }
1295
1296 void
1297 hme_shutdown(arg)
1298 void *arg;
1299 {
1300
1301 hme_stop((struct hme_softc *)arg);
1302 }
1303
1304 /*
1305 * Set up the logical address filter.
1306 */
1307 void
1308 hme_setladrf(sc)
1309 struct hme_softc *sc;
1310 {
1311 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1312 struct ether_multi *enm;
1313 struct ether_multistep step;
1314 struct ethercom *ec = &sc->sc_ethercom;
1315 bus_space_tag_t t = sc->sc_bustag;
1316 bus_space_handle_t mac = sc->sc_mac;
1317 u_char *cp;
1318 u_int32_t crc;
1319 u_int32_t hash[4];
1320 int len;
1321
1322 /*
1323 * Set up multicast address filter by passing all multicast addresses
1324 * through a crc generator, and then using the high order 6 bits as an
1325 * index into the 64 bit logical address filter. The high order bit
1326 * selects the word, while the rest of the bits select the bit within
1327 * the word.
1328 */
1329
1330 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1331 u_int32_t v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1332 v |= HME_MAC_RXCFG_PMISC;
1333 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1334 goto allmulti;
1335 }
1336
1337 /* Clear hash table */
1338 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1339 ETHER_FIRST_MULTI(step, ec, enm);
1340 while (enm != NULL) {
1341 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1342 /*
1343 * We must listen to a range of multicast addresses.
1344 * For now, just accept all multicasts, rather than
1345 * trying to set only those filter bits needed to match
1346 * the range. (At this time, the only use of address
1347 * ranges is for IP multicast routing, for which the
1348 * range is big enough to require all bits set.)
1349 */
1350 goto allmulti;
1351 }
1352
1353 cp = enm->enm_addrlo;
1354 crc = 0xffffffff;
1355 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1356 int octet = *cp++;
1357 int i;
1358
1359 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1360 for (i = 0; i < 8; i++) {
1361 if ((crc & 1) ^ (octet & 1)) {
1362 crc >>= 1;
1363 crc ^= MC_POLY_LE;
1364 } else {
1365 crc >>= 1;
1366 }
1367 octet >>= 1;
1368 }
1369 }
1370 /* Just want the 6 most significant bits. */
1371 crc >>= 26;
1372
1373 /* Set the corresponding bit in the filter. */
1374 hash[crc >> 4] |= 1 << (crc & 0xf);
1375
1376 ETHER_NEXT_MULTI(step, enm);
1377 }
1378
1379 /* Now load the hash table onto the chip */
1380 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1381 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1382 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1383 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1384
1385 ifp->if_flags &= ~IFF_ALLMULTI;
1386 return;
1387
1388 allmulti:
1389 ifp->if_flags |= IFF_ALLMULTI;
1390 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, 0xffff);
1391 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, 0xffff);
1392 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, 0xffff);
1393 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, 0xffff);
1394 }
1395
1396 /*
1397 * Routines for accessing the transmit and receive buffers.
1398 * The various CPU and adapter configurations supported by this
1399 * driver require three different access methods for buffers
1400 * and descriptors:
1401 * (1) contig (contiguous data; no padding),
1402 * (2) gap2 (two bytes of data followed by two bytes of padding),
1403 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1404 */
1405
1406 #if 0
1407 /*
1408 * contig: contiguous data with no padding.
1409 *
1410 * Buffers may have any alignment.
1411 */
1412
1413 void
1414 hme_copytobuf_contig(sc, from, ri, len)
1415 struct hme_softc *sc;
1416 void *from;
1417 int ri, len;
1418 {
1419 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1420
1421 /*
1422 * Just call bcopy() to do the work.
1423 */
1424 bcopy(from, buf, len);
1425 }
1426
1427 void
1428 hme_copyfrombuf_contig(sc, to, boff, len)
1429 struct hme_softc *sc;
1430 void *to;
1431 int boff, len;
1432 {
1433 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1434
1435 /*
1436 * Just call bcopy() to do the work.
1437 */
1438 bcopy(buf, to, len);
1439 }
1440 #endif
1441